JP2004190957A - Timber drying method - Google Patents

Timber drying method Download PDF

Info

Publication number
JP2004190957A
JP2004190957A JP2002359906A JP2002359906A JP2004190957A JP 2004190957 A JP2004190957 A JP 2004190957A JP 2002359906 A JP2002359906 A JP 2002359906A JP 2002359906 A JP2002359906 A JP 2002359906A JP 2004190957 A JP2004190957 A JP 2004190957A
Authority
JP
Japan
Prior art keywords
drying
wood
strain
detecting means
strain detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002359906A
Other languages
Japanese (ja)
Other versions
JP4064222B2 (en
Inventor
Taira Uehara
平 植原
Makoto Watabiki
誠 綿引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Forestry Co Ltd
Original Assignee
Sumitomo Forestry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Forestry Co Ltd filed Critical Sumitomo Forestry Co Ltd
Priority to JP2002359906A priority Critical patent/JP4064222B2/en
Publication of JP2004190957A publication Critical patent/JP2004190957A/en
Application granted granted Critical
Publication of JP4064222B2 publication Critical patent/JP4064222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently dry timber while compatibly suppressing internal cracking and shortening a drying time by acquiring data accurately reflecting the conditions of drying stress in the timber being dried. <P>SOLUTION: The timber drying method comprises fixing a distortion detecting means 1 into the timber 2 and drying the timber 2 while controlling the drying conditions in accordance with data obtained from the distortion detecting means 1. The drying conditions are controlled in such a manner that, for example, when a distortion variation per one hour exceeds a preset value, there is a higher degree of potential for internal cracking and so the drying conditions are changed into a lower drying speed, and when the distortion variation is turned down to a preset value or less, there is a lower degree of potential for internal cracking and so the drying conditions are changed into a higher drying speed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、木材の乾燥方法に関し、詳しくは、乾燥中における木材内部の乾燥応力の状態を的確に反映したデータを取得でき、内部割れの抑制と乾燥時間の短縮とを両立した効率的な木材乾燥を行うことのできる木材の乾燥方法を提供することにある。
【0002】
【従来の技術及び発明が解決しようとする課題】
柱や梁、造作材等の建築材や家具材としては、収縮による変形や割れ等の発生を防止するために人工乾燥した木材が汎用されている。
従来の木材の人工乾燥においては、乾燥機内のサンプル材の含水率、重量、歪みなどを計測し、計測したデータから乾燥スケジュールを組み立てて乾燥を進めることが一般的であるが、これらの計測は、乾燥中に発生する割れ、曲がり、反りなどに影響を与える木材の乾燥応力状態を直接測定するものではない。
【0003】
乾燥中の応力を観察する方法として、乾燥機内にセットしたサンプルを時折取り出して櫛形試験片を作成して応力を判断したり、歪みを取って応力の計測値とする方法があるが、何れも作業が煩雑であり、また、非連続的な情報しか得られないため、乾燥状態に合わせた適正な乾燥スケジュールを組み立てることが困難である。特に高温乾燥では、乾燥機内からサンプルを取り出すこと自体が困難である。
【0004】
また、特開昭50−122971号公報には、木材の反り応力を利用し、乾燥応力を測定する方法が開示されており、特開昭51−84451号公報には、そのような方法により得られる出力を利用して、乾燥室の湿度を自動制御し乾燥スケジュールを自動化する方法が開示されている。
しかし、これらの方法においては、木材の変形度(反りあるいは反ろうとする力)から応力を判断することになるため、木材内部の乾燥応力の状態を的確に判断することができない。しかも、板材を板厚方向に2分割し、元の表裏面以外の面をコーティングした試験片を用いるため、木材本来の乾燥応力の状態を反映したデータが得らない。
要するに、乾燥中における木材内部の乾燥応力の状態を的確に反映したデータを取得し、そのデータを活かして木材を効率的に乾燥する木材の乾燥方法は未だ提供されていない。
【0005】
【特許文献1】
特開昭50−122971号公報
【特許文献2】
特開昭51−84451号公報
【0006】
従って、本発明の目的は、乾燥中における木材内部の乾燥応力の状態を的確に反映したデータを取得でき、内部割れの抑制と乾燥時間の短縮とを両立した効率的な木材乾燥を行うことのできる木材の乾燥方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、歪み検知手段を、木材の内部に挿入して固定し、該歪み検知手段から得られるデータに基づき乾燥条件を制御しながら、該木材の乾燥を行うことを特徴とする木材の乾燥方法を提供することにより、上記の目的を達成したものである。
【0008】
【発明の実施の形態】
以下、本発明をその好ましい実施形態に基づいて詳細に説明する。
本発明で用いる歪み検知手段としては、各種公知のものを用いることができるが、歪みゲージを用いることが好ましい。
歪みゲージは、銅・ニッケル合金等の金属の細線や箔等からなる受感素子(グリッド)を、樹脂等からなる絶縁材のゲージベース(以下、ベースという)に固定してなるもので、該金属の細線や箔等が伸びたり縮んだりすることにより電気抵抗の変化を生じものである。電気抵抗の変化は、通常、ブリッジ回路等により電圧の変化に置き換えられ、更に電圧を増幅されて各種メータやデジタル値により読みとれるようにする。
【0009】
歪み検知手段としては、特定方向の伸縮に対して高い感受性を示すものが好ましく用いられ、特に円筒状のベースを有し、該円筒状のベースの軸長方向の伸縮に対して高い感受性を有する歪みゲージが好ましい。
このような歪みゲージとしては、株式会社共和電業製のボルト軸力測定用の歪みゲージ、特に形式名「KFG−3−120−C20−11」が好ましく用いられる。この歪みゲージは、円筒状のベースの軸長方向がたわむように変形したときよりも、円筒状のベースが軸長方向に伸縮した場合に大きな抵抗変化が生じる。
【0010】
木材に対する歪み検知手段の固定位置は、木材の内部であれば特に制限されないが、木材の両木口面から該木材の長手方向に10cm以上、特に25cm以上離間した位置であることが好ましく、また、木材の各側面(木材の長手方向に沿う4面をいう)からの距離が、2cm又は厚みの1/4の何れか小さい方以上であること好ましい。
【0011】
歪み検知手段は、内部割れの発生に繋がる重要な歪み変化を効率的に検知する観点から、下記(1)及び/又は(2)の態様で固定することが好ましい。
【0012】
(1)歪み検知手段として、特定方向の伸縮に対して高い感受性を示すものを用いる場合、該歪み検知手段は、前記特定方向が木材の長手方向と直交する面と平行となり且つ該特定方向が該木材の一の年輪の近傍において該年輪の接線方向と平行となるように固定することが好ましい。
【0013】
図1には、円筒状のベースを有し、該円筒状のベースの軸長方向の伸縮に対して高い感受性を有する歪みゲージ1が、芯持角材2(正角,背割りなし)の内部に固定された状態が示されている。同図において、4つの歪みゲージ1A〜1Dは、何れも芯持角材2の長手方向と直交する一の面(横断面)上に配置されており、各歪みゲージ1は、円筒状のベースの軸長方向が該横断面と平行となっている。また、歪みゲージ1A,1C,1Dにおける円筒状のベースの軸長方向は、芯持角材2の一の年輪3の近傍において、該年輪3の接線方向と略平行となっており、歪みゲージ1Bにおける円筒状のベースの軸長方向は、芯持角材2の一の年輪3’の近傍において、該年輪3’の接線方向と略平行となっている。
尚、円筒状のベースに金属の細線又は箔等からなる受感素子を固定してなる歪みゲージ1は、特定方向の伸縮に対して高い感受性を示すか否かとの問題と切り離しても、本態様で固定することが好ましい。
【0014】
(2)歪み検知手段を固定する木材が、角材、特に芯持正角、芯去正角、芯持平角又は芯去平角である場合、該木材の長手方向と直交する面(横断面)上に、該木材の一側面の幅方向中央部と該一側面に隣接する他側面との間を結び且つ該一側面に対して45の角度をなす線分を想定したときの該線分の中心点付近に歪み検知手段を固定することが好ましい。
【0015】
図1に示す例においては、芯持正角2の4つの各角部に対応して4つの歪みゲージ1を固定してあるが、その内の一つの歪みゲージ1Aに着目して説明すると、該歪みゲージ1Aは、図1に対応する断面を模式的に示した図2に示すように、芯持正角2の図2に示す横断面上に該芯持角材2の一側面21の幅方向中央部21aと該一側面21に隣接する他側面22との間を結び且つ該一側面21に対して45の角度をなす線分4Aを想定したときの該線分4Aの中心点4a付近に固定されている。他の歪みゲージ1B〜1Dも本態様で固定されており、図2に示す各線分4B〜4Dそれぞれの中心点4b〜4d付近に固定されている。尚、線分の中心点付近とは、線分を2等分する中心点上のみならず、該中心点の近傍でも良いことを意味しており、該線分を正確に2等分する中心点を円の中心とし且つ該線分の半分の長さを直径とする円P内であることが好ましく、特に該線分を正確に2等分する中心点を円の中心とし且つ該線分の1/3の長さを直径とする円内であることが好ましい。
【0016】
図3は、従来の方法により芯持正角を乾燥した場合に内部割れ5が発生し易い箇所及び内部割れ5が発生し易い向きを示したものである。前記(1)及び/又は(2)の態様、特に角材の各角部に対応した4カ所に、それぞれ前記(1)及び/又は(2)の態様で歪み検知手段を配置することにより、芯持正角に、このような内部割れが発生する危険を一層正確に察知できる。尚、図1に示した歪みゲージ(歪み検知手段)の埋め込み部位は、木材断面の対角線の4等分点に当たる位置であり、乾燥中の内部応力が最も大きく、内部割れが発生し易い部位である。
【0017】
図4は、歪み検知手段を、芯去正角、芯持平角及び芯去平角に、前記(1)及び/又は前記(2)の態様で固定した状態を示す図である。尚、図4には、従来の方法によりそれらを乾燥した場合に内部割れ5が発生し易い箇所及び内部割れ5が発生し易い向きを併せて示してある。
図4(a)においては、2つの歪みゲージ1A,1Bが、芯去正角2の同一横断面上に、前記(1)及び前記(2)の態様で固定されている。
図4(b)においては、6つの歪みゲージが、芯持平角2の同一横断面上に固定されており、その内の4つの歪みゲージ1Aは、前記(1)及び前記(2)の態様で固定されており、他の2つの歪みゲージ1Bは、前記(1)の態様で固定されている。
図4(c)においては、4つの歪みゲージが、芯去平角2の同一横断面上に固定されており、何れの歪みゲージ1A,1Bも、前記(1)及び前記(2)の態様で固定されている。
【0018】
歪み検知手段を木材内部に固定する好ましい方法について、歪みゲージを、芯持正角の内部に固定する場合を例に、図5を参照しながら説明する。
先ず、芯持角材2の各側面の幅方向中央部より、該各側面に対して45゜の角度で、隣接する側面の幅方向中央部に貫通するまで、ドリル等で孔を開ける〔図5(a)参照〕。貫通孔の内径は、歪みゲージが丁度入る程度であるか又はやや大きめである。
次いで、その貫通孔23に歪みゲージ1を挿入し〔図5(b)参照〕、該歪みゲージ1を貫通孔23の両端間の中央部に位置させる。そして、歪みゲージ1から延びるゲージリード6を貫通孔23の外に仮止めする。
そして、その状態において、貫通孔23内に接着剤を注入する〔図5(c)参照〕。この接着剤の注入は、一端開口部から注入し、他端開口部から流れ出るまで行い、貫通孔の内部全体に接着剤が充填されたことを確認する。
そして、貫通孔の外に出ているゲージリード6を、ゲージリード保護用のゲージ端子7(図1参照)を介して、耐熱リード線8に接続し、その接続部の廻りを貫通孔23の入り口を含めて耐熱コート9で被覆する〔図5(d)参照〕。
このようにして、歪みゲージ1を図1に示すような状態に固定することができる。
【0019】
本発明における木材の乾燥は、温度及び湿度の制御下に行われる。
この乾燥は、通常、温度及び湿度を制御可能な乾燥機内に、数本から数百本の木材を収容して行うが、歪み検知手段を取り付ける木材は、その内の一本で良い(図6参照)。但し、複数本に取り付けることもできる。
【0020】
木材乾燥中における温度及び湿度の制御方法としては、例えば、歪み検知手段に生じる抵抗変化を、所定の装置により読みとり可能なデータに変換し、この歪み検知手段から得られるデータを監視しながら木材の乾燥を行い、該木材の内部応力(歪み)が内部割れが生じる程度に高まったことをそのデータが示したときには、温度及び/又は湿度を、その乾燥応力を緩和する方向(乾燥速度を遅くする方向)に変更し、そのデータが内部割れの危険が十分に低下したことを確認したときには、温度及び/又は湿度を、乾燥応力を緩和する方向とは逆の方向(乾燥速度を早める方向)に変更する。例えば、このような制御を繰り返しながら木材を乾燥することにより、木材の内部割れを抑制しつつ、乾燥時間の短縮化を図ることができる。
【0021】
本発明の木材の乾燥方法における好ましい制御方法の一例としては、歪み検知手段から得られるデータに基づき、一定時間当たりの歪み変形量が所定の値を超えないように乾燥条件を制御する。例えば、一時間時間当たりの歪み変化量が所定の値を超えた場合に、内部割れの危険が高まったとして、乾燥速度を遅くする方向に乾燥条件を変更し、歪み変化量が所定の値以下に戻った場合に、内部割れの危険が低下したとして、乾燥速度を早める方向に乾燥条件を変更することが考えられる。このように制御することにより、内部割れを防止しつつ、乾燥時間の短縮化を図ることができる。
【0022】
【実施例】
以下、本発明の木材の乾燥方法について実施例を示してより詳細に説明する。
(予備試験)
一本の杉の丸太から一本の挽き角に製材した背割りのない芯持正角(132mm×132mm×3000mm)70本を被乾燥材とした。
被乾燥材の中の一本から、132mm角、全長L=1200mmの歪み計測用供試体を切り出し、該供試体の一方の材端(木口面)からの距離が全長Lの1/4の位置及び全長Lの1/2の位置における各横断面上に、各4個の歪みゲージを埋め込み固定した。埋め込み位置及び各ゲージの配置方向は、図1に示す通りとし、固定方法は、上述した方法(図5参照)によった。また、歪みゲージ等は、何れも株式会社共和電業製の以下のものを用いた。
歪みゲージ;「KFG−3−120−C20−11(ゲージリード付)」、ゲージ固定用接着剤;「EP−34B」、ゲージ端子;「T−F−28」、耐熱リード線;「L−12」、耐熱コート;「SKF−3059」
【0023】
そして、歪み計測用供試体を他の被乾燥材と共に、新柴設備製の高温仕様のIF型蒸気式乾燥機「SK−IF10LHP」内に収容し、乾燥機の外に延ばした耐熱リード線を、1ゲージ3線法でデータロガー(東京測器製「THS−1100」)に接続し、乾燥中の歪みを計測できるようにした。また、分析時には、1時間当たりの歪みの変化量が出力されるようにした。
また、歪み計測用供試体に、電気抵抗式の含水率計と木材内部測温用の熱電対(K熱電対,温度範囲0〜150℃)を、それぞれ歪みゲージの埋め込み位置に相当する中間層(約28mm深度)、及び材の断面中央の中心層(約66mm深度)に挿入し、乾燥中における木材内部の含水率及び温度を計測できるようにした。
【0024】
このような準備が完了した後、予備試験として、図7に示す乾燥スケジュールで乾燥を行い、歪みの変化と内部割れの関係を調べた。この予備試験においては、歪みゲージから得られるデータに基づく乾燥条件の制御は行わなかった。
乾燥終了後に、計測用供試体の歪みゲージ埋め込み部の断面を検査した結果、4つの歪みゲージの内の3つのゲージの埋め込み部位には内部割れが認められず、残りの1つのゲージの埋め込み部位には内部割れが認められた。各歪みゲージから得られるデータにより一時間当たりの歪み変化量の推移を見ると、内部割れのない部位の3つのゲージの埋め込み部位では、最大の歪み変化量を示した時点においても変化量は−300μ以内であったのに対し、内部割れが生じた1つのゲージの埋め込み部位では、一時間当たりの歪み変化量が最大では−500μ近くに達していた。これらの結果より、計測している内部歪みの変化量が、一時間当たり−300μを超えると内部割れが発生する危険があると判断した。尚、図7に示した歪み変化量のデータは、内部割れが生じた1つのゲージの埋め込み部位についてのデータである。
【0025】
(実施例)
被乾燥材である芯持正角の寸法を115mm×115mm×3000mmとし、その中の一本から、115mm角、全長L=1200mmの歪み計測用供試体を切り出し、その歪み計測用供試体に、上述した歪みゲージ、電気抵抗式の含水率計及び熱電対(K熱電対,温度範囲0〜150℃)等を同様に取り付けた以外は、上記予備試験におけるのと同様にして、乾燥の準備を行った。
【0026】
そして、図8に示す乾燥スケジュールで乾燥を行った。以下、その詳細を図8を参照して説明する。
先ず、乾燥機内に水蒸気を噴射して96℃,関係湿度100%で初期蒸煮をおこなった。この初期蒸煮を8時間行い、乾燥機内の木材の温度を所定の温度まで上げた後、図中▲1▼の時点で乾燥工程に切り替えた。第1の乾燥工程では110℃以上の乾球温度で乾燥を行った。第1の乾燥工程では、ゲージの埋め込み部に相当する中間層の含水率を監視しながら乾燥を継続し、その含水率が内部割れが急激に起こりやすくなる繊維飽和点(30%)になった図中▲2▼の時点で、乾球温度を112℃から108℃に切り替え、第2の乾燥工程に切り替えた。
【0027】
本実施例では、110℃以上で乾球温度を行う第1乾燥工程に続く第2乾燥工程において、歪み検知手段から得られたデータに基づく乾燥条件の制御を行った。即ち、乾球温度108℃での乾燥を継続すると、一時間当たりの歪み変化量(以下、単に歪み変化量という)が減少する。そして、−100μに回復した図中▲3▼の時点で、乾燥速度を上げるため湿球温度を86℃から83℃に下げた。
それにより、歪み変化量は減少から増加に転じた。更に同じ条件を継続することにより、歪み変化量が、内部割れの発生が起こる危険区域(−300μ)に近い−250μとなったので、その時点(図中▲4▼の時点)で、応力緩和をするため、乾球温度を108℃から105℃に下げた(乾燥速度を遅くした)。
【0028】
それにより、歪み変化量は増加から減少に転じた。そして、4時間後に−250μに回復した時点(図中▲5▼の時点)で、乾燥速度を上げるために、乾球温度を105℃から108℃に上げると共に湿球温度を83℃から81℃に下げた。
それにより、再び歪み変化量は減少から増加に転じ、更に同じ条件を継続することにより、歪み変化量が、再び−250μとなったため、その時点(図中▲6▼の時点)で、湿球温度はそのままにして、乾球温度を108℃から105℃に下げ、乾燥速度を遅くした。
【0029】
それにより、歪み変化量が増加から減少に転じた。そして、4時間後に−250μに回復した時点(図中▲7▼の時点)で、乾燥速度を上げるために、乾球温度を105℃から108℃に上げると共に湿球温度を81℃から79℃に下げた。
そして、その条件で乾燥を継続すると、ゲージの埋め込み部位に相当する中間層の含水率が15%となると共に歪み変化量が−200μ以内になり、内部割れの発生の危険は小さくなった。そして、木材中心の含水率が35%になり、材温が102℃となった時点(図中▲8▼の時点)で、乾球温度を105℃に下げて、歪み変化量に基づく乾燥条件の制御を終了した。
【0030】
それ以後の、乾球温度105℃で比較的長時間行う乾燥は、中心部の収縮による各種の変形を防止すること、及び乾燥ムラのない均一な乾燥材に仕上げるために調湿することを目的とする公知の乾燥工程であり、本実施例においては、初期蒸煮開始から132時間の時点で更に乾球温度を下げた後、およそ12時間て乾燥を終了した。
【0031】
実施例により乾燥した歪み計測用供試体の歪みゲージ埋め込み部の断面を目視にて検査したところ、何れのゲージの埋め込み部位にも内部割れは認められなかった。また、同時に乾燥させた各被乾燥材を、両木口面それぞれから30cmの位置及び長手方向の中央位置でそれぞれ切断し、各断面について内部割れの有無を目視にて観察したところ、69本の被乾燥材の内の64本については全く内部割れが認められず、内部割れが認められた残りの5本についても、その程度は極めて小さいものであった。
尚、図8に示した歪み変化量のデータは、8つの歪みゲージの内、乾燥速度が最も速かったゲージ(全長Lの1/4の位置に埋め込んだゲージで、図1中1Cで示すゲージ)についてのデータである。
【0032】
実施例の結果から、一定時間当たりの歪み変化量を所定値以下に抑制するように、乾燥条件を制御することにより、乾燥時間を無駄に延ばすことなく、内部割れを防止することができることが判る。尚、本発明の木材の乾燥方法は、針葉樹から製材した角材を、上記実施例のように100℃、特に110℃以上の乾球温度で乾燥する乾燥工程を具備する場合に限られず、広葉樹から製材した角材を100℃以下の温度で乾燥するような場合にも適用可能である。
【0033】
【発明の効果】
本発明によれば、乾燥中における木材内部の乾燥応力の状態を的確に反映したデータを取得でき、内部割れの抑制と乾燥時間の短縮とを両立した効率的な木材乾燥を行うことのできる木材の乾燥方法を提供することができる。
【図面の簡単な説明】
【図1】図1は、木材の内部に歪み検知手段を固定した状態を示す該木材の横断面図である。
【図2】図2は、図1に対応する横断面を模式的に示す図である。
【図3】図3は、木材が芯持正角である場合の内部割れが生じやすい部位及び内部割れが発生し易い向きを模式的に示す木材の横断面図である。
【図4】図4は、木材に歪み検知手段を固定した状態を、該木材の内部割れが生じやすい部位及び内部割れが発生し易い向きと共に模式的に示す木材の横断面図であり、(a)は芯去正角、(b)は芯持平角、(c)は芯去平角の場合を示す図である。
【図5】図5は、木材に歪み検知手段を固定する際の手順を示す図であり、(a)は木材に歪み検知手段挿入用の貫通孔を形成する様子、(b)は貫通孔に歪み検知手段を挿入する様子、(c)は歪み検知手段挿入後の貫通孔に接着剤を注入する様子、(d)は、貫通孔の開口部と共にゲージ端子等を耐熱コートで被覆する様子を示す図である。
【図6】図6は、歪み検知手段を取り付けた木材を他の木材と共に乾燥機内に配置した状態を模式的に示す斜視図である。
【図7】図7は、予備試験における乾燥スケジュールを示す図である。
【図8】図8は、実施例における乾燥条件の制御履歴及び歪み変化量の推移を示す乾燥履歴グラフである。
【符号の説明】
1,1A〜1D 歪みゲージ(歪み検知手段)
2 木材
3 年輪
5 内部割れ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for drying wood, in particular, it is possible to obtain data accurately reflecting the state of drying stress inside the wood during drying, and to efficiently suppress the occurrence of internal cracks and shorten the drying time. An object of the present invention is to provide a method for drying wood that can be dried.
[0002]
Problems to be solved by the prior art and the invention
As building materials and furniture materials such as columns, beams, construction materials, etc., artificially dried wood is generally used in order to prevent the occurrence of deformation, cracks, and the like due to shrinkage.
In the conventional artificial drying of wood, it is common to measure the moisture content, weight, strain, etc. of the sample material in the dryer, and assemble a drying schedule from the measured data to proceed with drying. It does not directly measure the dry stress state of wood, which affects cracking, bending, warping, etc., occurring during drying.
[0003]
As a method of observing the stress during drying, a sample set in a dryer is occasionally taken out, a comb-shaped test piece is created to determine the stress, or a method of measuring the stress by removing the strain is used. Since the operation is complicated and only discontinuous information can be obtained, it is difficult to assemble an appropriate drying schedule according to the drying state. In particular, in high-temperature drying, it is difficult to take out the sample from the inside of the dryer.
[0004]
Also, Japanese Patent Application Laid-Open No. Sho 50-122971 discloses a method for measuring the drying stress by using the warpage stress of wood, and Japanese Patent Application Laid-Open No. 51-84451 discloses such a method. A method for automatically controlling the humidity of a drying chamber and automating a drying schedule using the output of the drying chamber is disclosed.
However, in these methods, since the stress is determined from the degree of deformation (warping or warping force) of the wood, the state of the drying stress inside the wood cannot be accurately determined. Moreover, since the plate material is divided into two in the plate thickness direction and a test piece coated on a surface other than the original front and back surfaces is used, data reflecting the original dry stress state of wood cannot be obtained.
In short, there has not yet been provided a method of drying wood that acquires data accurately reflecting the state of drying stress inside the wood during drying and utilizes the data to efficiently dry the wood.
[0005]
[Patent Document 1]
JP-A-50-122971 [Patent Document 2]
JP-A-51-84451
Therefore, an object of the present invention is to obtain data accurately reflecting the state of drying stress inside wood during drying, and to perform efficient wood drying while suppressing internal cracks and shortening the drying time. It is an object of the present invention to provide a method for drying wood.
[0007]
[Means for Solving the Problems]
The present invention is characterized in that the strain detecting means is inserted and fixed inside the wood, and the wood is dried while controlling drying conditions based on data obtained from the strain detecting means. The object has been achieved by providing a method.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on preferred embodiments.
As the strain detecting means used in the present invention, various known means can be used, but it is preferable to use a strain gauge.
The strain gauge is formed by fixing a sensing element (grid) made of a thin wire or foil of a metal such as a copper / nickel alloy to a gauge base (hereinafter, referred to as a base) made of an insulating material made of a resin or the like. The expansion or contraction of a thin metal wire or foil causes a change in electrical resistance. The change in electric resistance is usually replaced by a change in voltage by a bridge circuit or the like, and the voltage is further amplified so that it can be read by various meters or digital values.
[0009]
As the strain detecting means, those having high sensitivity to expansion and contraction in a specific direction are preferably used, and particularly have a cylindrical base and have high sensitivity to expansion and contraction in the axial direction of the cylindrical base. Strain gauges are preferred.
As such a strain gauge, a strain gauge for measuring a bolt axial force manufactured by Kyowa Dengyo Co., Ltd., particularly, a model name “KFG-3-120-C20-11” is preferably used. In this strain gauge, a larger resistance change occurs when the cylindrical base expands and contracts in the axial direction than when the cylindrical base deforms so as to bend in the axial direction.
[0010]
The position at which the strain detection means is fixed to the wood is not particularly limited as long as it is inside the wood, but it is preferably a position separated from the mouths of the wood by 10 cm or more, particularly 25 cm or more in the longitudinal direction of the wood, It is preferable that the distance from each side surface (four surfaces along the longitudinal direction of the wood) of the wood is 2 cm or 1/4 of the thickness, whichever is smaller.
[0011]
It is preferable that the strain detecting means is fixed in the following modes (1) and / or (2) from the viewpoint of efficiently detecting an important strain change leading to the occurrence of an internal crack.
[0012]
(1) In the case where a strain detector having high sensitivity to expansion and contraction in a specific direction is used as the strain detection unit, the distortion detection unit is configured such that the specific direction is parallel to a plane orthogonal to the longitudinal direction of the wood and the specific direction is It is preferable that the timber is fixed near one annual ring so as to be parallel to a tangential direction of the annual ring.
[0013]
In FIG. 1, a strain gauge 1 having a cylindrical base and having high sensitivity to expansion and contraction in the axial direction of the cylindrical base is provided inside a cored square member 2 (regular angle, no split). The fixed state is shown. In the figure, all four strain gauges 1A to 1D are arranged on one surface (cross section) orthogonal to the longitudinal direction of the cored square bar 2, and each strain gauge 1 has a cylindrical base. The axial direction is parallel to the cross section. The axial length direction of the cylindrical base in each of the strain gauges 1A, 1C, 1D is substantially parallel to the tangential direction of the annual ring 3 near one annual ring 3 of the centered square bar 2, and the strain gauge 1B The axial length direction of the cylindrical base is substantially parallel to the tangential direction of the annual ring 3 ′ in the vicinity of one annual ring 3 ′ of the cored square bar 2.
Incidentally, the strain gauge 1 in which the sensing element made of a thin metal wire or foil is fixed to the cylindrical base can be separated from the problem of whether or not it shows high sensitivity to expansion and contraction in a specific direction. It is preferable to fix in an aspect.
[0014]
(2) When the timber for fixing the strain detecting means is a square lumber, particularly a squared square, a squared square, a squared squared or squared square, on a plane (transverse cross section) orthogonal to the longitudinal direction of the wood. The center of the line segment assuming a line segment connecting the widthwise central portion of one side surface of the wood and the other side surface adjacent to the one side surface and making an angle of 45 with respect to the one side surface It is preferable to fix the distortion detecting means near the point.
[0015]
In the example shown in FIG. 1, four strain gauges 1 are fixed corresponding to the four corners of the centered square 2, but when focusing on one strain gauge 1A, the following description will be given. As shown in FIG. 2, which schematically shows a cross section corresponding to FIG. 1, the strain gauge 1A has a width of one side surface 21 of the cored square 2 on a cross section of the cored square 2 shown in FIG. Near the center 4a of the line segment 4A assuming a line segment 4A connecting the central portion 21a in the direction and the other side surface 22 adjacent to the one side surface 21 and making an angle of 45 with the one side surface 21 Fixed to. The other strain gauges 1B to 1D are also fixed in this mode, and are fixed near the center points 4b to 4d of the respective line segments 4B to 4D shown in FIG. The vicinity of the center point of the line segment means not only on the center point at which the line segment is bisected, but also at the vicinity of the center point. It is preferably within a circle P whose center is the center of the circle and whose diameter is half the length of the line segment. In particular, the center point which exactly bisects the line segment is the center of the circle and the line segment is Is preferably within a circle whose diameter is equal to 1/3 of the length.
[0016]
FIG. 3 shows locations where internal cracks 5 are likely to occur and directions in which internal cracks 5 are likely to occur when the centering square is dried by a conventional method. By disposing the strain detecting means in the aspect of (1) and / or (2), particularly in the four places corresponding to the respective corners of the timber in the aspect of (1) and / or (2), It is possible to more accurately detect the risk of occurrence of such internal cracks at a right angle. The embedding site of the strain gauge (strain detecting means) shown in FIG. 1 is a position corresponding to a quadrant of a diagonal line of the wood cross section, and is a site where internal stress during drying is the largest and internal cracks are easily generated. is there.
[0017]
FIG. 4 is a view showing a state in which the distortion detecting means is fixed to the squared square, the squared square, and the squared squared in the modes (1) and / or (2). FIG. 4 also shows locations where internal cracks 5 are likely to occur and directions in which internal cracks 5 are likely to occur when they are dried by a conventional method.
In FIG. 4A, two strain gauges 1A and 1B are fixed on the same cross section of the cored square 2 in the modes (1) and (2).
In FIG. 4 (b), six strain gauges are fixed on the same cross section of the centering flat angle 2, and four strain gauges 1A are the same as those of the above (1) and (2). , And the other two strain gauges 1B are fixed in the above-described mode (1).
In FIG. 4 (c), four strain gauges are fixed on the same cross section of the cored flat square 2, and any of the strain gauges 1A and 1B is in the form of (1) and (2). Fixed.
[0018]
A preferred method of fixing the strain detecting means inside the wood will be described with reference to FIG. 5 by taking as an example a case where the strain gauge is fixed inside the centered square.
First, a hole or the like is drilled from the center in the width direction of each side surface of the cored square bar 2 at an angle of 45 ° to each side surface until it penetrates the center in the width direction of the adjacent side surface (FIG. 5). (A)]. The inside diameter of the through-hole is just enough to accommodate the strain gauge or slightly larger.
Next, the strain gauge 1 is inserted into the through hole 23 (see FIG. 5B), and the strain gauge 1 is positioned at the center between both ends of the through hole 23. Then, the gauge lead 6 extending from the strain gauge 1 is temporarily fixed to the outside of the through hole 23.
Then, in this state, an adhesive is injected into the through hole 23 (see FIG. 5C). The injection of the adhesive is performed until the adhesive is injected from one end opening and flows out from the other end opening, and it is confirmed that the entire inside of the through hole is filled with the adhesive.
Then, the gauge lead 6 protruding from the through hole is connected to the heat-resistant lead wire 8 through a gauge terminal 7 for protecting the gauge lead (see FIG. 1). The area including the entrance is covered with a heat-resistant coat 9 (see FIG. 5D).
Thus, the strain gauge 1 can be fixed in a state as shown in FIG.
[0019]
Drying of wood in the present invention is performed under control of temperature and humidity.
This drying is usually performed by storing several to several hundreds of wood in a dryer capable of controlling the temperature and humidity, and one of the woods to which the strain detecting means is attached may be used (FIG. 6). reference). However, it can be attached to a plurality.
[0020]
As a method of controlling the temperature and humidity during drying of the wood, for example, a resistance change generated in the strain detecting means is converted into data readable by a predetermined device, and the data of the wood is monitored while monitoring the data obtained from the strain detecting means. When the drying is performed and the data indicates that the internal stress (strain) of the wood has increased to such an extent that internal cracks occur, the temperature and / or humidity may be adjusted in a direction to relieve the drying stress (slowing the drying speed). Direction), and when the data confirms that the risk of internal cracking has been sufficiently reduced, the temperature and / or humidity are changed in the direction opposite to the direction in which the drying stress is relieved (the direction in which the drying speed is increased). change. For example, by drying wood while repeating such control, it is possible to reduce the drying time while suppressing internal cracks in the wood.
[0021]
As an example of a preferable control method in the method for drying wood according to the present invention, the drying conditions are controlled based on data obtained from the strain detecting means so that the amount of strain deformation per fixed time does not exceed a predetermined value. For example, if the amount of strain change per hour and time exceeds a predetermined value, it is determined that the risk of internal cracks has increased, and the drying conditions are changed in a direction to reduce the drying speed, and the amount of strain change is equal to or less than a predetermined value. When returning to the above, it is conceivable that the danger of internal cracking is reduced and the drying conditions are changed in a direction to increase the drying speed. By performing such control, the drying time can be shortened while preventing internal cracks.
[0022]
【Example】
Hereinafter, the method for drying wood of the present invention will be described in more detail with reference to examples.
(Preliminary test)
Seventy squares (132 mm x 132 mm x 3000 mm) with no back split and sawn from one cedar log to one grind angle were used as the material to be dried.
From one of the materials to be dried, a 132 mm square, total length L = 1200 mm sample for strain measurement is cut out, and the distance from one end of the sample (cutting surface) is 1/4 of the total length L. Four strain gauges were embedded and fixed on each cross section at the position of 1/2 of the total length L. The embedding position and the arrangement direction of each gauge were as shown in FIG. 1, and the fixing method was the above-described method (see FIG. 5). Further, the following strain gauges and the like manufactured by Kyowa Dengyo Co., Ltd. were used.
Strain gauge; "KFG-3-120-C20-11 (with gauge lead)", adhesive for fixing gauge: "EP-34B", gauge terminal: "TF-28", heat-resistant lead wire: "L- 12 ", heat-resistant coat;" SKF-3059 "
[0023]
Then, the sample for strain measurement was housed in a high-temperature specification IF type steam dryer “SK-IF10LHP” made by Shinshiba Equipment together with other materials to be dried, and a heat-resistant lead wire extended outside the dryer was used. It was connected to a data logger ("THS-1100" manufactured by Tokyo Sokki Co., Ltd.) by a 1-gauge three-wire method so that distortion during drying could be measured. At the time of analysis, the amount of change in distortion per hour was output.
In addition, an electric resistance type moisture content meter and a thermocouple (K thermocouple, temperature range 0 to 150 ° C.) for measuring the temperature inside the wood are provided on the strain measurement specimen, respectively, in the middle layer corresponding to the embedding position of the strain gauge. (At a depth of about 28 mm) and a central layer (at a depth of about 66 mm) at the center of the cross section of the timber so that the moisture content and temperature inside the wood during drying can be measured.
[0024]
After such preparation was completed, as a preliminary test, drying was performed according to the drying schedule shown in FIG. 7, and the relationship between the change in strain and internal cracks was examined. In this preliminary test, control of the drying conditions based on the data obtained from the strain gauge was not performed.
After the drying was completed, the cross section of the strain gauge embedded portion of the test specimen was inspected. As a result, no internal crack was found in the embedded portion of three of the four strain gauges, and the embedded portion of the remaining one gauge was embedded. Had internal cracks. Looking at the transition of the amount of strain change per hour based on the data obtained from each strain gauge, it can be seen that, at the embedded portion of the three gauges where there is no internal crack, the amount of change is-even at the time when the maximum amount of strain change is shown. In contrast to 300 μm or less, at the embedded portion of one gauge where internal cracks occurred, the maximum amount of strain change per hour reached near −500 μm. From these results, it was determined that there was a risk that internal cracks would occur if the measured amount of change in internal strain exceeded -300 μm per hour. The data on the amount of strain change shown in FIG. 7 is data on the embedded portion of one gauge in which an internal crack has occurred.
[0025]
(Example)
The dimensions of the cored square, which is the material to be dried, are 115 mm x 115 mm x 3000 mm, and a 115 mm square, total length L = 1200 mm strain measurement specimen is cut out from one of them, and the strain measurement specimen is Preparation for drying was carried out in the same manner as in the above preliminary test, except that the above-described strain gauge, electric resistance moisture content meter, thermocouple (K thermocouple, temperature range 0 to 150 ° C.), and the like were similarly attached. went.
[0026]
Then, drying was performed according to the drying schedule shown in FIG. Hereinafter, the details will be described with reference to FIG.
First, steam was injected into the dryer to perform initial cooking at 96 ° C. and a relative humidity of 100%. This initial steaming was performed for 8 hours, the temperature of the wood in the dryer was raised to a predetermined temperature, and then the drying process was switched at the point (1) in the figure. In the first drying step, drying was performed at a dry bulb temperature of 110 ° C. or higher. In the first drying step, the drying was continued while monitoring the moisture content of the intermediate layer corresponding to the embedded portion of the gauge, and the moisture content reached a fiber saturation point (30%) at which internal cracks are likely to occur rapidly. At the time point {circle around (2)} in the figure, the dry bulb temperature was switched from 112 ° C. to 108 ° C., and switched to the second drying step.
[0027]
In the present embodiment, in the second drying step following the first drying step in which the dry-bulb temperature is set at 110 ° C. or higher, the drying conditions are controlled based on the data obtained from the strain detecting means. That is, when drying at a dry-bulb temperature of 108 ° C. is continued, the amount of change in strain per hour (hereinafter, simply referred to as the amount of change in strain) decreases. Then, at the point of (3) in the figure, which recovered to −100 μ, the wet bulb temperature was lowered from 86 ° C. to 83 ° C. in order to increase the drying speed.
As a result, the amount of strain change turned from decreasing to increasing. By continuing the same conditions, the amount of strain change became -250μ, which is close to the danger zone (-300μ) where the occurrence of internal cracks occurred. The dry-bulb temperature was reduced from 108 ° C. to 105 ° C. (the drying speed was reduced).
[0028]
As a result, the amount of strain change turned from increasing to decreasing. After 4 hours, when the temperature recovered to −250 μm (at the time point (5) in the figure), the dry bulb temperature was raised from 105 ° C. to 108 ° C. and the wet bulb temperature was raised from 83 ° C. to 81 ° C. in order to increase the drying speed. Lowered to
As a result, the amount of change in strain changes from a decrease to an increase again, and by continuing the same conditions, the amount of change in strain again becomes -250 μm. While maintaining the temperature, the dry bulb temperature was reduced from 108 ° C. to 105 ° C., and the drying speed was reduced.
[0029]
As a result, the amount of change in strain changed from increasing to decreasing. After 4 hours, when the temperature has recovered to −250 μm (at the time point {circle around (7)} in the figure), in order to increase the drying speed, the dry bulb temperature is increased from 105 ° C. to 108 ° C. and the wet bulb temperature is increased from 81 ° C. to 79 ° C. Lowered to
Then, when drying was continued under these conditions, the moisture content of the intermediate layer corresponding to the embedded portion of the gauge became 15%, the amount of change in strain was within -200 μm, and the risk of occurrence of internal cracks was reduced. Then, when the water content in the center of the wood becomes 35% and the material temperature reaches 102 ° C. (at the time of (8) in the figure), the dry bulb temperature is lowered to 105 ° C. Was terminated.
[0030]
The subsequent drying at a dry-bulb temperature of 105 ° C for a relatively long time is intended to prevent various deformations due to shrinkage of the central part and to adjust the humidity in order to finish the drying material uniformly without drying unevenness. In the present example, the dry-bulb temperature was further reduced at 132 hours from the start of the initial steaming, and then the drying was completed in about 12 hours.
[0031]
When a cross section of the strain gauge embedded portion of the strain measurement specimen dried according to the example was visually inspected, no internal crack was found in any of the embedded portions of the gauge. In addition, each material to be dried simultaneously was cut at a position of 30 cm from each of the two cut surfaces and at a central position in the longitudinal direction, and each cross section was visually observed for internal cracks. No internal cracks were observed at all for 64 of the dried materials, and the degree of the internal cracks was extremely small for the remaining five tubes.
It should be noted that the strain change data shown in FIG. 8 is a gauge having the fastest drying speed among the eight strain gauges (a gauge embedded at a position of 1/4 of the entire length L, and a gauge indicated by 1C in FIG. 1). ).
[0032]
From the results of the examples, it can be seen that by controlling the drying conditions so as to suppress the amount of strain change per fixed time to a predetermined value or less, it is possible to prevent internal cracks without wasting the drying time. . Incidentally, the method for drying wood of the present invention is not limited to the case of having a drying step of drying a lumber sawn from softwood at a dry bulb temperature of 100 ° C., particularly 110 ° C. or more, as in the above-described embodiment. The present invention is also applicable to a case where a sawn timber is dried at a temperature of 100 ° C. or less.
[0033]
【The invention's effect】
According to the present invention, it is possible to obtain data that accurately reflects the state of drying stress inside wood during drying, and to perform efficient wood drying while suppressing internal cracks and shortening the drying time. Can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a piece of wood showing a state in which strain detection means is fixed inside the wood.
FIG. 2 is a diagram schematically showing a cross section corresponding to FIG. 1;
FIG. 3 is a cross-sectional view of the lumber schematically showing a portion where the internal crack is likely to occur and a direction in which the internal crack is likely to occur when the wood has a centered square angle.
FIG. 4 is a cross-sectional view of the wood schematically showing a state in which the strain detection means is fixed to the wood, together with a portion where the internal crack is likely to occur in the wood and a direction in which the internal crack is likely to occur; FIG. 7A is a diagram illustrating a case where the center angle is square, FIG. 7B is a diagram illustrating the case where the center angle is flat, and FIG.
5A and 5B are diagrams showing a procedure for fixing the strain detecting means to the wood, wherein FIG. 5A shows a state in which a through hole for inserting the strain detecting means is formed in the wood, and FIG. (C) Injecting an adhesive into the through hole after insertion of the strain detecting means, and (d) Covering the gauge terminals and the like together with the opening of the through hole with a heat-resistant coat. FIG.
FIG. 6 is a perspective view schematically showing a state in which the wood to which the strain detecting means is attached is arranged in a dryer together with other wood.
FIG. 7 is a diagram showing a drying schedule in a preliminary test.
FIG. 8 is a drying history graph showing a control history of drying conditions and a change in distortion change amount in the embodiment.
[Explanation of symbols]
1,1A-1D strain gauge (strain detecting means)
2 Wood 3 Ring 5 Internal crack

Claims (5)

歪み検知手段を、木材の内部に固定し、該歪み検知手段から得られるデータに基づき乾燥条件を制御しながら、該木材の乾燥を行うことを特徴とする木材の乾燥方法。A method for drying wood, wherein the strain detecting means is fixed inside the wood, and the wood is dried while controlling drying conditions based on data obtained from the strain detecting means. 前記歪み検知手段は、特定方向の伸縮に対して高い感受性を示すものであり、該歪み検知手段を、前記特定方向が前記木材の長手方向と直交する面と平行となり且つ該特定方向が該木材の一の年輪の近傍において該年輪の接線方向と平行となるように固定する請求項1記載の木材の乾燥方法。The strain detecting means has high sensitivity to expansion and contraction in a specific direction, and the strain detecting means is configured such that the specific direction is parallel to a plane orthogonal to a longitudinal direction of the wood and the specific direction is the wood. 2. The method for drying wood according to claim 1, wherein the fixing is performed in the vicinity of the one annual ring so as to be parallel to a tangential direction of the annual ring. 前記木材の少なくとも一側面に、該一側面から隣接する他側面に亘る貫通孔を形成し、該貫通孔内に前記歪み検知手段を挿入すると共に該貫通孔内に接着剤を充填して硬化させることにより、該歪み検知手段を前記木材の内部に固定する請求項1又は2記載の木材の乾燥方法。A through hole is formed in at least one side surface of the wood from the one side surface to the adjacent other side surface, the strain detecting means is inserted into the through hole, and an adhesive is filled in the through hole and cured. The method for drying wood according to claim 1 or 2, wherein the strain detecting means is fixed inside the wood. 前記木材が、芯持正角、芯去正角、芯持平角又は芯去平角であり、該木材の長手方向と直交する面上に、該木材の一側面の幅方向中央部と該一側面に隣接する他側面との間を結び且つ該一側面に対して45の角度をなす線分を想定したときの該線分の中心点付近に、前記歪み検知手段を固定する請求項1〜3の何れか記載の木材の乾燥方法。The wood is a square cored, squared squared, squared squared or squared squared, and on a plane perpendicular to the longitudinal direction of the wood, a widthwise central part of one side of the wood and the one side The strain detecting means is fixed to a vicinity of a center point of a line segment connecting the other side surface adjacent to the one and forming an angle of 45 with respect to the one side surface. The method for drying wood according to any one of the above. 前記歪み検知手段から得られるデータに基づき、一定時間当たりの歪み変形量が所定の値を超えないように乾燥条件を制御する請求項1〜4の何れかに記載の木材の乾燥方法。The method for drying wood according to any one of claims 1 to 4, wherein drying conditions are controlled based on data obtained from the strain detecting means so that the amount of strain deformation per predetermined time does not exceed a predetermined value.
JP2002359906A 2002-12-11 2002-12-11 How to dry wood Expired - Fee Related JP4064222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359906A JP4064222B2 (en) 2002-12-11 2002-12-11 How to dry wood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359906A JP4064222B2 (en) 2002-12-11 2002-12-11 How to dry wood

Publications (2)

Publication Number Publication Date
JP2004190957A true JP2004190957A (en) 2004-07-08
JP4064222B2 JP4064222B2 (en) 2008-03-19

Family

ID=32759164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359906A Expired - Fee Related JP4064222B2 (en) 2002-12-11 2002-12-11 How to dry wood

Country Status (1)

Country Link
JP (1) JP4064222B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230344A (en) * 2009-03-26 2010-10-14 Mitsui Home Co Ltd System for monitoring durability of wood-based material
JP2012051231A (en) * 2010-09-01 2012-03-15 Forestry & Forest Products Research Institute Drying method for timber
CN102554990A (en) * 2012-01-20 2012-07-11 汕头市宜华家具有限公司 Wood drying method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230344A (en) * 2009-03-26 2010-10-14 Mitsui Home Co Ltd System for monitoring durability of wood-based material
JP2012051231A (en) * 2010-09-01 2012-03-15 Forestry & Forest Products Research Institute Drying method for timber
CN102554990A (en) * 2012-01-20 2012-07-11 汕头市宜华家具有限公司 Wood drying method
CN102554990B (en) * 2012-01-20 2015-07-15 汕头市宜华家具有限公司 Wood drying method

Also Published As

Publication number Publication date
JP4064222B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP3361312B2 (en) Wood drying method
US8451013B1 (en) Insulated fiber sensor apparatus and method
RU2006144788A (en) METHOD AND DEVICE FOR NON-DESTRUCTIVE CONTROL OF INSULATING COATING
JP4064222B2 (en) How to dry wood
CN107580674A (en) For the method for the axial tensile force for determining to be applied in part
Krebber et al. Fiber Bragg grating sensors for monitoring of wind turbine blades
CN110940445B (en) Optical fiber ring type residual stress test system and residual stress test method
CN100552589C (en) The thermal treatment that is used for Wooden package detects control system and detection method thereof
JP4051074B2 (en) How to dry wood
CN109916293B (en) Installation process of strain gauge
EP1496352A1 (en) Method and apparatus for temperature monitoring of a physical structure
US2344647A (en) Method and apparatus for making strain gauges
CN115046872A (en) Fatigue crack real-time measuring method
KR101112582B1 (en) Conservation Treatment Analysis Method for Scaling Zone of Stone Cultural Heritage
Šmak et al. Dowelled joints in timber structures experiment-design-realization
Grattan et al. In situ cross-calibration of in-fiber Bragg grating and electrical resistance strain gauges for structural monitoring using an extensometer
CN105403518B (en) The monitoring system and monitoring method of C/SiC composite material etch states
Soudek Moisture monitoring of built-in wooden elements
Ralph et al. Acoustic emission detection of BGA components in spherical bend
Beall et al. Closed-loop control of lumber drying based on acoustic emission peak amplitude
JP2003080504A (en) Method and apparatus for drying lumber
Uwizeyimana et al. CONTINUOUS MEASUREMENT OF MOISTURE CONTENT IN GLULAM STRUCTURES
Chen et al. Direct sensing of IGBT junction temperature using silicone GEL bonded FBG sensors
JPS58213243A (en) Detection of injected quantity of adhesive
JP2013193082A (en) Joining device and joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051108

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070219

A131 Notification of reasons for refusal

Effective date: 20070410

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070608

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070814

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071218

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees