JP2004189793A - Preparation method of polyimide resin - Google Patents

Preparation method of polyimide resin Download PDF

Info

Publication number
JP2004189793A
JP2004189793A JP2002356786A JP2002356786A JP2004189793A JP 2004189793 A JP2004189793 A JP 2004189793A JP 2002356786 A JP2002356786 A JP 2002356786A JP 2002356786 A JP2002356786 A JP 2002356786A JP 2004189793 A JP2004189793 A JP 2004189793A
Authority
JP
Japan
Prior art keywords
polyimide resin
kneader
kneading
diamine
tetracarboxylic dianhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002356786A
Other languages
Japanese (ja)
Inventor
Wataru Okada
亘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002356786A priority Critical patent/JP2004189793A/en
Publication of JP2004189793A publication Critical patent/JP2004189793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of preparing a polyimide resin that can industrially advantageously prepare a polyimide resin which has a very high utility value as electric/electronic materials, is excellent in heat resistance and fabricability and has a stable quality without using an organic solvent. <P>SOLUTION: In the preparation method of the polyimide resin, a tetracarboxylic dianhydride and a diamine are kneaded using a kneader without any solvent and reacted through shear heating. Here, the tetracarboxylic dianhydride and the diamine are both in solid states and preferably have average particle sizes of ≤30 μm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ポリイミド樹脂の製造方法に関するものである。
【0002】
【従来の技術】
ポリイミド樹脂は、耐熱性が高く難燃性で電気絶縁性に優れていることから電気、電子材料の分野において幅広く使用されている。具体的にはフィルムとしてフレキシブル印刷配線板や耐熱性接着テープの基材に、樹脂ワニスとして半導体の絶縁皮膜、保護皮膜などの用途が挙げられる。
【0003】
従来、ポリイミド樹脂の製造方法としては、テトラカルボン酸二無水物とジアミンとを有機溶媒中で反応させてポリアミド酸溶液を生成し、それを更に加熱もしくは化学的に閉環させてポリイミド樹脂を得る、溶液熱閉環法や化学閉環法が一般に知られている(例えば、特許文献1参照。)。これらの方法においては、生成したポリアミド酸を溶解させる為に非常に極性の高い有機溶媒を使用しなくてはならない。有機極性溶媒は有害なものが多く、また、空気中の水分を吸湿しやすい。テトラカルボン酸二無水物は、水分と反応すると開環してカルボン酸になり反応活性が低下するので、有機極性溶媒は高価な高純度品を購入し、吸湿を防止する必要があった。更には、ポリアミド酸生成とイミド化の二段階の工程が必要であり、時間も長く工業的にも非常に不利であった。
【0004】
一方、有機溶媒を使用しないポリイミド樹脂の製造方法としては、テトラカルボン酸二無水物とジアミンとを、乳鉢やミキサーで混合して得られた固体混合物をトレー上に敷き詰めた後、乾燥機等で加熱処理を行ってポリイミド樹脂を得る方法がある(例えば、特許文献2参照。)。しかし、この方法では、加熱処理時に材料を混合しないので、高分子量のポリイミド樹脂を合成することが難しいばかりか、複数の原料を組み合わせて反応を行うような場合には、良好なランダム重合体が形成され難い。また、工業的な生産方式としても適当ではない。
【0005】
【特許文献1】
特開平5−33128号公報
【特許文献2】
特開2000−302865号公報
【0006】
【発明が解決しようとする課題】
本発明は、従来のこれら問題点を解決するためになされたもので、その目的とするところは、耐熱性に優れ、かつ品質が安定した、電気・電子材料の分野に好適なポリイミド樹脂を、有機溶媒を使用せず短時間で効率的に製造する方法を提供することにある。
【0007】
【課題を解決するための手段】
すなわち本発明は、
(1)テトラカルボン酸二無水物とジアミンとを、混練機を用いて溶媒を介さずに混練を行い、剪断発熱にて反応させることを特徴とするポリイミド樹脂の製造方法。
(2)テトラカルボン酸二無水物およびジアミンが固体であって、いずれも平均粒径が30μm以下である(1)記載のポリイミド樹脂の製造方法。
(3)ジアミンに対するテトラカルボン酸ニ無水物の反応当量比が0.8〜1.2の範囲である(1)又は(2)記載のポリイミド樹脂の製造方法。
(4)混練機における剪断発熱を80〜400℃の温度範囲に制御して反応を行う(1)〜(3)のいずれかに記載のポリイミド樹脂の製造方法。
(5)混練機が加圧式ニーダーである(1)〜(4)のいずれかに記載のポリイミド樹脂の製造方法。
(6)混練機が同方向回転二軸押出機である請求項(1)〜(4)のいずれかに記載のポリイミド樹脂の製造方法。
である。
【0008】
【発明の実施の形態】
本発明で用いるテトラカルボン酸二無水物は、特に制限されず、従来のポリイミド合成と同様ものが使用できる。例えば、ピロメリット酸ニ無水物、4,4’−オキシジフタル酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物等の芳香族テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられる。これらは、1種又は2種以上を組み合わせて使用することができる。
【0009】
本発明で用いるジアミン成分についても、特に制限されず、従来のポリイミド合成と同様ものが使用できる。例えば、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2’−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、2,5−ジメチル−p−フェニレンジアミン、2,4−ジメチル−m−フェニレンジアミン、2,2’−ビス(4−アミノフェノキシ)ヘキサフルオロプロパン等の芳香族ジアミン類、α,ω−ビス(3−アミノプロピル)ポリジメチルシロキサン等のポリシロキサン構造を有するジアミン化合物を挙げることができる。これらのジアミン類も1種又は2種以上を組み合わせ使用することができる。
【0010】
また、得られるポリイミド樹脂の分子量を制御し加工性を維持する目的で、エンドキャップ剤として少量の酸無水物や芳香族アミンを添加して反応を行うことも可能である。エンドキャップ剤である酸無水物としては、無水フタル酸、無水マレイン酸、無水ナジック酸等が、芳香族アミンとしては、p−メチルアニリン、p−メトキシアニリン、p−フェノキシアニリン等が挙げられる。これらエンドキャップ剤である酸無水物、又は芳香族アミンの添加量は5モル%以下であることが好ましい。5モル%を越えると、得られるポリイミド樹脂の分子量が著しく低下し、耐熱性や機械的特性に問題を生じる場合がある。更には、性能を損なわない範囲で、フィラー等の各種添加剤を同時に添加することも可能である。
【0011】
ポリイミド合成におけるテトラカルボン酸ニ無水物とジアミン成分の反応当量比は、得られるポリイミド樹脂の分子量を決定する重要な因子である。一般に、ポリマーの分子量と機械的性質の間に相関があることは良く知られており、分子量が大きいほど機械的性質が優れている。従って、実用的に優れた強度のポリイミド樹脂を得るためには、ある程度高分子量であることが必要である。ジアミン成分に対するテトラカルボン酸ニ無水物の当量比は0.8〜1.2の範囲にあることが好ましく、より好ましくは0.9〜1.1である。下限値未満では、分子量が低くて脆くなるため機械的強度が弱くなる。また、上限値を越えると、未反応のカルボン酸が加熱時に脱炭酸してガス発生、発泡の原因となり好ましくないことがある。
【0012】
本発明では、テトラカルボン酸二無水物とジアミンとを、混練機を用いて有機溶媒を介さずに混練を行い、剪断発熱にて反応を行う。一般に、テトラカルボン酸二無水物およびジアミンは固体であるが、これらは微細な粉体粒子であるほど均一反応が行え、かつモノマーどうしの接触確立が高くなるので反応の進行も速い。また、複数の原料を組み合わせて使用する場合には、良好なランダム重合体を得ることができる。しかし、市販の原料は粗粒を多く含み、平均粒径も大きいものが多い。そういった場合には、公知の粉砕機にて予め粉砕した原料を反応に用いる。テトラカルボン酸二無水物およびジアミンいずれも平均粒径が30μm以下であることが好ましく、より好ましくは20μm以下である。
【0013】
混練機内への上記原料の投入については、テトラカルボン酸二無水物およびジアミン各々を個別に計量したものを仕込んでもよいし、予めブレンダー等で予備混合しておいたものを使用してもかまわない。また、前述のポリシロキサン構造を有するジアミン化合物のような液体状のジアミン成分については、そのまま所定量を混練機内に滴下してもよいし、テトラカルボン酸二無水物と混合すると固体化するので、その固体化した混合物を投入してもよい。
【0014】
一般に、テトラカルボン酸二無水物とジアミンとの反応は、イミド化の進行と共に縮合水が発生することが知られている。この縮合水は、反応系外に効率的に除去してやらないと、酸無水物が開環してカルボン酸となり、反応活性が低い分子が生成し、ポリイミド樹脂の分子量が大きくならない恐れがある。よって、本発明で使用する混練機は、混練初期にイミド化で発生した縮合水の水蒸気を除去する機構を有するか、もしくは簡便な操作で水蒸気の排出が可能な装置であることが好ましい。
【0015】
本発明では回分式、及び連続式いずれのタイプの混練機も使用することができる。回分式混練機としては、例えば、加圧式ニーダー、バンバリーミキサー、ブラベンダー等が挙げられる。なかでも特に、加圧蓋の開閉によりイミド化で発生した水蒸気の排出が容易で、且つ、材料にかかる剪断を加圧力の調整により制御が可能な加圧式ニーダーが好ましい。
回分式
混練機の操作条件については、テトラカルボン酸二無水物とジアミンとの反応を、80〜400℃の温度範囲にて剪断発熱を利用して行うことが好ましい。反応温度が80℃未満では、反応速度が急激に低下するため未反応物が多く、充分に高分子量なポリイミド樹脂が得られず、また、400℃を超える温度では、ポリマーが熱分解する恐れがあり、いずれの場合も好ましくない。加熱方式については、混練機に装備された、電気ヒーター、熱媒ジャケット等を用いて強制的に加熱もできるが、混練による剪断発熱を有効利用するだけでも充分に加熱が可能であり、外部加熱は、混練開始前に装置を予備加温する程度にしておくことがエネルギーコストの面からも好ましい。
【0016】
一方、連続式混練機としては、例えば、単軸押出機、二軸押出機等の押出機類が挙げられる。単軸押出機には、一般的なフルフライト型スクリュを有する押出機の他、不連続フライト型のスクリュ、ピンバレル、ミキシングヘッドなどを有するものを用いることができる。また、二軸押出機には、噛み合い同方向回転型、噛み合い異方向回転型、非噛み合い異方向回転型のいずれを用いてもよい。なかでも特に、部分的にニーディングディスクエレメントを有し、セルフワイピング性に優れる同方向回転二軸押出機が好適に用いられる。
【0017】
上記の押出機類は、混練部とベント部からなる単位処理ゾーンを少なくとも1つ以上有するものが好ましく、混練部では材料の移送機能より混合機能が重視され、混練により原料を十分に混合して反応を進行させ、次いで、ベント部に設けられたベント孔よりイミド化で発生した水蒸気を真空ポンプにて減圧吸引を行うか、又は大気放出で除去する。
【0018】
押出機のバレル温度は、前述の回分式混練機の場合と同様の理由により、80〜400℃の温度範囲に制御されることが好ましい。通常、バレルの温度制御は、電気ヒーター等による外部加熱と水冷による外部冷却が用いられるが、材料が押出機内部で混練されることによる剪断発熱を加熱源として利用することができる。各バレルにおける温度プロファイルは、使用するテトラカルボン酸二無水物とジアミンの種類、並びに平均滞留時間によって異なる。しかしながら、本質的には、押出機の前段部分では、急激に反応が進行して、イミド化で大量発生した水蒸気が十分に除去できないような事態に陥らない範囲で剪断発熱を抑制しながら昇温・移送し、後段部では吐出が可能となる重合体粘度となるように各段の温度設定がなされることが好ましい。押出機のL/D(スクリュ径に対するスクリュ長さの比)については、使用する原料の種類やスクリュ構成等に応じて適宜選択されるが、あまり小さいと重合反応を十分に行えない恐れがあり、L/D=10以上であることが好ましい。
【0019】
このようにして得られたポリイミド樹脂は、粉砕して成型用原料としてそのまま使用することができる。また、有機溶剤に可溶なポリイミド樹脂は、有機溶剤に溶解して樹脂ワニスとして、従来のポリイミド樹脂ワニスと同様に利用することも可能である。
【0020】
【実施例】
以下、実施例及び比較例により本発明を詳細に説明する。なお、各例中においてAPBは1,3−ビス(3−アミノフェノキシ)ベンゼンを、BAPPは2,2’−ビス(4−(4−アミノフェノキシ)フェニル)プロパンを、25DPXは2,5−ジメチル−p−フェニレンジアミンを、24DPXは2,4−ジメチル−m−フェニレンジアミンを、APPSはα,ω−ビス(3−アミノプロピル)ポリジメチルシロキサン(アミン当量換算の平均分子量862)を、ODPAは4,4’−オキシジフタル酸二無水物を、BPDAは3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物を、BTDAは3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を、PMDAはピロメリット酸二無水物をそれぞれ略記したものである。また各例中の物性の測定方法は以下の通りである。
【0021】
(重量平均分子量)
東ソー(株)製カラム(TSKgel α−M:2本)を用い、流量1.0ml/min、溶離液:0.01mol/Lの臭化リチウムを含有するN−メチル−2−ピロリドン溶液、カラム温度40℃の分析条件でRI検出器を用いて、単分散ポリスチレンを標準物質とするゲルパーミエーションクロマトグラフ法(以下GPCと略記)により測定した。
【0022】
(実施例1)
平均粒径6μmのODPA209.70g(0.676モル)、平均粒径5μmのAPB98.76g(0.338モル)、およびAPPS291.54g(0.338モル)を予備混合したブレンド原料を、予め80℃に加熱しておいた加圧式ニーダー(森山製作所製ML−500型)に投入した。スクリュ回転数60rpm、加圧蓋圧力0.6MPaの条件で混練を開始し、樹脂温が発熱で105℃に到達したところで加圧蓋を開け、イミド化で発生した水蒸気を排出しながら30分間混練した後、再び加圧蓋を閉めて、引き続き55分間かけて混練を行った。混練に要した合計時間は90分間であり、剪断発熱により樹脂温は最高230℃に到達した。混練終了後、加圧式ニーダーより樹脂を取り出し、582gのポリイミド樹脂を得た。GPC測定によるポリイミド樹脂の重量平均分子量は96500であった。
【0023】
(実施例2)
平均粒径25μmのBPDA210.10g(0.715モル)、平均粒径9μmのBAPP205.10g(0.500モル)、およびAPPS184.80g(0.214モル)を予備混合したブレンド原料を、予め90℃に加熱しておいた加圧式ニーダー(森山製作所製ML−500型)に投入し、スクリュ回転数80rpm、加圧蓋圧力0.6MPaの条件で混練を開始し、樹脂温が発熱で105℃に到達したところで加圧蓋を開け、イミド化で発生した水蒸気を排出しながら30分間混練した後、再び加圧蓋を閉めて、引き続き55分間かけて混練を行った。混練に要した合計時間は90分間であり、剪断発熱により樹脂温は最高245℃に到達した。混練終了後、加圧式ニーダーより樹脂を取り出し、585gのポリイミド樹脂を得た。GPC測定によるポリイミド樹脂の重量平均分子量は84200であった。
【0024】
(実施例3)
平均粒径24μmのBTDA122.56g(0.381モル)、平均粒径18μmのPMDA82.97g(0.381モル)、平均粒径9μmのBAPP187.26g(0.457モル)、平均粒径6μmの24DPX10.35g(0.076モル)、およびAPPS196.85g(0.228モル)を予備混合したブレンド原料を、予め80℃に加熱しておいた加圧式ニーダー(森山製作所製ML−500型)に投入し、スクリュ回転数60rpm、加圧蓋圧力0.5MPaの条件で混練を開始し、樹脂温が発熱で105℃に到達したところで加圧蓋を開け、イミド化で発生した水蒸気を排出しながら30分間混練した後、再び加圧蓋を閉めて、引き続き55分間かけて混練を行った。混練に要した合計時間は90分間であり、剪断発熱により樹脂温は最高228℃に到達した。混練終了後、加圧式ニーダーより樹脂を取り出し、579gのポリイミド樹脂を得た。GPC測定によるポリイミド樹脂の重量平均分子量は88200であった。
【0025】
(実施例4)
平均粒径8μmのPMDA18.11g(0.083モル)、平均粒径5μmのAPB11.23g(0.042モル)、平均粒径8μmの25DPX1.13g(0.008モル)、およびAPPS28.64g(0.033モル)を予備混合したブレンド原料を、予め80℃に加熱しておいたラボプラストミル(東洋精機作所製30C150型)に投入し、スクリュ回転数60rpmの条件で90分間かけて混練を行った。本装置は完全密閉構造ではないので、混練中に装置より、イミド化で発生した水蒸気が排出されているのが目視で確認された。混練に要した合計時間は90分間であり、剪断発熱により樹脂温は最高252℃に到達した。混練終了後、ラボプラストミルより樹脂を取り出し、57gのポリイミド樹脂を得た。GPC測定によるポリイミド樹脂の重量平均分子量は98300であった。
【0026】
(実施例5)
セルフワイピング型の二条スクリューエレメントとニーディングディスクエレメントとで構成される、混練部とベント部からなる単位処理ゾーンを有するセグメント方式のバレル5個を接合した同方向回転二軸押出機(スクリュ径25mm、L/D=60)を回転数400rpmで運転を開始した。次に、実施例1と同様の予備混合したブレンド原料を720g/hの速度で押出機に供給し、滞留時間45分で反応を行った。剪断発熱で急激にイミド化が進行し、水蒸気が一度に大量発生するのを避けるため、各バレルは、第1バレル110℃、第2バレル120℃、第3バレル140℃、第4バレル180℃、第5バレル200℃で温度制御を行い、各ベント部からは、減圧吸引(9kPa)で水蒸気を段階的に除去した。押出機先端に取り付けたダイを通して、ストランド状のポリイミド樹脂を回収した。得られたポリイミド樹脂のGPC測定によるの重量平均分子量は97100であった。
【0027】
(実施例6)
セルフワイピング型の二条スクリューエレメントとニーディングディスクエレメントとで構成される、混練部とベント部からなる単位処理ゾーンを有するセグメント方式のバレル6個を接合した同方向回転二軸押出機(スクリュ径25mm、L/D=75)をスクリュ回転数300rpmで運転を開始した。次に、実施例2と同様の予備混合したブレンド原料を900g/hの速度で押出機に供給し、滞留時間60分で反応を行った。剪断発熱で急激にイミド化が進行し、水蒸気が一度に大量発生するのを避けるため、各バレルは、第1バレル110℃、第2バレル120℃、第3バレル140℃、第4バレル160℃、第5バレル180℃、第6バレル220℃で温度制御を行い、各ベント部からは、減圧吸引(9kPa)で水蒸気を段階的に除去した。押出機先端に取り付けたダイを通して、ストランド状のポリイミド樹脂を回収した。得られたポリイミド樹脂のGPC測定によるの重量平均分子量は88400であった。
【0028】
(比較例1)
乾燥窒素ガス導入管、熱交換器、攪拌装置、温度計を装備した四ツ口2Lセパラブルフラスコに脱水精製したN−メチル−2−ピロリドン720gを入れ、窒素ガスを流しながら10分間激しくかき混ぜる。次にAPB49.38g(0.169モル)とAPPS145.77g(0.169モル)を投入し、系を60℃に加熱し均一になるまでかき混ぜる。均一に溶解後、系を10℃まで冷却し、ODPA104.85g(0.338モル)を15分間かけて添加した。フラスコの温度を10℃に保ったまま3時間撹拌を続けポリアミド酸溶液を得た。窒素ガス導入管と熱交換器を外し、トルエンを満たしたディーン・スターク管を連結してフラスコに装着し、系にトルエン180gを添加した。イミド化で発生する縮合水を系外に除去しながら昇温を行い、系から水の発生が認められなくなるまで反応を継続して行い、980gのポリイミド樹脂溶液を得た。内温の最高到達温度は182℃で、イミド化には合計6時間、また、ポリアミド酸の合成からイミド化までに要した合計時間は10時間という長時間が必要であった。なお、GPC測定による得られたポリイミド樹脂の重量平均分子量は89800であった。
【0029】
(比較例2)
平均粒径22μmのODPA104.85g(0.338モル)、平均粒径18μmのAPB49.38g(0.169モル)、およびAPPS145.77g(0.338モル)を、乳鉢に投入し30分間混合し、固体混合物を得た。この固体混合物をトレー上に敷き詰め、200℃の乾燥機中で1時間の加熱処理を行い、280gのポリイミド樹脂粉末を得た。工程に要した合計時間は90分間であり、GPC測定による得られたポリイミド樹脂の重量平均分子量は、加熱時に混合を行わないので重合反応が十分に進行しておらず、26800であった。
【0030】
上記の実施例および比較例より、本発明のポリイミド樹脂の製造方法に従うと、有機溶媒を使用することなく、非常に簡便な操作で、短時間にポリイミド樹脂の合成が行え、工業的な生産方式として好適であることがわかる。
【発明の効果】
本発明の方法に従うと、テトラカルボン酸二無水物とジアミンとを、有害かつ高価な有機溶媒を使用することなく、混練機を用いて混合を行い、剪断発熱にて反応させるという極めて簡便なプロセスで、ポリイミド樹脂を得ることができるうえに、従来の有機溶媒を用いたポリアミド酸経由のポリイミド合成方法と比べて、工程に要する時間も短く、工業的なポリイミド樹脂の製造方法として好適である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a polyimide resin.
[0002]
[Prior art]
BACKGROUND ART Polyimide resins are widely used in the fields of electric and electronic materials because of their high heat resistance, flame retardancy, and excellent electrical insulation. Specifically, the film may be used as a substrate of a flexible printed wiring board or a heat-resistant adhesive tape, and the resin varnish may be used as a semiconductor insulating film or protective film.
[0003]
Conventionally, as a method for producing a polyimide resin, a tetracarboxylic dianhydride and a diamine are reacted in an organic solvent to produce a polyamic acid solution, which is further heated or chemically closed to obtain a polyimide resin, A solution thermal ring closure method and a chemical ring closure method are generally known (for example, see Patent Document 1). In these methods, a very polar organic solvent must be used to dissolve the generated polyamic acid. Many organic polar solvents are harmful, and easily absorb moisture in the air. Tetracarboxylic dianhydride reacts with moisture to open the ring to form a carboxylic acid, which reduces the reaction activity. Therefore, it was necessary to purchase an expensive and highly pure organic polar solvent to prevent moisture absorption. Furthermore, a two-step process of polyamic acid generation and imidization is required, which is long and industrially very disadvantageous.
[0004]
On the other hand, as a method for producing a polyimide resin without using an organic solvent, tetracarboxylic dianhydride and diamine, after mixing a solid mixture obtained by mixing in a mortar or a mixer on a tray, using a dryer or the like There is a method of performing a heat treatment to obtain a polyimide resin (for example, see Patent Document 2). However, in this method, since the materials are not mixed at the time of the heat treatment, not only is it difficult to synthesize a high molecular weight polyimide resin, but also when a reaction is performed by combining a plurality of raw materials, a good random polymer is obtained. Difficult to form. Further, it is not suitable as an industrial production system.
[0005]
[Patent Document 1]
JP-A-5-33128 [Patent Document 2]
JP 2000-302865 A
[Problems to be solved by the invention]
The present invention has been made in order to solve these conventional problems, the purpose of which is to provide a polyimide resin suitable for the field of electric and electronic materials, which has excellent heat resistance and stable quality. It is an object of the present invention to provide a method for efficiently producing a compound in a short time without using an organic solvent.
[0007]
[Means for Solving the Problems]
That is, the present invention
(1) A method for producing a polyimide resin, comprising kneading a tetracarboxylic dianhydride and a diamine using a kneader without using a solvent, and reacting with shear heat.
(2) The method for producing a polyimide resin according to (1), wherein the tetracarboxylic dianhydride and the diamine are solid, and both have an average particle diameter of 30 μm or less.
(3) The method for producing a polyimide resin according to (1) or (2), wherein the reaction equivalent ratio of the tetracarboxylic dianhydride to the diamine is in the range of 0.8 to 1.2.
(4) The method for producing a polyimide resin according to any one of (1) to (3), wherein the reaction is performed by controlling the heat generated by shearing in the kneader within a temperature range of 80 to 400 ° C.
(5) The method for producing a polyimide resin according to any one of (1) to (4), wherein the kneader is a pressure kneader.
(6) The method for producing a polyimide resin according to any one of (1) to (4), wherein the kneader is a co-rotating twin-screw extruder.
It is.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The tetracarboxylic dianhydride used in the present invention is not particularly limited, and those similar to those used in conventional polyimide synthesis can be used. For example, pyromellitic dianhydride, 4,4'-oxydiphthalic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetra Aromatic tetracarboxylic dianhydrides such as carboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride and 4,4'-(hexafluoroisopropylidene) diphthalic dianhydride And aliphatic tetracarboxylic dianhydrides such as cyclobutanetetracarboxylic dianhydride and cyclopentanetetracarboxylic dianhydride. These can be used alone or in combination of two or more.
[0009]
The diamine component used in the present invention is not particularly limited, and the same diamine component as used in conventional polyimide synthesis can be used. For example, 1,3-bis (3-aminophenoxy) benzene, 2,2′-bis (4- (4-aminophenoxy) phenyl) propane, 2,5-dimethyl-p-phenylenediamine, 2,4-dimethyl Aromatic diamines such as m-phenylenediamine, 2,2′-bis (4-aminophenoxy) hexafluoropropane, and diamines having a polysiloxane structure such as α, ω-bis (3-aminopropyl) polydimethylsiloxane Compounds can be mentioned. These diamines can be used alone or in combination of two or more.
[0010]
Further, for the purpose of controlling the molecular weight of the obtained polyimide resin and maintaining processability, it is also possible to add a small amount of an acid anhydride or an aromatic amine as an endcapping agent to carry out the reaction. Examples of the acid anhydride as the end cap agent include phthalic anhydride, maleic anhydride, and nadic anhydride, and examples of the aromatic amine include p-methylaniline, p-methoxyaniline, and p-phenoxyaniline. It is preferable that the amount of the acid anhydride or aromatic amine to be added is 5 mol% or less. If it exceeds 5 mol%, the molecular weight of the obtained polyimide resin is remarkably reduced, which may cause problems in heat resistance and mechanical properties. Furthermore, various additives such as fillers can be added simultaneously as long as the performance is not impaired.
[0011]
The reaction equivalent ratio between the tetracarboxylic dianhydride and the diamine component in the synthesis of polyimide is an important factor that determines the molecular weight of the obtained polyimide resin. In general, it is well known that there is a correlation between the molecular weight of a polymer and mechanical properties, and the higher the molecular weight, the better the mechanical properties. Therefore, in order to obtain a practically excellent strength polyimide resin, it is necessary to have a high molecular weight to some extent. The equivalent ratio of the tetracarboxylic dianhydride to the diamine component is preferably in the range of 0.8 to 1.2, and more preferably 0.9 to 1.1. If it is less than the lower limit, the molecular weight is low and the material is brittle, so that the mechanical strength is weak. On the other hand, if it exceeds the upper limit, unreacted carboxylic acid may be decarbonated during heating to cause gas generation and foaming, which may be undesirable.
[0012]
In the present invention, the tetracarboxylic dianhydride and the diamine are kneaded using a kneader without using an organic solvent, and the reaction is performed by shearing heat generation. Generally, tetracarboxylic dianhydrides and diamines are solids, but the finer the powder particles, the more uniform the reaction can be performed, and the higher the probability of contact between monomers, the faster the reaction proceeds. When a plurality of raw materials are used in combination, a good random polymer can be obtained. However, many commercially available raw materials contain a large amount of coarse particles and have a large average particle size. In such a case, a raw material previously ground by a known pulverizer is used for the reaction. The average particle diameter of both the tetracarboxylic dianhydride and the diamine is preferably 30 μm or less, more preferably 20 μm or less.
[0013]
Regarding the introduction of the above-mentioned raw materials into the kneading machine, a tetracarboxylic dianhydride and a diamine each separately measured may be charged, or a pre-mixed one in a blender or the like may be used. . In addition, as for the liquid diamine component such as the diamine compound having the above-mentioned polysiloxane structure, a predetermined amount may be dropped directly into the kneader, or solidified when mixed with tetracarboxylic dianhydride, The solidified mixture may be charged.
[0014]
In general, it is known that the reaction between tetracarboxylic dianhydride and diamine generates condensed water with the progress of imidization. If this condensed water is not efficiently removed from the reaction system, the acid anhydride will be opened to form a carboxylic acid, and a molecule having low reaction activity will be generated, and the molecular weight of the polyimide resin may not be increased. Therefore, it is preferable that the kneading machine used in the present invention has a mechanism for removing water vapor of condensed water generated by imidization in the initial stage of kneading, or a device capable of discharging water vapor by a simple operation.
[0015]
In the present invention, any of a batch type and a continuous type kneader can be used. Examples of the batch kneader include a pressure kneader, a Banbury mixer, a Brabender and the like. In particular, a pressurized kneader that can easily discharge water vapor generated by imidation by opening and closing the pressurized lid and that can control the shear applied to the material by adjusting the pressing force is preferable.
Regarding the operating conditions of the batch-type kneader, it is preferable that the reaction between the tetracarboxylic dianhydride and the diamine is carried out in a temperature range of 80 to 400 ° C. using the heat generated by shearing. If the reaction temperature is lower than 80 ° C., the reaction rate is rapidly reduced, so that many unreacted substances are not obtained, and a sufficiently high-molecular-weight polyimide resin cannot be obtained.If the temperature exceeds 400 ° C., the polymer may be thermally decomposed. Yes, both are not preferred. Regarding the heating method, forcible heating can also be performed using an electric heater, a heating medium jacket, etc. provided in the kneading machine, but sufficient heating is possible by simply utilizing the shear heat generated by kneading, and external heating can be performed. It is preferable from the viewpoint of energy cost that the apparatus is preliminarily heated before starting kneading.
[0016]
On the other hand, examples of the continuous kneader include extruders such as a single screw extruder and a twin screw extruder. As the single screw extruder, in addition to an extruder having a general full flight screw, a single screw extruder having a discontinuous flight screw, a pin barrel, a mixing head, and the like can be used. Further, the twin-screw extruder may use any of a meshing co-rotating type, a meshing different direction rotating type, and a non-meshing different direction rotating type. In particular, a co-rotating twin-screw extruder which partially has a kneading disk element and has excellent self-wiping properties is preferably used.
[0017]
The above-mentioned extruders preferably have at least one unit processing zone comprising a kneading section and a vent section. In the kneading section, the mixing function is more important than the material transfer function, and the raw materials are sufficiently mixed by kneading. The reaction is allowed to proceed, and then the water vapor generated by imidization is removed from the vent hole provided in the vent part by vacuum suction with a vacuum pump or removed by atmospheric release.
[0018]
The barrel temperature of the extruder is preferably controlled in the temperature range of 80 to 400 ° C. for the same reason as in the case of the batch kneader described above. Normally, the barrel temperature is controlled by external heating using an electric heater or the like and external cooling using water cooling. However, shear heat generated by kneading the material inside the extruder can be used as a heating source. The temperature profile in each barrel depends on the type of tetracarboxylic dianhydride and diamine used and the average residence time. However, in essence, in the former part of the extruder, the reaction proceeds rapidly, and the temperature is raised while suppressing shear heat generation within a range that does not cause a situation in which the water vapor generated in large amounts by imidization cannot be sufficiently removed. It is preferable that the temperature of each stage is set so that the polymer has a viscosity at which the polymer can be discharged at the subsequent stage. The L / D of the extruder (the ratio of the screw length to the screw diameter) is appropriately selected according to the type of raw material used, the screw configuration, and the like. However, if it is too small, the polymerization reaction may not be performed sufficiently. , L / D = 10 or more.
[0019]
The polyimide resin thus obtained can be pulverized and used as it is as a raw material for molding. A polyimide resin soluble in an organic solvent can be dissolved in an organic solvent and used as a resin varnish in the same manner as a conventional polyimide resin varnish.
[0020]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. In each example, APB is 1,3-bis (3-aminophenoxy) benzene, BAPP is 2,2′-bis (4- (4-aminophenoxy) phenyl) propane, and 25 DPX is 2,5-bis. Dimethyl-p-phenylenediamine, 24 DPX was 2,4-dimethyl-m-phenylenediamine, APPS was α, ω-bis (3-aminopropyl) polydimethylsiloxane (average molecular weight 862 in terms of amine equivalent), ODPA Is 4,4'-oxydiphthalic dianhydride, BPDA is 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, BTDA is 3,3', 4,4'-biphenyltetracarboxylic acid Dianhydride and PMDA are shorthands for pyromellitic dianhydride. The method for measuring physical properties in each example is as follows.
[0021]
(Weight average molecular weight)
Using a column (TSKgel α-M: 2 columns) manufactured by Tosoh Corporation, flow rate: 1.0 ml / min, eluent: N-methyl-2-pyrrolidone solution containing 0.01 mol / L lithium bromide, column It was measured by gel permeation chromatography (hereinafter abbreviated as GPC) using monodispersed polystyrene as a standard substance using an RI detector under the analysis conditions at a temperature of 40 ° C.
[0022]
(Example 1)
A blend raw material premixed with 209.70 g (0.676 mol) of ODPA having an average particle size of 6 μm, 98.76 g (0.338 mol) of APB having an average particle size of 5 μm, and 291.54 g (0.338 mol) of APPS was previously mixed with 80 The mixture was put into a pressurized kneader (ML-500, manufactured by Moriyama Seisakusho) that had been heated to ℃. Kneading was started under the conditions of a screw rotation speed of 60 rpm and a pressure lid pressure of 0.6 MPa. When the resin temperature reached 105 ° C. due to heat generation, the pressure lid was opened, and kneading was performed for 30 minutes while discharging water vapor generated by imidization. After that, the pressure lid was closed again, and kneading was continued for 55 minutes. The total time required for kneading was 90 minutes, and the resin temperature reached a maximum of 230 ° C. due to shear heat generation. After completion of the kneading, the resin was taken out from the pressure kneader to obtain 582 g of a polyimide resin. The weight average molecular weight of the polyimide resin measured by GPC was 96,500.
[0023]
(Example 2)
A blended raw material premixed with 210.10 g (0.715 mol) of BPDA having an average particle diameter of 25 μm, 205.10 g (0.500 mol) of BAPP having an average particle diameter of 9 μm, and 184.80 g (0.214 mol) of APPS was previously mixed with 90 parts. Into a pressurized kneader (Model ML-500, manufactured by Moriyama Seisakusho) heated to 80 ° C, kneading was started under the conditions of a screw rotation speed of 80 rpm and a pressure of a lid of 0.6 MPa. Was reached, the pressure lid was opened, kneading was performed for 30 minutes while discharging water vapor generated by imidization, then the pressure lid was closed again, and kneading was continued for 55 minutes. The total time required for kneading was 90 minutes, and the resin temperature reached a maximum of 245 ° C. due to shear heat generation. After completion of the kneading, the resin was taken out from the pressure kneader to obtain 585 g of a polyimide resin. The weight average molecular weight of the polyimide resin measured by GPC was 84,200.
[0024]
(Example 3)
122.56 g (0.381 mol) of BTDA having an average particle diameter of 24 μm, 82.97 g (0.381 mol) of PMDA having an average particle diameter of 18 μm, 187.26 g (0.457 mol) of BAPP having an average particle diameter of 9 μm, and 6 μm of average particle diameter A blended material obtained by premixing 10.35 g (0.076 mol) of 24 DPX and 196.85 g (0.228 mol) of APPS was put into a pressurized kneader (Model ML-500 manufactured by Moriyama Seisakusho) which had been heated to 80 ° C. in advance. Then, kneading is started under the conditions of a screw rotation speed of 60 rpm and a pressure lid pressure of 0.5 MPa. When the resin temperature reaches 105 ° C. due to heat generation, the pressure lid is opened, and water vapor generated by imidization is discharged. After kneading for 30 minutes, the pressure lid was closed again, and kneading was continued for 55 minutes. The total time required for kneading was 90 minutes, and the resin temperature reached a maximum of 228 ° C. due to shear heat generation. After completion of the kneading, the resin was taken out from the pressure kneader to obtain 579 g of a polyimide resin. The weight average molecular weight of the polyimide resin measured by GPC was 88,200.
[0025]
(Example 4)
18.11 g (0.083 mol) of PMDA having an average particle diameter of 8 μm, 11.23 g (0.042 mol) of APB having an average particle diameter of 5 μm, 1.13 g (0.008 mol) of 25 DPX having an average particle diameter of 8 μm, and 28.64 g of APPS ( 0.033 mol) was put into a Labo Plastomill (30C150, manufactured by Toyo Seiki Seisakusho) preheated to 80 ° C., and kneaded for 90 minutes at a screw rotation speed of 60 rpm. Was done. Since this apparatus does not have a completely closed structure, it was visually confirmed that water vapor generated by imidization was discharged from the apparatus during kneading. The total time required for kneading was 90 minutes, and the resin temperature reached a maximum of 252 ° C. due to shear heat generation. After completion of the kneading, the resin was taken out from the Labo Plastomill to obtain 57 g of a polyimide resin. The weight average molecular weight of the polyimide resin measured by GPC was 98,300.
[0026]
(Example 5)
A co-rotating twin-screw extruder (screw diameter 25 mm) in which five segment-type barrels each having a unit processing zone consisting of a kneading part and a vent part, which is composed of a self-wiping double-screw element and a kneading disk element, are joined. , L / D = 60) at 400 rpm. Next, the same premixed blended raw material as in Example 1 was supplied to an extruder at a rate of 720 g / h, and a reaction was performed with a residence time of 45 minutes. In order to avoid rapid imidization due to heat generated by shearing and generation of a large amount of water vapor at one time, each barrel is composed of a first barrel 110 ° C., a second barrel 120 ° C., a third barrel 140 ° C., and a fourth barrel 180 ° C. The temperature was controlled at 200 ° C. in the fifth barrel, and water vapor was gradually removed from each vent portion by suction under reduced pressure (9 kPa). The strand-like polyimide resin was recovered through a die attached to the extruder tip. The weight average molecular weight of the obtained polyimide resin measured by GPC was 97,100.
[0027]
(Example 6)
A co-rotating twin-screw extruder (screw diameter 25 mm) in which six segment-type barrels each having a unit processing zone composed of a kneading part and a vent part and composed of a self-wiping type double-screw element and a kneading disk element are joined. , L / D = 75) at a screw rotation speed of 300 rpm. Next, the same premixed blended raw material as in Example 2 was supplied to an extruder at a rate of 900 g / h, and a reaction was performed for a residence time of 60 minutes. In order to avoid rapid imidization due to shear heat generation and the generation of a large amount of water vapor at a time, each barrel is composed of a first barrel 110 ° C, a second barrel 120 ° C, a third barrel 140 ° C, and a fourth barrel 160 ° C. The temperature was controlled at a temperature of 180 ° C. in the fifth barrel and 220 ° C. in the sixth barrel, and water vapor was gradually removed from each vent by vacuum suction (9 kPa). The strand-like polyimide resin was recovered through a die attached to the extruder tip. The weight average molecular weight of the obtained polyimide resin measured by GPC was 88,400.
[0028]
(Comparative Example 1)
720 g of dehydrated and purified N-methyl-2-pyrrolidone is placed in a 4-neck 2 L separable flask equipped with a dry nitrogen gas inlet tube, a heat exchanger, a stirrer, and a thermometer, and vigorously stirred for 10 minutes while flowing nitrogen gas. Next, 49.38 g (0.169 mol) of APB and 145.77 g (0.169 mol) of APPS are charged, and the system is heated to 60 ° C. and stirred until uniform. After homogeneous dissolution, the system was cooled to 10 ° C. and 104.85 g (0.338 mol) of ODPA was added over 15 minutes. While maintaining the temperature of the flask at 10 ° C., stirring was continued for 3 hours to obtain a polyamic acid solution. The nitrogen gas inlet tube and the heat exchanger were removed, and a Dean-Stark tube filled with toluene was connected and attached to the flask, and 180 g of toluene was added to the system. The temperature was raised while condensed water generated by imidization was removed outside the system, and the reaction was continued until water generation from the system was no longer observed, thereby obtaining 980 g of a polyimide resin solution. The maximum internal temperature was 182 ° C., and the imidization required a total of 6 hours, and the total time required from the synthesis of the polyamic acid to the imidation required a long time of 10 hours. The weight average molecular weight of the polyimide resin obtained by GPC measurement was 89,800.
[0029]
(Comparative Example 2)
104.85 g (0.338 mol) of ODPA having an average particle diameter of 22 μm, 49.38 g (0.169 mol) of APB having an average particle diameter of 18 μm, and 145.77 g (0.338 mol) of APPS were put into a mortar and mixed for 30 minutes. A solid mixture was obtained. This solid mixture was spread on a tray and subjected to a heat treatment in a dryer at 200 ° C. for 1 hour to obtain 280 g of a polyimide resin powder. The total time required for the process was 90 minutes, and the weight average molecular weight of the polyimide resin obtained by GPC measurement was 26800 because the polymerization reaction did not sufficiently proceed because mixing was not performed during heating.
[0030]
From the above Examples and Comparative Examples, according to the method for producing a polyimide resin of the present invention, without using an organic solvent, by a very simple operation, it is possible to synthesize the polyimide resin in a short time, industrial production method It can be seen that this is suitable.
【The invention's effect】
According to the method of the present invention, a tetracarboxylic acid dianhydride and a diamine are mixed using a kneader without using a harmful and expensive organic solvent, and a very simple process of reacting by shearing heat generation. In addition, a polyimide resin can be obtained, and the time required for the process is shorter than that of a conventional polyimide synthesis method using a polyamic acid using an organic solvent, which is suitable as an industrial method for producing a polyimide resin.

Claims (6)

テトラカルボン酸二無水物とジアミンとを、混練機を用いて溶媒を介さずに混練を行い、剪断発熱にて反応させることを特徴とするポリイミド樹脂の製造方法。A method for producing a polyimide resin, comprising kneading a tetracarboxylic dianhydride and a diamine without using a solvent by using a kneader, and reacting with shear heat. テトラカルボン酸二無水物およびジアミンが固体であって、いずれも平均粒径が30μm以下である請求項1記載のポリイミド樹脂の製造方法。The method for producing a polyimide resin according to claim 1, wherein the tetracarboxylic dianhydride and the diamine are solid, and both have an average particle size of 30 µm or less. ジアミンに対するテトラカルボン酸ニ無水物の反応当量比が0.8〜1.2の範囲である請求項1又は2記載のポリイミド樹脂の製造方法。3. The method for producing a polyimide resin according to claim 1, wherein the reaction equivalent ratio of the tetracarboxylic dianhydride to the diamine is in the range of 0.8 to 1.2. 混練機における剪断発熱を80〜400℃の温度範囲に制御して反応を行う請求項1〜3のいずれかに記載のポリイミド樹脂の製造方法。The method for producing a polyimide resin according to any one of claims 1 to 3, wherein the reaction is performed by controlling the heat generated by shearing in the kneader within a temperature range of 80 to 400C. 混練機が加圧式ニーダーである請求項1〜4のいずれかに記載のポリイミド樹脂の製造方法。The method for producing a polyimide resin according to any one of claims 1 to 4, wherein the kneader is a pressurized kneader. 混練機が同方向回転二軸押出機である請求項1〜4のいずれかに記載のポリイミド樹脂の製造方法。The method for producing a polyimide resin according to any one of claims 1 to 4, wherein the kneader is a co-rotating twin-screw extruder.
JP2002356786A 2002-10-16 2002-12-09 Preparation method of polyimide resin Pending JP2004189793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356786A JP2004189793A (en) 2002-10-16 2002-12-09 Preparation method of polyimide resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002301260 2002-10-16
JP2002356786A JP2004189793A (en) 2002-10-16 2002-12-09 Preparation method of polyimide resin

Publications (1)

Publication Number Publication Date
JP2004189793A true JP2004189793A (en) 2004-07-08

Family

ID=32774378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356786A Pending JP2004189793A (en) 2002-10-16 2002-12-09 Preparation method of polyimide resin

Country Status (1)

Country Link
JP (1) JP2004189793A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057019A (en) * 2011-09-08 2013-03-28 Shinichi Inoue Method of manufacturing imide modified elastomer
CN103325497A (en) * 2013-06-25 2013-09-25 江苏凯诺电缆集团有限公司 Covering method of class 1E category K1 cables for nuclear power station
WO2023233558A1 (en) * 2022-05-31 2023-12-07 住友電気工業株式会社 Method for producing prepolymer solution and method for producing insulated wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057019A (en) * 2011-09-08 2013-03-28 Shinichi Inoue Method of manufacturing imide modified elastomer
CN103325497A (en) * 2013-06-25 2013-09-25 江苏凯诺电缆集团有限公司 Covering method of class 1E category K1 cables for nuclear power station
WO2023233558A1 (en) * 2022-05-31 2023-12-07 住友電気工業株式会社 Method for producing prepolymer solution and method for producing insulated wire

Similar Documents

Publication Publication Date Title
JP5347306B2 (en) Seamless belt
JP2002226584A (en) Melt-processable thermoplastic random copolyimide having recoverable crystallinity and process for manufacturing the same
WO2001025313A1 (en) Process for producing polyimide resin
JP2004189793A (en) Preparation method of polyimide resin
JPH07242820A (en) Resin composition improved in physical property at high temperature
JP2986644B2 (en) Polyimide resin composition
JP3333035B2 (en) Polyimide resin and injection molded body with excellent fatigue properties
JP3578545B2 (en) Soluble polyimide resin
JP2001098070A (en) Solventless process for producing tetracarboxylic acid diamine salt
JPH10231426A (en) Polyimide resin composition
US6538100B2 (en) Method for producing polyimide resin
TWI842563B (en) Black polyimide film, manufacturing method thereof, coverlay and electronic device comprising the same
JP2740075B2 (en) Soluble polyimide resin
JP3093063B2 (en) Soluble polyimide resin
JP2004269790A (en) Method for producing polyimide resin powder
JP3646947B2 (en) Polyimide resin
JP2004292509A (en) Process for producing polyimide resin powder
JPH06172523A (en) Soluble polyimide resin
JP2719271B2 (en) Soluble polyimide resin
JP2000302865A (en) Preparation of polyimide resin
JP4491898B2 (en) Maleimide resin and process for producing the same
JP3685545B2 (en) Soluble polyimide resin
JPH11263839A (en) Polyimide resin composition
JPH06172526A (en) Soluble polyimide resin
JPH10231425A (en) Polyimide resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050525

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129