JP2004189593A - Method of manufacturing carbonated solid - Google Patents

Method of manufacturing carbonated solid Download PDF

Info

Publication number
JP2004189593A
JP2004189593A JP2003396453A JP2003396453A JP2004189593A JP 2004189593 A JP2004189593 A JP 2004189593A JP 2003396453 A JP2003396453 A JP 2003396453A JP 2003396453 A JP2003396453 A JP 2003396453A JP 2004189593 A JP2004189593 A JP 2004189593A
Authority
JP
Japan
Prior art keywords
solidified
water
raw material
carbonation reaction
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003396453A
Other languages
Japanese (ja)
Other versions
JP4474907B2 (en
Inventor
Keiji Watanabe
圭児 渡辺
Yasuto Miyata
康人 宮田
Norio Isoo
典男 磯尾
Tatsuto Takahashi
達人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003396453A priority Critical patent/JP4474907B2/en
Publication of JP2004189593A publication Critical patent/JP2004189593A/en
Application granted granted Critical
Publication of JP4474907B2 publication Critical patent/JP4474907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably manufacture a carbonated solid having a high strength regardless of the particle size distribution or the like of a raw material. <P>SOLUTION: The inside of a packed layer of noncarbonated Ca-containing raw material (or the carbonated solid) containing water is evacuated or the inside of the packed layer is evacuated after water is incorporated inside the packed layer to discharge a part of the water and after that, carbonation reaction is brought onto the packed layer under the presence of gaseous carbon dioxide. By the evacuation, surface sticking water on the raw material particle uniformly exists and gaps to be a flow passage of CO<SB>2</SB>are properly secured between raw material particles and by causing the carbonation reaction in the packed layer in this state, the carbonation reaction efficiently and uniformly proceeds through the whole packed layer and the carbonated solid having high strength can be obtained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、CaO含有廃材(例えば、コンクリート廃材)や鉄鋼製造プロセスで発生したスラグなどのような粉粒状の未炭酸化Ca含有原料を炭酸ガスと接触させ、炭酸化反応によって生成した炭酸カルシウムを主たるバインダーとして固結させた炭酸固化体の製造方法に関するものである。   The present invention involves contacting powdery and granular uncarbonated Ca-containing raw materials, such as CaO-containing waste material (eg, concrete waste material) and slag generated in a steelmaking process, with carbon dioxide gas, and converting calcium carbonate generated by a carbonation reaction. The present invention relates to a method for producing a solidified carbonated product as a main binder.

鉄鋼製造プロセスで発生するスラグの利材化方法の一つとして、粉粒状のスラグをこれに含まれる未炭酸化Ca(CaO及び/又はCa(OH))を利用して炭酸固化させることにより、ブロック化された炭酸固化体を得る方法が知られている(例えば、特許文献1)。この方法では、例えば、水分を添加した粉粒状のスラグを型枠に充填し、このスラグ充填層に炭酸ガスを吹き込むことによってスラグに含まれる未炭酸化Caに炭酸化反応を生じさせ、この炭酸化反応で生成した炭酸カルシウムを主たるバインダーとしてスラグ充填層を固結させ、ブロック化された炭酸固化体を得るものである。 As one of the methods of using slag generated in the steelmaking process, slag in the form of powder is granulated and solidified using uncarbonated Ca (CaO and / or Ca (OH) 2 ) contained therein. A method for obtaining a blocked solidified carbonate is known (for example, Patent Document 1). In this method, for example, a powdery and granular slag to which water has been added is filled in a mold, and carbon dioxide gas is blown into the slag-filled layer to cause a carbonation reaction on uncarbonated Ca contained in the slag, and the carbonation reaction is performed. The slag packed layer is consolidated using calcium carbonate generated by the carbonization reaction as a main binder to obtain a blocked carbonized solid.

特開平11−71160号公報JP-A-11-71160

このような炭酸固化体の製造技術は、スラグやその他のCaO含有廃材を原料として利用できるため、資源のリサイクル化という観点から非常に有用なものである。また、製造された炭酸固化体は旧来のコンクリート製品に代わる製品として、路面敷設用や建築用などの土木・建築材料、藻礁用や魚礁用などの水中沈設用材料をはじめとする様々な用途への利用が期待でき、特に藻礁用や魚礁用などの水中沈設用材料としては、海藻類の生育や水中生物の棲息に好ましい環境を提供するという面で、コンクリート製品に較べて優れた性能を有することが判っている。   Such a technique for producing a solidified carbonic acid is very useful from the viewpoint of resource recycling because slag and other CaO-containing waste materials can be used as raw materials. In addition, the manufactured carbonized solids are used as alternatives to conventional concrete products for a variety of applications including civil engineering and building materials for road laying and construction, and materials for submersion underwater such as algae reefs and fish reefs. It is expected to be used for underwater marine reefs and fish reefs. Has been found to have

しかし、上述のようにして製造される炭酸固化体は、使用するスラグなどの原料の粒度分布や成分などによっては十分な強度(圧縮強度)が得られない場合があり、このため搬送中や使用中に亀裂を生じるなどの問題を生じることがある。
したがって本発明の目的は、このような従来技術の課題を解決し、未炭酸化Ca含有原料を炭酸化反応により固結させた炭酸固化体の製造方法において、原料の粒度分布や成分などに拘りなく、高い強度を有する炭酸固化体を安定して製造することができる炭酸固化体の製造方法を提供することにある。
However, the solidified carbon dioxide produced as described above may not have sufficient strength (compressive strength) depending on the particle size distribution and components of the raw materials such as slag used. May cause problems such as cracks in the inside.
Therefore, an object of the present invention is to solve the problems of the prior art and to provide a method for producing a carbonized solidified body obtained by consolidating an uncarbonated Ca-containing raw material by a carbonation reaction. It is another object of the present invention to provide a method for producing a solidified carbonate that can stably produce a solidified carbonate having high strength.

スラグなどの粉粒状の未炭酸化Ca含有原料(以下、“スラグ”を例に説明する)の充填層を炭酸ガス(CO)と接触させ、炭酸化反応によって生成した炭酸カルシウム(CaCO)を主たるバインダーとして固結させることにより炭酸固化体を製造する場合において、スラグ中の未炭酸化CaとCOとの反応は、各スラグ粒子の周囲に存在する水を介して進行するものと考えられている。すなわち、スラグ粒子の表面に存在する水(表面付着水)にスラグ粒子間を流れるCOが溶解するとともに、スラグ側からはCaイオンが溶出し、この水に溶解・溶出したCOとCaイオンとが反応(炭酸化反応)することにより、スラグ粒子表面にCaCOが析出するものと考えられる。そして、このスラグ粒子表面に析出したCaCOがスラグ粒子どうしを結合する主たるバインダーとなってスラグ充填層の全体が固結(炭酸固化)するものである。 Calcium carbonate (CaCO 3 ) generated by a carbonation reaction by contacting a packed bed of powdery and non-carbonated Ca-containing raw material such as slag (hereinafter, “slag” will be described as an example) with carbon dioxide gas (CO 2 ) In the case of producing a carbonated solidified product by consolidating slag as a main binder, it is considered that the reaction between uncarbonated Ca and CO 2 in the slag proceeds through water existing around each slag particle. Have been. That is, while CO 2 flowing between the slag particles is dissolved in water (surface-attached water) existing on the surface of the slag particles, Ca ions are eluted from the slag side, and CO 2 and Ca ions dissolved and eluted in the water Is considered to react with (carbonation reaction) to precipitate CaCO 3 on the surface of the slag particles. The CaCO 3 precipitated on the surface of the slag particles serves as a main binder for binding the slag particles, and the entire slag packed layer is solidified (carbonated and solidified).

本発明者らは、このような原理でスラグ充填層の炭酸固化が生じることを前提に、供給されたCOとスラグ中の未炭酸化Caとを水を介して効率的に反応させ、スラグ粒子どうしを結合する十分な量のCaCOを生成させることができる方法を見出すべく検討を行った。スラグ中の未炭酸化CaとCOとを水を介して効率的に反応させるには、スラグ粒子の表面に水が存在し且つスラグ粒子間にCOの通り路となる間隙が適切に確保されること、換言すれば、スラグ充填層内ではスラグ粒子に表面付着水が存在し且つそれ以外のスラグ粒子間の間隙にはなるべく水が存在しないことが必要であると考えられる。 The present inventors presuppose that carbonation solidification of the slag packed bed occurs on the basis of such a principle, whereby the supplied CO 2 and the uncarbonated Ca in the slag are allowed to efficiently react with each other via water, Investigations were made to find a method that could produce a sufficient amount of CaCO 3 to bind the particles together. In order to efficiently react uncarbonated Ca and CO 2 in the slag through water, water is present on the surface of the slag particles, and a gap for passing the CO 2 between the slag particles is appropriately secured. In other words, it is considered that it is necessary that water adhered to the surface of the slag particles be present in the slag packed layer and that no water be present in the gaps between the other slag particles.

そこで、このような水の存在形態の下で炭酸化反応を生じさせることができる具体的な方法について検討した結果、水分を含んだスラグ充填層の内部を一旦減圧し、しかる後、スラグ充填層に炭酸ガス存在下で炭酸化反応を生じさせる方法、或いはスラグ充填層の内部に水を十分に含ませた後、スラグ充填層の内部を減圧してその水の一部を排出し、しかる後、スラグ充填層に炭酸ガス存在下で炭酸化反応を生じさせる方法が非常に有効であることを見出した。また、スラグ充填層を炭酸固化させて得られた炭酸固化体について、上記と同様に、水分を含んだ炭酸固化体の内部を一旦減圧し、しかる後、炭酸固化体に炭酸ガス存在下で再炭酸化反応を生じさせること、或いは炭酸固化体の内部に水を十分に含ませた後、炭酸固化体の内部を減圧してその水の一部を排出し、しかる後、炭酸固化体に炭酸ガス存在下で再度炭酸化反応を生じさせることにより、炭酸固化体の強度が効果的に高められることを見出した。 Therefore, as a result of examining a specific method capable of causing a carbonation reaction under such a form of water, the inside of the slag packed layer containing water is once depressurized, and then the slag packed layer is formed. A method of causing a carbonation reaction in the presence of carbon dioxide, or after sufficient water is contained in the slag packed bed, and then depressurizing the inside of the slag packed bed to discharge a part of the water, and then It has been found that a method of causing a carbonation reaction in a slag packed bed in the presence of carbon dioxide is very effective. In addition, as described above, the inside of the solidified carbonate containing water is once depressurized for the solidified carbonate obtained by solidifying the slag packed layer with carbonic acid, and then the solidified carbonate is again rehydrated in the presence of carbon dioxide gas. After the carbonation reaction is caused, or after sufficient water is contained in the solidified carbonate, the inside of the solidified carbonate is decompressed and a part of the water is discharged. It has been found that by causing a carbonation reaction again in the presence of a gas, the strength of the carbonized solid can be effectively increased.

本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
[1] 粉粒状の未炭酸化Ca含有原料を炭酸化反応で固結させた炭酸固化体の製造方法であって、
未炭酸化Ca含有原料の充填層を炭酸化反応で固結させ、若しくは未炭酸化Ca含有原料の充填層を炭酸化反応で固結させた炭酸固化体に再度炭酸化反応を生じさせるに当たり、
水分を含んだ前記充填層又は炭酸固化体内部を減圧し、しかる後、該充填層又は炭酸固化体に炭酸ガス存在下で炭酸化反応を生じさせることを特徴とする炭酸固化体の製造方法。
The present invention has been made based on such findings, and the features thereof are as follows.
[1] A method for producing a carbonated solidified product obtained by consolidating a powdery uncarbonated Ca-containing raw material by a carbonation reaction,
In causing the packed layer of the uncarbonated Ca-containing raw material to be solidified by the carbonation reaction, or in causing the carbonized solid obtained by solidifying the packed layer of the uncarbonated Ca-containing raw material by the carbonation reaction to cause the carbonation reaction again,
A method for producing a solidified carbonized product, comprising reducing the pressure inside the packed bed or the solidified carbonate containing moisture, and then causing a carbonation reaction in the packed bed or the solidified carbonate in the presence of carbon dioxide gas.

[2] 粉粒状の未炭酸化Ca含有原料を炭酸化反応で固結させた炭酸固化体の製造方法であって、
未炭酸化Ca含有原料の充填層を炭酸化反応で固結させ、若しくは未炭酸化Ca含有原料の充填層を炭酸化反応で固結させた炭酸固化体に再度炭酸化反応を生じさせるに当たり、
前記充填層又は炭酸固化体の内部に水を含ませた後、該充填層又は炭酸固化体内部を減圧することにより前記水の一部を排出し、しかる後、前記充填層又は炭酸固化体に炭酸ガス存在下で炭酸化反応を生じさせることを特徴とする炭酸固化体の製造方法。
[2] A method for producing a carbonized solid obtained by consolidating a powdery uncarbonated Ca-containing raw material by a carbonation reaction,
In causing the packed layer of the uncarbonated Ca-containing raw material to be solidified by the carbonation reaction, or in causing the carbonized solid obtained by solidifying the packed layer of the uncarbonated Ca-containing raw material by the carbonation reaction to cause the carbonation reaction again,
After impregnating the inside of the packed bed or the solidified carbonate, water is discharged by depressurizing the inside of the packed bed or the solidified carbonate. A method for producing a solid carbonated product, wherein a carbonation reaction is caused in the presence of carbon dioxide gas.

[3] 粉粒状の未炭酸化Ca含有原料を炭酸化反応で固結させた炭酸固化体の製造方法であって、
水分を含んだ未炭酸化Ca含有原料の充填層に炭酸ガス存在下で炭酸化反応を生じさせることにより、充填層を固結させて炭酸固化体とし、次いで、該炭酸固化体の内部に水を含ませた後、炭酸固化体内部を減圧することにより前記水の一部を排出し、しかる後、前記炭酸固化体に炭酸ガス存在下で再度炭酸化反応を生じさせることを特徴とする炭酸固化体の製造方法。
[3] A method for producing a carbonated solidified product obtained by consolidating a powdery uncarbonated Ca-containing raw material by a carbonation reaction,
By causing a carbonation reaction in the presence of carbon dioxide in the packed bed of the non-carbonated Ca-containing raw material containing water, the packed bed is solidified into a solidified carbonate, and then water is contained in the solidified carbonate. , After which a part of the water is discharged by depressurizing the inside of the solidified carbon dioxide, and thereafter, the carbonation is caused to occur again in the presence of carbon dioxide in the solidified carbonic acid. Manufacturing method of solidified body.

[4] 粉粒状の未炭酸化Ca含有原料を炭酸化反応で固結させた炭酸固化体の製造方法であって、
未炭酸化Ca含有原料の充填層内部に水を含ませた後、充填層内部を減圧することにより前記水の一部を排出し、しかる後、前記充填層に炭酸ガス存在下で炭酸化反応を生じさせることにより、充填層を固結させて炭酸固化体とし、次いで、該炭酸固化体の内部に水を含ませた後、炭酸固化体内部を減圧することにより前記水の一部を排出し、しかる後、前記炭酸固化体に炭酸ガス存在下で再度炭酸化反応を生じさせることを特徴とする炭酸固化体の製造方法。
[4] A method for producing a carbonated solidified product obtained by consolidating a powdery uncarbonated Ca-containing raw material by a carbonation reaction,
After water is contained inside the packed bed of the uncarbonated Ca-containing raw material, a part of the water is discharged by reducing the pressure inside the packed bed, and thereafter, the carbonation reaction is performed in the presence of carbon dioxide gas in the packed bed. Is caused to consolidate the packed bed into a carbonated solidified body, and then water is contained inside the carbonized solidified body, and then a part of the water is discharged by reducing the pressure inside the carbonized solidified body. Thereafter, a carbonation reaction is caused to occur again in the presence of carbon dioxide gas in the solidified carbonic acid product, thereby producing a solidified carbonic acid product.

[5] 上記[2]〜[4]のいずれかの製造方法において、未炭酸化Ca含有原料の充填層又は未炭酸化Ca含有原料の充填層を炭酸化反応で固結させた炭酸固化体を水に浸漬することにより、充填層又は炭酸固化体の内部に水を含ませた後、充填層又は炭酸固化体の内部を減圧することを特徴とする炭酸固化体の製造方法。
[6] 上記[2]〜[4]のいずれかの製造方法において、未炭酸化Ca含有原料の充填層又は未炭酸化Ca含有原料の充填層を炭酸化反応で固結させた炭酸固化体に散水することにより、充填層又は炭酸固化体の内部に水を含ませた後、充填層又は炭酸固化体の内部を減圧することを特徴とする炭酸固化体の製造方法。
[7] 上記[1]〜[6]のいずれかの製造方法において、炭酸化Ca含有原料の充填層又は未炭酸化Ca含有原料の充填層を炭酸化反応で固結させた炭酸固化体の内部を減圧する工程では、充填層又は炭酸固化体の内部を0.8気圧以下に減圧することを特徴とする炭酸固化体の製造方法。
[5] In the production method according to any one of the above [2] to [4], a carbonized solid obtained by solidifying a packed layer of uncarbonated Ca-containing raw material or a packed layer of uncarbonated Ca-containing raw material by a carbonation reaction. Is immersed in water so that water is contained in the filled layer or the solidified carbonate, and then the pressure in the packed layer or the solidified carbonate is reduced.
[6] In the production method according to any one of the above [2] to [4], a carbonized solid obtained by solidifying a packed layer of uncarbonated Ca-containing raw material or a packed layer of uncarbonated Ca-containing raw material by a carbonation reaction. A method for producing a solidified carbonated material, wherein water is contained in a packed bed or a solidified carbonated body by spraying water, and then the pressure inside the packed bed or the solidified carbonated body is reduced.
[7] In the production method according to any one of the above [1] to [6], a carbonized solidified body obtained by consolidating a packed layer of a carbonated Ca-containing raw material or a packed layer of an uncarbonated Ca-containing raw material by a carbonation reaction. In the step of depressurizing the inside, a method for producing a solidified carbonate is characterized in that the inside of the packed layer or the solidified carbonate is reduced to 0.8 atm or less.

以上述べた本発明法によれば、原料の粒度分布や成分などに拘りなく、高い強度を有する炭酸固化体を安定して製造することができる。このため搬送中や使用中に炭酸固化体に亀裂を生じるようなことも確実に防止することができる。   According to the above-described method of the present invention, a solidified carbonate having high strength can be stably produced regardless of the particle size distribution and components of the raw material. For this reason, it is possible to reliably prevent cracks in the solidified carbonic acid during transportation and use.

以下、本発明法の詳細について説明する。
本発明は、粉粒状の未炭酸化Ca含有原料の充填層を炭酸固化させる場合に適用してもよいし、或いはこの炭酸固化体の強度向上を図るために再炭酸化する場合に適用してもよい。
本発明は、未炭酸化Ca含有原料の充填層を炭酸化反応で固結させ、若しくは未炭酸化Ca含有原料の充填層を炭酸化反応で固結させた炭酸固化体に再度炭酸化反応を生じさせる、炭酸固化体の製造方法である。
Hereinafter, the details of the method of the present invention will be described.
The present invention may be applied to the case where the packed bed of the powdery granular uncarbonated Ca-containing raw material is carbonated and solidified, or may be applied to the case where recarbonation is performed to improve the strength of the carbonized solidified body. Is also good.
In the present invention, the carbonation reaction is performed again on the carbonized solid obtained by consolidating the packed layer of the uncarbonated Ca-containing raw material by the carbonation reaction or by solidifying the packed layer of the uncarbonated Ca-containing raw material by the carbonation reaction. This is a method for producing a solidified carbonic acid product.

先に述べたように、スラグなどの粉粒状の未炭酸化Ca含有原料(以下、“スラグ”を例に説明する)を炭酸化反応により固結させて炭酸固化体を製造する際のスラグ中の未炭酸化CaとCOとの反応は、スラグ粒子の表面に存在する水(表面付着水)にスラグ粒子間を流れるCOが溶解するとともに、スラグ側からはCaイオンが溶出し、この水に溶解・溶出したCOとCaイオンとが反応(炭酸化反応)することにより、スラグ粒子表面にCaCOが析出するものであると考えられる。 As described above, the powdery uncarbonated Ca-containing raw material such as slag (hereinafter, “slag” will be described as an example) is consolidated by a carbonation reaction to produce a carbonized solidified product. The reaction between the uncarbonated Ca and CO 2 is caused by the fact that the CO 2 flowing between the slag particles is dissolved in the water (surface-adhered water) present on the surface of the slag particles, and Ca ions are eluted from the slag side. It is considered that CaCO 3 precipitates on the surface of the slag particles due to the reaction (carbonation reaction) between CO 2 dissolved and eluted in water and Ca ions.

特許文献1などに示される従来技術では、スラグに適量の水分(例えば、含水率5〜10%程度)を添加した状態で炭酸化処理が行われているが、その際の水分添加の方法は、単純にスラグと水を混合するだけであるため、スラグ充填層内での水の分布状態が不均一となる。この結果、水の多いところではCOの通り路が十分に確保されないためCOが十分に流れず、このため炭酸化反応が生じにくく、また、僅かに炭酸化反応が生じる場所もCaイオンが溶け込んだ水の表面部分(すなわち、スラグ粒子表面から離れた場所)であるため、生成するCaCOはスラグ粒子どうしの結合に寄与できないものと考えられる。一方、水が少ないところではCOの通り路が十分に確保されるためCOは流れるが、肝心の水分が少ないため、スラグから溶出するCaイオンが少なく、この場合も炭酸化反応が生じにくくなるものと考えられる。そして、これら結果、得られる炭酸固化体は炭酸化不足により強度不足を生じたり、強度のばらつきが大きいものとなってしまう。 In the prior art shown in Patent Document 1, etc., carbonation treatment is performed in a state where an appropriate amount of water (for example, a water content of about 5 to 10%) is added to slag. However, since the slag and the water are simply mixed, the distribution state of the water in the slag packed bed becomes uneven. As a result, Torimichi of CO 2 is at busy water CO 2 does not flow sufficiently for not sufficiently secured, and therefore less likely to occur carbonation reaction, also Ca ions where the slight carbonation reaction occurs It is considered that the generated CaCO 3 cannot contribute to the bonding between the slag particles because it is the surface portion of the dissolved water (that is, a place distant from the slag particle surface). On the other hand, CO 2 since Torimichi of CO 2 is sufficiently secured at less water flow, but because essential water is small, less Ca ions eluted from the slag, hardly occurs in this case also the carbonation reaction It is considered to be. Then, as a result, the obtained carbonized solid body has insufficient strength due to insufficient carbonation or has a large variation in strength.

そこで、本発明の製造方法の一形態では、スラグ充填層(炭酸固化体を再炭酸化させて強度向上を図る場合には“炭酸固化体”。なお、以下は“スラグ充填層”を例に説明する。)内での水の分布状態を均一化するため、水分を含んだスラグ充填層の内部を一旦減圧する処理を行う。このような減圧処理を行うことにより、スラグ充填層内の水の分布状態が均一化すると考えられる原理を、図1(模式図)に基づいて説明する。   Therefore, in one embodiment of the production method of the present invention, the slag packed layer ("carbonated solidified body" when the carbonized solidified body is re-carbonated to improve the strength. In the following, the "slag filled layer" is taken as an example. In order to equalize the distribution of water in the slag packed layer, a process of temporarily reducing the pressure inside the slag packed bed containing water is performed. The principle that the distribution of water in the slag packed layer is considered to be uniform by performing such a decompression process will be described with reference to FIG. 1 (schematic diagram).

図1(a)は、適量の水(通常、炭酸化処理に必要且つ十分な量若しくはそれに近い量の水)を含んだスラグ充填層(例えば、水を添加して混合したスラグを型枠に装入して構成されたスラグ充填層)の内部を示している。この状態でのスラグ粒子の間隙部分は、間隙の大きさや表面張力等の影響により水の存在状態にばらつきがあり、COの通り路を塞ぐように水が多量に存在する部分と、炭酸化反応に必要な量の水(スラグ粒子の表面付着水)が十分に存在していない部分とがある。そして、この状態でスラグ充填層内部を減圧すると、部分的に偏在していた水が引かれて移動し、表面付着水量が少なかったスラグ粒子の表面に付着する。この結果、スラグ粒子の間隙部分での水の存在状態が均一化され、図1(b)に示すように、各スラグ粒子に表面付着水が均一に存在し且つスラグ粒子間にCOの通り路となる間隙が適切に確保された状態がスラグ充填層全体に実現することになる。なお、上記減圧によりスラグ充填層内に存在する水のうちの一部が充填層外に排出される場合もある。 FIG. 1 (a) shows a slag packed bed containing an appropriate amount of water (usually, an amount necessary or sufficient for the carbonation treatment or an amount close thereto) (for example, a slag mixed by adding water to a mold). 2 shows the inside of a slag-filled layer that is configured by being charged. In this state, the gap portion of the slag particles varies in the presence state of water due to the influence of the size of the gap, surface tension, and the like, and the portion where a large amount of water exists so as to block the passage of CO 2 and the carbonation There is a portion where the amount of water (water attached to the surface of the slag particles) necessary for the reaction is not sufficiently present. When the pressure inside the slag packed layer is reduced in this state, the partially unevenly distributed water is drawn and moves, and adheres to the surface of the slag particles having a small amount of water adhering to the surface. As a result, presence state of water in the gap portion of the slag particles are uniform, as in FIG. 1 as shown in (b), CO 2 between each slug particle surfaces deposited water is uniformly present in and slag particles A state in which a gap serving as a path is appropriately secured is realized in the entire slag filling layer. In addition, a part of the water present in the slag packed bed may be discharged to the outside of the packed bed due to the reduced pressure.

そして、以上のように減圧処理によって水(間隙水)の分布状態が適正化されたスラグ充填層に炭酸ガス存在下で炭酸化反応を生じさせることにより、スラグ充填層全体で効率的且つ均一に炭酸化反応が進行し、この結果、生成したCaCOによるスラグ粒子間の結合力が大幅に向上し、高い強度を有する炭酸固化体を安定的に得ることができる。ここで、炭酸ガス存在下で炭酸化反応を生じさせるのに実際に使用するガスは、炭酸ガス又は炭酸ガス含有ガスである。 Then, by causing a carbonation reaction in the presence of carbon dioxide in the slag packed layer in which the distribution state of water (pore water) is optimized by the decompression treatment as described above, the entire slag packed bed is efficiently and uniformly formed. The carbonation reaction proceeds, and as a result, the bonding force between the slag particles by the generated CaCO 3 is greatly improved, and a carbonized solid having high strength can be stably obtained. Here, the gas actually used to cause the carbonation reaction in the presence of carbon dioxide is carbon dioxide or a carbon dioxide-containing gas.

また、スラグ充填層を炭酸化反応で固結させた炭酸固体化の強度を向上させるため、炭酸固化体に再度炭酸化反応(再炭酸化)を生じさせる場合の原理も上記と同様である。
この場合、再炭酸化の対象となるのは従来法や上述した方法などによって得られた炭酸固化体である。スラグなどの粉粒状の未炭酸化Ca含有原料の充填層を炭酸化反応により固結させた炭酸固化体は全体に微細な貫通気孔を有しており、その内部に水を含ませる(浸透させる)ことができる。この炭酸固化体に対して、強度向上を目的として再炭酸化を行うものであるが、この際、炭酸固化体内での水の分布状態を均一化するため、炭酸固化体の内部を減圧する処理を行う。
Further, in order to improve the strength of solidification of carbonic acid in which the slag packed layer is solidified by the carbonation reaction, the principle of causing a carbonation reaction (recarbonation) again in the carbonized solid is the same as above.
In this case, the target of recarbonation is a solid carbonate obtained by a conventional method or the above-described method. A carbonized solid obtained by consolidating a packed bed of powdered and granular non-carbonated Ca-containing raw material such as slag by a carbonation reaction has fine through-holes throughout, and allows water to be contained (permeated) therein. )be able to. The carbonized solid is subjected to recarbonation for the purpose of improving the strength. At this time, in order to make the distribution of water in the carbonized solid uniform, a process of reducing the pressure inside the carbonized solid is performed. I do.

この場合に、炭酸固化体内の水の分布状態が均一化すると考えられる原理は、先に述べたスラグ充填層の場合と同様である。すなわち、図1(a)が適量の水(通常、炭酸化処理に必要且つ十分な量若しくはそれに近い量の水)を含んだ炭酸固化体の内部を示すものとすると、この状態でのスラグ粒子の間隙部分は、間隙の大きさや表面張力等の影響により水の存在状態にばらつきがあり、COの通り路を塞ぐように水が多量に存在する部分と、炭酸化反応に必要な量の水(スラグ粒子の表面付着水)が十分に存在していない部分とがある。そして、この状態で炭酸固化体内部を減圧すると、部分的に偏在していた水が引かれて移動し、表面付着水量が少なかったスラグ粒子の表面に付着する。この結果、スラグ粒子の間隙部分での水の存在状態が均一化され、図1(b)に示すように、各スラグ粒子に表面付着水が均一に存在し且つスラグ粒子間にCOの通り路となる間隙が適切に確保された状態が炭酸固化体全体に実現することになる。なお、上記減圧により炭酸固化体内に存在する水のうちの一部が外部に排出される場合もある。 In this case, the principle that the distribution state of water in the solidified carbon dioxide is considered to be uniform is the same as that of the slag packed layer described above. That is, assuming that FIG. 1 (a) shows the inside of a carbonated solid containing an appropriate amount of water (usually an amount of water necessary and sufficient for the carbonation treatment or an amount close thereto), slag particles in this state In the gap portion of, there is a variation in the presence state of water due to the influence of the size of the gap, surface tension, etc., and the portion where a large amount of water exists so as to block the CO 2 passage and the amount of water necessary for the carbonation reaction There is a portion where water (water adhering to the surface of slag particles) does not sufficiently exist. Then, when the inside of the solidified carbonate is decompressed in this state, the partially unevenly distributed water is drawn and moves, and adheres to the surface of the slag particles having a small amount of water adhering to the surface. As a result, presence state of water in the gap portion of the slag particles are uniform, as in FIG. 1 as shown in (b), CO 2 between each slug particle surfaces deposited water is uniformly present in and slag particles A state in which a gap serving as a path is appropriately secured is realized in the entire carbonated solidified body. It should be noted that a part of the water present in the solidified carbon dioxide may be discharged to the outside due to the reduced pressure.

そして、以上のように減圧処理によって水(間隙水)の分布状態が適正化された炭酸固化体に炭酸ガス存在下で再度炭酸化反応を生じさせることにより、炭酸固化体全体で効率的且つ均一に炭酸化反応が進行し、この結果、新たに生成したCaCOによりスラグ粒子間の結合力が大幅に向上し、炭酸固化体の強度を顕著に高めることができる。ここで、再炭酸化される炭酸固化体は、既に炭酸化反応によって生成したCaCOによって固結しているが、スラグ中には未だ炭酸化していないCaが相当量含まれており、また、各スラグ粒子の全表面が析出したCaCOで覆われている訳ではないので、上記再炭酸化の際にもスラグ粒子から表面付着水にCaイオンが溶出し、炭酸化反応が進行することになる。 Then, a carbonation reaction is caused to occur again in the presence of carbon dioxide in the carbonized solid in which the distribution state of water (pore water) has been optimized by the reduced pressure treatment as described above, so that the entire carbonized solid is efficiently and uniformly formed. The carbonation reaction proceeds during the reaction, and as a result, the bonding force between the slag particles is greatly improved by newly generated CaCO 3 , and the strength of the carbonized solid can be significantly increased. Here, the solidified carbonate to be recarbonated is already solidified by CaCO 3 generated by the carbonation reaction, but the slag contains a considerable amount of uncarbonated Ca, and Since the entire surface of each slag particle is not covered with the precipitated CaCO 3 , Ca ions are eluted from the slag particle to the surface adhering water even during the recarbonation, and the carbonation reaction proceeds. Become.

また、本発明では、スラグ充填層を炭酸固化させるに当たり、上述した減圧処理でスラグ充填層内部の水(間隙水)の分布状態を均一化した上で炭酸化を行い、これにより得られた炭酸固化体をさらに再炭酸化するとともに、この際にも、上述した減圧処理で炭酸固化体の水(間隙水)の分布状態を均一化した上で再炭酸化を行うようにすることができる。すなわち、この製造方法では、水分を含んだスラグ充填層内部を減圧処理した後、スラグ充填層に炭酸ガス存在下で炭酸化反応を生じさせることによりスラグ充填層を固結させ、さらに、このようにして得られた炭酸固化体内部に必要に応じて水(炭酸化反応に必要な水)を含ませた後、炭酸固化体内部を減圧処理し、しかる後、炭酸固化体に炭酸ガス存在下で再度炭酸化反応を生じさせるものであり、これにより、特に高い強度を有する炭酸固化体を得ることができる。   In the present invention, in solidifying the slag packed bed with carbonic acid, the distribution of water (pore water) in the slag packed bed is made uniform by the above-described reduced pressure treatment, and then carbonation is performed. The solidified product is further recarbonated, and also at this time, the distribution of water (interstitial water) in the carbonized solidified product is made uniform by the above-described reduced pressure treatment, and then recarbonation can be performed. That is, in this production method, after the inside of the slag packed layer containing water is subjected to a reduced pressure treatment, the slag packed bed is consolidated by causing a carbonation reaction in the presence of carbon dioxide gas in the slag packed bed. If necessary, water (water required for the carbonation reaction) is included in the interior of the solidified carbon dioxide obtained in the above, and then the inside of the solidified carbonic acid is subjected to a reduced pressure treatment. This causes a carbonation reaction again, whereby a solidified carbonate having particularly high strength can be obtained.

次に、本発明の製造方法の他の形態について説明する。
この形態では、スラグ充填層(炭酸固化体を再炭酸化させて強度向上を図る場合には“炭酸固化体”。なお、以下は“スラグ充填層”を例に説明する。)内での水の分布状態を均一化するため、スラグ充填層の内部に水を十分に含ませた後、スラグ充填層の内部を減圧してその水の一部(すなわち、スラグ粒子の表面付着水以外の余分な水)を排出する処理を行う。このような処理を行うことにより、スラグ充填層内の水の分布状態が均一化すると考えられる原理を、図2(模式図)に基づいて説明する。
Next, another embodiment of the manufacturing method of the present invention will be described.
In this embodiment, water in the slag packed layer ("carbonated solidified body" in the case where carbonized solidified body is recarbonated to improve the strength, and "slag packed bed" will be described below as an example). In order to make the distribution state of the slag packed layer uniform, sufficient water is contained inside the slag packed bed, and then the inside of the slag packed bed is decompressed and a part of the water (that is, extra Water). The principle that the distribution state of water in the slag packed layer is considered to be uniform by performing such processing will be described with reference to FIG. 2 (schematic diagram).

図2(a)は、スラグ充填層内部に水を十分に含ませた状態を示している。この状態ではスラグ粒子の間隙の多くに水が存在するとともに、その間隙水中に気泡が存在している。この気泡はスラグ充填層に水を含ませる際に充填層内に閉じ込めたれた気泡であり、このような気泡はスラグ充填層全体に広く存在している。そして、この状態でスラグ充填層内部を減圧すると、図2(b)に示すように間隙水中の気泡が大きく膨張し、この気泡が間隙水をスラグ充填層外部に押し出し、最終的には図2(c)に示すように、スラグ粒子表面に付着した水(表面付着水)を残して間隙水の大部分がスラグ充填層の外に流出する。つまり、炭酸化反応に不必要なだけでなく、スラグ充填層内でのCOの通過を阻害する間隙水の大部分がスラグ充填層内部から除かれる。この結果、各スラグ粒子に表面付着水が均一に存在し且つスラグ粒子間にCOの通り路となる間隙が適切に確保された状態がスラグ充填層全体に実現することになる。 FIG. 2A shows a state in which water is sufficiently contained inside the slag packed layer. In this state, water exists in many gaps between the slag particles, and bubbles exist in the gap water. These bubbles are bubbles trapped in the slag packed bed when water is contained in the slag packed bed, and such bubbles are widely present throughout the slag packed bed. When the pressure inside the slag packed bed is reduced in this state, the bubbles in the pore water greatly expand as shown in FIG. 2 (b), and the bubbles push the pore water out of the slag packed bed, and finally, as shown in FIG. As shown in (c), most of the interstitial water flows out of the slag packed layer, leaving water attached to the surface of the slag particles (surface attached water). That is, most of the pore water not only unnecessary for the carbonation reaction but also obstructing the passage of CO 2 in the slag packed bed is removed from the inside of the slag packed bed. As a result, a state in which the water adhering to the surface is uniformly present in each slag particle, and a gap between the slag particles as a passage for CO 2 is appropriately secured is realized in the entire slag packed layer.

そして、以上のような処理によって水(間隙水)の分布状態が適正化されたスラグ充填層に炭酸ガス存在下で炭酸化反応を生じさせることにより、スラグ充填層全体で効率的且つ均一に炭酸化反応が進行し、この結果、生成したCaCOによるスラグ粒子間の結合力が大幅に向上し、高い強度を有する炭酸固化体を安定的に得ることができる。ここで、炭酸ガス存在下で炭酸化反応を生じさせるのに実際に使用するガスは、炭酸ガス又は炭酸ガス含有ガスである。 Then, by causing a carbonation reaction in the presence of carbon dioxide gas in the slag packed layer in which the distribution state of water (pore water) has been optimized by the above treatment, the entire slag packed bed is efficiently and uniformly carbonated. The formation reaction proceeds, and as a result, the bonding force between the slag particles by the generated CaCO 3 is greatly improved, and a solidified carbonate having high strength can be stably obtained. Here, the gas actually used to cause the carbonation reaction in the presence of carbon dioxide is carbon dioxide or a carbon dioxide-containing gas.

また、スラグ充填層を炭酸化反応で固結させた炭酸固体化の強度を向上させるため、炭酸固化体に再度炭酸化反応(再炭酸化)を生じさせる場合の原理も上記と同様である。
この場合、再炭酸化の対象となるのは従来法や上述した方法などによって得られた炭酸固化体である。スラグなどの粉粒状の未炭酸化Ca含有原料の充填層を炭酸化反応により固結させた炭酸固化体は全体に微細な貫通気孔を有しており、その内部に水を含ませる(浸透させる)ことができる。この炭酸固化体に対して、強度向上を目的として再炭酸化を行うものであるが、この際、炭酸固化体内での水の分布状態を均一化するため、炭酸固化体の内部に水を十分に含ませた後、炭酸固化体の内部を減圧してその水の一部(すなわち、スラグ粒子の表面付着水以外の余分な水)を排出する処理を行う。
Further, in order to improve the strength of solidification of carbonic acid in which the slag packed layer is solidified by the carbonation reaction, the principle of causing a carbonation reaction (recarbonation) again in the carbonized solid is the same as above.
In this case, the target of recarbonation is a solid carbonate obtained by a conventional method or the above-described method. A carbonized solid obtained by consolidating a packed bed of powdered and granular non-carbonated Ca-containing raw material such as slag by a carbonation reaction has fine through-holes throughout, and allows water to be contained (permeated) therein. )be able to. This carbonized solid is subjected to recarbonation for the purpose of improving the strength. At this time, in order to make the distribution of water in the carbonized solid uniform, sufficient water is supplied inside the carbonized solid. After that, the inside of the solidified carbonic acid body is depressurized, and a process of discharging a part of the water (ie, extra water other than the water attached to the surface of the slag particles) is performed.

この場合に、炭酸固化体内の水の分布状態が均一化すると考えられる原理は、先に述べたスラグ充填層の場合と同様である。すなわち、図2(a)が炭酸固化体内部に水を十分に含ませた状態を示すものとすると、この状態ではスラグ粒子の間隙の多くに水が存在するとともに、その間隙水中に気泡が存在している。そして、この状態で炭酸固化体内部を減圧すると、図2(b)に示すように間隙水中の気泡が大きく膨張し、この気泡が間隙水を炭酸固化体外部に押し出し、最終的には図2(c)に示すように、スラグ粒子表面に付着した水(表面付着水)を残して間隙水の大部分が炭酸固化体の外に流出する。つまり、炭酸化反応に不必要なだけでなく、炭酸固化体内でのCOの通過を阻害する間隙水の大部分が炭酸固化体内部から除かれる。この結果、各スラグ粒子に表面付着水が均一に存在し且つスラグ粒子間にCOの通り路となる間隙が適切に確保された状態が炭酸固化体全体に実現することになる。 In this case, the principle that the distribution state of water in the solidified carbon dioxide is considered to be uniform is the same as that of the slag packed layer described above. That is, assuming that FIG. 2 (a) shows a state in which water is sufficiently contained in the solidified carbonate, in this state, water exists in many gaps of the slag particles and bubbles exist in the pore water. are doing. When the inside of the carbonated solid is depressurized in this state, the bubbles in the pore water greatly expand as shown in FIG. 2B, and the bubbles push the pore water to the outside of the carbonated solid. As shown in (c), most of the interstitial water flows out of the solidified carbonic acid, leaving the water attached to the surface of the slag particles (water attached to the surface). That is, not only is not necessary for the carbonation reaction, but also most of the pore water that inhibits the passage of CO 2 in the carbonized solidified body is removed from the inside of the carbonized solidified body. As a result, a state in which the water adhering to the surface is uniformly present in each slag particle, and a gap between the slag particles as a passage for CO 2 is appropriately secured is realized in the entire solidified carbon dioxide body.

そして、以上のような処理によって水(間隙水)の分布状態が適正化された炭酸固化体に炭酸ガス存在下で再度炭酸化反応を生じさせることにより、炭酸固化体全体で効率的且つ均一に炭酸化反応が進行し、この結果、新たに生成したCaCOによりスラグ粒子間の結合力が大幅に向上し、炭酸固化体の強度を顕著に高めることができる。ここで、再炭酸化される炭酸固化体は、既に炭酸化反応によって生成したCaCOによって固結しているが、スラグ中には未だ炭酸化していないCaが相当量含まれており、また、各スラグ粒子の全表面が析出したCaCOで覆われている訳ではないので、上記再炭酸化の際にもスラグ粒子から表面付着水にCaイオンが溶出し、炭酸化反応が進行することになる。 Then, the carbonation reaction is caused to occur again in the presence of carbon dioxide in the carbonated solid in which the distribution state of water (pore water) has been optimized by the treatment as described above, so that the entire carbonated solid is efficiently and uniformly formed. The carbonation reaction proceeds, and as a result, the bonding force between the slag particles is greatly improved by newly generated CaCO 3 , and the strength of the carbonized solid can be significantly increased. Here, the solidified carbonate to be recarbonated is already solidified by CaCO 3 generated by the carbonation reaction, but the slag contains a considerable amount of uncarbonated Ca, and Since the entire surface of each slag particle is not covered with the precipitated CaCO 3 , Ca ions are eluted from the slag particle to the surface adhering water even during the recarbonation, and the carbonation reaction proceeds. Become.

また、本発明では、スラグ充填層を炭酸固化させるに当たり、上述した方法でスラグ充填層内部の水(間隙水)の分布状態を均一化した上で炭酸化を行い、これにより得られた炭酸固化体をさらに再炭酸化するとともに、この際にも、上述した方法で炭酸固化体の水(間隙水)の分布状態を均一化した上で再炭酸化を行うようにすることができる。すなわち、この製造方法では、スラグ充填層内部に水を含ませた後、このスラグ充填層内部を減圧することによりその水の一部(すなわち、スラグ粒子の表面付着水以外の余分な水)を排出し、しかる後、スラグ充填層に炭酸ガス存在下で炭酸化反応を生じさせることによりスラグ充填層を固結させ、さらに、このようにして得られた炭酸固化体内部に水を含ませた後、炭酸固化体内部を減圧することによりその水の一部(すなわち、スラグ粒子の表面付着水以外の余分な水)を排出し、しかる後、炭酸固化体に炭酸ガス存在下で再度炭酸化反応を生じさせるものであり、これにより、特に高い強度を有する炭酸固化体を得ることができる。   Further, in the present invention, when carbonizing and solidifying the slag packed bed, the distribution of water (pore water) inside the slag packed bed is made uniform by the above-mentioned method, and then carbonation is carried out. The body is further recarbonated, and at this time, the recarbonation can be performed after the water (interstitial water) distribution of the solidified carbonate is uniformized by the method described above. That is, in this manufacturing method, after water is contained inside the slag packed layer, a part of the water (ie, extra water other than the water attached to the surface of the slag particles) is reduced by reducing the pressure inside the slag packed layer. The slag-filled layer was solidified by causing a carbonation reaction in the presence of carbon dioxide gas in the slag-filled layer, and then water was contained inside the thus obtained carbonized solidified body. Thereafter, a part of the water (ie, excess water other than the water adhering to the surface of the slag particles) is discharged by depressurizing the inside of the carbonated solid, and thereafter, the carbonated solid is again carbonated in the presence of carbon dioxide gas. This causes a reaction, whereby a solidified carbonate having particularly high strength can be obtained.

以上述べた本発明法における原料充填層又は炭酸固化体の「減圧処理(図1及び図2のいずれの場合も含む)−炭酸化処理」は、これを複数回繰り返して実施してもよい。この場合、例えば最初に図2の原理に基づく「減圧処理−炭酸化処理」を行い、次いで、図1の原理に基づく「減圧処理−炭酸化処理」を行うようにすることもできる。   The above-described “decompression treatment (including any of the cases of FIGS. 1 and 2) -carbonation treatment” of the raw material packed layer or the carbonated solid in the method of the present invention may be repeated plural times. In this case, for example, "decompression treatment-carbonation treatment" based on the principle of FIG. 2 may be performed first, and then "decompression treatment-carbonation treatment" based on the principle of FIG. 1 may be performed.

次に、以上述べた本発明法における好ましい製造条件について説明する。
粉粒状の未炭酸化Ca含有原料を炭酸化反応によって固結させることにより炭酸固化体を製造する方法にあって、未炭酸化Ca含有原料中に含まれる未炭酸化Ca、すなわちCaO及び/又はCa(OH)は、少なくとも固体粒子の組成の一部として含まれるものであればよく、したがって、鉱物としてのCaO、Ca(OH)の他に、2CaO・SiO、3CaO・SiO、ガラスなどのように組成の一部として固体粒子中に存在するものも含まれる。
Next, preferable production conditions in the method of the present invention described above will be described.
A method for producing a carbonated solidified product by consolidating a powdery granular uncarbonated Ca-containing raw material by a carbonation reaction, wherein uncarbonated Ca contained in the uncarbonated Ca-containing raw material, that is, CaO and / or Ca (OH) 2 only needs to be contained at least as a part of the composition of the solid particles. Therefore, in addition to CaO and Ca (OH) 2 as minerals, 2CaO · SiO 2 , 3CaO · SiO 2 , Also included are those present in solid particles as part of the composition, such as glass.

粉粒状の未炭酸化Ca含有原料としては、例えば、コンクリートや鉄鋼製造プロセスで発生したスラグなどが挙げられる。この未炭酸化Ca含有原料の種類などについては、後に詳述する。
粉粒状の未炭酸化Ca含有原料の粒度に特別な制限はないが、COとの接触面積を確保して反応性を高めるためにはある程度粒度が細かい方が好ましく、具体的には実質的に(すなわち、不可避的に含まれる粒度の大きい固体粒子を除き)20mm以下、特に望ましくは5mm以下の粒度のものが好ましい。
Examples of the powdery uncarbonated Ca-containing raw material include concrete and slag generated in a steelmaking process. The type of the uncarbonated Ca-containing raw material will be described later in detail.
There is no particular limitation on the particle size of the powdery uncarbonated Ca-containing raw material, but it is preferable that the particle size is somewhat small in order to secure the contact area with CO 2 and increase the reactivity, and specifically, (I.e., excluding solid particles having a large particle size which are inevitably contained), those having a particle size of 20 mm or less, particularly preferably 5 mm or less are preferred.

本発明法において、未炭酸化Ca含有原料の充填層又はこれを炭酸固化させて得られた炭酸固化体に水を含ませる方法は任意であり、例えば、原料充填層又は炭酸固化体を水中に浸漬する方法(原料充填層の場合には、型枠などの充填層保持容器ごと水中に浸漬させる)、原料充填層又は炭酸固化体に散水する方法などにより、それらに水を含ませることができる。また、予め十分に水を含ませた未炭酸化Ca含有原料を型枠などの容器に装入するようにしてもよい。   In the method of the present invention, a method of including water in a packed bed of uncarbonated Ca-containing raw material or a carbonated solid obtained by carbonating the same is optional. Water can be contained therein by a method of immersion (in the case of a raw material packed layer, the entire packed layer holding container such as a mold is immersed in water), a method of sprinkling water on the raw material packed layer or the solidified carbon dioxide, or the like. . In addition, an uncarbonated Ca-containing raw material sufficiently containing water may be charged in a container such as a mold.

原料充填層又は炭酸固化体の内部を減圧する方法も任意であり、例えば、原料充填層を形成すべき型枠を気密にできるようにし、この型枠に真空ポンプを備えた排気(吸引)機構を接続し、この排気機構により型枠内部(すなわち、原料充填層又は炭酸固化体の内部)を減圧するようにしてもよい。また、型枠などから取り出した炭酸固化体を別に用意した気密容器に収容し、この気密容器内を上記のような排気(吸引)機構により減圧するようにしてもよい。
上記減圧工程での減圧の程度にも特別な制限はないが、原料充填層又は炭酸固化体の内部の水を速やかに移動させ或いは余分な水を速やかに排出させるためには、原料充填層又は炭酸固化体の内部を0.8気圧以下、より望ましくは0.2気圧以下に減圧することが好ましい。
The method of depressurizing the inside of the raw material filling layer or the solidified carbon dioxide is also optional. For example, an evacuation (suction) mechanism in which a mold on which the raw material filling layer is formed can be made airtight and a vacuum pump is provided in the mold And the inside of the mold (that is, the inside of the raw material filling layer or the solidified carbon dioxide) may be depressurized by this exhaust mechanism. Alternatively, the solidified carbonic acid removed from the mold or the like may be housed in a separately prepared airtight container, and the inside of the airtight container may be depressurized by the above-described exhaust (suction) mechanism.
There is no particular limitation on the degree of decompression in the depressurization step, but in order to promptly move water inside the raw material packed layer or the carbonated solid or to quickly discharge excess water, the raw material packed layer or It is preferable to reduce the pressure inside the solidified carbon dioxide to 0.8 atm or less, more preferably 0.2 atm or less.

炭酸化処理される原料充填層又は炭酸固化体中の含水率は、原料充填層又は炭酸固化体内部の空隙率(気孔率)などによっても異なるが、通常は1〜7%、好ましくは2〜5%程度とするのが適当である。また、粒径が実質的に3mm以下の未炭酸化Ca含有原料を用いる場合には、一般に3〜11%、好ましくは5〜9%程度の含水率とするのが適当である。したがって、減圧処理により原料充填層又は炭酸固化体中の水の一部を排出させる場合には、減圧処理後の含水率が上記の範囲になるよう、減圧処理前の含水率、減圧の程度、原料充填層又は炭酸固化体内部の空隙率(気孔率)などを調整することが好ましい。   The water content in the raw material packed layer or the solidified carbonated material to be carbonated varies depending on the porosity (porosity) inside the raw material packed layer or the solidified carbonic material, but is usually 1 to 7%, preferably 2 to 2%. It is appropriate to set it to about 5%. When an uncarbonated Ca-containing raw material having a particle size of substantially 3 mm or less is used, the water content is generally 3 to 11%, preferably 5 to 9%. Therefore, when a part of the water in the raw material packed bed or the solidified carbonate is discharged by the decompression treatment, the water content before the decompression treatment, the degree of decompression, so that the water content after the decompression treatment is in the above range, It is preferable to adjust the porosity (porosity) and the like inside the raw material packed layer or the solidified carbonate.

原料充填層又は炭酸固化体に炭酸ガス存在下で炭酸化反応を生じさせるには、通常、上記型枠又は気密容器内に炭酸ガス又は炭酸ガス含有ガス(以下、単に“炭酸ガス”という)を供給し、原料充填層又は炭酸固化体の内部に炭酸ガスを吹き込むか、或いは原料充填層又は炭酸固化体を気密容器の炭酸ガス雰囲気内に置き、原料充填層又は炭酸固化体の内部に炭酸ガスを浸透させる。   In order to cause a carbonation reaction in the raw material packed bed or the carbonized solid in the presence of carbon dioxide gas, carbon dioxide gas or carbon dioxide-containing gas (hereinafter, simply referred to as “carbon dioxide gas”) is usually placed in the above-mentioned mold or airtight container. Supply and blow carbon dioxide gas into the raw material packed layer or the solidified carbon dioxide, or place the raw material packed layer or the solidified carbonic acid in a carbon dioxide gas atmosphere of an airtight container, and place carbon dioxide gas inside the raw material packed layer or the solidified carbonic acid. Infiltrate.

未炭酸化Ca含有原料としては、先に述べたように少なくとも組成の一部として未炭酸化Caを含むものであれば特に制限はないが、未炭酸化Caの含有率が高く、しかも資源のリサイクルを図ることができるという点で、鉄鋼製造プロセスで発生するスラグ、コンクリート(例えば、廃コンクリート)などが特に好ましい。一般に、鉄鋼製造プロセスで発生するスラグのCaO濃度は約13〜55mass%、また、コンクリート(例えば、廃コンクリート)のCaO濃度は約5〜15mass%(セメント中のCaO濃度:50〜60mass%)であり、また、これらは入手も容易であるため、未炭酸化Ca含有原料として極めて好適な素材であるといえる。したがって、未炭酸化Ca含有原料の少なくとも一部が、また特に望ましくは主たる原料がスラグ及び/又はコンクリートであることが好ましい。   The non-carbonated Ca-containing raw material is not particularly limited as long as it contains non-carbonated Ca as at least a part of the composition as described above. Slag and concrete (for example, waste concrete) generated in the steel manufacturing process are particularly preferable because they can be recycled. Generally, the CaO concentration of slag generated in the steel making process is about 13 to 55 mass%, and the CaO concentration of concrete (for example, waste concrete) is about 5 to 15 mass% (CaO concentration in cement: 50 to 60 mass%). In addition, since they are easily available, they can be said to be extremely suitable materials as uncarbonated Ca-containing raw materials. Therefore, it is preferred that at least a part of the uncarbonated Ca-containing raw material, and particularly preferably the main raw material is slag and / or concrete.

鉄鋼製造プロセスで発生するスラグとしては、高炉徐冷スラグ、高炉水砕スラグなどの高炉系スラグ、予備処理、転炉、鋳造などの工程で発生する脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、鋳造スラグなどの製鋼系スラグ、鉱石還元スラグ、電気炉スラグなどを挙げることができるが、これらに限定されるものではなく、また、2種以上のスラグを混合して用いることもできる。   Slag generated in the steelmaking process includes blast furnace slag such as blast furnace slow cooling slag and blast furnace granulated slag, decarburized slag, dephosphorized slag, desulfurized slag, Examples include, but are not limited to, steelmaking slag such as silicon slag, cast slag, ore reduction slag, electric furnace slag, and the like, and a mixture of two or more slags can also be used. .

また、鉄鋼製造プロセスで発生するスラグには相当量の鉄分(粒鉄などの鉄分)が含まれており、このようなスラグをそのまま使用すると、この鉄分の分だけ原料中でのCaO濃度が低下するため、スラグとしては地金(鉄分)回収処理を経たスラグを用いることが好ましい。この地金(鉄分)回収処理は、スラグ中に含まれている鉄分を鉄鋼製造プロセスにリサイクルするために一般に行われているもので、通常、スラグはこの地金回収を行うために粉砕処理され、磁気選別などの手段によりスラグ中に含まれる鉄分の相当量が回収除去される。   In addition, slag generated in the steelmaking process contains a considerable amount of iron (iron such as granular iron). If such slag is used as it is, the CaO concentration in the raw material decreases by the amount of iron. For this reason, it is preferable to use slag that has undergone ingot (iron) recovery processing. This ingot (iron) recovery processing is generally performed to recycle the iron contained in slag to the steelmaking process. Usually, the slag is pulverized to perform this ingot recovery. A considerable amount of iron contained in the slag is recovered and removed by means such as magnetic separation.

また、コンクリートとしては、例えば、建築物や土木構造物の取壊しなどにより生じた廃コンクリートなどを用いることができる。
また、未炭酸化Ca含有材としては、上記のスラグやコンクリート以外に、モルタル、ガラス、アルミナセメント、CaO含有耐火物などが挙げられ、これらの1種以上を単独でまたは混合して、或いはスラグ及び/又はコンクリートと混合して使用することもできる。
これらの材料は必要に応じて粉粒状に破砕処理され、原料として用いられる。
Further, as the concrete, for example, waste concrete generated by demolishing a building or civil engineering structure or the like can be used.
Examples of the non-carbonated Ca-containing material include mortar, glass, alumina cement, CaO-containing refractories, etc., in addition to the above-mentioned slag and concrete, and one or more of these materials may be used alone or in combination. And / or mixed with concrete.
These materials are optionally crushed into powders and used as raw materials.

未炭酸化Ca含有原料は、その全量が未炭酸化Caを含む固体粒子である必要はない。すなわち、未炭酸化Ca含有原料に含まれる未炭酸化Caの炭酸化によって炭酸固化体のバインダーとして十分な量のCaCOが生成されるのであれば、未炭酸化Ca含有原料に未炭酸化Caを含まない固体粒子が含まれていてもよい。このような固体粒子としては、例えば、天然石、砂、可溶性シリカ、フライアッシュ、クリンカーアッシュ、金属(例えば、金属鉄、酸化鉄)などが挙げられる。 The uncarbonated Ca-containing raw material does not need to be solid particles containing the entire amount of uncarbonated Ca. That is, if a sufficient amount of CaCO 3 is produced as a binder for the solidified carbonate by carbonation of the uncarbonated Ca contained in the uncarbonated Ca-containing raw material, the uncarbonated Ca-containing material is added to the uncarbonated Ca-containing raw material. May be contained. Examples of such solid particles include natural stone, sand, soluble silica, fly ash, clinker ash, and metals (for example, metallic iron and iron oxide).

また、これらのうち金属鉄、酸化鉄、可溶性シリカなどは、本発明法により製造された炭酸固化体が水中沈設用材料として用いられる場合に、水中の硫黄や燐の固定剤、海藻類などの水生植物の栄養源などとして有効に作用する。また、これら以外にも任意の成分(粒子)を適量、すなわち炭酸固化体の強度低下などを招かない限度で含むことができる。
また、バインダーとなる成分として、例えば、セメントや水砕スラグ微粉末などを少量添加してもよい。
In addition, among these, metallic iron, iron oxide, soluble silica, etc., when the solidified carbonate produced by the method of the present invention is used as a material for submersion in water, a fixing agent for sulfur or phosphorus in water, such as seaweed. It works effectively as a nutrient source for aquatic plants. In addition to these, an arbitrary component (particle) can be contained in an appropriate amount, that is, as long as the strength of the solidified carbonate is not reduced.
Further, as a component serving as a binder, for example, a small amount of cement, finely ground granulated slag, or the like may be added.

原料充填層又は炭酸固化体に炭酸化反応を生じさせるために使用される炭酸ガス又は炭酸ガス含有ガスとしては、例えば、一貫製鉄所内で排出される石灰焼成工場排ガス(通常、CO:25%前後)や加熱炉排ガス(通常、CO:6.5%前後)などが好適であるが、これらに限定されるものではない。また、ガス中のCO濃度が低すぎると処理効率が低下するという問題を生じるが、それ以外の問題は格別ない。したがって、CO濃度は特に限定しないが、効率的な処理を行うには3%以上のCO濃度とすることが好ましい。 Examples of the carbon dioxide gas or the carbon dioxide-containing gas used for causing a carbonation reaction in the raw material packed bed or the solidified carbon dioxide include, for example, a lime burning plant exhaust gas (usually CO 2 : 25%) discharged in an integrated steel mill. Suitable examples include, but are not limited to, heating furnace exhaust gas (usually, CO 2 : around 6.5%). In addition, if the concentration of CO 2 in the gas is too low, there is a problem that the treatment efficiency is reduced, but other problems are not particularly significant. Thus, although the CO 2 concentration is not particularly limited, it is preferable that the CO 2 concentration of 3% or more to do efficient processing.

また、炭酸ガスの供給量にも特別な制限はないが、一般的な目安としては0.004〜0.5m/min・t(原料ton)程度のガス供給量が確保できればよい。また、ガス供給時間(炭酸化処理時間)にも特別な制約はないが、目安としては炭酸ガスの供給量が未炭酸化Ca含有原料の重量の3%以上となる時点、すなわち、ガス量に換算すると原料1t当たり15m以上、好ましくは200m以上の炭酸ガスが供給されるまでガス供給を行うことが好ましい。 There is no particular limitation on the supply amount of carbon dioxide gas, but as a general guide, a gas supply amount of about 0.004 to 0.5 m 3 / min · t (raw material ton) may be secured. Also, there is no special restriction on the gas supply time (carbonation treatment time), but as a guide, the time when the supply amount of carbon dioxide gas becomes 3% or more of the weight of the uncarbonated Ca-containing raw material, that is, the gas amount Convert to the raw material 1t per 15 m 3 or more, preferably it is preferable to carry out the gas supply to 200 meters 3 or more carbon dioxide is supplied.

供給される炭酸ガス又は炭酸ガス含有ガスは常温でよいが、ガスが常温よりも高温であればそれだけ反応性が高まるため有利である。但し、ガスの温度が過剰に高いと原料充填層や炭酸固化体の水分を乾燥させたり、或いはCaCOがCaOとCOに分解してしまうため、高温ガスを用いる場合でもこのような分解を生じない程度の温度のガスを用いる必要がある。 The supplied carbon dioxide gas or carbon dioxide-containing gas may be at room temperature, but if the temperature of the gas is higher than room temperature, it is advantageous because the reactivity increases accordingly. However, if the temperature of the gas is excessively high, the moisture in the raw material packed bed and the solidified carbon dioxide is dried, or CaCO 3 is decomposed into CaO and CO 2. It is necessary to use a gas having a temperature that does not cause the gas.

また、炭酸ガス又は炭酸ガス含有ガスは原料充填層又は炭酸固化体の乾燥を防ぐために加湿した状態で原料充填層又は炭酸固化体に供給されることが好ましい。このため原料充填層又は炭酸固化体にガスを供給するに当たっては、炭酸ガス又は炭酸ガス含有ガスを一旦水中に吹き込んでHOを飽和させた後、原料充填層又は炭酸固化体に供給することが好ましく、これにより原料充填層又は炭酸固化体の乾燥を防止して炭酸化反応を促進させることができる。 Preferably, the carbon dioxide gas or the carbon dioxide-containing gas is supplied to the raw material packed bed or the solidified carbon dioxide in a humidified state in order to prevent the raw material packed bed or the solidified carbonic acid from drying. Therefore, when supplying gas to the raw material packed bed or the solidified carbon dioxide, carbon dioxide gas or a gas containing carbon dioxide is once blown into water to saturate H 2 O, and then supplied to the raw material packed bed or the solidified carbon dioxide. It is preferable to prevent the raw material packed layer or the solidified carbonic acid from drying, thereby promoting the carbonation reaction.

次に、本発明の具体的な実施形態について説明する。
図3は本発明法の実施状況の一例を示すもので、原料充填層を形成する型枠を縦断面した状態を示している。
前記型枠1は実質的に気密にすることが可能な型枠であって、この例では、容器状の本体100とその上部を閉塞する蓋体101とから構成されている。前記本体100の底部にはガス給排気部2(ガス給排気用空間)が設けられるとともに、このガス給排気部2と本体100との間の隔壁には多数のガス通孔20が形成されている。前記ガス給排気部2には、ガス給排気管3が接続されるとともに、このガス給排気管3には、炭酸ガス又は炭酸ガス含有ガス(以下、総称して“炭酸ガス”という)を供給するためのガス供給管系4と、型枠1内の減圧を行うための吸引ポンプ6を備えた吸引管系5が接続されている。また、型枠1の上部には型枠内に供給されたガスの排気を行うための排気管7が接続されている。その他図面において、8〜10は各配管系に設けられた開閉弁である。
Next, specific embodiments of the present invention will be described.
FIG. 3 shows an example of an implementation state of the method of the present invention, and shows a state in which a mold for forming a raw material filling layer is longitudinally sectioned.
The mold 1 is a mold that can be made substantially airtight. In this example, the mold 1 includes a container-shaped main body 100 and a lid 101 that closes an upper part of the main body 100. A gas supply / exhaust section 2 (gas supply / exhaust space) is provided at the bottom of the main body 100, and a number of gas through holes 20 are formed in a partition wall between the gas supply / exhaust section 2 and the main body 100. I have. A gas supply / exhaust pipe 3 is connected to the gas supply / exhaust section 2, and the gas supply / exhaust pipe 3 is supplied with a carbon dioxide gas or a carbon dioxide-containing gas (hereinafter collectively referred to as “carbon dioxide gas”). And a suction pipe system 5 having a suction pump 6 for reducing the pressure in the mold 1. In addition, an exhaust pipe 7 for exhausting gas supplied into the mold is connected to an upper portion of the mold 1. In addition, in the drawings, reference numerals 8 to 10 denote on-off valves provided in each piping system.

図3における本発明法の1つの実施形態(図1の作用を狙いとする実施形態)では、型枠1内にはスラグなどの粉粒状の未炭酸化Ca含有原料が装入され、適量の水(通常、炭酸化処理に必要且つ十分な量若しくはそれに近い量の水)を含んだ原料充填層Aが形成される。この水は、型枠1に装入される前の未炭酸化Ca含有原料に添加してもよいし、原料充填層Aに添加してもよい。   In one embodiment of the method of the present invention in FIG. 3 (an embodiment aiming at the operation of FIG. 1), a raw material containing uncarbonated Ca in the form of powder such as slag is charged into a mold 1 and an appropriate amount of the raw material is added. The raw material packed layer A containing water (usually, an amount of water necessary and sufficient for the carbonation treatment or an amount close thereto) is formed. This water may be added to the uncarbonated Ca-containing raw material before being charged into the mold 1 or may be added to the raw material packed layer A.

上記のように原料充填層Aを形成後、蓋体101を装着して型枠1を気密状態にし、しかる後、吸引管系5の吸引ポンプ6を用いた吸引により型枠1内から排気を行う。これにより原料充填層A(型枠)の内部が減圧され、原料充填層A内には先に述べたような水(間隙水)の適切な分布状態、すなわち、各原料粒子に表面付着水が均一に存在し且つ原料粒子間にCOの通り路となる間隙が適切に確保された状態が実現する。 After forming the raw material filling layer A as described above, the lid 101 is attached to make the mold 1 airtight. After that, the exhaust is exhausted from the inside of the mold 1 by suction using the suction pump 6 of the suction pipe system 5. Do. As a result, the pressure inside the raw material packed layer A (the mold) is reduced, and in the raw material packed layer A, an appropriate distribution state of water (pore water) as described above, that is, water adhering to the surface of each raw material particle. As a result, a state is realized in which gaps that are uniformly present and serve as a path for CO 2 between the raw material particles are appropriately secured.

次いで、開閉弁8,9の操作によって吸引管系5とガス供給管系4とを切り替え、ガス供給管系4から型枠1内に炭酸ガスを一定期間(例えば、数時間〜数百時間程度)供給する。炭酸ガスはガス給排気部2に導入された後、ガス通孔20から上方の原料充填層A内に吹き込まれる。原料充填層A内を通過する炭酸ガスの一部は、原料粒子からその表面付着水に溶出したCaイオンと反応し、原料粒子の表面にCaCOが析出し、これがバインダーとなって原料充填層Aが固結して炭酸固化体となる。炭酸ガスの残りは原料充填層Aを通過して排気管7から型枠1外に排出される。また、場合によっては、排気管7の開閉弁10を閉じた状態で原料充填層A内に炭酸ガスを供給するようにしてもよいが、その場合には、時々開閉弁10を開にして型枠1内に溜まったガスを放出し、型枠1内の炭酸ガス濃度が所定レベル以上に維持されるようにすることが好ましい。また、上記ガスの放出を型枠1内を減圧することによって行い、しかる後、所定濃度の炭酸ガスを導入するようにしてもよい。以上のような炭酸ガスの供給を一定期間行った後、脱型し、炭酸固化体を取り出す。なお、以上述べた「減圧処理−炭酸化処理」は、これを複数回繰り返して実施してもよい。 Then, the suction pipe system 5 and the gas supply pipe system 4 are switched by operating the on-off valves 8 and 9, and carbon dioxide gas is supplied from the gas supply pipe system 4 into the mold 1 for a certain period (for example, several hours to several hundred hours). Supply). After the carbon dioxide gas is introduced into the gas supply / exhaust section 2, the carbon dioxide gas is blown into the upper raw material filling layer A from the gas through hole 20. Part of the carbon dioxide gas passing through the raw material filling layer A reacts with Ca ions eluted from the raw material particles to the water adhering to the surface thereof, and CaCO 3 precipitates on the surface of the raw material particles, and this serves as a binder to serve as a binder. A solidifies to form a carbonized solid. The remainder of the carbon dioxide gas passes through the raw material filling layer A and is discharged from the exhaust pipe 7 to the outside of the mold 1. In some cases, carbon dioxide gas may be supplied into the raw material packed bed A in a state where the on-off valve 10 of the exhaust pipe 7 is closed. It is preferable to release the gas accumulated in the frame 1 so that the concentration of carbon dioxide in the mold 1 is maintained at a predetermined level or more. Further, the gas may be released by reducing the pressure inside the mold 1, and thereafter, a predetermined concentration of carbon dioxide may be introduced. After the above-mentioned supply of carbon dioxide gas has been performed for a certain period of time, it is released from the mold and the carbonized solid is removed. Note that the above-described “decompression treatment-carbonation treatment” may be performed by repeating this plural times.

また、図3における本発明法の他の実施形態(図2の作用を狙いとする実施形態)では、まず、型枠1内に形成された原料充填層Aに十分な水を含ませるが、その方法としては、型枠1の上部を開放した状態で、型枠ごと水槽内の水に浸漬してもよいし、原材料充填層Aの上部から十分な量の水を散水してもよい。また、予め十分に水を含ませた未炭酸化Ca含有原料を型枠1内に装入するようにしてもよい。   Further, in another embodiment of the method of the present invention in FIG. 3 (an embodiment aiming at the operation of FIG. 2), first, a sufficient amount of water is contained in the raw material filling layer A formed in the mold 1. As the method, the mold 1 may be immersed in water in the water tank with the upper part of the mold 1 opened, or a sufficient amount of water may be sprinkled from the upper part of the raw material filling layer A. In addition, an uncarbonated Ca-containing raw material that has been sufficiently mixed with water may be charged into the mold 1.

上記のように原料充填層Aに水を十分に含ませた後、蓋体101を装着して型枠1を気密状態にし、しかる後、吸引管系5の吸引ポンプ6を用いた吸引により型枠1内から排気を行う。これにより原料充填層A(型枠)の内部が減圧され、原料充填層A内の空気及び水(間隙水)が原料充填層から押し出され、ガス通孔20、ガス給排気部2を経由して型枠1から排出される。この結果、原料充填層A内には先に述べたような水(間隙水)の適切な分布状態、すなわち、各原料粒子に表面付着水が均一に存在し且つ原料粒子間にCOの通り路となる間隙が適切に確保された状態が実現する。 After the raw material packed layer A is sufficiently filled with water as described above, the lid 101 is attached to make the mold frame 1 airtight, and then the mold is suctioned using the suction pump 6 of the suction pipe system 5. Exhaust is performed from inside the frame 1. As a result, the pressure inside the raw material filling layer A (the mold) is reduced, and the air and water (pore water) in the raw material filling layer A are extruded from the raw material filling layer, and pass through the gas through holes 20 and the gas supply / exhaust portion 2. And is discharged from the mold 1. As a result, the appropriate distribution state of water (pore water) as described above in the raw material packed layer A, that is, water adhering to the surface is uniformly present on each raw material particle, and CO 2 is present between the raw material particles as shown in FIG. A state in which a gap that becomes a road is appropriately secured is realized.

次いで、開閉弁8,9の操作によって吸引管系5とガス供給管系4とを切り替え、ガス供給管系4から型枠1内に炭酸ガスを一定期間(例えば、数時間〜数百時間程度)供給し、原料充填層Aの炭酸化処理を行う。この炭酸化処理の条件や作用効果等は先に述べた実施形態と同様である。この炭酸化処理後、脱型し、炭酸固化体を取り出す。なお、以上述べた「減圧処理−炭酸化処理」は、これを複数回繰り返して実施してもよい。   Then, the suction pipe system 5 and the gas supply pipe system 4 are switched by operating the on-off valves 8 and 9, and carbon dioxide gas is supplied from the gas supply pipe system 4 into the mold 1 for a certain period (for example, several hours to several hundred hours). ) To supply and perform a carbonation treatment of the raw material packed layer A. The conditions, effects, and the like of this carbonation treatment are the same as those in the above-described embodiment. After this carbonation treatment, the mold is released, and the carbonized solid is taken out. Note that the above-described “decompression treatment-carbonation treatment” may be performed by repeating this plural times.

以上のような各実施形態の製造方法により十分な強度を有する炭酸固化体が製造されるが、この炭酸固化体の強度をさらに高めるために、上記のような工程で得られた炭酸固化体をそのまま型枠1内に収納した状態で、或いは別の容器に移して再炭酸化を行うようにしてもよい。
その際、上記原料充填層Aを炭酸固化させる場合と同様に、(a)炭酸固化体の内部を一旦減圧処理し、しかる後、炭酸ガスを供給して再炭酸化を実施する方法、(b)炭酸固化体に十分な水を含ませた後、炭酸固化体の内部を減圧処理して余分な水を排出し、しかる後、炭酸ガスを供給して再炭酸化を実施する方法、のいずれかの方法を採ることが好ましい。
炭酸固化体を再炭酸化する場合、上記原料充填層を炭酸固化させる場合と同様に、炭酸固化体内に炭酸ガスを吹き込む方法と、炭酸固化体を炭酸ガス雰囲気内に置いて炭酸ガスを内部に浸透させる方法とがあり、本発明ではいずれの方法を用いてもよい。
Although the solidified carbonate having sufficient strength is manufactured by the manufacturing method of each of the embodiments as described above, in order to further increase the strength of the solidified carbonate, the solidified carbonate obtained in the above-described process is used. Recarbonation may be performed in a state of being stored in the mold 1 as it is, or transferred to another container.
At that time, in the same manner as in the case of carbonizing and solidifying the raw material packed layer A, (a) a method in which the inside of the carbonized solidified product is once depressurized, and thereafter, a carbonic acid gas is supplied to carry out recarbonation, (b) After sufficient water is contained in the carbonated solidified body, the inside of the carbonized solidified body is subjected to a reduced pressure treatment to discharge excess water, and thereafter, a method of performing carbonation gas supply and performing recarbonation. It is preferable to adopt such a method.
In the case of recarbonating the carbonized solid, similarly to the case of carbonizing the raw material-filled layer, a method of blowing carbon dioxide into the carbonized solid, and placing the carbonized solid in a carbon dioxide gas atmosphere and putting carbon dioxide inside. There is a method of infiltrating, and in the present invention, any method may be used.

図4は、本発明法において炭酸固化体内に炭酸ガスを吹き込む方法の実施状況の一例を示すものであって、処理容器を縦断面した状態を示している。処理容器の装置構成は、図3の実施形態とほぼ同様である。すなわち、処理容器1a(この容器は図3のような型枠であってもよい)は実質的に気密にすることが可能な容器であって、この例では、本体100aとその上部を閉塞する蓋体101aとから構成され、本体100aの底部には多数のガス通孔20aを有するガス給排気部2a(ガス給排気用空間)が設けられている。このガス給排気部2aには、ガス給排気管3aが接続されるとともに、このガス給排気管3aには、炭酸ガスを供給するためのガス供給管系4aと、処理容器1a内の減圧を行うための吸引ポンプ6aを備えた吸引管系5aが接続されている。また、処理容器1aの上部には処理容器1a内に供給されたガスの排気を行うための排気管7aが接続されている。その他図面において、8a〜10aは各配管系に設けられた開閉弁である。   FIG. 4 shows an example of an embodiment of a method of blowing carbon dioxide gas into a carbonized solidified body in the method of the present invention, and shows a state in which a processing container is longitudinally sectioned. The apparatus configuration of the processing container is substantially the same as the embodiment of FIG. That is, the processing container 1a (this container may be a mold as shown in FIG. 3) is a container that can be made substantially airtight. In this example, the main body 100a and its upper part are closed. A gas supply / exhaust portion 2a (gas supply / exhaust space) having a large number of gas through holes 20a is provided at the bottom of the main body 100a. A gas supply / exhaust pipe 3a is connected to the gas supply / exhaust section 2a. The gas supply / exhaust pipe 3a has a gas supply pipe system 4a for supplying carbon dioxide gas, and a gas supply / exhaust pipe 3a for reducing the pressure in the processing vessel 1a. A suction pipe system 5a provided with a suction pump 6a for performing the operation is connected. Further, an exhaust pipe 7a for exhausting the gas supplied into the processing container 1a is connected to an upper portion of the processing container 1a. In the drawings, reference numerals 8a to 10a denote on-off valves provided in each piping system.

図4における本発明法の1つの実施形態(図1の作用を狙いとする実施形態)では、前記処理容器内1aに、容器内壁面との間に大きな隙間を生じないように、粉粒状の未炭酸化Ca含有原料を炭酸固化させて得られた炭酸固化体Bが入れられる。これにより、処理容器底部のガス給排気部2aから導入された炭酸ガスを炭酸固化体内部(原料粒子間の間隙=貫通気孔)を通過するようにして流すことができる。炭酸固化体Bは適量の水(通常、炭酸化処理に必要且つ十分な量若しくはそれに近い量の水)を含んでいる。   In one embodiment of the method of the present invention in FIG. 4 (an embodiment aiming at the operation of FIG. 1), a powdery and granular material is formed in the processing chamber 1a so that a large gap is not formed between the processing chamber 1a and the inner wall of the processing chamber. Carbonated solid B obtained by carbonating the uncarbonated Ca-containing raw material is placed. This allows the carbon dioxide gas introduced from the gas supply / exhaust portion 2a at the bottom of the processing vessel to flow so as to pass through the inside of the solidified carbon dioxide (gap between raw material particles = through-hole). The carbonated solid B contains an appropriate amount of water (usually, an amount of water necessary and sufficient for the carbonation treatment or an amount close thereto).

上記のように処理容器1a内に炭酸固化体Bを入れた後、蓋体101aを装着して処理容器1aを気密状態にし、しかる後、吸引管系5aの吸引ポンプ6aを用いた吸引により処理容器1a内から排気を行う。これにより炭酸固化体B(処理容器)の内部が減圧され、炭酸固化体B内には先に述べたような水(間隙水)の適切な分布状態、すなわち、各原料粒子に表面付着水が均一に存在し且つ原料粒子間にCOの通り路となる間隙が適切に確保された状態が実現する。 After the carbonated solid B is put in the processing container 1a as described above, the lid 101a is attached to the processing container 1a to make the processing container 1a airtight, and then the processing is performed by suction using the suction pump 6a of the suction pipe system 5a. The container 1a is evacuated. As a result, the inside of the carbonated solidified body B (processing vessel) is depressurized, and in the carbonated solidified body B, an appropriate distribution state of water (pore water) as described above, that is, water adhering to the surface of each raw material particle. As a result, a state is realized in which gaps that are uniformly present and serve as a path for CO 2 between the raw material particles are appropriately secured.

次いで、開閉弁8a,9aの操作によって吸引管系5aとガス供給管系4aとを切り替え、ガス供給管系4aから処理容器1a内に炭酸ガスを一定期間(例えば、数時間〜数百時間程度)供給する。炭酸ガスはガス給排気部2aに導入された後、ガス通孔20aから上方の炭酸固化体B内に吹き込まれる。炭酸固化体B内を通過する炭酸ガスの一部は、原料粒子からその表面付着水に溶出したCaイオンと反応し、原料粒子の表面にCaCOが析出し、これがバインダーとなって炭酸固化体Bの固結状態がさらに高められる。炭酸ガスの残りは炭酸固化体Bを通過して排気管7aから処理容器1a外に排出される。また、場合によっては、排気管7aの開閉弁10aを閉じた状態で処理容器1a内に炭酸ガスを供給するようにしてもよいが、その場合には、時々開閉弁10aを開にして処理容器1a内に溜まったガスを放出し、処理容器1a内の炭酸ガス濃度が所定レベル以上に維持されるようにすることが好ましい。また、上記ガスの放出を処理容器1a内を減圧することによって行い、しかる後、所定濃度の炭酸ガスを導入するようにしてもよい。以上のような炭酸ガスの供給を一定期間行った後、処理容器1aから炭酸固化体Bを取り出す。なお、以上述べた「減圧処理−炭酸化処理」は、これを複数回繰り返して実施してもよい。 Next, the suction pipe system 5a and the gas supply pipe system 4a are switched by operating the on-off valves 8a and 9a, and carbon dioxide gas is supplied from the gas supply pipe system 4a into the processing vessel 1a for a certain period (for example, several hours to several hundred hours). Supply). After the carbon dioxide gas is introduced into the gas supply / exhaust portion 2a, it is blown into the carbonized solid body B above from the gas through hole 20a. A part of the carbon dioxide gas passing through the carbonated solidified body B reacts with Ca ions eluted from the raw material particles to the water adhering to the surface thereof, and CaCO 3 precipitates on the surface of the raw material particles, and this serves as a binder to serve as a binder. The consolidated state of B is further enhanced. The remainder of the carbon dioxide gas passes through the solidified carbon dioxide B and is discharged from the exhaust pipe 7a to the outside of the processing vessel 1a. In some cases, the carbon dioxide gas may be supplied into the processing vessel 1a with the on-off valve 10a of the exhaust pipe 7a closed, but in that case, the on-off valve 10a is sometimes opened and the processing vessel is opened. It is preferable that the gas accumulated in the processing chamber 1a is released so that the concentration of carbon dioxide in the processing chamber 1a is maintained at a predetermined level or more. Further, the gas may be released by reducing the pressure in the processing container 1a, and thereafter, a predetermined concentration of carbon dioxide may be introduced. After the above-described supply of carbon dioxide gas has been performed for a certain period of time, the solidified carbon dioxide B is taken out of the processing container 1a. Note that the above-described “decompression treatment-carbonation treatment” may be performed by repeating this plural times.

図4における本発明法の他の実施形態(図2の作用を狙いとする実施形態)では、上記実施形態と同様に、処理容器内1aに炭酸固化体Bが入れられる。この実施形態では、まず、炭酸固化体Bに十分な水を含ませるが、その方法としては、処理容器1aの上部を開放した状態で、処理容器ごと水槽内の水に浸漬してもよいし、炭酸固化体Bの上部から十分な量の水を散水してもよい。また、処理容器1aに入れる前に浸漬又は散水によって炭酸固化体Bに水を含ませるようにしてもよい。   In another embodiment of the method of the present invention in FIG. 4 (an embodiment aiming at the operation of FIG. 2), similarly to the above-described embodiment, the solidified carbonate B is placed in the processing chamber 1a. In this embodiment, first, sufficient water is contained in the carbonated solidified body B. As a method for this, the processing container may be immersed in water in a water tank with the upper portion of the processing container 1a opened. Alternatively, a sufficient amount of water may be sprinkled from the upper portion of the carbonated solid B. In addition, water may be contained in the solidified carbonized body B by immersion or water spraying before being put into the processing container 1a.

上記のように炭酸固化体Bに水を十分に含ませた後、蓋体101aを装着して処理容器1aを気密状態にし、しかる後、吸引管系5aの吸引ポンプ6aを用いた吸引により処理容器1a内から排気を行う。これにより炭酸固化体B(処理容器)の内部が減圧され、炭酸固化体B内の空気及び水(間隙水)が炭酸固化体から押し出され、ガス通孔20a、ガス給排気部2aを経由して処理容器1aから排出される。この結果、炭酸固化体B内には先に述べたような水(間隙水)の適切な分布状態、すなわち、各原料粒子に表面付着水が均一に存在し且つ原料粒子間にCOの通り路となる間隙が適切に確保された状態が実現する。 After sufficient water is contained in the carbonated solidified body B as described above, the lid 101a is attached to make the processing container 1a airtight, and then the processing is performed by suction using the suction pump 6a of the suction pipe system 5a. The container 1a is evacuated. As a result, the pressure inside the carbonated solidified body B (processing vessel) is reduced, and the air and water (interstitial water) in the carbonated solidified body B are pushed out from the carbonated solidified body, and pass through the gas through hole 20a and the gas supply / exhaust portion 2a. And is discharged from the processing container 1a. As a result, the appropriate distribution state of water (pore water) as described above in the solidified carbonated body B, that is, the water adhering to the surface is uniformly present on each raw material particle, and CO 2 is present between the raw material particles as shown in FIG. A state in which a gap that becomes a road is appropriately secured is realized.

次いで、開閉弁8a,9aの操作によって吸引管系5aとガス供給管系4aとを切り替え、ガス供給管系4aから処理容器1a内に炭酸ガスを一定期間(例えば、数時間〜数百時間程度)供給し、炭酸固化体Bの再炭酸化処理を行う。この再炭酸化処理の条件や作用効果等は先に述べた実施形態と同様である。この再炭酸化処理後、処理容器1aから炭酸固化体Bを取り出す。なお、以上述べた「減圧処理−炭酸化処理」は、これを複数回繰り返して実施してもよい。   Next, the suction pipe system 5a and the gas supply pipe system 4a are switched by operating the on-off valves 8a and 9a, and carbon dioxide gas is supplied from the gas supply pipe system 4a into the processing vessel 1a for a certain period (for example, several hours to several hundred hours). ) Is supplied, and the carbonation solidified body B is recarbonated. The conditions, effects, and the like of this recarbonation treatment are the same as those of the above-described embodiment. After the re-carbonation treatment, the solidified carbonate B is taken out of the processing vessel 1a. Note that the above-described “decompression treatment-carbonation treatment” may be performed by repeating this plural times.

図5は、本発明法において炭酸固化体を炭酸ガス雰囲気内に置いて炭酸ガスを内部に浸透させる方法の実施状況の一例を示すもので、処理容器を縦断面した状態を示している。前記処理容器1bは実質的に気密にすることが可能な容器であって、この例では、本体100bとその上部を閉塞する蓋体101bとから構成されている。前記本体100bにはガス給排気管3bが接続されるとともに、このガス給排気管3bには、炭酸ガスを供給するためのガス供給管系4bと、処理容器1b内の減圧を行うための吸引ポンプ6bを備えた吸引管系5bとが接続されている。また、処理容器1bの上部には処理容器1b内に供給されたガスの排気を行うための排気管7bが接続されている。その他図面において、8b〜10bは各配管系に設けられた開閉弁である。   FIG. 5 shows an example of an implementation state of a method of permeating carbon dioxide gas inside a carbon dioxide solidified body in a carbon dioxide gas atmosphere in the method of the present invention, and shows a state in which a processing vessel is longitudinally sectioned. The processing container 1b is a container that can be made substantially airtight, and in this example, includes a main body 100b and a lid 101b that closes an upper part of the main body 100b. A gas supply / exhaust pipe 3b is connected to the main body 100b. The gas supply / exhaust pipe 3b has a gas supply pipe system 4b for supplying carbon dioxide gas and suction for reducing pressure in the processing vessel 1b. A suction pipe system 5b provided with a pump 6b is connected. Further, an exhaust pipe 7b for exhausting the gas supplied into the processing container 1b is connected to an upper portion of the processing container 1b. In addition, in the drawings, reference numerals 8b to 10b denote on-off valves provided in each piping system.

図5における本発明法の1つの実施形態(図1の作用を狙いとする実施形態)では、前記処理容器内1bに粉粒状の未炭酸化Ca含有原料を炭酸固化させて得られた炭酸固化体Bが入れられる。この炭酸固化体Bは適量の水(通常、炭酸化処理に必要且つ十分な量若しくはそれに近い量の水)を含んでいる。次いで、処理容器1bに蓋体101bを装着して処理容器1bを気密状態にし、しかる後、吸引管系5bの吸引ポンプ6bを用いた吸引により処理容器1b内から排気を行う。これにより炭酸固化体B(処理容器)の内部が減圧され、炭酸固化体B内には先に述べたような水(間隙水)の適切な分布状態、すなわち、各原料粒子に表面付着水が均一に存在し且つ原料粒子間にCOの通り路となる間隙が適切に確保された状態が実現する。 In one embodiment of the method of the present invention shown in FIG. 5 (an embodiment aiming at the operation of FIG. 1), carbonation solidification obtained by carbonizing and solidifying a powdery granular uncarbonated Ca-containing raw material in the processing vessel 1b. Body B is put in. The carbonated solid B contains an appropriate amount of water (usually, an amount of water necessary and sufficient for the carbonation treatment or an amount close thereto). Next, the lid 101b is attached to the processing container 1b to make the processing container 1b airtight, and thereafter, the inside of the processing container 1b is evacuated by suction using the suction pump 6b of the suction pipe system 5b. As a result, the inside of the carbonated solidified body B (processing vessel) is depressurized, and in the carbonated solidified body B, an appropriate distribution state of water (pore water) as described above, that is, water adhering to the surface of each raw material particle. As a result, a state is realized in which gaps that are uniformly present and serve as a path for CO 2 between the raw material particles are appropriately secured.

次いで、開閉弁8b,9bの操作によって吸引管系5bとガス供給管系4bとを切り替え、ガス供給管系4bから処理容器1b内に炭酸ガスを一定期間(例えば、数時間〜数百時間程度)供給する。処理容器1b内に供給された炭酸ガスの一部は炭酸固化体Bの表面から内部に浸透し、原料粒子からその表面付着水に溶出したCaイオンと反応し、原料粒子の表面にCaCOが析出し、これがバインダーとなって炭酸固化体Bの固結状態が高められる。炭酸ガスの残りは排気管7bから処理容器1b外に排出される。また、場合によっては、排気管7bの開閉弁10bを閉じた状態で処理容器1b内に炭酸ガスを供給するようにしてもよいが、その場合には、時々開閉弁10bを開にして処理容器1b内に溜まったガスを放出し、処理容器1b内の炭酸ガス濃度が所定レベル以上に維持されるようにすることが好ましい。また、上記ガスの放出を処理容器1b内を減圧することによって行い、しかる後、所定濃度の炭酸ガスを導入するようにしてもよい。以上のような炭酸ガスの供給を一定期間行った後、処理容器1bから炭酸固化体Bを取り出す。なお、以上述べた「減圧処理−炭酸化処理」は、これを複数回繰り返して実施してもよい。 Next, the suction pipe system 5b and the gas supply pipe system 4b are switched by operating the on-off valves 8b and 9b, and carbon dioxide gas is supplied from the gas supply pipe system 4b into the processing vessel 1b for a certain period (for example, several hours to several hundred hours). Supply). Part of the carbon dioxide gas supplied into the processing vessel 1b penetrates from the surface of the solidified carbon dioxide B into the inside, reacts with Ca ions eluted from the raw material particles to the water attached to the surface, and CaCO 3 is formed on the surface of the raw material particles. It precipitates and serves as a binder to enhance the solidified state of the solidified carbonic acid B. The remainder of the carbon dioxide gas is discharged from the exhaust pipe 7b to the outside of the processing vessel 1b. In some cases, the carbon dioxide gas may be supplied into the processing vessel 1b with the on-off valve 10b of the exhaust pipe 7b closed, but in that case, the on-off valve 10b is sometimes opened and the processing vessel is opened. It is preferable that the gas accumulated in the processing vessel 1b be released so that the concentration of carbon dioxide in the processing vessel 1b is maintained at a predetermined level or more. Further, the gas may be released by reducing the pressure in the processing vessel 1b, and thereafter, a predetermined concentration of carbon dioxide may be introduced. After the above-described supply of carbon dioxide gas has been performed for a certain period of time, the solidified carbon dioxide B is taken out of the processing container 1b. Note that the above-described “decompression treatment-carbonation treatment” may be performed by repeating this plural times.

図5における本発明法の他の実施形態(図2の作用を狙いとする実施形態)では、上記実施形態と同様に、処理容器内1bに炭酸固化体Bが入れられる。この実施形態では、まず、炭酸固化体Bに十分な水を含ませるが、その方法としては、処理容器1bの上部を開放した状態で、処理容器ごと水槽内の水に浸漬してもよいし、炭酸固化体1Bの上部から十分な量の水を散水してもよい。また、処理容器1bに入れる前に浸漬又は散水によって炭酸固化体Bに水を含ませるようにしてもよい。   In another embodiment of the method of the present invention in FIG. 5 (an embodiment aiming at the operation of FIG. 2), similarly to the above-described embodiment, a solidified carbonic acid B is placed in the processing vessel 1b. In this embodiment, first, sufficient water is contained in the solidified carbonated body B. As a method for this, the processing vessel 1b may be immersed in water in a water tank with the upper part of the processing vessel 1b opened. Alternatively, a sufficient amount of water may be sprinkled from the upper part of the solidified carbonate 1B. In addition, water may be contained in the solidified carbonized body B by immersion or water spraying before being put into the processing container 1b.

上記のように炭酸固化体Bに水を十分に含ませた後、蓋体101bを装着して処理容器1bを気密状態にし、しかる後、吸引管系5bの吸引ポンプ6bを用いた吸引により処理容器1b内から排気を行う。これにより炭酸固化体B(処理容器)の内部が減圧され、炭酸固化体B内の空気及び水(間隙水)が炭酸固化体から押し出され、処理容器1bから排出される。この結果、炭酸固化体B内には先に述べたような水(間隙水)の適切な分布状態、すなわち、各原料粒子に表面付着水が均一に存在し且つ原料粒子間にCOの通り路となる間隙が適切に確保された状態が実現する。 After sufficient water is contained in the carbonated solidified body B as described above, the lid 101b is attached to the processing vessel 1b to make it airtight, and thereafter, the processing is performed by suction using the suction pump 6b of the suction pipe system 5b. Evacuation is performed from inside the container 1b. As a result, the pressure inside the carbonated solidified body B (processing vessel) is reduced, and the air and water (pore water) in the carbonated solidified body B are extruded from the carbonated solidified body and discharged from the processing vessel 1b. As a result, the appropriate distribution state of water (pore water) as described above in the solidified carbonated body B, that is, the water adhering to the surface is uniformly present on each raw material particle, and CO 2 is present between the raw material particles as shown in FIG. A state in which a gap that becomes a road is appropriately secured is realized.

次いで、開閉弁8b,9bの操作によって吸引管系5bとガス供給管系4bとを切り替え、ガス供給管系4bから処理容器1b内に炭酸ガスを一定期間(例えば、数時間〜数百時間程度)供給し、炭酸固化体Bの再炭酸化処理を行う。この再炭酸化処理の条件や作用効果等は先に述べた実施形態と同様である。この再炭酸化処理後、処理容器1aから炭酸固化体Bを取り出す。なお、以上述べた「減圧処理−炭酸化処理」は、これを複数回繰り返して実施してもよい。   Next, the suction pipe system 5b and the gas supply pipe system 4b are switched by operating the on-off valves 8b and 9b, and carbon dioxide gas is supplied from the gas supply pipe system 4b into the processing vessel 1b for a certain period (for example, several hours to several hundred hours). ) Is supplied, and the carbonation solidified body B is recarbonated. The conditions, effects, and the like of this recarbonation treatment are the same as those of the above-described embodiment. After the re-carbonation treatment, the solidified carbonate B is taken out of the processing vessel 1a. Note that the above-described “decompression treatment-carbonation treatment” may be performed by repeating this plural times.

本発明により得られる炭酸固化体の形状は任意であり、例えば断面形状が円形、楕円形、三角形、四角形以上の多角形、星形など、或いは全体形状が球形状、楕球形、四面体以上の多面体形、円錐体形、柱状形、テトラポット形など、任意の形状とすることができる。
また、本発明により得られる炭酸固化体は、漁礁・藻礁造成用石材、築磯用石材、水質浄化用石材、通水性舗装用石材、通水性被覆ブロック、埋設排水溝用ブロック、水耕栽培用ベース材、浄水用フィルター、給水用容器をはじめとする種々の用途に使用することができる。
The shape of the solidified carbonate obtained by the present invention is arbitrary, for example, the cross-sectional shape is circular, elliptical, triangular, polygonal or larger than quadrangle, star or the like, or the whole shape is spherical, elliptical, tetrahedral or more. Any shape such as a polyhedral shape, a conical shape, a columnar shape, and a tetrapot shape can be used.
In addition, the solidified carbonate obtained by the present invention can be used as a stone for fishing and reef construction, a stone for rocky shore, a stone for water purification, a stone for water-permeable pavement, a block for water-permeable covering, a block for a buried drain, a hydroponic cultivation It can be used for various uses including a base material for water, a filter for water purification, a container for water supply, and the like.

[実施例1]
以下のような本発明例、比較例の炭酸固化体を製造した。
・本発明例
最大粒度が3mmの製鋼スラグを水分8%となるように調湿し、これを気密にすることが可能な1m×1m×1mの型枠内に充填して適度に締め固めた後、型枠内を0.2atmまで減圧した。その後、炭酸ガスを30%含有する排ガスを7Nm/hrの供給量で3日間吹き込み、スラグ充填層を炭酸固化させて炭酸固化体を得た。この炭酸固化体の任意の箇所から直径100mm、長さ200mmの円柱状の炭酸固化体を5本切り出し、本発明例の炭酸固化体I〜Iとした。
[Example 1]
The following carbonated solids of the present invention and comparative examples were produced.
・ Example of the present invention A steelmaking slag having a maximum particle size of 3 mm was conditioned so as to have a moisture content of 8%, and was filled into a 1 m × 1 m × 1 m mold frame capable of being airtight and compacted appropriately. Thereafter, the pressure inside the mold was reduced to 0.2 atm. Thereafter, an exhaust gas containing 30% of carbon dioxide gas was blown in at a supply rate of 7 Nm 3 / hr for 3 days, and the slag packed layer was carbonated and solidified to obtain a carbonized solid. 100mm diameter of any portion of the carbonated solid, cut five cylindrical carbonated solid of length 200 mm, and the carbonated solid I 1 ~I 5 of the present invention embodiment.

・比較例
最大粒度が3mmの製鋼スラグを水分8%となるように調湿し、1m×1m×1mの型枠内に充填して適度に締め固めた後、炭酸ガスを30%含有する排ガスを7Nm/hrの供給量で3日間吹き込み、スラグ充填層を炭酸固化させて炭酸固化体を得た。この炭酸固化体の任意の箇所から直径100mm、長さ200mmの円柱状の炭酸固化体を5本切り出し、比較例の炭酸固化体C〜Cとした。
以上のようにして得られた本発明例と比較例の炭酸固化体I〜I、C〜Cについて、CO含有量(CaCO含有量から計算されるCO量)を測定するとともに、圧縮強度を測定した。その結果を表1に示すが、本発明例の炭酸固化体は比較例に比べてCO吸収量が増大し、圧縮強度も増加していることが判る。
・ Comparative example A steelmaking slag having a maximum particle size of 3 mm was humidified so as to have a water content of 8%, filled in a 1 m × 1 m × 1 m formwork, and then appropriately compacted, and then an exhaust gas containing 30% carbon dioxide gas. Was blown at a supply rate of 7 Nm 3 / hr for 3 days to carbonize and solidify the slag packed layer to obtain a carbonized solid. 100mm diameter of any portion of the carbonated solid, cut five cylindrical carbonated solid of length 200 mm, and the carbonated solid C 1 -C 5 comparative example.
For carbonated solid I 1 ~I 5, C 1 ~C 7 of the present invention and comparative example Examples obtained as described above, CO 2 content of the (CO 2 amount calculated from the CaCO 3 content) Measurement At the same time, the compressive strength was measured. The results are shown in Table 1, and it can be seen that the carbonated solidified product of the present invention example has an increased amount of CO 2 absorption and an increased compressive strength as compared with the comparative example.

Figure 2004189593
Figure 2004189593

[実施例2]
以下のような本発明例、比較例の炭酸固化体を製造した。
・本発明例
最大粒度が約10mmで、且つ粒度0.1mm以下の粒子の割合が約15mass%である粒度分布を持つスラグ(脱燐スラグ)を、1m×1m×1mの型枠内に充填して適度に締め固めた後、炭酸ガスを供給量6Nm/hrの割合で3日間吹込み、スラグ充填層を炭酸固化させて炭酸固化体を得た。
この炭酸固化体の任意の箇所から直径100mm,長さ200mmの円柱状の炭酸固化体を5本切り出した。これらを水槽内の水に浸漬して内部に水を十分に含ませた後、直ちに真空デシケータ内に装入して真空デシケータ(炭酸固化体)内を0.1atmまで減圧し、炭酸固化体の内部から余分な水分を排出した。次いで、真空デシケータ内に炭酸ガス(CO:50%)を供給量0.01Nm/hrの割合で7日間供給し、本発明例の炭酸固化体I〜Iを得た。
[Example 2]
The following carbonated solids of the present invention and comparative examples were produced.
・ Example of the present invention A slag (dephosphorized slag) having a particle size distribution in which the maximum particle size is about 10 mm and the ratio of particles having a particle size of 0.1 mm or less is about 15 mass% is filled in a 1 m × 1 m × 1 m formwork. Then, after compacting appropriately, carbon dioxide gas was blown in at a supply rate of 6 Nm 3 / hr for 3 days to carbonize and solidify the slag packed layer to obtain a carbonized solid.
Five columnar carbonized solidified bodies having a diameter of 100 mm and a length of 200 mm were cut out from an arbitrary portion of the carbonated solidified body. These are immersed in water in a water tank to sufficiently contain water therein, and then immediately charged into a vacuum desiccator to reduce the pressure inside the vacuum desiccator (solidified carbonic acid) to 0.1 atm. Excess moisture was drained from the inside. Next, carbon dioxide gas (CO 2 : 50%) was supplied into the vacuum desiccator at a supply rate of 0.01 Nm 3 / hr for 7 days to obtain carbonic solids I 1 to I 5 of the present invention.

・比較例
最大粒度が約10mmで、且つ粒度0.1mm以下の粒子の割合が約15mass%である粒度分布を持つスラグ(脱燐スラグ)を、1m×1m×1mの型枠内に充填して適度に締め固めた後、炭酸ガスを供給量6Nm/hrの割合で5日間吹込み、スラグ充填層を炭酸固化させて炭酸固化体を得た。この炭酸固化体の任意の箇所から直径100mm,長さ200mmの円柱状の炭酸固化体を7本切り出し、比較例の炭酸固化体C〜Cを得た。
Comparative Example A slag (dephosphorized slag) having a maximum particle size of about 10 mm and a particle size distribution in which a ratio of particles having a particle size of 0.1 mm or less is about 15 mass% is filled in a 1 m × 1 m × 1 m formwork. After compacting appropriately, carbon dioxide gas was blown in at a supply rate of 6 Nm 3 / hr for 5 days to carbonize the slag packed layer to obtain a carbonized solid. 100mm diameter of any portion of the carbonated solid, cut seven cylindrical carbonated solid of length 200 mm, to obtain a carbonated solid C 1 -C 7 of the comparative example.

以上のようにして得られた本発明例と比較例の炭酸固化体I〜I、C〜Cについて、CO含有量(CaCO含有量から計算されるCO量)を測定した結果を図6に示す。これによれば、本発明例の炭酸固化体は、トータルの炭酸ガス供給量が比較例のものよりも少ないにも拘らず、比較例のものに較べてCO含有量が大幅に増加している。
本発明例の炭酸固化体Iと比較例の炭酸固化体Cについて、圧縮強度を測定した結果を図7に示す。なお、圧縮強度は試料の端面を研磨した後、アムスラー試験機により測定した。図7によれば、本発明例の炭酸固化体は比較例のものに較べて圧縮強度が飛躍的に増加していることが判る。
For carbonated solid I 1 ~I 5, C 1 ~C 7 of the present invention and comparative example Examples obtained as described above, CO 2 content of the (CO 2 amount calculated from the CaCO 3 content) Measurement The results obtained are shown in FIG. According to this, the solidified carbon dioxide of the present invention has a significantly increased CO 2 content as compared with that of the comparative example, although the total carbon dioxide gas supply is smaller than that of the comparative example. I have.
For carbonated solid C 7 of the comparative examples and carbonated solid I 1 of the present invention example shows the results of the compressive strength was measured in Figure 7. The compressive strength was measured with an Amsler tester after polishing the end face of the sample. According to FIG. 7, it can be seen that the solidified carbonate of the present invention has a significantly increased compressive strength as compared with that of the comparative example.

次に、本発明例の炭酸固化体Iと比較例の炭酸固化体Cを任意の位置で切断し、その切断面の粗さを測定した結果を図8に示す。これによれば、本発明例の炭酸固化体は比較例のものに較べて切断面の表面粗さがかなり小さくなっている。この理由は、比較例の炭酸固化体では、炭酸化反応によるCaCOの生成量が少ないため、切断時にスラグ粒子の一部が剥離し、表面が粗くなるのに対して、本発明例の炭酸固化体ではCaCOの生成量が多く、切断時にスラグ粒子の剥離が生じにくいためである。また、これら本発明例と比較例の炭酸固化体の切断面の顕微鏡拡大写真を図9に示す。これによれば、図9(a)に示す比較例に較べて、図9(b)に示す本発明例では気孔部の割合がかなり小さくなっており、CaCOの生成量が大幅に増加していることが判る。 Then, the carbonated solid C 7 of the comparative examples and carbonated solid I 1 of the present invention example was cut at an arbitrary position, shows the results of measuring the roughness of the cut surface in FIG. According to this, the surface roughness of the cut surface of the solidified carbonate of the present invention is considerably smaller than that of the comparative example. The reason for this is that, in the carbonated solidified body of the comparative example, the amount of CaCO 3 generated by the carbonation reaction is small, so that a part of the slag particles is peeled off at the time of cutting, and the surface becomes rough. This is because the solidified body generates a large amount of CaCO 3 , and the slag particles are less likely to be separated during cutting. In addition, FIG. 9 shows a microscope enlarged photograph of a cut surface of the solidified carbonate of the present invention and the comparative example. According to this, as compared with the comparative example shown in FIG. 9A, in the example of the present invention shown in FIG. 9B, the ratio of the pores is considerably small, and the amount of generated CaCO 3 is greatly increased. It turns out that it is.

本発明の一実施形態において、原料充填層又は炭酸固化体内での水の分布状態が均一化する原理を示す説明図Explanatory drawing which shows the principle by which the distribution state of water in a raw material filling layer or a carbonation solidification body becomes uniform in one Embodiment of this invention. 本発明の他の実施形態において、原料充填層又は炭酸固化体内での水の分布状態が均一化する原理を示す説明図In another embodiment of the present invention, an explanatory view showing the principle of uniform distribution of water in a raw material packed bed or a carbonated solidified body. 本発明の一実施形態を型枠を縦断面した状態で示す説明図Explanatory drawing which shows one Embodiment of this invention in the state which carried out the longitudinal cross section of the mold. 本発明の他の実施形態を処理容器を縦断面した状態で示す説明図Explanatory drawing which shows the other embodiment of this invention in the state which carried out the longitudinal section of the processing container. 本発明の他の実施形態を処理容器を縦断面した状態で示す説明図Explanatory drawing which shows the other embodiment of this invention in the state which carried out the longitudinal section of the processing container. 実施例2で得られた本発明例と比較例の炭酸固化体について、CO含有量を測定した結果を示すグラフFor carbonated solid of the present invention and comparative example Example obtained in Example 2, a graph showing the result of measuring the CO 2 content 実施例2で得られた本発明例と比較例の炭酸固化体について、圧縮強度を測定した結果を示すグラフThe graph which shows the result of having measured the compressive strength about the carbonated solid body of this invention example obtained in Example 2, and a comparative example. 実施例2で得られた本発明例と比較例の炭酸固化体について、切断面の粗さを測定した結果を示すグラフThe graph which shows the result of having measured the roughness of the cut surface about the carbonated solid body of this invention example obtained in Example 2, and a comparative example. 実施例2で得られた本発明例と比較例の炭酸固化体の切断面組織の微鏡拡大写真Microscope enlarged photographs of cut surface structures of the carbonated solids of the present invention example and comparative example obtained in Example 2.

符号の説明Explanation of reference numerals

1…型枠、1a,1b…処理容器、2,2a…ガス給排気部、3,3a,3b…ガス給排気管、4,4a,4b…ガス供給管系、5,5a,5b…吸引管系、6,6a,6b…吸引ポンプ、7,7a,7b…排気管、8,8a,8b,9,9a,9b,10,10a,10b…開閉弁、20,20a…ガス通孔、100,100a,100b…本体、101,101a,101b…蓋体、A…原料充填層、B…炭酸固化体   DESCRIPTION OF SYMBOLS 1 ... Mold frame, 1a, 1b ... Processing container, 2, 2a ... Gas supply / exhaust part, 3, 3a, 3b ... Gas supply / exhaust pipe, 4, 4a, 4b ... Gas supply pipe system, 5, 5a, 5b ... Suction Pipe system, 6, 6a, 6b: suction pump, 7, 7a, 7b: exhaust pipe, 8, 8a, 8b, 9, 9a, 9b, 10, 10a, 10b: on-off valve, 20, 20a: gas through hole, 100, 100a, 100b: Main body, 101, 101a, 101b: Lid, A: Raw material packed layer, B: Carbonated solid

Claims (7)

粉粒状の未炭酸化Ca含有原料を炭酸化反応で固結させた炭酸固化体の製造方法であって、
未炭酸化Ca含有原料の充填層を炭酸化反応で固結させ、若しくは未炭酸化Ca含有原料の充填層を炭酸化反応で固結させた炭酸固化体に再度炭酸化反応を生じさせるに当たり、
水分を含んだ前記充填層又は炭酸固化体内部を減圧し、しかる後、該充填層又は炭酸固化体に炭酸ガス存在下で炭酸化反応を生じさせることを特徴とする炭酸固化体の製造方法。
A method for producing a carbonized solid obtained by consolidating a powdery uncarbonated Ca-containing raw material by a carbonation reaction,
In causing the packed layer of the uncarbonated Ca-containing raw material to be solidified by the carbonation reaction, or in causing the carbonized solid obtained by solidifying the packed layer of the uncarbonated Ca-containing raw material by the carbonation reaction to cause the carbonation reaction again,
A method for producing a solidified carbonized product, comprising reducing the pressure inside the packed bed or the solidified carbonate containing moisture, and then causing a carbonation reaction in the packed bed or the solidified carbonate in the presence of carbon dioxide gas.
粉粒状の未炭酸化Ca含有原料を炭酸化反応で固結させた炭酸固化体の製造方法であって、
未炭酸化Ca含有原料の充填層を炭酸化反応で固結させ、若しくは未炭酸化Ca含有原料の充填層を炭酸化反応で固結させた炭酸固化体に再度炭酸化反応を生じさせるに当たり、
前記充填層又は炭酸固化体の内部に水を含ませた後、該充填層又は炭酸固化体内部を減圧することにより前記水の一部を排出し、しかる後、前記充填層又は炭酸固化体に炭酸ガス存在下で炭酸化反応を生じさせることを特徴とする炭酸固化体の製造方法。
A method for producing a carbonized solid obtained by consolidating a powdery uncarbonated Ca-containing raw material by a carbonation reaction,
In causing the packed layer of the uncarbonated Ca-containing raw material to be solidified by the carbonation reaction, or in causing the carbonized solid obtained by solidifying the packed layer of the uncarbonated Ca-containing raw material by the carbonation reaction to cause the carbonation reaction again,
After impregnating the inside of the packed bed or the solidified carbonate, water is discharged by depressurizing the inside of the packed bed or the solidified carbonate. A method for producing a solid carbonated product, wherein a carbonation reaction is caused in the presence of carbon dioxide gas.
粉粒状の未炭酸化Ca含有原料を炭酸化反応で固結させた炭酸固化体の製造方法であって、
水分を含んだ未炭酸化Ca含有原料の充填層に炭酸ガス存在下で炭酸化反応を生じさせることにより、充填層を固結させて炭酸固化体とし、次いで、該炭酸固化体の内部に水を含ませた後、炭酸固化体内部を減圧することにより前記水の一部を排出し、しかる後、前記炭酸固化体に炭酸ガス存在下で再度炭酸化反応を生じさせることを特徴とする炭酸固化体の製造方法。
A method for producing a carbonized solid obtained by consolidating a powdery uncarbonated Ca-containing raw material by a carbonation reaction,
By causing a carbonation reaction in the presence of carbon dioxide in the packed bed of the non-carbonated Ca-containing raw material containing water, the packed bed is solidified into a solidified carbonate, and then water is contained in the solidified carbonate. , After which a part of the water is discharged by depressurizing the inside of the solidified carbon dioxide, and thereafter, the carbonation is caused to occur again in the presence of carbon dioxide in the solidified carbonic acid. Manufacturing method of solidified body.
粉粒状の未炭酸化Ca含有原料を炭酸化反応で固結させた炭酸固化体の製造方法であって、 未炭酸化Ca含有原料の充填層内部に水を含ませた後、充填層内部を減圧することにより前記水の一部を排出し、しかる後、前記充填層に炭酸ガス存在下で炭酸化反応を生じさせることにより、充填層を固結させて炭酸固化体とし、次いで、該炭酸固化体の内部に水を含ませた後、炭酸固化体内部を減圧することにより前記水の一部を排出し、しかる後、前記炭酸固化体に炭酸ガス存在下で再度炭酸化反応を生じさせることを特徴とする炭酸固化体の製造方法。   A method for producing a carbonated solidified product obtained by consolidating a powdery uncarbonated Ca-containing raw material by a carbonation reaction, wherein water is contained inside the packed layer of the uncarbonated Ca-containing raw material, and A part of the water is discharged by reducing the pressure, and thereafter, a carbonation reaction is caused in the packed bed in the presence of carbon dioxide gas, whereby the packed bed is solidified to form a carbonized solid, and then, After water is contained inside the solidified body, a part of the water is discharged by reducing the pressure inside the carbonized solidified body, and thereafter, the carbonated solidified body is again caused to undergo a carbonation reaction in the presence of carbon dioxide gas. A method for producing a solidified carbonated product. 未炭酸化Ca含有原料の充填層又は未炭酸化Ca含有原料の充填層を炭酸化反応で固結させた炭酸固化体を水に浸漬することにより、充填層又は炭酸固化体の内部に水を含ませた後、充填層又は炭酸固化体の内部を減圧することを特徴とする請求項2〜4のいずれかに記載の炭酸固化体の製造方法。   By immersing the filled layer of the uncarbonated Ca-containing raw material or the packed layer of the uncarbonated Ca-containing raw material in the carbonation reaction in water, The method for producing a solidified carbonate according to any one of claims 2 to 4, wherein the pressure is reduced inside the packed layer or the solidified carbonate after the inclusion. 未炭酸化Ca含有原料の充填層又は未炭酸化Ca含有原料の充填層を炭酸化反応で固結させた炭酸固化体に散水することにより、充填層又は炭酸固化体の内部に水を含ませた後、充填層又は炭酸固化体の内部を減圧することを特徴とする請求項2〜4のいずれかに記載の炭酸固化体の製造方法。   By sprinkling the packed layer of the uncarbonated Ca-containing raw material or the packed layer of the uncarbonated Ca-containing raw material onto the solidified carbonized solidified by the carbonation reaction, water is contained inside the packed bed or the solidified carbonic acid. The method for producing a solidified carbonate according to any one of claims 2 to 4, wherein the pressure of the inside of the packed layer or the solidified carbonate is reduced. 炭酸化Ca含有原料の充填層又は未炭酸化Ca含有原料の充填層を炭酸化反応で固結させた炭酸固化体の内部を減圧する工程では、充填層又は炭酸固化体の内部を0.8気圧以下に減圧することを特徴とする請求項1〜6のいずれかに記載の炭酸固化体の製造方法。   In the step of depressurizing the inside of the carbonized solid obtained by consolidating the packed layer of the carbonated Ca-containing raw material or the packed layer of the non-carbonated Ca-containing raw material by the carbonation reaction, the inside of the packed layer or the carbonized solid is reduced by 0.8%. The method for producing a solidified carbonic acid product according to any one of claims 1 to 6, wherein the pressure is reduced to an atmospheric pressure or less.
JP2003396453A 2002-11-27 2003-11-27 Method for producing carbonated solid Expired - Fee Related JP4474907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396453A JP4474907B2 (en) 2002-11-27 2003-11-27 Method for producing carbonated solid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002344571 2002-11-27
JP2003396453A JP4474907B2 (en) 2002-11-27 2003-11-27 Method for producing carbonated solid

Publications (2)

Publication Number Publication Date
JP2004189593A true JP2004189593A (en) 2004-07-08
JP4474907B2 JP4474907B2 (en) 2010-06-09

Family

ID=32774833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396453A Expired - Fee Related JP4474907B2 (en) 2002-11-27 2003-11-27 Method for producing carbonated solid

Country Status (1)

Country Link
JP (1) JP4474907B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188368A (en) * 2004-12-28 2006-07-20 Jfe Steel Kk Method of manufacturing carbonated solidified substance
JP2006188369A (en) * 2004-12-28 2006-07-20 Jfe Steel Kk Method of manufacturing solidified substance and method of constructing cast-in place solidified substance
JP2014237559A (en) * 2013-06-06 2014-12-18 電気化学工業株式会社 Aggregate and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188368A (en) * 2004-12-28 2006-07-20 Jfe Steel Kk Method of manufacturing carbonated solidified substance
JP2006188369A (en) * 2004-12-28 2006-07-20 Jfe Steel Kk Method of manufacturing solidified substance and method of constructing cast-in place solidified substance
JP4591082B2 (en) * 2004-12-28 2010-12-01 Jfeスチール株式会社 Solidified body manufacturing method and on-site solidified body construction method
JP4645195B2 (en) * 2004-12-28 2011-03-09 Jfeスチール株式会社 Method for producing carbonated solid
JP2014237559A (en) * 2013-06-06 2014-12-18 電気化学工業株式会社 Aggregate and manufacturing method thereof

Also Published As

Publication number Publication date
JP4474907B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
CA2722724C (en) Production of a mainly carbonate bonded article by carbonation of alkaline materials
JP3828897B2 (en) Method for stabilizing steelmaking slag and stabilized steelmaking slag
US11518715B2 (en) Compositions and method to improve the durability of calcium silicate-based cements and concretes
JP4240638B2 (en) Manufacturing method of artificial stone
JP2007516922A (en) Porous granular material for fluid treatment, cementitious composition and method for producing them
JP2006045048A (en) Solidified body of steel-making slag and method for producing the same
JP5531555B2 (en) Stone for underwater settling
JP5263190B2 (en) Method for producing carbonated solid
JP2002012480A (en) Method of manufacturing carbonated solid
JP4506236B2 (en) Method for producing carbonated solid
ES2754783T3 (en) Method of producing a bonded object comprising a pressure molded carbonated granular material
JP4474907B2 (en) Method for producing carbonated solid
JP3828895B2 (en) Method for stabilizing steelmaking slag and stabilized steelmaking slag
KR100732732B1 (en) Method for stabilization treatment of steel making slag, stabilized steel making slag, and material and method for environmental preservation of water area using said slag
JP2006255705A (en) Manufacturing method of solidifying carbonic acid
JP4474690B2 (en) Porous stone for water purification and water purification method
JP2001253785A (en) Method of producing porous solidified body by carbon dioxide fixation
JP4474906B2 (en) Method for producing carbonated solid
JP2002003921A (en) Method for producing fixed carbonic
JP4539121B2 (en) Method for producing carbonated solid
JP3198279B2 (en) Stone production method using slag etc. as main raw material
JP4797402B2 (en) Equipment for underwater organism settlement and method for producing the same
JP4934945B2 (en) Method for producing carbonated solid
JP4645195B2 (en) Method for producing carbonated solid
JP2004209378A (en) Method for treating coal ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Ref document number: 4474907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees