JP2004189547A - Boron nitride (bn) nanotube as material for hydrogen storage, and production method thereof - Google Patents

Boron nitride (bn) nanotube as material for hydrogen storage, and production method thereof Download PDF

Info

Publication number
JP2004189547A
JP2004189547A JP2002359911A JP2002359911A JP2004189547A JP 2004189547 A JP2004189547 A JP 2004189547A JP 2002359911 A JP2002359911 A JP 2002359911A JP 2002359911 A JP2002359911 A JP 2002359911A JP 2004189547 A JP2004189547 A JP 2004189547A
Authority
JP
Japan
Prior art keywords
boron nitride
nanotube
hydrogen storage
length
nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002359911A
Other languages
Japanese (ja)
Other versions
JP3997299B2 (en
Inventor
Yoshio Bando
義雄 板東
Ma Renzhi
ルンチィ・マ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002359911A priority Critical patent/JP3997299B2/en
Publication of JP2004189547A publication Critical patent/JP2004189547A/en
Application granted granted Critical
Publication of JP3997299B2 publication Critical patent/JP3997299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new lightweight nanotube in which influence on hydrogen storage properties owing to form, the remaining of catalyst metal or the like hardly occurs, and which stably stores hydrogen, and, in which influence on the human body is not recognized as well. <P>SOLUTION: The nanotube is a multi-wall boron nitride nanotube having a hydrogen storage content of ≥1.5 wt.% under 10 MPa at room temperature, and having a diameter of 5 to 50 nm and a length of 1 to 20 μm. Alternatively, the nanotube is a bamboo boron nitride nanotube in which nanobell type nanotubes having a hydrogen storage content of ≥2.5 wt.% under 10 MPa at a room temperature, and having a diameter of 10 to 100 nm and a length of 50 to 300 nm are connected so as to be a length of 5 to 20 μm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は水素吸蔵用窒化ホウ素ナノチューブとその製造方法に関するものである。さらに詳細には、この出願の発明は、燃焼後の最終生成物が水だけであり、環境に対してクリーンで、人類にも全く悪い影響を及ぼさないエネルギー源である水素を効率よく吸着し、軽量で、しかも物質自体にも毒性の認められない、新しい窒化ホウ素ナノチューブとその製造方法に関するものである。
【0002】
【従来の技術】
従来より、軽量で、有効な水素貯蔵用材料として、カーボンナノチューブが知られている。特に1層の壁で構成されている、つまり単層の、電気的に半導体の性質を有するカーボンナノチューブが有効であると言われている(文献1〜4)。
【0003】
しかしながら、カーボンナノチューブは、その直径の大きさ、または捩れの存在の仕方で、金属的な性質を有したり、半導体的な性質を有したりすることがわかっている。また、カーボンナノチューブの製造には、触媒として種々の金属が使用される。このようなカーボンナノチューブの形状の違いとこれによる性質の相違により、また製造時の触媒金属の混入等により、水素貯蔵量が影響を受けることになる。だが、それにもかかわらず、現状ではその形状等を制御することは困難である。
【0004】
さらにまた、現状では、水素吸蔵に有効な、壁が1層のみからなるカーボンナノチューブを他の生成物から分離することは困難である。このため、カーボンナノチューブの水素貯蔵性能については報告や研究発表によるばらつきが大きいのが現状である。
【0005】
【文献】
1:Nature 1997, 386, 377
2:J.Phys.Chem., B 1998, 102, 4253
3:Science 1999, 286, 1127
4:Carbon 2001, 39, 1447
【0006】
【発明が解決しようとする課題】
そこで、この出願の発明は上記の課題を解決するものとして、直径の大きさや捩れ等の存在によって、電気的な性質等が影響を受けず、触媒金属の残存による影響もなく、安定に水素を吸蔵することができ、しかもその製造が容易であって、軽量で、環境または人体への影響が殆ど無い、新しいナノチューブ構造体を提供することを課題としている。
【0007】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、水素吸蔵量が、10MPa、室温で、1.5重量%以上であり、直径が5〜50nm、長さが1〜20μmの多層壁窒化ホウ素ナノチューブを提供する。
【0008】
また、この出願の発明は、第2には、化学組成がB432Hである前駆体をN2とNH3の混合ガス気流中で、1600℃以上の温度で熱分解させることによる、水素吸蔵用材料としての多層壁窒化ホウ素ナノチューブの製造方法を提供する。
【0009】
第3には、化学組成がC366であるメラミンと、化学組成がH3BO3であるホウ酸を1:2もしくはその近傍のモル比に混合し、空気中で400℃〜550℃で加熱処理した後、得られた粉末を窒素中、750℃〜850℃で加熱処理することを特徴とする、多層壁窒化ホウ素ナノチューブを製造するための前駆体であるB432Hを得る方法を提供する。
【0010】
またこの出願の発明は、第4には、室温での水素吸蔵量が、2MPaで、0.7重量%、また10MPaで2.5重量%以上であり、直径が10〜100nm、長さが50〜300nmのナノベル型の形態を有する窒化ホウ素ナノチューブが、5〜20μmの長さに繋がった竹の子状窒化ホウ素ナノチューブを提供する。
【0011】
第5には、この出願の発明は、酸素含有量が10〜20%の窒化ホウ素粉末を、N2とNH3の混合ガス気流中で、1600℃以上の温度で熱分解させることを特徴とする水素吸蔵用材料としての竹の子状窒化ホウ素ナノチューブの製造方法を提供する。
【0012】
【発明の実施の形態】
この出願の発明は、上記のとおりの特徴を有するものであるが、多層型または竹の子型の窒化ホウ素ナノチューブで、これらに有効な水素吸蔵効果のあることは、この出願の発明によってはじめて確認されたことである。同じように水素吸蔵効果が期待されているカーボンナノチューブに比較し、窒化ホウ素ナノチューブは形態から受ける影響が少ないことも確認されている。
【0013】
この出願の発明では、カーボンナノチューブに比べて、形態の制御が容易な水素吸蔵材料としての、窒化ホウ素ナノチューブを2種類の形態のものとして提供する。一つは、たとえば図1に示すことのできる、直線状の形態で、多層壁構成からなるものであり、他は、たとえば図2に示すことのできる、ナノベルと呼ばれる特異な形状のものが繋がって、全体としては長い竹の子状になった水素吸蔵用窒化ホウ素ナノチューブである。
【0014】
直線状の形態で、多層型の構成の窒化ホウ素ナノチューブについては、水素吸蔵量が10MPa、室温で、1.5重量%以上であるという特性として規定することができるが、さらには、2MPa、室温で0.5重量%以上であることが好適である。そして、このものは、直径が5〜50nm、長さ1〜20μmの範囲のものである。
【0015】
このような直線状で多層壁構成の窒化ホウ素ナノチューブは、好適には、たとえば次のようなこの出願の発明の方法によって製造することができる。すなわち、まず、化学組成がC366であるメラミンと、化学組成がH3BO4であるホウ酸を1:2もしくはその近傍(±10%の許容範囲)のモル比に混合し、空気中で400℃から550℃で好適には3〜4時間加熱処理して、2ホウ酸メラミン(C366・2H3BO4)を得た後、この粉末を窒素中、750℃から850℃で好適には1〜2時間、加熱処理することで、非晶質の前駆体であるB432Hを製造する。
【0016】
この前駆体である非晶質のB432Hには、BN結合がフレームとして存在し、酸素が20〜30重量%の割合で存在している。
【0017】
次いで、この前駆体を1600℃以上で、N2とNH3の混合ガス気流中で熱分解する。この熱分解によって、B−N−Oからなる液状の非晶質体を介して、直線状の多層壁窒化ホウ素ナノチューブが生成する。この場合のナノチューブはチューブの両端にキャップを被っている。
【0018】
またこの出願の発明は、前記のとおりの竹の子状窒化ホウ素ナノチューブも提供するものであるが、このものは、好適にはたとえば、酸素を10〜20%含有した窒化ホウ素粒子を、N2とNH3の混合ガス気流中、1600℃以上の温度で熱分解することによって製造することができる。ナノベル型のチューブが生成し、それらがベルの軸方向に繋がって、数ミクロンの長さになった竹の子状窒化ホウ素ナノチューブとなる。
【0019】
水素吸蔵用カーボンナノチューブで報告されている結果との比較から、この竹の子状窒化ホウ素ナノチューブにおいても、単層の壁からなり、両端にキャップの無いナノチューブが、水素吸蔵にはより有効であると類推できる。
【0020】
そこで以下に実施例を示し、さらに詳しく説明する。
【0021】
もちろん以下の例により発明が限定されることはない。
【0022】
【実施例】
次に実施例により、さらに詳しくこの発明について説明する。
<実施例1>
化学組成がC366であるメラミンと、化学組成がH3BO4であるホウ酸を1:2のモル比に混合し、空気中、500℃で3時間加熱処理して2ホウ酸メラミン(C366・2H3BO4)を得た後、この粉末に対し窒素中、800℃で1時間の加熱処理を行った。この加熱処理により非晶質のB432Hを得た。
【0023】
次に、得られたB432H粉末を前駆体として、カーボン坩堝に入れ、それを筒状のカーボン発熱体中に設置し、1l/minの窒素気流中で、縦型誘導加熱装置を用いて、1700℃、2時間加熱処理を行った。
【0024】
得られた試料を透過電子顕微鏡で観察した。図1は、多層壁窒化ホウ素ナノチューブ(multi-wall tube)で、直径が10〜30nm、長さは数μm、長さ方向の両端にキャップを被っている。
<実施例2>
また酸素を10〜20%含有した窒化ホウ素粒子に対し、N2とNH3の混合ガス気流中、1600℃以上の温度で2時間加熱処理を行った。
【0025】
得られた試料を透過電子顕微鏡で観察した。図2は、直径が10〜80nmのナノベル型の窒化ホウ素が軸方向に10μm以上の長さに繋がった、竹の子状窒化ホウ素ナノチューブ(bamboo tube)を示している。
<水素吸蔵特性>
これら実施例1および実施例2の試料の水素吸蔵量をCahn D110型の熱天秤を用いて、室温、水素気流中で測定した結果を図3に示した。比較のために、株式会社電化製の粒径が10〜20μmの窒化ホウ素微粒子(bulk powder)の水素吸蔵測定結果も同じ図の中に示した。図3は横軸に水素を吸蔵させたときの水素の圧力、縦軸に試料の重量の増加分を示している。この図3からわかるように、窒化ホウ素ナノチューブの水素吸蔵量は、窒化ホウ素微粒子の水素吸蔵量に比べて、はるかに大きい。また図3でmodel tubeとして示した多層壁ナノチューブに比べ、図3でbamboo tubeとして示した、ナノベルを単位とした、竹の子型のナノチューブの方が、約1.5倍程度、多くの水素を吸蔵した結果が得られた。
【0026】
【発明の効果】
以上詳しく説明したとおり、この出願の発明では、クリーンで、何処にでも存在するエネルギー源であり、その利用後の排出物としては水だけであることから、その実用化が非常に期待されている水素の吸蔵用材料として窒化ホウ素ナノチューブとその製造方法が提供される。
【0027】
窒化ホウ素ナノチューブは軽量で、環境や人体に対する影響も殆ど無く、カーボンナノチューブに比べ、熱に強く、化学的にも安定な材料として期待される。
このため、安定で超寿命の水素吸蔵材料として利用でき、クリーン自動車の燃料母材等として、その経済的効果が大きい。
【図面の簡単な説明】
【図1】多層壁窒化ホウ素ナノチューブの透過型電子顕微鏡像の図面に代わる写真である。
【図2】ナノベル型のナノチューブを単位として、それらが軸方向に繋がった竹の子型の窒化ホウ素ナノチューブの透過型電子顕微鏡像の図面に代わる写真である。
【図3】多層壁窒化ホウ素ナノチューブと、竹の子状窒化ホウ素ナノチューブ及び比較としての窒化ホウ素微粒子の水素吸蔵量の測定結果を示した図である。横軸が水素の圧力、縦軸が試料の重量の増加分を示している。
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a boron nitride nanotube for storing hydrogen and a method for producing the same. More specifically, the invention of this application is that the final product after combustion is only water, and it efficiently adsorbs hydrogen, which is an energy source that is clean to the environment and has no adverse effect on human beings, The present invention relates to a novel boron nitride nanotube which is lightweight and has no toxicity in the substance itself, and a method for producing the same.
[0002]
[Prior art]
Conventionally, carbon nanotubes have been known as a lightweight and effective material for hydrogen storage. In particular, it is said that a carbon nanotube having a single-layer wall, that is, a single-layer, electrically having semiconductor properties is effective (References 1 to 4).
[0003]
However, it has been found that carbon nanotubes have metallic properties or semiconducting properties depending on the size of the diameter or the manner of twist. Various metals are used as catalysts in the production of carbon nanotubes. The difference in the shape of the carbon nanotube and the difference in the properties due to the difference, and the mixing of the catalyst metal at the time of the production affect the hydrogen storage amount. Nevertheless, it is difficult at present to control its shape and the like.
[0004]
Furthermore, at present, it is difficult to separate a carbon nanotube having only one wall, which is effective for hydrogen storage, from other products. For this reason, at present, the hydrogen storage performance of carbon nanotubes varies greatly between reports and research presentations.
[0005]
[Literature]
1: Nature 1997, 386, 377
2: J. Phys. Chem., B 1998, 102, 4253
3: Science 1999, 286, 1127
4: Carbon 2001, 39, 1447
[0006]
[Problems to be solved by the invention]
Therefore, the invention of this application is intended to solve the above-mentioned problems. As a result, the electrical properties and the like are not affected by the presence of the size of the diameter or the torsion, and the hydrogen is stably produced without being affected by the remaining catalyst metal. It is an object of the present invention to provide a new nanotube structure which can be occluded, is easily manufactured, is lightweight, and has almost no effect on the environment or the human body.
[0007]
[Means for Solving the Problems]
The invention of this application solves the above-mentioned problems. First, the hydrogen storage amount is 10 MPa, at room temperature, 1.5% by weight or more, the diameter is 5 to 50 nm, and the length is 1 to 1. A 20 μm multi-wall boron nitride nanotube is provided.
[0008]
Secondly, the invention of this application is to thermally decompose a precursor having a chemical composition of B 4 N 3 O 2 H in a mixed gas stream of N 2 and NH 3 at a temperature of 1600 ° C. or more. To provide a method for producing a multi-walled boron nitride nanotube as a hydrogen storage material.
[0009]
Third, melamine having a chemical composition of C 3 N 6 H 6 and boric acid having a chemical composition of H 3 BO 3 are mixed at a molar ratio of 1: 2 or near the same, and the mixture is heated at 400 ° C. in air. after heat treatment at 550 ° C., in a nitrogen resulting powder, characterized in that heat treatment at 750 ℃ ~850 ℃, B 4 N 3 O is a precursor for the production of multi-walled boron nitride nanotube A method for obtaining 2 H is provided.
[0010]
Fourthly, the invention of the present application has a hydrogen storage amount at room temperature of 0.7% by weight at 2 MPa, 2.5% by weight or more at 10 MPa, a diameter of 10 to 100 nm, and a length of 10 to 100 nm. Boron nitride nanotubes having a nanobell morphology of 50-300 nm provide bamboo shoot-like boron nitride nanotubes connected to a length of 5-20 μm.
[0011]
Fifth, the invention of this application is characterized in that a boron nitride powder having an oxygen content of 10 to 20% is thermally decomposed at a temperature of 1600 ° C. or more in a mixed gas stream of N 2 and NH 3. The present invention provides a method for producing a bamboo shoot-like boron nitride nanotube as a hydrogen storage material.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Although the invention of this application has the characteristics as described above, it was confirmed for the first time by the invention of this application that the multilayer or bamboo shoot-type boron nitride nanotubes have an effective hydrogen storage effect. That is. Similarly, it has been confirmed that boron nitride nanotubes are less affected by morphology than carbon nanotubes that are expected to have a hydrogen storage effect.
[0013]
In the invention of this application, there are provided two types of boron nitride nanotubes as a hydrogen storage material whose form is easier to control than carbon nanotubes. One is, for example, a linear form as shown in FIG. 1 and has a multi-layer wall configuration, and the other is connected to a unique shape called a nanobell, for example as shown in FIG. Thus, it is a long bamboo shoot-shaped boron nitride nanotube for hydrogen storage as a whole.
[0014]
In the case of boron nitride nanotubes having a linear configuration and a multi-layer structure, the hydrogen storage capacity can be defined as a characteristic of 10 MPa and 1.5 wt% or more at room temperature. Is preferably 0.5% by weight or more. This has a diameter of 5 to 50 nm and a length of 1 to 20 μm.
[0015]
Such a linear, multi-walled boron nitride nanotube can be suitably produced, for example, by the following method of the present invention. That is, first, melamine having a chemical composition of C 3 N 6 H 6 and boric acid having a chemical composition of H 3 BO 4 are mixed at a molar ratio of 1: 2 or its vicinity (an allowable range of ± 10%). After heating in air at 400 ° C. to 550 ° C., preferably for 3 to 4 hours, to obtain melamine diborate (C 3 N 6 H 6 .2H 3 BO 4 ), preferably 1 to 2 hours at 850 ° C. from 750 ° C., by heat treatment, to produce the B 4 N 3 O 2 H amorphous precursor.
[0016]
Amorphous B 4 N 3 O 2 H, which is the precursor, has a BN bond as a frame and oxygen at a ratio of 20 to 30% by weight.
[0017]
Next, the precursor is thermally decomposed at 1600 ° C. or higher in a mixed gas stream of N 2 and NH 3 . By this thermal decomposition, linear multi-walled boron nitride nanotubes are generated via a liquid amorphous body composed of B-N-O. The nanotube in this case has caps on both ends of the tube.
[0018]
The invention of this application also provides a bamboo shoot-like boron nitride nanotube as described above, which is preferably made, for example, by mixing boron nitride particles containing 10 to 20% of oxygen with N 2 and NH 2. It can be manufactured by thermal decomposition at a temperature of 1600 ° C. or more in a mixed gas stream of ( 3 ). Nanobell-shaped tubes are formed, which are connected in the axial direction of the bell to form bamboo shoot-like boron nitride nanotubes several microns in length.
[0019]
From comparison with the results reported for hydrogen storage carbon nanotubes, it is assumed that, even in this bamboo shoot-like boron nitride nanotube, a nanotube having a single-layer wall and having no cap at both ends is more effective for hydrogen storage. it can.
[0020]
Therefore, an embodiment will be shown below and will be described in more detail.
[0021]
Of course, the invention is not limited by the following examples.
[0022]
【Example】
Next, the present invention will be described in more detail with reference to examples.
<Example 1>
Melamine having a chemical composition of C 3 N 6 H 6 and boric acid having a chemical composition of H 3 BO 4 were mixed at a molar ratio of 1: 2, and heated in air at 500 ° C. for 3 hours to obtain 2 borane. after obtaining the melamine (C 3 N 6 H 6 · 2H 3 BO 4), under nitrogen to this powder was subjected to heat treatment for 1 hour at 800 ° C.. By this heat treatment, amorphous B 4 N 3 O 2 H was obtained.
[0023]
Next, the obtained B 4 N 3 O 2 H powder was used as a precursor, placed in a carbon crucible, placed in a tubular carbon heating element, and heated under a nitrogen flow of 1 l / min by vertical induction heating. Heat treatment was performed at 1700 ° C. for 2 hours using an apparatus.
[0024]
The obtained sample was observed with a transmission electron microscope. FIG. 1 shows a multi-walled boron nitride nanotube having a diameter of 10 to 30 nm, a length of several μm, and caps at both ends in the length direction.
<Example 2>
The boron nitride particles containing 10 to 20% of oxygen were subjected to a heat treatment at a temperature of 1600 ° C. or more for 2 hours in a mixed gas stream of N 2 and NH 3 .
[0025]
The obtained sample was observed with a transmission electron microscope. FIG. 2 shows a bamboo tube-shaped boron nitride nanotube in which nanobell-shaped boron nitride having a diameter of 10 to 80 nm is connected to a length of 10 μm or more in the axial direction.
<Hydrogen storage characteristics>
FIG. 3 shows the results of measuring the hydrogen storage amounts of the samples of Examples 1 and 2 using a Cahn D110-type thermobalance in a hydrogen stream at room temperature. For comparison, the hydrogen absorption measurement results of boron nitride fine particles (bulk powder) having a particle size of 10 to 20 μm manufactured by Denka Co., Ltd. are also shown in the same figure. FIG. 3 shows the hydrogen pressure when hydrogen is absorbed on the horizontal axis and the increase in the weight of the sample on the vertical axis. As can be seen from FIG. 3, the hydrogen storage capacity of the boron nitride nanotube is much larger than the hydrogen storage capacity of the boron nitride fine particles. In addition, the bamboo shoot-shaped nanotubes in nanobell units shown as bamboo tubes in FIG. 3 absorb about 1.5 times more hydrogen than the multi-wall nanotubes shown as model tubes in FIG. Results were obtained.
[0026]
【The invention's effect】
As described in detail above, in the invention of this application, since it is a clean and ubiquitous energy source and only water is used as a waste after its use, its practical application is highly expected. A boron nitride nanotube and a method for producing the same are provided as a material for storing hydrogen.
[0027]
Boron nitride nanotubes are lightweight, have little effect on the environment and the human body, are more resistant to heat than carbon nanotubes, and are expected to be chemically stable materials.
For this reason, it can be used as a stable and long-lasting hydrogen storage material, and has a great economic effect as a fuel base material for clean automobiles.
[Brief description of the drawings]
FIG. 1 is a photograph replacing a drawing of a transmission electron microscope image of a multi-walled boron nitride nanotube.
FIG. 2 is a photograph replacing a drawing of a transmission electron microscope image of a bamboo shoot-shaped boron nitride nanotube in which nanobell-shaped nanotubes are connected in a unit of an axial direction.
FIG. 3 is a view showing the results of measuring the hydrogen storage amounts of multi-walled boron nitride nanotubes, bamboo shoot-like boron nitride nanotubes, and boron nitride fine particles as a comparison. The horizontal axis indicates the hydrogen pressure, and the vertical axis indicates the increase in the weight of the sample.

Claims (5)

水素吸蔵量が、10MPa、室温で、1.5重量%以上であり、直径が5〜50nm、長さが1〜20μmの多層壁窒化ホウ素ナノチューブ。A multi-wall boron nitride nanotube having a hydrogen storage amount of 10 MPa, 1.5% by weight or more at room temperature, a diameter of 5 to 50 nm, and a length of 1 to 20 μm. 化学組成がB432Hである前駆体をN2とNH3の混合ガス気流中で、1600℃以上の温度で熱分解することを特徴とする請求項1に記載の多層壁窒化ホウ素ナノチューブの製造方法。Multi-walled nitride according to claim 1, the chemical composition B 4 N 3 O 2 H and is the precursor to a mixed gas flow of N 2 and NH 3, wherein the pyrolysis at 1600 ° C. or higher temperature A method for producing boron nanotubes. メラミン(C366)とホウ酸(H3BO3)をモル比1:2もしくはその近傍で混合し、空気中、400℃〜550℃で加熱処理し、得られた粉末を、窒素中、750℃〜850℃で加熱処理することを特徴とする化学組成がB432Hである請求項2に記載の前駆体の製造方法。Melamine (C 3 N 6 H 6 ) and boric acid (H 3 BO 3 ) are mixed at a molar ratio of 1: 2 or in the vicinity thereof, and heat-treated at 400 ° C. to 550 ° C. in the air, and the obtained powder is nitrogen, the method for manufacturing a precursor according to claim 2 chemical composition is B 4 N 3 O 2 H, wherein a heat treatment at 750 ° C. to 850 ° C.. 水素吸蔵量が、10MPa、室温で、2.5重量%以上であり、直径が10〜100nm、長さが50〜300nmのナノベル型の形態を有する窒化ホウ素ナノチューブが、5〜20μmの長さに繋がった竹の子状窒化ホウ素ナノチューブ。The boron nitride nanotube having a hydrogen absorption amount of 10 MPa, at room temperature of 2.5% by weight or more, and having a diameter of 10 to 100 nm and a length of 50 to 300 nm in the form of a nanobell has a length of 5 to 20 μm. Connected bamboo shoot-like boron nitride nanotubes. 酸素含有量が10〜20%の窒化ホウ素粉末をN2とNH3の混合ガス気流中で、1600℃以上の温度で熱分解することを特徴とする請求項4に記載の竹の子状窒化ホウ素ナノチューブの製造方法。5. The bamboo shoot-like boron nitride nanotube according to claim 4, wherein the boron nitride powder having an oxygen content of 10 to 20% is thermally decomposed in a mixed gas stream of N 2 and NH 3 at a temperature of 1600 ° C. or more. Manufacturing method.
JP2002359911A 2002-12-11 2002-12-11 Boron nitride (BN) nanotube as a hydrogen storage material and method for producing the same Expired - Lifetime JP3997299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359911A JP3997299B2 (en) 2002-12-11 2002-12-11 Boron nitride (BN) nanotube as a hydrogen storage material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359911A JP3997299B2 (en) 2002-12-11 2002-12-11 Boron nitride (BN) nanotube as a hydrogen storage material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004189547A true JP2004189547A (en) 2004-07-08
JP3997299B2 JP3997299B2 (en) 2007-10-24

Family

ID=32759168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359911A Expired - Lifetime JP3997299B2 (en) 2002-12-11 2002-12-11 Boron nitride (BN) nanotube as a hydrogen storage material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3997299B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099588A (en) * 2005-10-07 2007-04-19 National Institute For Materials Science Boron nitride nanotube introduced with fluorine atom and manufacturing method
CN110104611A (en) * 2019-05-15 2019-08-09 西安电子科技大学 A kind of nanocomposite hydrogen storage material and preparation method thereof
CN114471654A (en) * 2022-01-05 2022-05-13 兰州理工大学 Preparation of boron nitride material anchoring cobalt ferrite composite catalyst and application of catalyst in catalytic degradation of oxytetracycline

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099588A (en) * 2005-10-07 2007-04-19 National Institute For Materials Science Boron nitride nanotube introduced with fluorine atom and manufacturing method
JP4674353B2 (en) * 2005-10-07 2011-04-20 独立行政法人物質・材料研究機構 Boron nitride nanotubes introduced with fluorine atoms and method for producing the same
CN110104611A (en) * 2019-05-15 2019-08-09 西安电子科技大学 A kind of nanocomposite hydrogen storage material and preparation method thereof
CN114471654A (en) * 2022-01-05 2022-05-13 兰州理工大学 Preparation of boron nitride material anchoring cobalt ferrite composite catalyst and application of catalyst in catalytic degradation of oxytetracycline
CN114471654B (en) * 2022-01-05 2024-03-29 兰州理工大学 Preparation of boron nitride material anchored cobalt ferrite composite catalyst and application thereof in catalytic degradation of terramycin

Also Published As

Publication number Publication date
JP3997299B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
Öncel et al. Carbon nanotube synthesis via the catalytic CVD method: a review on the effect of reaction parameters
Kim et al. Scalable manufacturing of boron nitride nanotubes and their assemblies: a review
Gulino et al. C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapour deposition
Eftekhari et al. High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition
Kumar et al. Carbon nanotubes from camphor: an environment-friendly nanotechnology
Li et al. Long β‐silicon carbide necklace‐like whiskers prepared by carbothermal reduction of wood flour/silica/phenolic composite
Nagy et al. On the growth mechanism of single-walled carbon nanotubes by catalytic carbon vapor deposition on supported metal catalysts
JP2016503751A (en) Production of carbon nanotubes from carbon dioxide
Xu et al. One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis
Kumar et al. Clean and efficient synthesis of graphene nanosheets and rectangular aligned-carbon nanotubes bundles using green botanical hydrocarbon precursor: sesame oil
CN1768002B (en) Method of preparing carbon nanotube from liquid phased-carbon source
Tan et al. TEM and XRD analysis of carbon nanotubes synthesised from flame
Vir Singh et al. Catalytic chemical vapor deposition methodology for carbon nanotubes synthesis
Kurmashov et al. COx‐free catalytic decomposition of methane over solution combustion synthesis derived catalyst: Synthesis of hydrogen and carbon nanofibers
Bai et al. Effects of temperature and catalyst concentration on the growth of aligned carbon nanotubes
Liu et al. Highly aligned coiled nitrogen-doped carbon nanotubes synthesized by injection-assisted chemical vapor deposition
JP2004189547A (en) Boron nitride (bn) nanotube as material for hydrogen storage, and production method thereof
Yoshihara et al. Growth mechanism of carbon nanotubes over gold-supported catalysts
JP4696598B2 (en) carbon nanotube
CN100434360C (en) Method for preparing multi-wall carbon hano tube, chestnut-like carbon nano tube aggregator and carbon nano tube ball
Zhao et al. Carbon nanotube formation over plasma reduced Pd/HZSM-5
Wang et al. Fabrication of vertically aligned N-doped carbon nanotube arrays on vermiculite by horizonal chemical vapor deposition
Morjan et al. Carbon nanotubes grown by catalytic CO2 laser-induced chemical vapor deposition on core-shell Fe/C composite nanoparticles
Nemes-Incze et al. Synthesis of bamboo-structured multiwalled carbon nanotubes by spray pyrolysis method, using a mixture of benzene and pyridine
Kaufmann Jr et al. Ecofriendly synthesis of MWCNTs by electric arc in aqueous medium: Comparative study of 6B pencil and mineral graphite

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Ref document number: 3997299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term