JP2004188596A - Method for manufacturing transmission belt - Google Patents

Method for manufacturing transmission belt Download PDF

Info

Publication number
JP2004188596A
JP2004188596A JP2002337213A JP2002337213A JP2004188596A JP 2004188596 A JP2004188596 A JP 2004188596A JP 2002337213 A JP2002337213 A JP 2002337213A JP 2002337213 A JP2002337213 A JP 2002337213A JP 2004188596 A JP2004188596 A JP 2004188596A
Authority
JP
Japan
Prior art keywords
rubber
mold
short fiber
laminated
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002337213A
Other languages
Japanese (ja)
Inventor
Takayuki Tagawa
孝之 田川
Tomohiro Miwa
朋広 三輪
Toshihiro Nishimura
年弘 西村
Akihiro Nagata
昭裕 永田
Tetsuji Mori
哲司 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2002337213A priority Critical patent/JP2004188596A/en
Publication of JP2004188596A publication Critical patent/JP2004188596A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a transmission belt which comprises extruding a rubber layer containing short fibers oriented in a definite direction and an adhesive rubber layer containing no short fibers while laminating them to prevent the roughening of a rubber surface and reduces the number of manufacturing processes to enable molding at a low cost. <P>SOLUTION: The transmission belt is manufactured by a method including a process (1) for molding the two-layer cylindrical molded object 17, wherein a short fiber-containing rubber 15 for inner peripheral side and an adhesive rubber 16 for outer peripheral side are laminated, extruded from an expansion die and the molded one is cut open to obtain a short fiber-oriented rubber sheet 20, a process (2) for interposing the sheet 20 between an inner mold 41 having a flexible jacket 42 on its outer surface and an outer mold 46 having a rib mold 45 carved in its inner surface, a process (3) for expanding the jacket 42 to form a preformed body 21 so as to bring the sheet 20 and the mold 45 to a close contact state, a process (4) for winding at least a core wire 48 around the surface of the jacket 42 of the mold 41 separated from the mold 46, a process (5) for arranging the mold 41 in the mold 46 and expanding the jacket 42 to integrally vulcanize the wire 48 and the body 21 and a process (6) for demolding the body 21 to manufacture a vulcanized belt sleeve 51 with rib parts. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は伝動ベルトの製造方法に係り、詳しくは製造工数を少なくして低コストで成形でき、また耐側圧性に優れ、走行時の騒音を低減できるVリブドベルト等の伝動ベルトの製造方法に関するものである。
【0002】
【従来の技術】
従来、未加硫ゴム中に短繊維を一定方向へ配向させる方法としては、圧延シート作製工程のように、回転速度を変えた一対のカレンダーロールに短繊維入り未加硫ゴムを投入し、圧延されたゴムシート中の短繊維をシートの圧延方向に配向させ、そして成形するベルト幅に応じて切断していた。その後、カットした圧延シートを数枚重ね合わせて所定厚みに積層し、続いて巻付け工程のように短繊維が幅方向に配向した積層物を成形ドラムに巻き付けて伝動ベルトの作製に使用していた。
【0003】
即ち、VリブドベルトやローエッジVベルトの伝動ベルトの製造方法では、円筒状の成型ドラムの周面に1〜複数枚のカバー帆布と接着ゴム層とを巻き付けた後、この上にコードからなる心線を螺旋状にスピニングし、更に圧縮ゴム層を順次巻き付けて積層体を得た後、これを加硫してベルトスリーブにしていた。ここで使用する圧縮ゴム層は、上記圧延シートを3〜4枚重ね合わせた厚みのもので、シート幅方向に短繊維が配向したものを成型ドラムに巻き付けていた。
【0004】
しかし、圧延シートは、厚みを薄くしなければ、短繊維をシート圧延方向に充分に配向させることができないために、やむを得ずシートを重ねていたためにベルト成形用シートを得るには多大の工数を要していた。
【0005】
これを改善する方法として、拡張ダイを取付けた押出機を用い、短繊維を押出円筒体の円周方向に配向させるもので、中間空間に、入口空間の所定の流路幅から出口空間の所定の流路幅まで流路幅が変化する拡大空間部を設け、拡張ダイの出口空間の断面積を入口空間の断面積より所定量大きく形成し、さらに入口部分の流路幅が中間部分の流路幅よりも狭く、出口部分の流路幅が中間部分の流路幅以下に設定したものが、提案された。(例えば、特許文献1参照)
【0006】
更には、短繊維含有ゴム組成物を拡張ダイによってシート化したものを伝動ベルトに使用することも提案されている、例えば、特許文献2には、Vリブ部成形溝を有する拡張ダイを出口部分に備えた押出機によって円筒状リブゴムチューブを押出し、このリブゴムチューブを切開したシート用いて金型上でVリブドベルト成形体を成形して、加硫し、そしてベルト成形体のVリブ部のリブ表面を研削してVリブドベルトを作製することが開示されている。
【0007】
【特許文献1】
特公平6−9847号公報
【特許文献2】
特開平8−74936号公報
【0008】
【発明が解決しようとする課題】
しかしながら、従来の拡張ダイを使用する方法でも、例えばクロロプレンのような粘着性が強く、せん断応力が大なる材料を用いる場合には、表面層、特に外周層はダイ内周面との間に大きな摩擦力を発生してスムーズに流れないために、ゴム表面に肌荒れが発生した。このため、マトリクスであるゴムと繊維との密着性が悪く、また配向性も悪く、現実には伝動ベルトの圧縮ゴム層に使用することは困難な場合もあった。また、短繊維含有ゴム組成物を拡張ダイによって正確なVリブ部を型付して押出すには、ゴム配合を改善する必要があった。
【0009】
本発明は叙上の如き実状に鑑み、これに対処するもので、短繊維を一定方向に配向させた圧縮ゴム層に相当するゴム層と短繊維を含まない接着ゴム層を積層し、スムーズに押出すことによってゴム表面の肌荒れ発生を阻止し、かつ製造工数を少なくして低コストで成形できるVリブドベルト等の伝動ベルトの製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
即ち、本願請求項1記載の発明は、ベルト長手方向に沿って心線を埋設した接着ゴム層と、接着ゴム層に隣接してベルトの長手方向に延びるリブ部を有する伝動ベルトの製造方法において、
短繊維含有ゴムを内周側に接着ゴムを外周側に積層した二層の筒状成形体を、入口から吐出口へ徐々に径を拡張させた拡張ダイで押出成形した後、切開して接着ゴムを積層した短繊維配向ゴムシートにし、
外周面に可撓性ジャケットを装着した内型と、内周面にリブ型を刻印した外型との間に、上記接着ゴムを積層した短繊維配向ゴムシートを介在させ、
上記可撓性ジャケットを膨張させて短繊維配向ゴムシートを外型の刻印したリブ型に密着するように未加硫の予備成型体を作製し、
外型から離脱した内型の可撓性ジャケット面に少なくとも心線を巻き付け、
再度、上記内型を外型内に設置し、可撓性ジャケットを膨張させて心線を外型に装着した予備成型体と一体的に加硫し、
脱型してリブ部を有する加硫ベルトスリーブを作製する、伝動ベルトの製造方法にある。
【0011】
本発明では、接着ゴムを短繊維含有ゴムの外周側になるように積層した二層の筒状成形体を押出成形した後、直線状に切開して接着ゴムを積層した短繊維配向ゴムシートにすることで、スムーズな押出を可能にしてゴム表面の肌荒れ発生を阻止し、かつ接着ゴムと圧縮ゴム層を予め積層することで製造工数を少なくして低コストで伝動ベルトを成形できる。更に、ベルト成形工程において、予め未加硫の予備成型体を作製するために、可撓性ジャケットの膨張による心線の伸張量を小さく設定できることで、心線を平坦に配置できると言った効果がある。
【0012】
本願請求項2記載の発明は、ベルト長手方向に沿って心線を埋設した接着ゴム層と、接着ゴム層に隣接してベルトの長手方向に延びるリブ部を有する伝動ベルトの製造方法において、
短繊維含有ゴムを内周側に接着ゴムを外周側に積層した二層の筒状成形体を、入口から吐出口へ徐々に径を拡張させた拡張ダイで押出成形し、該筒状成形体を直線状に切開して接着ゴムを積層した短繊維配向ゴムシートにし、
内型に装着した伸縮可能な可撓性ジャケット面に、少なくとも心線と接着ゴムを積層した短繊維配向ゴムシートを巻き付けて未加硫ゴムスリーブを形成し、
上記内型を内周面にリブ型を刻印した外型に挿入して、圧力媒体を封入して可撓性ジャケットを膨張させて未加硫ゴムスリーブを外型に押圧型付して加硫する、伝動ベルトの製造方法にある。
【0013】
本発明では、接着ゴムを短繊維含有ゴムの外周側になるように積層した二層の筒状成形体を押出成形し、該筒状成形体を直線状に切開して接着ゴムを積層した短繊維配向ゴムシートにすることで、スムーズな押出を可能にしてゴム表面の肌荒れ発生を阻止し、かつ接着ゴムと圧縮ゴム層を予め積層することで製造工数を少なくして低コストで伝動ベルトを成形できると言った効果がある。
【0014】
本願請求項3記載の発明は、接着ゴムを積層した短繊維配向ゴムシートにする工程において、先に押出した短繊維含有ゴムの外周面に接着ゴムを押出し、入口から吐出口へ徐々に径を拡張させた内ダイと外ダイからなる拡張ダイから接着ゴムを短繊維含有ゴムの外周面に包囲し積層した二層の筒状成形体を押出する伝動ベルトの製造方法にある。
【0015】
本願請求項4記載の発明は、接着ゴムを積層した短繊維配向ゴムシートにする工程において、先に押出した短繊維含有ゴムの外周面に接着ゴムを被覆したものを、拡張ダイの入口から同時に押出しして接着ゴムを短繊維含有ゴムの外周面に包囲し積層した筒状成形体に成形する伝動ベルトの製造方法にある。
【0016】
本願請求項5記載の発明は、接着ゴムを積層した短繊維配向ゴムシートにする工程において、短繊維含有ゴムを拡張ダイの入口から侵入させ、他方接着ゴムを拡張ダイの入口と吐出口との間に位置する部位で侵入させて接着ゴムを短繊維含有ゴムの外周面に包囲し積層した筒状成形体に押出成形する伝動ベルトの製造方法にあり、接着ゴムの厚みをより均一に押出すことができる。
【0017】
本願請求項6記載の発明は、接着ゴムの侵入位置が拡張ダイの入口と吐出口との間にあり、該接着ゴムの侵入位置から吐出口へ至るまでゴム通路の間隙が積層する接着ゴムの厚みだけ大きくなっている伝動ベルトの製造方法にあり、接着ゴムのゴム通路への侵入抵抗を減少させて、接着ゴムをスムーズに短繊維含有ゴムの外周面に包囲し積層しやすく、またその厚みを均一にすることができる。
【0018】
本願請求項7記載の発明は、脱型した加硫ゴムスリーブのリブ部表面層を研削して埋設した短繊維を露出させる伝動ベルトの製造方法にある。
【0019】
【発明の実施の形態】
以下、添付図面を参照し、本発明の実施例を説明する。
図1は押出成形された円筒状成形体を直線状に切開しながら接着ゴムを積層した短繊維配向ゴムシートにする工程の概略図である。
この工程で使用する装置1では、シリンダー3a内の押出スクリュー4aの回転により短繊維含有ゴムを混練する第一押出機2aと、シリンダー3b内の押出スクリュー4bの回転により短繊維を含有しないゴムを混練する第二押出機2bが拡張ダイ5の背部に連結され、第一押出機2aと第二押出機2bで押出したゴムを軸部6と筒部7で形成されたゴム通路8へと導入する。
【0020】
上記拡張ダイ5では、軸部6に装着された内ダイ10と筒部7に連結された外ダイ13との組み合わせによってゴム通路8が形成されている。内ダイ10は入口11から吐出口12へ徐々に径を拡張させた円錐体である。外ダイ13の入口11付近には、調芯用ブロック体14を組み合わせて押出しゴムの厚みを均一にすることができる。
【0021】
短繊維を含有しない接着ゴム16を混練して押出す第二押出機2bは、第一押出機2aよりも外ダイ13の入口11に近い側に配置され、先に押出された短繊維含有ゴム15の外周部に接着ゴム16を被覆した二層の筒状成形体17に押出成形する。接着ゴム16はゴムの流動性がよく短繊維含有ゴム15の外周を完全に包囲する。押出された筒状成形体17は切断手段19によって切開された後、巻き取られる。
【0022】
第一押出機2a及び第二押出機2bでは、シリンダー3a,3bの中に回転可能に押出スクリュー4a,4bを収容し、ゴム配合物を原料投入口から入れて押出スクリュー4a,4bの回転によって混練する。この時にシリンダー3a,3b内の空気やゴム配合物から発生したガス等は排気口(図示せず)から排出される。シリンダー3a,3bの温度はゴム種に応じて変更するが、通常40〜100°Cに調節され、短繊維とゴムはミキシングしやすい温度に加熱して熱可塑化して押出成形しやすい状態にする。また、この場合の混練時間はゴムの加硫が進行しない程度に調節する。
【0023】
拡張ダイ5は吐出口12へ径を徐々に拡張させた円錐形の内ダイ10を外ダイ13に収容し、内ダイ10と外ダイ13の間に所定厚みの間隙をもったゴム通路8を設けている。短繊維混入ゴム15は入口11から吐出口12へ徐々に大きな円周方向への引き伸ばしを受けながら短繊維を円周方向に配向させ、同時に接着ゴム16を外層に包囲しつつ筒状成形体17に押出成形する。
【0024】
拡張ダイ5は、水平に配置された第一押出機2aと第二押出機2bに対して垂直に配置され、筒状成形体17を吐出口12から重力に抗するように押出すため、筒状成形体17の重力による変形、比較的寸法変化が少ない。また、垂直方向に配置した拡張ダイ5は内ダイ10の自重によって撓みにくく、内ダイ10と外ダイ13との間隙が一定に保持され、厚み変形量の小さな筒状成形体17に仕上げることができる。
【0025】
また、内ダイ10と外ダイ13で形成されたゴム通路8は、入口11から吐出口12まで略均一な間隙になり、筒状成形体17をブレーキをかけることなくスムーズに流し、また内部歪みのない均一な厚みの筒状成形体17に仕上げる。
【0026】
内ダイ10の形状は、せん断力の大きさに影響を与える。入口11から吐出口12へ徐々に径が拡張するテーパー角度が30°以上で90°未満であり、入口が直径20〜60mm、吐出口が直径100〜440mm、そしてその比率である拡張比(吐出口/入口)が1.5〜12.5に設定される。この設定範囲未満であれば、内ダイ10の吐出口12付近での円周方向への引き伸ばしが小さくて、厚みの大きな筒状成形体17の内外層では短繊維が円周方向に配向しにくくなり、一方この設定範囲を越えると、円周方向への引き伸ばしが大きくなり過ぎて、押出圧力が劣る場合には、筒状成形体17が裂けやすい。
【0027】
内ダイ10と外ダイ13間のゴム通路8内に存在するゴムの内部発熱を抑制するために、内ダイ10の内部に冷却水を循環させる冷却装置(図示せず)を設けることもできる。冷却装置では、冷却水をポンプによって各ダイに設けた通路を通過させて循環させる。
【0028】
切断手段19は、押出された筒状成形体17を押出し方向に沿って切開しながらゴムシート20にし、カッター、ナイフといった刃物、あるいはレーザーナイフ、超音波振動カッターからなる。ゴムシート20はガイドロールを経由して駆動ロールによって一定速度で送られ、巻き取りロールに帆布のようなライナーとともに巻き取られる。
【0029】
図2に示す他の装置1では、シリンダー3a内の押出スクリュー4aの回転により短繊維含有ゴム15を混練する第一押出機2aと、シリンダー3b内の押出スクリュー4bの回転により短繊維を含有しない接着ゴム16を混練する第二押出機2bが、それぞれ押出したゴムをゴム通路8へと導入する。
【0030】
第一押出機2aは押出スクリュー4aの軸方向に拡張ダイ5を直結し、第二押出機2bは第一押出機2aと直角に配置されている。第二押出機2bから押出された接着ゴム16が第一押出機2aの押出スクリュー4aの先端部25から離れた位置に設けた整流用突起に衝突すると短繊維含有ゴム15の外周を包囲しやすくなる。
【0031】
拡張ダイ5は吐出口12へ径を徐々に拡張させて円錐形とした内ダイ10を外ダイ13に収容し、内ダイ10と外ダイ13の間に所定厚みの間隙をもつゴム通路8を設けている。内ダイ10に装着固定した円錐状の分流体27は、ゴムの流れを360度へ均一に分流して、内ダイ10と外ダイ13間のゴム通路8へ押出すようになっている。
【0032】
短繊維混入ゴム15は吐出口12へ徐々に大きな円周方向への引き伸ばしを受けながら短繊維を円周方向に配向させ、同時に図5に示すように接着ゴム16を外層に包囲した筒状成形体17に押出成形する。そして、図6に示すように押出された直後の筒状成形体17は、切断手段19によって押出し方向に沿って切開しながらゴムシート20する。上記短繊維混入ゴム15の厚みは1.5〜10mmで、接着ゴム16の厚みは0.1〜1.0mmである。
【0033】
このように、図2に示す上記装置1は、先に押出した短繊維含有ゴム15の外周面に接着ゴム16を被覆したものを、拡張ダイ5の入口11から同時に押出しして接着ゴム16を短繊維含有ゴム15の外周面に包囲し積層した筒状成形体17に成形するものであるが、図3に示す装置1は短繊維含有ゴム15を拡張ダイ5の入口11から侵入させ、他方接着ゴム16を拡張ダイ5の入口11と吐出口12との間の位置Pで侵入させて短繊維含有ゴム15の外周面に包囲し積層した筒状成形体17に押出成形するものである。
【0034】
即ち、図3に示す装置1では、押出スクリュー4aの回転により短繊維含有ゴム15を混練する第一押出機2aが短繊維含有ゴム15を拡張ダイ5の入口11から吐出口12へ押出す。一方、短繊維を含有しない接着ゴム16を混練する第二押出機2bが第一押出機2aと交差する状態で配置され、接着ゴム16を円周方向に配したゴム溜め部35からゴム通路36を経由して拡張ダイ5の入口11と吐出口12との間の位置Pで円筒状に侵入させる。
【0035】
上記侵入位置Pでは、図4に示すようにゴム通路8に明確な段差が設けられ、この侵入位置Pから吐出口12へ至るまでのゴム通路8の間隙が積層する接着ゴム16の厚み分だけ大きく、接着ゴム16のゴム通路8への侵入抵抗を減少させてスムーズに短繊維含有ゴム15の外周面に包囲し、そして接着ゴム16の厚みを均一にしている。上記侵入位置Pは入口11と吐出口12との間であれば問題ないが、好ましくは入口11と吐出口12との中間付近が好ましい。
【0036】
次に、図7〜図11を参照して上記方法によって得られた接着ゴム16付きゴムシート20を用いたVリブドベルトの製造方法を説明する。
【0037】
先ず、内型41に装着された可撓性ジャケット42の外周面に、接着ゴム16が可撓性ジャケット42に面するように、接着ゴム16付きの短繊維配向ゴムシート20を巻き付ける。
【0038】
次いで、図7に示すように上記接着ゴム16付きの短繊維配向ゴムシート20を捲き付けたベルト加硫機40の内型41を外型46の内側に一定の空隙部を形成するよう基台上に載置する。内型41は別の成形工程より移動してくる関係上、媒体流通口Aと媒体送入排出路Bとは分離しており、内型41を基台に載置後、媒体流通口AをジョイントJでパイプと連結する。
【0039】
媒体送入機を作動して高圧空気もしくは高圧蒸気を媒体送入排出路B、媒体流通口Aを経て、可撓性ジャケット42の内部に送入する。可撓性ジャケット42は、その上下部が内型41上に密閉固定されているため、可撓性ジャケット42の内面と内型41の外面の間に空気が充満し、可撓性ジャケット42は次第に膨張する。そして、その外周面に装着されているゴムシート20を半径方向に均一に膨張させ、加熱ヒーター若しくは高温蒸気で100〜160℃に加熱した外型46のリブ型45と30〜120秒間接触せしめる。
【0040】
このとき、可撓性ジャケット42の膨張押圧力により、上記接着ゴム16付きの短繊維配向ゴムシート20が外型46のリブ型45に押圧され、図8のような表面に複数のV型突起を有する未加硫の予備成型体21を形成するに至る。
【0041】
その後は、バルブを真空ポンプの方へ切替えて、可撓性ジャケット42内に充満している空気を排気し、次いで吸引作用で可撓性ジャケット42を図7に示す元の位置に収縮復帰せしめる。
【0042】
そして、内型41を外型46から抜き取り、内型41の可撓性ジャケット42の外周面に補強布47、およびコードからなる心線48を順次に捲き付ける。その後、図9に示すようにこの内型41を外型46内へ設置した後、図10に示すように可撓性ジャケット42を膨張させ、補強布47と心線48を半径方向に均一に膨張させ、加熱ヒーター若しくは高温蒸気で100〜180℃に加熱した外型46のリブ型45に装着した予備成型体21に密着して一体的に加硫し、ベルトスリーブ51を作製する。上記製造方法のように未加硫の予備成型体21を成型することにより、成形時に可撓性ジャケット42の膨張による心線48の伸張量を抑え、また心線48を平坦に配置でき、寸法安定性に優れたVリブドベルトを作製することができる。
【0043】
本発明方法では、接着ゴム16付きの短繊維配向ゴムシート20の筒状積層体を、可撓性ジャケット42を装着した内型41とリブ型45を刻印した外型46との間に介在させることもできる。即ち、接着ゴム16付きの短繊維配向ゴムシート20の筒状積層体を外型46のリブ型45に接した状態で配置し、また内型41と外型46との間に間隙をおいて配置し、未加硫の予備成型体21を形成することもできる。
【0044】
加硫後は、図11に示すように可撓性ジャケット42を収縮させ、内型41を外型46から抜き取った後、外型46に装着した加硫済みベルトスリーブ51を取り出す。そして、加硫済みベルトスリーブ51を別のドラムに挿入して回転させながら円周方向に所定幅に切断し、ドラムより取出し反転することにより、周長が一定で、V形リブが正確に型付形成されたVリブドベルト1が複数本得られる。尚、外型46を分割式モールドにした場合、未加硫スリーブの挿入ならびに加硫スリーブの取り外しが容易になり、かつこの分割面が一種の空気抜きの機能を果し、V型リブをより一層正確に形成することができる。
【0045】
尚、内型41から抜き取られた加硫済みベルトスリーブ51は、以後別のドラムに挿入し、加硫済みベルトスリーブ51のリブ部表面層を公知のグラインダーホイールを用いて研削し短繊維を突出させてもよい。
【0046】
更に、本実施例では、図12に示すような方法によって加硫ベルトスリーブ51を作製することもできる。
即ち、内型41に装着された可撓性ジャケット42の外周面に、補強布47、心線48、接着ゴム16付きのリブ部29を有する短繊維含有ゴムシート20を順次に捲き付け広幅未加硫のベルトスリーブ51を配置する。この場合、ゴムシート20では接着ゴム16が心線48側に、リブ部29を有する短繊維含有ゴムシート20が最外側に配置する。
【0047】
次いで、未加硫のベルトスリーブ51を内型41に捲き付けた状態のままで、外型46の内側に一定の空隙部を形成するよう基台上に載置固定する。次いで、図10に示すように前述と同様に高圧空気もしくは高圧蒸気を可撓性ジャケット42の内部に送入する。可撓性ジャケット42は、その上下部が内型41上に密閉固定されているため、可撓性ジャケット42の内面と内型41の外面の間に空気が充満し、可撓性ジャケット42は次第に膨張する。そして、その外周面に装着されている未加硫のベルトスリーブ51を半径方向に均一に膨張させ、加熱ヒーター若しくは高温蒸気で加熱した外型46のリブ型45と接触せしめる。
【0048】
このとき、可撓性ジャケット42の膨張押圧力により、未加硫のベルトスリーブ51表面の有する短繊維含有ゴムシート20のリブ部29が、外型46のリブ型45に嵌合し、図10のような表面に複数のV型突起を有する加硫したベルトスリーブ51を形成するに至る。
【0049】
そして、図11に示すように加硫後はバルブを真空ポンプの方へ切替えて、真空ポンプを作動させて可撓性ジャケット42内に充満している空気を排気し、次いで吸引作用で可撓性ジャケット42を元の位置に収縮復帰せしめる。内型41を脱型した後、外型46に装着した加硫済みのベルトスリーブ51を離脱する。
【0050】
図13は得られたVリブドベルトの断面図である。Vリブドベルト100は、高強度で低伸度のコードよりなる心線102を接着ゴム層103中に埋設し、その下側に弾性体層である圧縮ゴム層104を有している。この圧縮ゴム層104にはベルト長手方向に伸びる断面略三角形の複数のリブ部106が設けられている。
【0051】
上記リブ部106中に含有している短繊維110は、下記に示すように未加硫ベルトスリーブを外型の刻印したリブ型に密着して加硫すると、リブ部106で波形状に配向してベルトの耐側圧性を維持し、また従来のようなスクラップとなる研磨屑の発生が全く無くなる。
【0052】
リブ部106中に含有している短繊維110は、ナイロン6、ナイロン66、ポリエステル、綿、アラミドからなる短繊維を混入してリブ部106の耐側圧性を向上させるが、中でも剛直で強度を有するアラミド短繊維が好ましい。
【0053】
上記アラミド短繊維が前述の効果を十分に発揮するためには、アラミド繊維の繊維長さは1〜20mmで、その添加量はゴム100質量部に対して1〜30質量部である。このアラミド繊維は分子構造中に芳香環をもつアラミド、例えば商品名コーネックス、ノーメックス、ケブラー、テクノーラ、トワロン等である。
【0054】
尚、アラミド短繊維の添加量が1質量部未満の場合には、リブ部106の耐側圧性に欠けることがあり、また一方30質量部を超えると短繊維がゴム中に均一に分散しなくなる。ただし、このアラミド短繊維の添加は必須ではなく、他の素材からなる短繊維を添加したものでも良い。
【0055】
接着ゴム層103及び圧縮ゴム層104に使用されるゴムとしては、水素化ニトリルゴム、クロロプレンゴム、天然ゴム、CSM、ACSM、SBR、エチレン−α−オレフィンエラストマーが使用され、水素化ニトリルゴムは水素添加率80%以上であり、耐熱性及び耐オゾン性の特性を発揮するために、好ましくは90%以上が良い。水素添加率80%未満の水素化ニトリルゴムは、耐熱性及び耐オゾン性は極度に低下する。耐油性及び耐寒性を考慮すると、結合アクリロニトリル量は20〜45%の範囲が好ましい。中でも、耐油性と耐寒性を有するエチレン−α−オレフィンエラストマーが好ましい。
【0056】
上記エチレン−α−オレフィンエラストマーとしては、その代表的なものとしてEPDMがあり、これはエチレン−プロピレン−ジエンモノマーをいう。ジエンモノマーの例としては、ジシクロペンタジエン、メチレンノルボルネン、エチリデンノルボルネン、1,4−ヘキサジエン、シクロオクタジエンなどがあげられる。また、エチレン−プロピレン系ゴム(EPR)も使用可能である。
【0057】
上記ゴムの架橋には、硫黄や有機過酸化物が使用され、有機過酸化物としては例えばジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3,2,5−ジメチル−2,5−(ベンゾイルパーオキシ)ヘキサン、2,5−ジメチル−2,5−モノ(t−ブチルパーオキシ)ヘキサン等を挙げることができる。
【0058】
また、架橋助剤(co−agent)を配合することによって、架橋度を上げて粘着摩耗等の問題を防止することができる。架橋助剤として挙げられるものとしては、TIAC、TAC、1,2ポリブタジエン、不飽和カルボン酸の金属塩、オキシム類、グアニジン、トリメチロールプロパントリメタクリレート、エチレングリコールジメタクリレート、N−N‘−m−フェニレンビスマレイミド、硫黄など通常パーオキサイド架橋に用いるものである。
【0059】
そして、それ以外に必要に応じてカーボンブラック、シリカのような補強剤、炭酸カルシウム、タルクのような充填剤、可塑剤、安定剤、加工助剤、着色剤のような通常のゴム配合物に使用されるものが使用される。
【0060】
尚、接着ゴム103に使用するゴム組成物は、短繊維を除いた圧縮ゴム層104のゴム配合物に類似している。無論、短繊維を含めてもよい。
【0061】
心線102としては、ポリエステル繊維、アラミド繊維、ガラス繊維が使用され、中でもエチレン−2,6−ナフタレートを主たる構成単位とするポリエステル繊維フィラメント群を撚り合わせた総デニール数が4,000〜8,000の接着処理したコードが、ベルトスリップ率を低く抑えることができ、ベルト寿命を延長させるために好ましい。また、心線102にはゴムとの接着性を改善する目的で接着処理が施される。このような接着処理としては繊維をレゾルシン−ホルマリン−ラテックス(RFL)液に浸漬後、加熱乾燥して表面に均一に接着層を形成するのが一般的である。しかし、これに限ることなくエポキシ又はイソシアネート化合物で前処理を行なった後に、RFL液で処理する方法等もある。
【0062】
心線102は、スピニングピッチ、即ち心線の巻き付けピッチを0.9〜1.3mmにすることで、モジュラスの高いベルトに仕上げることができる。0.9mm未満になると、コードが隣接するコードに乗り上げて巻き付けができず、一方1.3mmを越えると、ベルトのモジュラスが徐々に低くなる。
【0063】
背面補強材105は、織物、編物、不織布から選択されるが、より好ましいものは不織布である。構成する繊維素材としては、例えば綿、麻、レーヨン等の天然繊維や、ポリアミド、ポリエステル、ポリエチレン、ポリウレタン、ポリスチレン、ポリフロルエチレン、ポリアクリル、ポリビニルアルコール、全芳香族ポリエステル、アラミド等の有機繊維が挙げられる。上記帆布は公知技術に従ってレゾルシン−ホルマリン−ラテックス液(RFL液)に浸漬後、未加硫ゴムを背面補強材105に擦り込むフリクションを行ったり、またRFL液に浸漬後にゴムを溶剤に溶かしたソーキング液に浸漬処理する。
【0064】
このように得られたVリブドベルトは、接着ゴムと圧縮ゴム層を予め積層することで製造工数を少なくして低コストで伝動ベルトを成形することができ、更にベルト成形工程において、予め未加硫の予備成型体を作製するために、心線を平坦に配置でき、ベルト走行寿命も向上する。
【0065】
【発明の効果】
以上のように本願請求項各記載の発明では、接着ゴムを短繊維含有ゴムの外周側になるように積層した二層の筒状成形体を押出成形した後、直線状に切開して接着ゴムを積層した短繊維配向ゴムシートにすることで、スムーズな押出を可能にしてゴム表面の肌荒れ発生を阻止し、かつ接着ゴムと圧縮ゴム層を予め積層することで製造工数を少なくして低コストな伝動ベルトを成形することができ、更にベルト成形工程において、予め未加硫の予備成型体を作製するために、可撓性ジャケットの膨張による心線の伸張量を小さく設定でき、心線を平坦に配置できると言った効果がある。
【図面の簡単な説明】
【図1】押出成形された筒状成形体を直線状に切開しながら短繊維配向ゴムシートにする工程を示す概略図である。
【図2】押出成形された筒状成形体を直線状に切開しながら短繊維配向ゴムシートにする他の工程を示す概略図である。
【図3】押出成形された筒状成形体を直線状に切開しながら短繊維配向ゴムシートにする更に他の工程を示す概略図である。
【図4】図3のC部拡大図である。
【図5】図1におけるA−A方向の断面図である。
【図6】接着ゴム付き短繊維配向ゴムシートに切開したシートの斜視図である。
【図7】予備成型体を成形している状態の縦断図である。
【図8】予備成型体を作製した後状態の断面図である。
【図9】未加硫のベルトスリーブを作製する前状態の断面図である。
【図10】ベルトスリーブを加硫している状態の断面図である。
【図11】ベルトスリーブを加硫した後状態の断面図である。
【図12】他の方法によって未加硫のベルトスリーブを成形した後状態の縦断図である。
【図13】本発明にかかるVリブドベルトの断面図である。
【符号の説明】
2a 第一押出機
2b 第二押出機
5 拡張ダイ
8 ゴム通路
10 内ダイ
11 入口
12 吐出口
13 外ダイ
15 短繊維含有ゴム
16 接着ゴム
17 筒状成形体
19 切断手段
20 短繊維配向ゴムシート
21 予備成型体
41 内型
42 可撓性ジャケット
45 リブ型
46 外型
48 心線
51 ベルトスリーブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a power transmission belt, and more particularly to a method for manufacturing a power transmission belt such as a V-ribbed belt which can be formed at low cost with a reduced number of manufacturing steps, has excellent lateral pressure resistance, and can reduce noise during traveling. It is.
[0002]
[Prior art]
Conventionally, as a method for orienting the short fibers in a certain direction in the unvulcanized rubber, as in a rolled sheet manufacturing process, the unvulcanized rubber containing the short fibers is put into a pair of calender rolls at different rotation speeds, and then rolled. The short fibers in the rubber sheet were oriented in the rolling direction of the sheet, and were cut in accordance with the belt width to be formed. Then, several cut rolled sheets are laminated and laminated to a predetermined thickness, and then a laminate in which short fibers are oriented in the width direction is wound around a forming drum to be used in the production of a power transmission belt as in a winding step. Was.
[0003]
That is, in a method of manufacturing a V-ribbed belt or a low-edge V-belt transmission belt, one or more sheets of cover canvas and an adhesive rubber layer are wound around the peripheral surface of a cylindrical forming drum, and a cord made of a cord is placed thereon. Was spirally spun, and a compressed rubber layer was sequentially wound thereon to obtain a laminate, which was then vulcanized to form a belt sleeve. The compressed rubber layer used here had a thickness of three to four rolled sheets stacked on each other, and was wound around a forming drum in which short fibers were oriented in the sheet width direction.
[0004]
However, if the thickness of the rolled sheet is not reduced, the short fibers cannot be sufficiently oriented in the sheet rolling direction. Was.
[0005]
As a method of improving this, an extruder equipped with an expansion die is used, and the short fibers are oriented in the circumferential direction of the extrusion cylindrical body. An enlarged space portion in which the flow passage width changes up to the flow passage width is formed, the cross-sectional area of the outlet space of the expansion die is formed to be larger than the cross-sectional area of the inlet space by a predetermined amount, and the flow passage width of the inlet portion is the flow of the intermediate portion. It has been proposed that the width of the outlet portion is smaller than the width of the intermediate portion and smaller than the width of the channel. (For example, see Patent Document 1)
[0006]
Furthermore, it has also been proposed to use a short-fiber-containing rubber composition formed into a sheet with an expansion die for a power transmission belt. For example, Patent Document 2 discloses that an expansion die having a V-rib portion forming groove is provided at an outlet portion. A cylindrical rib rubber tube is extruded by an extruder provided in the above, a V-ribbed belt molded body is molded on a mold using a sheet obtained by cutting the rib rubber tube, vulcanized, and the rib surface of the V-rib portion of the belt molded body is vulcanized. To produce a V-ribbed belt.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 6-9847 [Patent Document 2]
JP-A-8-74936
[Problems to be solved by the invention]
However, even in the method using a conventional expansion die, for example, when using a material having a strong adhesiveness such as chloroprene and a high shear stress, the surface layer, particularly the outer peripheral layer, is large between the die inner peripheral surface and the die. The surface of the rubber surface became rough because frictional force was generated and it did not flow smoothly. For this reason, the adhesion between the matrix rubber and the fibers is poor, and the orientation is also poor. In practice, it has sometimes been difficult to use the matrix for the compressed rubber layer of the power transmission belt. Further, in order to extrude the short-fiber-containing rubber composition by molding with an accurate V-rib portion using an expansion die, it was necessary to improve the rubber compounding.
[0009]
The present invention has been made in view of the above-described situation in view of the above-described circumstances, and a rubber layer corresponding to a compressed rubber layer in which short fibers are oriented in a certain direction and an adhesive rubber layer containing no short fibers are laminated, and smoothly. An object of the present invention is to provide a method for manufacturing a power transmission belt such as a V-ribbed belt which can be formed at a low cost by extruding to prevent rough surface of a rubber surface and to reduce the number of manufacturing steps.
[0010]
[Means for Solving the Problems]
That is, the invention according to claim 1 of the present application is directed to a method for manufacturing a power transmission belt having an adhesive rubber layer having a core wire buried along the belt longitudinal direction and a rib portion extending in the belt longitudinal direction adjacent to the adhesive rubber layer. ,
After extruding a two-layer cylindrical molded body with the short fiber-containing rubber laminated on the inner circumference and the adhesive rubber on the outer circumference, using an expansion die whose diameter is gradually expanded from the inlet to the discharge port, cut and bond Short fiber oriented rubber sheet laminated with rubber,
A short fiber oriented rubber sheet laminated with the above adhesive rubber is interposed between an inner mold having a flexible jacket attached to the outer peripheral surface and an outer mold having a rib mold stamped on the inner peripheral surface,
The flexible jacket is expanded to prepare an unvulcanized preform so that the short fiber oriented rubber sheet adheres to the imprinted rib mold of the outer mold,
At least a core wire is wound around the flexible jacket surface of the inner mold detached from the outer mold,
Again, placing the inner mold in the outer mold, inflating the flexible jacket and vulcanizing integrally with the preformed body with the core wire attached to the outer mold,
The present invention relates to a method for manufacturing a power transmission belt, in which a vulcanized belt sleeve having a rib portion is manufactured by demolding.
[0011]
In the present invention, after extruding a two-layer cylindrical molded body laminated so that the adhesive rubber is on the outer peripheral side of the short fiber-containing rubber, cut into a straight line to form a short fiber oriented rubber sheet laminated with the adhesive rubber By doing so, it is possible to smoothly extrude and prevent the roughening of the rubber surface from occurring, and to form the power transmission belt at low cost by reducing the number of manufacturing steps by laminating the adhesive rubber and the compressed rubber layer in advance. Further, in the belt forming step, in order to prepare an unvulcanized preformed body in advance, the amount of expansion of the core wire due to expansion of the flexible jacket can be set small, so that the core wire can be arranged flat. There is.
[0012]
The invention according to claim 2 of the present application is directed to a method of manufacturing a power transmission belt having an adhesive rubber layer having a core wire buried along the belt longitudinal direction and a rib portion extending in the longitudinal direction of the belt adjacent to the adhesive rubber layer,
A two-layer cylindrical molded body in which short fiber-containing rubber is laminated on the inner peripheral side and adhesive rubber is laminated on the outer peripheral side is extruded with an expansion die whose diameter is gradually increased from an inlet to an outlet, and the cylindrical molded body is extruded. Cut straight into a short fiber oriented rubber sheet laminated with adhesive rubber,
An unvulcanized rubber sleeve is formed by winding a short fiber oriented rubber sheet on which at least a core wire and an adhesive rubber are laminated on a stretchable flexible jacket surface attached to an inner mold,
Insert the inner mold into the outer mold with a rib mold stamped on the inner peripheral surface, enclose the pressure medium, expand the flexible jacket, press the unvulcanized rubber sleeve on the outer mold and vulcanize. In a method of manufacturing a power transmission belt.
[0013]
In the present invention, a two-layered cylindrical molded body in which the adhesive rubber is laminated so as to be on the outer peripheral side of the short fiber-containing rubber is extrusion-molded, and the cylindrical molded body is cut straight to form a short-circuit in which the adhesive rubber is laminated. By using a fiber oriented rubber sheet, smooth extrusion can be prevented and rough surface of the rubber surface can be prevented, and the transmission belt can be manufactured at low cost by reducing the number of manufacturing steps by laminating the adhesive rubber and the compressed rubber layer in advance. It has the effect that it can be molded.
[0014]
The invention according to claim 3 of the present application is characterized in that, in the step of forming a short fiber oriented rubber sheet in which adhesive rubber is laminated, the adhesive rubber is extruded on the outer peripheral surface of the previously extruded short fiber-containing rubber, and the diameter gradually increases from the inlet to the discharge port. The present invention relates to a method of manufacturing a power transmission belt for extruding a two-layered cylindrical molded product in which an adhesive rubber is surrounded by an expanded die composed of an expanded inner die and an outer die and is laminated on the outer peripheral surface of the short fiber-containing rubber.
[0015]
The invention according to claim 4 of the present application is that, in the step of forming a short fiber oriented rubber sheet in which the adhesive rubber is laminated, the outer peripheral surface of the previously extruded short fiber-containing rubber is coated with the adhesive rubber at the same time from the entrance of the expansion die. The present invention relates to a method for manufacturing a power transmission belt in which an adhesive rubber is extruded to surround an outer peripheral surface of a short fiber-containing rubber and formed into a laminated cylindrical molded body.
[0016]
According to a fifth aspect of the present invention, in the step of forming a short fiber oriented rubber sheet on which an adhesive rubber is laminated, the short fiber-containing rubber is caused to enter from an inlet of the expansion die, and the adhesive rubber is formed between the inlet and the discharge port of the expansion die. There is a method of manufacturing a power transmission belt in which the adhesive rubber is intruded at a portion located therebetween and the adhesive rubber is surrounded on the outer peripheral surface of the short fiber-containing rubber and is extruded into a laminated cylindrical molded body, and the thickness of the adhesive rubber is extruded more uniformly. be able to.
[0017]
According to the invention of claim 6 of the present application, the position where the adhesive rubber enters is located between the entrance of the expansion die and the discharge port, and the gap of the rubber passage is laminated from the position where the adhesive rubber enters to the discharge port. It is in the method of manufacturing a power transmission belt that is increased in thickness by reducing the penetration resistance of the adhesive rubber into the rubber passage, making it easy to smoothly surround the adhesive rubber on the outer peripheral surface of the short fiber-containing rubber and stack it, and its thickness Can be made uniform.
[0018]
The invention according to claim 7 of the present application is a method for manufacturing a power transmission belt that exposes embedded short fibers by grinding the surface layer of a rib portion of a demolded vulcanized rubber sleeve.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic view of a process of forming a short fiber oriented rubber sheet in which an adhesive rubber is laminated while a cylindrical molded body formed by extrusion is linearly cut.
In the apparatus 1 used in this step, the first extruder 2a for kneading the short fiber-containing rubber by the rotation of the extrusion screw 4a in the cylinder 3a, and the rubber without the short fiber by the rotation of the extrusion screw 4b in the cylinder 3b. The second extruder 2b to be kneaded is connected to the back of the expanding die 5, and the rubber extruded by the first extruder 2a and the second extruder 2b is introduced into the rubber passage 8 formed by the shaft 6 and the cylinder 7. I do.
[0020]
In the expansion die 5, the rubber passage 8 is formed by a combination of the inner die 10 attached to the shaft portion 6 and the outer die 13 connected to the cylindrical portion 7. The inner die 10 is a conical body whose diameter is gradually expanded from the inlet 11 to the discharge port 12. In the vicinity of the entrance 11 of the outer die 13, the thickness of the extruded rubber can be made uniform by combining the alignment block 14.
[0021]
The second extruder 2b for kneading and extruding the adhesive rubber 16 containing no short fibers is disposed closer to the inlet 11 of the outer die 13 than the first extruder 2a, and the extruded short fiber-containing rubber is used. 15 is extruded into a two-layer cylindrical molded body 17 having an outer peripheral portion coated with an adhesive rubber 16. The adhesive rubber 16 has good fluidity of the rubber and completely surrounds the outer periphery of the short fiber-containing rubber 15. The extruded cylindrical molded body 17 is cut off by the cutting means 19 and then wound up.
[0022]
In the first extruder 2a and the second extruder 2b, the extruding screws 4a and 4b are rotatably accommodated in the cylinders 3a and 3b, and the rubber compound is introduced from the raw material inlet and the extruding screws 4a and 4b are rotated. Knead. At this time, the air and the gas generated from the rubber compound in the cylinders 3a and 3b are discharged from an exhaust port (not shown). The temperature of the cylinders 3a and 3b is changed according to the type of rubber, but is usually adjusted to 40 to 100 ° C., and the short fibers and rubber are heated to a temperature at which they can be easily mixed, thermoplasticized, and extruded. . The kneading time in this case is adjusted to such an extent that the vulcanization of the rubber does not proceed.
[0023]
The expansion die 5 accommodates a conical inner die 10 whose diameter is gradually expanded to the discharge port 12 in an outer die 13, and forms a rubber passage 8 having a gap of a predetermined thickness between the inner die 10 and the outer die 13. Provided. The short fiber-mixed rubber 15 orients the short fibers in the circumferential direction while being gradually extended from the inlet 11 to the discharge port 12 in the circumferential direction, and at the same time, surrounds the adhesive rubber 16 in the outer layer while forming the cylindrical molded body 17. Extrusion molding.
[0024]
The expansion die 5 is vertically arranged with respect to the first extruder 2a and the second extruder 2b which are horizontally arranged, and extrudes the cylindrical molded body 17 from the discharge port 12 so as to resist gravity. The deformation and the dimensional change of the shaped body 17 due to gravity are relatively small. Further, the expansion die 5 arranged in the vertical direction is hardly bent by the weight of the inner die 10, the gap between the inner die 10 and the outer die 13 is kept constant, and the cylindrical die 17 having a small thickness deformation can be finished. it can.
[0025]
In addition, the rubber passage 8 formed by the inner die 10 and the outer die 13 has a substantially uniform gap from the inlet 11 to the discharge port 12, so that the cylindrical molded body 17 can smoothly flow without applying a brake, and the internal distortion can be reduced. To a cylindrical molded body 17 having a uniform thickness without any irregularities.
[0026]
The shape of the inner die 10 affects the magnitude of the shearing force. The taper angle at which the diameter gradually expands from the inlet 11 to the outlet 12 is 30 ° or more and less than 90 °, the inlet has a diameter of 20 to 60 mm, the outlet has a diameter of 100 to 440 mm, and the expansion ratio (discharge ratio) Outlet / inlet) is set to 1.5-12.5. If it is less than the set range, the circumferential stretching around the discharge port 12 of the inner die 10 is small, and the short fibers are less likely to be circumferentially oriented in the inner and outer layers of the thick cylindrical molded body 17. On the other hand, if it exceeds this setting range, the stretching in the circumferential direction becomes too large, and when the extrusion pressure is inferior, the tubular molded body 17 is easily torn.
[0027]
In order to suppress internal heat generation of the rubber existing in the rubber passage 8 between the inner die 10 and the outer die 13, a cooling device (not shown) for circulating cooling water inside the inner die 10 may be provided. In the cooling device, the cooling water is circulated through a passage provided in each die by a pump.
[0028]
The cutting means 19 is formed by cutting the extruded cylindrical molded body 17 along the extruding direction into a rubber sheet 20 and using a cutting tool such as a cutter or a knife, a laser knife, or an ultrasonic vibration cutter. The rubber sheet 20 is fed at a constant speed by a driving roll via a guide roll, and is wound on a winding roll together with a liner such as canvas.
[0029]
In another apparatus 1 shown in FIG. 2, the first extruder 2a for kneading the short fiber-containing rubber 15 by the rotation of the extrusion screw 4a in the cylinder 3a, and the short fiber is not contained by the rotation of the extrusion screw 4b in the cylinder 3b. The second extruder 2 b for kneading the adhesive rubber 16 introduces the extruded rubber into the rubber passage 8.
[0030]
The first extruder 2a is directly connected to the expansion die 5 in the axial direction of the extrusion screw 4a, and the second extruder 2b is arranged at right angles to the first extruder 2a. When the adhesive rubber 16 extruded from the second extruder 2b collides with a rectifying projection provided at a position away from the tip end portion 25 of the extrusion screw 4a of the first extruder 2a, it is easy to surround the outer circumference of the short fiber-containing rubber 15. Become.
[0031]
The expansion die 5 accommodates an inner die 10 having a conical shape by gradually expanding the diameter to a discharge port 12 in an outer die 13, and a rubber passage 8 having a gap of a predetermined thickness between the inner die 10 and the outer die 13. Provided. The conical fluid splitting 27 attached and fixed to the inner die 10 divides the flow of the rubber uniformly to 360 degrees and pushes out the rubber passage 8 between the inner die 10 and the outer die 13.
[0032]
The short-fiber-mixed rubber 15 orients the short fibers in the circumferential direction while being gradually stretched in the circumferential direction toward the discharge port 12, and at the same time, as shown in FIG. Extruded into body 17. Then, as shown in FIG. 6, the cylindrical molded body 17 immediately after being extruded is cut by the cutting means 19 along the extrusion direction to form the rubber sheet 20. The thickness of the short fiber mixed rubber 15 is 1.5 to 10 mm, and the thickness of the adhesive rubber 16 is 0.1 to 1.0 mm.
[0033]
As described above, the apparatus 1 shown in FIG. 2 simultaneously extrudes the short fiber-containing rubber 15 extruded with the adhesive rubber 16 on the outer peripheral surface thereof from the inlet 11 of the expansion die 5 to remove the adhesive rubber 16. The device 1 shown in FIG. 3 has the short-fiber-containing rubber 15 penetrate from the inlet 11 of the expansion die 5 and is molded into a cylindrical molded body 17 that is surrounded and laminated on the outer peripheral surface of the short-fiber-containing rubber 15. The adhesive rubber 16 penetrates at a position P between the inlet 11 and the discharge port 12 of the expansion die 5 and is extruded into a cylindrical molded body 17 that is surrounded and laminated on the outer peripheral surface of the short fiber-containing rubber 15.
[0034]
That is, in the apparatus 1 shown in FIG. 3, the first extruder 2a that kneads the short fiber-containing rubber 15 by rotating the extrusion screw 4a extrudes the short fiber-containing rubber 15 from the inlet 11 of the expansion die 5 to the discharge port 12. On the other hand, a second extruder 2b for kneading the adhesive rubber 16 containing no short fibers is arranged in a state of intersecting with the first extruder 2a, and a rubber passage 36 is provided from a rubber reservoir 35 in which the adhesive rubber 16 is arranged in a circumferential direction. At the position P between the inlet 11 and the discharge port 12 of the expansion die 5 through the cylindrical shape.
[0035]
At the intrusion position P, a clear step is provided in the rubber passage 8 as shown in FIG. 4, and the gap of the rubber passage 8 from the intrusion position P to the discharge port 12 is equal to the thickness of the adhesive rubber 16 to be laminated. It is large and reduces the resistance of the adhesive rubber 16 from entering the rubber passage 8, smoothly surrounds the short fiber-containing rubber 15 on the outer peripheral surface, and makes the thickness of the adhesive rubber 16 uniform. There is no problem if the intrusion position P is between the inlet 11 and the discharge port 12, but it is preferable that the intrusion position P is near the middle between the inlet 11 and the discharge port 12.
[0036]
Next, a method of manufacturing a V-ribbed belt using the rubber sheet 20 with the adhesive rubber 16 obtained by the above method will be described with reference to FIGS.
[0037]
First, the short fiber oriented rubber sheet 20 with the adhesive rubber 16 is wound around the outer peripheral surface of the flexible jacket 42 attached to the inner die 41 so that the adhesive rubber 16 faces the flexible jacket 42.
[0038]
Next, as shown in FIG. 7, the inner mold 41 of the belt vulcanizer 40 on which the short fiber oriented rubber sheet 20 with the adhesive rubber 16 is wound is mounted on a base so as to form a constant gap inside the outer mold 46. Place on top. Since the inner mold 41 is moved from another molding step, the medium circulation port A and the medium feeding / discharging path B are separated from each other. After the inner mold 41 is placed on the base, the medium circulation port A is Connect to the pipe at joint J.
[0039]
The medium feeder is operated to feed high-pressure air or high-pressure steam into the flexible jacket 42 through the medium feed / discharge path B and the medium flow port A. Since the upper and lower portions of the flexible jacket 42 are hermetically sealed on the inner mold 41, the space between the inner surface of the flexible jacket 42 and the outer surface of the inner mold 41 is filled with air. It expands gradually. Then, the rubber sheet 20 mounted on the outer peripheral surface is uniformly expanded in the radial direction, and is brought into contact with the rib mold 45 of the outer mold 46 heated to 100 to 160 ° C. with a heater or high-temperature steam for 30 to 120 seconds.
[0040]
At this time, the short fiber oriented rubber sheet 20 with the adhesive rubber 16 is pressed by the rib mold 45 of the outer mold 46 by the expansion pressing force of the flexible jacket 42, and a plurality of V-shaped protrusions are formed on the surface as shown in FIG. To form an unvulcanized preformed body 21 having
[0041]
Thereafter, the valve is switched to the vacuum pump to exhaust the air filled in the flexible jacket 42, and then the flexible jacket 42 is contracted and returned to the original position shown in FIG. 7 by suction. .
[0042]
Then, the inner die 41 is removed from the outer die 46, and a reinforcing cloth 47 and a cord 48 made of a cord are sequentially wound around the outer peripheral surface of the flexible jacket 42 of the inner die 41. Thereafter, as shown in FIG. 9, the inner mold 41 is placed in the outer mold 46, and then the flexible jacket 42 is expanded as shown in FIG. 10, and the reinforcing cloth 47 and the core wire 48 are uniformly distributed in the radial direction. The belt sleeve 51 is produced by expanding and intimately and integrally vulcanizing the preform 21 attached to the rib mold 45 of the outer mold 46 heated to 100 to 180 ° C. by a heater or high-temperature steam. By molding the unvulcanized preformed body 21 as in the above-described manufacturing method, the amount of expansion of the core wire 48 due to expansion of the flexible jacket 42 during molding can be suppressed, and the core wire 48 can be arranged flat. A V-ribbed belt having excellent stability can be manufactured.
[0043]
In the method of the present invention, a tubular laminate of the short fiber oriented rubber sheet 20 with the adhesive rubber 16 is interposed between the inner mold 41 equipped with the flexible jacket 42 and the outer mold 46 engraved with the rib mold 45. You can also. That is, the cylindrical laminated body of the short fiber oriented rubber sheet 20 with the adhesive rubber 16 is arranged in contact with the rib mold 45 of the outer mold 46, and a gap is provided between the inner mold 41 and the outer mold 46. It can also be arranged to form an unvulcanized preform 21.
[0044]
After vulcanization, as shown in FIG. 11, the flexible jacket 42 is contracted, the inner die 41 is pulled out from the outer die 46, and then the vulcanized belt sleeve 51 attached to the outer die 46 is taken out. Then, the vulcanized belt sleeve 51 is cut into a predetermined width in the circumferential direction while being inserted into another drum and rotated, and is taken out from the drum and inverted so that the V-shaped rib is accurately formed. A plurality of attached V-ribbed belts 1 are obtained. When the outer mold 46 is a split mold, the insertion of the unvulcanized sleeve and the removal of the vulcanized sleeve become easy, and the split surface functions as a kind of air vent, thereby further increasing the V-shaped rib. It can be formed accurately.
[0045]
The vulcanized belt sleeve 51 extracted from the inner die 41 is thereafter inserted into another drum, and the rib surface layer of the vulcanized belt sleeve 51 is ground using a known grinder wheel to project short fibers. You may let it.
[0046]
Further, in this embodiment, the vulcanized belt sleeve 51 can be manufactured by a method as shown in FIG.
That is, the short fiber-containing rubber sheet 20 having the reinforcing cloth 47, the core wire 48, and the rib portion 29 with the adhesive rubber 16 is sequentially wound around the outer peripheral surface of the flexible jacket 42 attached to the inner die 41, and the wide width is not applied. A vulcanized belt sleeve 51 is arranged. In this case, in the rubber sheet 20, the adhesive rubber 16 is arranged on the core wire 48 side, and the short fiber-containing rubber sheet 20 having the rib portion 29 is arranged on the outermost side.
[0047]
Next, with the unvulcanized belt sleeve 51 wound around the inner mold 41, the belt sleeve 51 is placed and fixed on a base so as to form a constant gap inside the outer mold 46. Next, as shown in FIG. 10, high-pressure air or high-pressure steam is fed into the flexible jacket 42 in the same manner as described above. Since the upper and lower portions of the flexible jacket 42 are hermetically sealed on the inner mold 41, the space between the inner surface of the flexible jacket 42 and the outer surface of the inner mold 41 is filled with air. It expands gradually. Then, the unvulcanized belt sleeve 51 mounted on the outer peripheral surface is uniformly expanded in the radial direction, and is brought into contact with the rib mold 45 of the outer mold 46 heated with a heater or high-temperature steam.
[0048]
At this time, the rib portion 29 of the short fiber-containing rubber sheet 20 on the surface of the unvulcanized belt sleeve 51 is fitted to the rib mold 45 of the outer mold 46 by the expansion pressing force of the flexible jacket 42, and FIG. A vulcanized belt sleeve 51 having a plurality of V-shaped protrusions on the surface is formed.
[0049]
Then, as shown in FIG. 11, after vulcanization, the valve is switched to the vacuum pump, and the vacuum pump is operated to exhaust the air filled in the flexible jacket 42. The elastic jacket 42 is contracted and returned to the original position. After releasing the inner die 41, the vulcanized belt sleeve 51 attached to the outer die 46 is released.
[0050]
FIG. 13 is a sectional view of the obtained V-ribbed belt. The V-ribbed belt 100 has a cord 102 made of a cord of high strength and low elongation embedded in an adhesive rubber layer 103, and has a compression rubber layer 104 as an elastic layer below the core. The compressed rubber layer 104 is provided with a plurality of ribs 106 having a substantially triangular cross section and extending in the longitudinal direction of the belt.
[0051]
The short fibers 110 contained in the rib portion 106 are aligned in a wave shape at the rib portion 106 when the unvulcanized belt sleeve is vulcanized in close contact with the engraved rib mold as shown below. As a result, the belt maintains the lateral pressure resistance and eliminates the generation of scraps that would otherwise become scrap.
[0052]
The short fibers 110 contained in the rib portion 106 improve the lateral pressure resistance of the rib portion 106 by mixing short fibers made of nylon 6, nylon 66, polyester, cotton, and aramid. Aramid short fibers are preferred.
[0053]
In order for the aramid short fiber to sufficiently exhibit the above-described effects, the fiber length of the aramid fiber is 1 to 20 mm, and the amount of the aramid fiber is 1 to 30 parts by mass with respect to 100 parts by mass of rubber. The aramid fiber is an aramid having an aromatic ring in its molecular structure, such as Conex, Nomex, Kevlar, Technora, Twaron, and the like.
[0054]
When the amount of the aramid short fiber is less than 1 part by mass, the lateral pressure resistance of the rib portion 106 may be lacking. On the other hand, when the amount exceeds 30 parts by mass, the short fiber is not uniformly dispersed in the rubber. . However, the addition of the aramid short fibers is not essential, and the short fibers made of other materials may be added.
[0055]
As the rubber used for the adhesive rubber layer 103 and the compressed rubber layer 104, hydrogenated nitrile rubber, chloroprene rubber, natural rubber, CSM, ACSM, SBR, and ethylene-α-olefin elastomer are used. The addition ratio is 80% or more, and preferably 90% or more in order to exhibit heat resistance and ozone resistance characteristics. A hydrogenated nitrile rubber having a hydrogenation rate of less than 80% has extremely low heat resistance and ozone resistance. In consideration of oil resistance and cold resistance, the amount of bound acrylonitrile is preferably in the range of 20 to 45%. Among them, an ethylene-α-olefin elastomer having oil resistance and cold resistance is preferable.
[0056]
A typical example of the ethylene-α-olefin elastomer is EPDM, which is an ethylene-propylene-diene monomer. Examples of diene monomers include dicyclopentadiene, methylene norbornene, ethylidene norbornene, 1,4-hexadiene, cyclooctadiene and the like. Ethylene-propylene rubber (EPR) can also be used.
[0057]
For crosslinking of the rubber, sulfur or an organic peroxide is used. Examples of the organic peroxide include dicumyl peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, benzoyl peroxide, and 1,1. 3-bis (t-butylperoxyisopropyl) benzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3,2,5-dimethyl-2,5- (benzoylperoxy) Hexane, 2,5-dimethyl-2,5-mono (t-butylperoxy) hexane and the like can be mentioned.
[0058]
Further, by blending a crosslinking assistant (co-agent), the degree of crosslinking can be increased and problems such as adhesive wear can be prevented. Examples of the crosslinking aid include TIAC, TAC, 1,2 polybutadiene, metal salts of unsaturated carboxylic acids, oximes, guanidine, trimethylolpropane trimethacrylate, ethylene glycol dimethacrylate, NN′-m- It is usually used for peroxide crosslinking such as phenylene bismaleimide and sulfur.
[0059]
In addition, if necessary, carbon black, reinforcing agents such as silica, fillers such as calcium carbonate and talc, plasticizers, stabilizers, processing aids, normal rubber compounds such as coloring agents. What is used is used.
[0060]
The rubber composition used for the adhesive rubber 103 is similar to the rubber compound of the compressed rubber layer 104 except for short fibers. Of course, short fibers may be included.
[0061]
As the core wire 102, polyester fiber, aramid fiber, and glass fiber are used, and among them, a total denier of 4,000 to 8, which is obtained by twisting a polyester fiber filament group having ethylene-2,6-naphthalate as a main constituent unit, is used. 000 bonded cords are preferred because the belt slip rate can be kept low and the belt life is extended. The core wire 102 is subjected to an adhesive treatment for the purpose of improving the adhesiveness with rubber. As such an adhesive treatment, the fiber is generally immersed in a resorcinol-formalin-latex (RFL) solution and then dried by heating to form an adhesive layer uniformly on the surface. However, without being limited to this, there is a method of performing a pretreatment with an epoxy or isocyanate compound and then treating with an RFL solution.
[0062]
The core wire 102 can be finished into a belt having a high modulus by setting the spinning pitch, that is, the winding pitch of the core wire to 0.9 to 1.3 mm. If it is less than 0.9 mm, the cord runs over the adjacent cord and cannot be wound, while if it exceeds 1.3 mm, the modulus of the belt gradually decreases.
[0063]
The back reinforcing member 105 is selected from a woven fabric, a knitted fabric, and a nonwoven fabric, and a more preferable one is a nonwoven fabric. Examples of the fiber material include natural fibers such as cotton, hemp and rayon, and organic fibers such as polyamide, polyester, polyethylene, polyurethane, polystyrene, polyfluoroethylene, polyacryl, polyvinyl alcohol, wholly aromatic polyester, and aramid. No. The canvas is immersed in a resorcinol-formalin-latex solution (RFL solution) according to a known technique and then frictionally rubbed with an unvulcanized rubber against the back reinforcing material 105, or soaked in a solvent after immersion in the RFL solution. Immerse in liquid.
[0064]
The V-ribbed belt thus obtained can form a power transmission belt at low cost by reducing the number of manufacturing steps by laminating the adhesive rubber and the compressed rubber layer in advance. In order to produce the preformed body of (1), the cords can be arranged flat, and the running life of the belt is also improved.
[0065]
【The invention's effect】
As described above, in the inventions described in the claims of the present application, after extruding a two-layer cylindrical molded body in which the adhesive rubber is laminated on the outer peripheral side of the short fiber-containing rubber, the adhesive rubber is cut in a straight line to form an adhesive rubber. The rubber sheet is a short fiber oriented rubber sheet laminated with a rubber layer, which enables smooth extrusion and prevents the occurrence of rough surface on the rubber surface, and reduces the manufacturing man-hours by laminating the adhesive rubber and the compressed rubber layer in advance, resulting in low cost. In addition, in the belt forming process, an uncured preformed body can be formed in advance, so that the amount of expansion of the core wire due to expansion of the flexible jacket can be set small, and the core wire can be formed. There is an effect that it can be arranged flat.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a step of forming a short fiber oriented rubber sheet while linearly cutting an extruded cylindrical molded body.
FIG. 2 is a schematic diagram showing another process of forming a short fiber oriented rubber sheet while cutting an extruded cylindrical molded body linearly.
FIG. 3 is a schematic view showing still another process of forming a short fiber oriented rubber sheet while linearly cutting an extruded cylindrical molded body.
FIG. 4 is an enlarged view of a portion C in FIG. 3;
FIG. 5 is a sectional view taken along the line AA in FIG.
FIG. 6 is a perspective view of a sheet cut into a short fiber oriented rubber sheet with an adhesive rubber.
FIG. 7 is a longitudinal sectional view showing a state where a preform is being formed.
FIG. 8 is a cross-sectional view showing a state after a preformed body is manufactured.
FIG. 9 is a sectional view of a state before an unvulcanized belt sleeve is manufactured.
FIG. 10 is a cross-sectional view of a state where the belt sleeve is vulcanized.
FIG. 11 is a sectional view showing a state after vulcanizing the belt sleeve.
FIG. 12 is a longitudinal sectional view showing a state after an unvulcanized belt sleeve is formed by another method.
FIG. 13 is a sectional view of a V-ribbed belt according to the present invention.
[Explanation of symbols]
2a First extruder 2b Second extruder 5 Expansion die 8 Rubber passage 10 Inner die 11 Inlet 12 Discharge port 13 Outer die 15 Short fiber-containing rubber 16 Adhesive rubber 17 Cylindrical molded body 19 Cutting means 20 Short fiber oriented rubber sheet 21 Preformed body 41 Inner mold 42 Flexible jacket 45 Rib mold 46 Outer mold 48 Core 51 Belt sleeve

Claims (7)

ベルト長手方向に沿って心線を埋設した接着ゴム層と、接着ゴム層に隣接してベルトの長手方向に延びるリブ部を有する伝動ベルトの製造方法において、
短繊維含有ゴムを内周側に接着ゴムを外周側に積層した二層の筒状成形体を、入口から吐出口へ徐々に径を拡張させた拡張ダイで押出成形した後、切開して接着ゴムを積層した短繊維配向ゴムシートにし、
外周面に可撓性ジャケットを装着した内型と、内周面にリブ型を刻印した外型との間に、上記接着ゴムを積層した短繊維配向ゴムシートを介在させ、
上記可撓性ジャケットを膨張させて短繊維配向ゴムシートを外型の刻印したリブ型に密着するように未加硫の予備成型体を作製し、
外型から離脱した内型の可撓性ジャケット面に少なくとも心線を巻き付け、
再度、上記内型を外型内に設置し、可撓性ジャケットを膨張させて心線を外型に装着した予備成型体と一体的に加硫し、
脱型してリブ部を有する加硫ベルトスリーブを作製する、
ことを特徴とする伝動ベルトの製造方法。
In a method for manufacturing a power transmission belt having a bonding rubber layer in which a cord is embedded along the belt longitudinal direction and a rib portion extending in the belt longitudinal direction adjacent to the bonding rubber layer,
After extruding a two-layer cylindrical molded body with the short fiber-containing rubber laminated on the inner circumference and the adhesive rubber on the outer circumference, using an expansion die whose diameter is gradually expanded from the inlet to the discharge port, cut and bond Short fiber oriented rubber sheet laminated with rubber,
A short fiber oriented rubber sheet laminated with the adhesive rubber is interposed between an inner mold having a flexible jacket attached to the outer peripheral surface and an outer mold having a rib mold stamped on the inner peripheral surface,
The flexible jacket is expanded to prepare an unvulcanized preform so that the short fiber oriented rubber sheet is in close contact with the engraved rib mold of the outer mold,
At least a core wire is wound around the flexible jacket surface of the inner mold detached from the outer mold,
Again, placing the inner mold in the outer mold, inflating the flexible jacket and vulcanizing integrally with the preformed body with the core wire attached to the outer mold,
Demold to produce a vulcanized belt sleeve with ribs,
A method for manufacturing a power transmission belt, comprising:
ベルト長手方向に沿って心線を埋設した接着ゴム層と、接着ゴム層に隣接してベルトの長手方向に延びるリブ部を有する伝動ベルトの製造方法において、
短繊維含有ゴムを内周側に接着ゴムを外周側に積層した二層の筒状成形体を、入口から吐出口へ徐々に径を拡張させた拡張ダイで押出成形し、該筒状成形体を直線状に切開して接着ゴムを積層した短繊維配向ゴムシートにし、
内型に装着した伸縮可能な可撓性ジャケット面に、少なくとも心線と接着ゴムを積層した短繊維配向ゴムシートを巻き付けて未加硫ゴムスリーブを形成し、
上記内型を内周面にリブ型を刻印した外型に挿入して、圧力媒体を封入して可撓性ジャケットを膨張させて未加硫ゴムスリーブを外型に押圧型付して加硫する、
ことを特徴とする伝動ベルトの製造方法。
In a method for manufacturing a power transmission belt having a bonding rubber layer in which a cord is embedded along the belt longitudinal direction and a rib portion extending in the belt longitudinal direction adjacent to the bonding rubber layer,
A two-layer cylindrical molded body in which short fiber-containing rubber is laminated on the inner peripheral side and adhesive rubber is laminated on the outer peripheral side is extruded with an expansion die whose diameter is gradually increased from the inlet to the discharge port, and the cylindrical molded body is extruded. Cut straight into a short fiber oriented rubber sheet laminated with adhesive rubber,
An unvulcanized rubber sleeve is formed by winding a short fiber oriented rubber sheet on which at least a core wire and an adhesive rubber are laminated on a stretchable flexible jacket surface attached to an inner mold,
Insert the inner mold into the outer mold with a rib mold stamped on the inner peripheral surface, seal the pressure medium, expand the flexible jacket, press the unvulcanized rubber sleeve on the outer mold and vulcanize. Do
A method for manufacturing a power transmission belt, comprising:
接着ゴムを積層した短繊維配向ゴムシートにする工程において、先に押出した短繊維含有ゴムの外周面を被覆するように接着ゴムを押出し、入口から吐出口へ徐々に径を拡張させた内ダイと外ダイからなる拡張ダイから接着ゴムを短繊維含有ゴムの外周面に包囲し積層した二層の筒状成形体を押出する請求項1または2記載の伝動ベルトの製造方法。In the process of forming a short fiber oriented rubber sheet in which the adhesive rubber is laminated, the adhesive rubber is extruded so as to cover the outer peripheral surface of the previously extruded short fiber-containing rubber, and the diameter of the inner die is gradually increased from the inlet to the discharge port. 3. The method for manufacturing a power transmission belt according to claim 1, wherein an adhesive rubber is surrounded on the outer peripheral surface of the short fiber-containing rubber and a laminated two-layer cylindrical molded body is extruded from an expansion die comprising an outer die and an outer die. 接着ゴムを積層した短繊維配向ゴムシートにする工程において、先に押出した短繊維含有ゴムの外周面に接着ゴムを被覆したものを、拡張ダイの入口から同時に押出しして接着ゴムを短繊維含有ゴムの外周面に包囲し積層した筒状成形体に成形する請求項3記載の伝動ベルトの製造方法。In the process of forming a short fiber oriented rubber sheet in which the adhesive rubber is laminated, the rubber extruded from the short fiber-containing rubber that has been previously extruded and coated with the adhesive rubber is simultaneously extruded from the entrance of the expansion die to contain the adhesive rubber containing the short fibers. 4. The method of manufacturing a power transmission belt according to claim 3, wherein the power transmission belt is formed into a cylindrical molded body that is surrounded and laminated on an outer peripheral surface of rubber. 接着ゴムを積層した短繊維配向ゴムシートにする工程において、短繊維含有ゴムを拡張ダイの入口から侵入させ、他方接着ゴムを拡張ダイの入口と吐出口との間に位置する部位で侵入させて接着ゴムを短繊維含有ゴムの外周面に包囲し積層した筒状成形体に押出成形する請求項3記載の伝動ベルトの製造方法。In the step of forming a short fiber oriented rubber sheet in which the adhesive rubber is laminated, the short fiber-containing rubber is caused to enter from the entrance of the extension die, while the adhesive rubber is caused to enter at a portion located between the entrance and the discharge port of the extension die. 4. The method for manufacturing a power transmission belt according to claim 3, wherein the adhesive rubber is extruded into a cylindrical molded body that is surrounded and laminated on the outer peripheral surface of the short fiber-containing rubber. 接着ゴムの侵入位置が拡張ダイの入口と吐出口との間にあり、該接着ゴムの侵入位置から吐出口へ至るまでゴム通路の間隙が積層する接着ゴムの厚みだけ大きくなっている請求項5記載の伝動ベルトの製造方法。6. The adhesive rubber intruding position is between the entrance of the expansion die and the discharge port, and the gap of the rubber passage from the adhesive rubber intrusion position to the discharge port is increased by the thickness of the laminated adhesive rubber. A method for manufacturing the transmission belt according to the above. 脱型した加硫ゴムスリーブのリブ部表面層を研削する請求項1〜6の何れかに記載の伝動ベルトの製造方法。The method for manufacturing a power transmission belt according to any one of claims 1 to 6, wherein the rib surface layer of the demolded vulcanized rubber sleeve is ground.
JP2002337213A 2002-07-18 2002-11-20 Method for manufacturing transmission belt Pending JP2004188596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337213A JP2004188596A (en) 2002-07-18 2002-11-20 Method for manufacturing transmission belt

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002209118 2002-07-18
JP2002284989 2002-09-30
JP2002303190 2002-10-17
JP2002337213A JP2004188596A (en) 2002-07-18 2002-11-20 Method for manufacturing transmission belt

Publications (1)

Publication Number Publication Date
JP2004188596A true JP2004188596A (en) 2004-07-08

Family

ID=32777135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337213A Pending JP2004188596A (en) 2002-07-18 2002-11-20 Method for manufacturing transmission belt

Country Status (1)

Country Link
JP (1) JP2004188596A (en)

Similar Documents

Publication Publication Date Title
KR101422450B1 (en) Method for manufacturing a v-ribbed belt
JP4299110B2 (en) Transmission belt manufacturing method
JP2004174772A (en) Method for producing transmission belt
JP4233924B2 (en) Transmission belt manufacturing method
JP2004188596A (en) Method for manufacturing transmission belt
JP4329925B2 (en) Transmission belt manufacturing method
JP2002113764A (en) Method and apparatus for manufacturing short fiber- containing formed item
JP4188172B2 (en) Method for producing double-layer rubber sheet for transmission belt
JP3764413B2 (en) Transmission belt manufacturing method
JP2004316787A (en) V-ribbed belt and manufacturing method thereof
JP2004076927A (en) V-ribbed belt and manufacturing method thereof
JP2004160660A (en) Method for manufacturing driving belt
JP4233930B2 (en) Transmission belt manufacturing method
JP4071131B2 (en) Transmission belt manufacturing method
JP2008044151A (en) Method for producing driving belt
JP3682017B2 (en) V-ribbed belt manufacturing method and manufacturing apparatus thereof
JP2003181946A (en) Method for manufacturing v-ribbed belt
JP2006009946A (en) Method for manufacturing transmission belt
JP2008265031A (en) Manufacturing method for transmission belt
JP2002127227A (en) Method and apparatus for manufacturing staple fiber- containing rubber sheet
JP2008213145A (en) Method for producing transmission belt and transmission belt
JP2006007450A (en) Manufacturing method of transmission belt and transmission belt
JP4133310B2 (en) Transmission belt manufacturing method
JP2004084790A (en) Transmission belt and manufacturing method thereof
JP2004276581A (en) Method for manufacturing transmission belt