JP2004188202A - デジタル胸部放射線写真の自動分析方法 - Google Patents

デジタル胸部放射線写真の自動分析方法 Download PDF

Info

Publication number
JP2004188202A
JP2004188202A JP2003410955A JP2003410955A JP2004188202A JP 2004188202 A JP2004188202 A JP 2004188202A JP 2003410955 A JP2003410955 A JP 2003410955A JP 2003410955 A JP2003410955 A JP 2003410955A JP 2004188202 A JP2004188202 A JP 2004188202A
Authority
JP
Japan
Prior art keywords
lung
image
chest
model
radiograph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003410955A
Other languages
English (en)
Inventor
Hui Luo
ルオ ヒューイ
David H Foos
エイチ フース デイビッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/315,855 external-priority patent/US7221786B2/en
Priority claimed from US10/315,884 external-priority patent/US7221787B2/en
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of JP2004188202A publication Critical patent/JP2004188202A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

【課題】胸部放射線写真撮影画像における肺領域を自動的にセグメント化するための方法を提供する。
【解決手段】入力デジタル胸部放射線写真撮影画像を提供して、前記入力デジタル放射線写真撮影画像を前処理して、前記前処理された画像から胸部本体の正中線および肺の中心線を抽出して、前記抽出された胸部本体の正中線および2本の肺の中心線に基づいて、前記画像における胸部本体モデル、脊柱モデル、および2つの肺モデルを1つずつ位置決めして、前記抽出および位置決めの画像処理に応じて正しい肺境界に収束するように肺形状モデルを変形させることによって肺輪郭を検出する。
【選択図】図1

Description

本発明は、デジタル胸部放射線写真の自動分析技術に関するが、特に、デジタル胸部放射線写真における肺領域の自動検出方法に関する。
胸部放射線写真において肺領域を識別することは、例えば、間質性疾患、気胸、心臓肥大、肺結節のような、デジタル胸部放射線写真のコンピュータ分析におけるほとんどのタイプにとって重要な前処理ステップである。最近の論文におけるかなり多くの研究が、このトピックに取り組んできており、様々な画像処理方法が応用されてきている。これらの方法は、基本的に、2つのカテゴリに分類することが可能である。1つは、特徴型(特徴に基づく)ピクセル分類であり、もう1つは、ルール型推論である。ピクセル分類システムでは、画像における各ピクセルが、例えば、濃度、ヒストグラム、エントロピー、階調度(gradient)などのような、特徴のセットによって表されており、ニューラル・ネットワーク(Neural Networks)つまりマルコフ・ランダム場モデリング(Markov Random Field Modeling)の出力に基づいて1つの領域タイプに分類される。この主題分野における先行する研究としては、マクニットグレイら(非特許文献1)、ツジら(非特許文献2)、およびハセガワら(非特許文献3)の研究が含まれる。マクニットグレイら(非特許文献1)は、その時すでに分類子(classifiers)をトレーニングおよびテストするために用いられていた特徴選択のための根拠としての段階的な判別分析からなるパターン分類スキームを開発した。ツジら(非特許文献2)は、相対的なピクセルアドレス、濃度、およびヒストグラム等化エントロピーによって、各ピクセルを、2つの解剖学的クラス(肺およびその他)に分類するために適応サイズのハイブリッド・ニューラル・ネットワークを用いた。ハセガワら(非特許文献3)は、肺領域を抽出するためにシフト不変ニューラル・ネットワークを採用した。ビッティトゥら(非特許文献4)は、マルコフ・ランダム場モデリングを用いて肺領域を識別するためのピクセル分類子を開発した。ルール型推論による肺のセグメント化は、一連のステップからなるが、その各々には、一定の処理および、通常、何らかの調整可能なパラメータが含まれる。例えば、アルマトら(非特許文献5)は、全体のグレイレベルと局所的なグレイレベルの閾値処理(thresholding)の組み合わせを用いて、肺領域を抽出した上で、ローリングボール技術(rolling ball technique)によって肺の輪郭を平滑化した。ドゥリエら(非特許文献6)は、手書きの肺の輪郭と照らし合わせて確認することを伴う発見的エッジ追跡アプローチ(heuristic edge tracing approach)を提案した。ピエトカ(非特許文献7)は、選択された領域のグレイレベルヒストグラムから特定された単一の閾値を用いて肺のボーダーを線描した上で、階調度分析によって肺のエッジをさらに精密にした。シューら(非特許文献8)は、上部肺エッジおよび胸郭エッジを検出した上で、それらのエッジを滑らかな曲線に当てはめることによって肺領域を特定した。カラスカルら(非特許文献9)は、自動的に定義された関心のある領域(ROI:Regions of Interests)のセットにおいて肺の境界セグメントを検出した上で、補間および円弧当てはめ(arc fitting)によって境界を訂正して完成した。
一般に、先行技術において説明された方法は低レベルの処理であって、これらは、それらのうちのいくつかが、セグメント化アルゴリズムのなかで発見的手法として埋め込まれたドメイン知識を活用するものではあるが、生の画像データに対して直接に作用するものである。これらのアプローチは、異常な解剖学的構造の画像、または過度のノイズおよび低い品質を伴う画像を処理するときに問題をもたらすが、これは、異常な解剖学的構造またはノイズによってセグメント化の手順を混乱させることが少なくないためである。従って、セグメント化アルゴリズムの性能を向上させるために、解剖学的知識と低レベル画像処理との両方を組み込む、高レベル分析に対する必要性が存在する。この問題を解決するために、ブラウンら(非特許文献10)は、パラメータ機能と推論メカニズムを用いて、画像エッジを肺境界の解剖学的モデルに整合させる知識型システムを提示した。ジネケンら(非特許文献11)は、肺領域を検出するために、ルール型アプローチとピクセル分類の強みを兼ね備えるハイブリッドシステムを用いた。最後に述べたいくつかの方法によれば、向上した性能を示すが、自動的かつ正確に肺領域を検出することは依然として難しい問題である。この難しさの一因となるものとしては、例えば、(1)一人一人の胸部画像合成における高い変動度、(2)体質および検査中の肺の吸気レベルにおけるばらつき、および(3)例えば、肺の脈管構造、肋骨、および鎖骨のような、胸部放射線写真の肺領域において重ね合わされた構造、を含むいくつかの要因がある。最後に述べた構造は、肺境界が不明瞭に現れる原因となり、これによって、低レベル画像処理の性能が著しく低下させられる。
マクニットグレイら(McNitt-Gray et al.)著「Feature Selection classification problem of digital chest radiograph segmentation」(IEEE Trans. Med. Imaging, 14, pp 537-547、1995年刊行) ツジら(Tsuji et al.)著「Automated Segmentation of anatomical region in chest radiographs using an adaptive-sized hybrid neural network」(Med. Phys., 25 (6), pp 998-1007、1998年6月刊行) ハセガワら(Hassegawa et al.)著「A Shift-Invariant Neural Network for the Lung Field Segmentation in Chest Radiography」(Journal of VLSI Signal Processing, No. 18, pp 241-250、1998年刊行) ビッティトゥら(Vittitoe et al.)著「Identification of lung regions in chest radiographs using Markov random field modeling」(Med. Phys. 25, (6), pp 976-985、1998年刊行) アルマトら(Armato et al.)著「Automated Registration of ventilation/perfusion images with digital chest radiographs」(Acad. Radiology, 4, 183-192、1997年刊行) ドゥリエら(Duryea et al.)著「A fully automated algorithm for the segmentation of lung fields in digital chest radiographic images」(Med. Phys., 22, 99 183-191、1995年刊行) ピエトカ(Pietka)著「Lung Segmentation in Digital Radiographs」(Journal of Digital Imaging, vol. 7, No. 2, pp 79-84、1994年刊行) シューら(Xu et al.)著「Image Feature Analysis For Computer-Aid Diagnosis: Detection of Right and Left hemi diaphragm edges and Delineation of lung field in chest radiographs」(Med. Phys., 23 (9), pp 1613-1624、1996年9月刊行) カラスカルら(Carrascal et al.)著「Automatic Calculation of total lung capacity from automatically traced boundaries in postero-anterior and lateral digital chest radiographs」(Med. Phys., 25 (7), pp 1118-1131、1998年7月刊行) ブラウンら(Brown et al.)著「Knowledge-based method for segmentation and analysis of lung boundaries in chest x-ray images」(Computerized medical Imaging and Graphics, 22, pp 463-477、1998年刊行) ジネケンら(Ginneken et al.)著「Computer-Aided Diagnosis in Chest Radiography」(博士論文、Utrecht University、2001年3月刊行)
肺領域を確実にセグメント化するためには、低レベルの処理と高レベルの分析との両方を採用しなければならないだけでなく、低レベルの処理技術が、高レベルの分析によって提供される関連のある局所的な解剖学的構造に関する知識によって制限されるとともに誘導されるべきである。本発明は、先行技術における問題に対する解決策を提供することに加えて、知識型モデルを用いることによってデジタル胸部放射線写真における肺領域を自動的にセグメント化するための頑強な手段を採用するが、これによれば、解剖学的構造の特性をカプセル化するだけでなく、それらを検出するための効率的な方法を特定するとともに、それらの関係を評価する。
本発明によれば、胸部放射線写真において肺領域を検出するための自動化された方法が提供される。
本発明の1つの特徴によれば、胸部放射線写真において胸部本体および脊柱を検出して位置を特定するための自動化された方法およびシステムが提供されることになる。
本発明のもう1つの目的は、胸部放射線写真における解剖学的構造に基づいて画像の表示品質を向上させることである。
本発明によれば、これらの目的は、胸部放射線写真を自動的に分析するための新しい方法およびシステムを提供することによって達成される。その方法は、胸部放射線写真を前処理し、胸部本体の正中線および肺の中心線を抽出し、胸部放射線写真における胸部本体モデル、脊柱モデル、および肺モデルの位置を特定し、肺領域の正しい境界に収束するように肺形状モデルを変形させることを含む。
胸部放射線写真を前処理することには、胸部放射線写真のヒストグラムを分析し、前記ヒストグラムから2つの閾値を導き出し、前記2つの閾値によって胸部放射線写真をセグメント化し、前記セグメント化された画像から2つの肺領域および縦隔領域を推定し、前記推定された肺領域および縦隔領域から抽出された特性に基づいて放射線写真を正規化することが含まれる。
胸部本体の正中線および肺の中心線を抽出することでは、0次X方向の導関数画像および推定された肺領域および縦隔領域を利用して、胸部本体の正中線に相当する1本および肺の中心線に相当する残りの2本である3本の特徴線を検出する。
知識モデルの位置を特定することは、3本の特徴線を利用して、胸部本体モデルから開始して、続いて、脊柱モデル、最後に、肺モデルについて行われる。
肺形状モデルを変形させることは、各ランドマークについて目標点を割り出し、形状モデルのポーズおよび大きさを調整し、最後に、目標点に最適に適合するように形状モデルを局所的に変形させることを含む。
本発明は、以下のような利点を有する。
1.胸部放射線写真が解剖学的領域に基づいて正規化されるが、これは、放射線写真の表示品質を向上させるだけでなく、当該システムを頑強にもする。
2.当該アルゴリズムは、高レベルの分析と低レベルの画像処理との両方を組み込むが、これによって、当該システムが、異常な解剖学的構造、ノイズ、および低い品質を伴う放射線写真を取り扱うことを可能にする。
3.形状に基づいて変形可能な肺モデルは、形状および位置の分散ばかりでなく画像の乱れに対しても強い。
4.領域成長スキーム(region-growing scheme)は適応性がある。
5.採用されたエッジ情報は、異なる次数の導関数と異なる方向のエッジ情報とを組み合わせるが、これによって、境界の検出が、より正確かつ確実となる。
本発明は、一般に、胸部の放射線写真撮影画像の処理に関する。図17は、本発明を組み込む放射線写真撮影システムを示すブロック図である。図示したように、例えば、胸部の放射線写真撮影画像のような放射線写真撮影画像が、画像捕捉システム1600によって捕捉される。画像捕捉システム1600は、以下に述べるもののうちの1つを含むこともある。(1)従来の放射線写真撮影フィルム/スクリーンシステムであって、患者の胴体部分(胸部)にX線源からX線を照射して、放射線写真撮影画像を放射線写真撮影フィルムに形成するシステム。このフィルムを現像するとともにデジタル化して、デジタル放射線写真撮影画像を生成する。(2)コンピュータ放射線写真撮影システムであって、患者の胴体部分の放射線写真撮影画像を蓄積蛍光体プレートに形成するシステム。蓄積蛍光体プレートをスキャンして、デジタル放射線写真撮影画像を生成する。蓄積蛍光体プレートは消去および再利用される。(3)直接的なデジタル放射線写真撮影システムであって、患者の胴体部分の放射線写真撮影画像を、直接的なデジタルデバイスに直接的に形成して、これが、デジタル放射線写真撮影画像を直接的に生成するシステム。
デジタル放射線写真撮影画像は、本発明に従って画像処理システム1602によって処理される。システム1602は、望ましくは、デジタルコンピュータつまりデジタルマイクロプロセッサであり、様々な画像処理操作を実行するハードウエアおよびファームウエアを含むこともある。
処理されたデジタル放射線写真撮影画像は、例えば、高解像度の電子ディスプレイまたはプリンタのような画像出力1604に提供されて、これが、処理された放射線写真撮影画像のハードコピー(フィルム)を生成する。元画像ばかりではなく処理画像を、遠隔地に送信すること、放射線写真撮影画像蓄積システム(PACS)に蓄積すること等が可能である。
本発明は、胸部放射線写真撮影画像における肺領域を自動的にセグメント化するための方法を開示するが、これは、図1に示すような6つの処理ステップの組み合わせを基本とする。まず、入力された胸部放射線写真撮影画像(ボックス9)を前処理する(ボックス10)。続いて、胸部本体の正中線および肺の中心線を画像から抽出する(ボックス11)。次に、胸部本体モデル(ボックス12)、脊柱モデル(ボックス13)、および2つの肺モデル(ボックス14)については、これらの抽出された特徴線に基づいて1つずつ胸部放射線写真撮影画像における位置を特定する。最終的に、肺の輪郭(ボックス16)は、領域情報およびエッジ情報を利用して正しい肺境界に収束するように肺形状モデルを変形させること(ボックス15)によって検出される。
肺のセグメント化のために知識モデルを用いるが、これは、以下のような特性をカプセル化する。
・形状特性:例えば、図2Aに示したような、肺24,22、脊柱23、および胸部本体21の解剖学的形状によって、胸部画像合成において非常に役立つ情報が提供されるが、これを用いて検出手順を誘導することが可能である。
・空間特性:脊柱23は、胸部本体21の中央に位置しており、2つの肺領域22,24は、その脊柱を中心としてほぼ対称である。例えば、図2Bに示したような、それらの空間的な関係を用いて、画像における肺領域の近似位置を予測することが可能である。
・テクスチャ特性:肺領域とその他の身体部分とでは、視覚的な外観が全く異なる。通常、肺領域は、いくつかの重ね合わされた構造を含み、より低いグレイレベル値を有する。これに対して、その他の身体部分は、肺領域よりも明るく均一な外観である。
(1)各患者の胸部において、(2)画像捕捉デバイスの選択における照射条件において、(3)放射線科医の好みにおいて、変動度が高いために、胸部放射線写真は全く異なる外観となり、これが、処理結果に大きな影響を及ぼす。従って、画像の正規化は、本発明の頑強性を確かなものにする上で不可欠なステップである。本発明の新規性としては、全ての入力された画像が、画像のグレイレベルヒストグラムではなく、関心のある領域(ROI)に基づいて正規化されるということがある。これは、ほとんどの画像ヒストグラムが、前景、背景、およびROIからのグレイレベルを含むことから理にかなっている。前景とは、照射中にX線の平行化によって遮蔽(occluded)されている領域である。背景とは、直接的なX線照射をすでに受けている領域であり、ROIとは、通常、診断のために関心のある解剖学的領域を含む、画像の残りの部分であると解される。画像の正規化が単にそのヒストグラムに基づいている場合には、その結果に、画像の前景および背景による偏りが生じることは避けられない。
次に、図3に、例えば、前処理を実行するために示したような、胸部放射線写真の前処理を説明するブロック図を示す。胸部放射線写真30のグレイレベルヒストグラムが生成されて分析される(ボックス31)。2つの閾値を検出して、背景、肺領域、およびその他の身体部分を分離する(ボックス32)。背景およびその他の身体部分を除去することによって(ボックス33)、肺領域を、胸部放射線写真において推定することが可能であり(ボックス34)、さらには、縦隔領域を導き出すことが可能である(ボックス35)。最終的に、画像は、検出された肺領域および縦隔領域のグレイレベル特性に基づいて正規化される(ボックス36)。このステップの出力には、正規化された画像(ボックス37)のみならず、肺領域の推定域(ボックス38)も含まれる。
図4A〜図4Cを参照すると、例えば、図4Aに示したようなグレイレベルヒストグラムが生成されて、画像における最大グレイレベルおよび最小グレイレベルが検出される。次に、2つの閾値を導き出して、元の画像をヒストグラムに基づいてセグメント化する。第1の閾値(th1)は、画像から背景を分離するために用いられ、第2の閾値(th2)は、その他の胸部身体部分から肺領域を抽出する。第1の閾値を検出する方法は、次のとおりである。例えば、図4Bに示したように、図4Aのヒストグラムを、まず平滑化して、ノイズ干渉を低減する。次に、ヒストグラムの導関数を計算する。最終的に、導関数が最大である位置を検出して、第1の閾値として設定する。第2の閾値は、次の式によって得られる。
Figure 2004188202
式中、h(i)は、胸部放射線写真のヒストグラムである。図4Cは、2つの検出された閾値を示す。
図5Aおよび図5Bは、それぞれ、胸部放射線写真および第1の閾値を用いた結果を示す。画像の閾値処理後に、グレイレベルが第1の閾値に満たない全ての領域をラベル付けして確認することで、これらの領域が背景に属するかどうかを確かめてから、例えば、図5Cに示したように、背景領域を、セグメント化された画像から除去する。背景の除去後に残されたスペックルおよびノイズは、形態学的操作を用いることによって容易に解消することが可能である。図5Dは、最終的な結果画像を示すが、図中において、2つの肺領域は、明瞭であって、肺領域の推定域として用いることが可能である。
次のステップは、2つの肺野の間に位置する縦隔領域を検出するためのステップである。その抽出は、例えば、図6に示したように、2つの肺領域の間にある領域を検出することによって簡単に完了させることが可能である。縦隔領域が取得されると、入力された胸部放射線写真を、例えば、式(2)において与えられるような、肺領域の最小グレイレベルおよび縦隔の最大グレイレベルを用いることによって正規化することが可能である。
Figure 2004188202
式中、I(x,y)は、ピクセル(x,y)における元の胸部放射線写真撮影画像のグレイレベルである。
図7Aおよび図7Bは、元の胸部放射線写真と正規化された胸部放射線写真との両方を示す。正規化された後に画質が著しく向上しているのは明らかである。
肺領域の推定域を用いるのみでは、胸部放射線写真において知識モデルの位置を特定する上で十分ではない。なぜならば、その情報は、特に、一部の異常な画像において、正確かつ確実ではないからである。しかしながら、それによって、肺領域を検出するための良好な手がかりが確かに得られる。いくつかの実験結果によれば、放射線写真に、適切な縮尺および方向と微分(derivation)との組み合わせを用いることで、解剖学的構造または境界に密接に対応するいくつかの特徴を抽出することが可能であるということが分かる。例えば、胸部本体の正中線および肺の中心線を、例えば、図8に示したように、0次のX方向の導関数画像(derivative image)において容易に見つけることが可能である。図中、画像の中央近くの白線は、胸部本体の正中線に相当し、白線の両側における2本の黒線は、肺領域のほぼ中心線である。本発明では、この情報を用いて、知識モデルの位置を特定する。導関数画像は、正規化された画像Inew(x,y)を、特定の縮尺σにおけるガウシアン(Gaussian)G(x,y,σ)の導関数で畳み込むことによって算出される。
Figure 2004188202
2次元における正規化されたガウシアンは、次の式によって与えられる。
Figure 2004188202
式中、
Figure 2004188202
は、畳み込みを指し、Gnαは、方向αにおけるガウシアンカーネル(Gaussian kernel)のn次の導関数である。本発明において、α=0°は、X方向に相当し、α=90°は、Y方向に相当する。導関数画像における白色のピクセルおよび黒色のピクセルは、それぞれ方向αにおける最大および最小に相当するが、これらは、非最大抑制アルゴリズム(non-maximal suppression algorithm)を用いて、各ピクセルを、その隣接する領域と比較することによって得られる。肺領域の推定域を利用することで、各黒線に1つである2つの開始点を見つけてから、それらを両方向に追跡して、最終的に、グレイレベルが第2の閾値(th2)を上回るピクセルを終点とすることによって、2本の肺の中心線を検出することが可能である。胸部本体の正中線は、縦隔領域において同様の手法によって見つけられる。図9は、胸部本体の正中線および2本の肺の中心線についての検索結果を示す。
胸部本体の正中線および肺の中心線が検出されると、胸部本体モデルは、その中心線を胸部本体の正中線に合わせることによって位置決めすることが可能であり、そのモデルの大きさが2本の肺の中心線の間の距離から導き出されて、さらに、脊柱モデルが解剖学上の空間的な関係に従って胸部本体モデルの中央に配置される。肺モデルの位置決めは少し複雑であるが、これは、それらの大きさ、位置、および向きをまず肺の中心線から導き出す必要があり、続いて、肺形状モデルをこれらのパラメータによって調整して、最終的に、各モデルを肺の中心線に沿って並べることからである。図10は、胸部放射線写真における知識モデルの最初の配置を示す。
本発明において用いられる肺形状モデルは、ルオ(H. Luo)らの「Method for automatic construction of 2D statistical shape model for the lung regions」の2Dの統計的形状モデルであるが、これは、一般的な形状を表す平均の形状ベクトル
Figure 2004188202
と、固有ベクトル(Pt)の形をとる変動の最頻値とから構成されている。肺形状モデルを変形させることは、図11に示したような3つの段階において実行される。第1の段階において、適正な目標点が、肺平均形状モデルの最初の配置に基づいて各ランドマークについて選択される(ボックス110)。第2の段階において、肺平均形状モデルを固定的(rigidly)に変形させて、目標関数を最適化する(ボックス111)。このステップは、形状モデルの位置、向き、および大きさにおけるどんな小さな調整であっても可能にする。第3の段階において、目標点に最適に適合させるために形状モデルを局所的に変形させて(ボックス112)、現在の形状が更新される(ボックス113)。このプロセスを理想的に繰り返して、数回の反復の後に、形状の変化がほとんど無くなり(ダイヤモンド114)、形状モデルは安定した状態に向かう(ボックス115)。
各ランドマークについて適正な目標点を求めることは、肺のセグメント化を正常に行う上で非常に重要である。本発明においては、領域情報およびエッジ情報の両方が検出に際して用いられる。領域情報は、ランドマークの周辺における小さな局所的な検索領域から取得されて、例えば、肺領域の内側または外側、あるいは境界の近くであるというような、ランドマークの配置を示すために用いられる。エッジ情報は、各ランドマークについての異なる次数および方向の導関数画像から抽出されるが、これによって、肺領域の境界特性についての正確な表示が与えられる。
次に、図13を参照する。領域情報を得るために、局所的な検索領域が、各ランドマークポイントにおいて構成されるが(ボックス130)、これは、ランドマークの局所的な輪郭に対して垂直な狭い帯状領域である。ランドマーク(xn,yn)に対して垂直な方向は、ランドマーク(xn-1,yn-1)からランドマーク(xn+1,yn+1)に向かうベクトルを90°回転させることによって算出される。肺形状モデルが閉じた輪郭であることから、1番目のランドマークは、最後のランドマークおよび2番目のランドマークを2つの隣接ランドマークとして用いて、最後のランドマークは、最後から2番目のランドマークおよび1番目のランドマークを用いる。片側においてK個のピクセルをサンプリングして垂直線を形成した上で、その垂直線の上方に1本と下方に1本の、2本の線が抽出されて、これら3本の線すべてが一体となってランドマークの局所的な検索領域を構成する。図12は、局所的な検索領域の構成を示すが、図中、tinは、局所的な検索領域における内側の目標点であり、toutは、局所的な検索領域における外側の目標点である。各ランドマークについて、その局所的な領域の特性は、その領域において何個のピクセルが肺領域の閾値threg未満であるかを分析することによって評価される(ボックス131)。その大部分、例えば、80%が閾値未満であれば、そのランドマークは、肺領域に属しており(ダイヤモンド135)、その目標点を、toutに設定する(ボックス132)。その大部分が閾値を上回っている場合には(ダイヤモンド136)、そのランドマークは、肺領域の外側にあり、その目標点を、tinに設定する(ボックス133)。その他の場合においては、目標点を決定するためにエッジ情報が必要となる(ボックス134)(ボックス137)。
ここで用いられる肺領域閾値は、適応させることが可能であり、変形を反復する間に毎回更新される。最初は、前処理において検出されたth2に初期設定されている。次に、変形を1回反復してから、肺領域の閾値は、新たに検出された肺領域の加重平均に基づいて更新される。式(5)によって、加重領域平均(weighted region mean)を算出する方法が与えられる。検出された肺領域においてth2に満たないピクセルの場合は、それらが肺領域に属しているのは確実であることから、それらの加重w(x,y)を、より高く設定して、領域特性に対するそれらの寄与度を強調する。
Figure 2004188202
本発明において、肺領域のグレイレベル分布は、図14に示したように、分散σregを伴う領域加重平均Iregに対するガウシアン分布としてモデル化される。更新された肺領域閾値は、次の式によって定義される。
Figure 2004188202
エッジ情報の選択は、ランドマークの位置およびその輪郭形状に基づく。図15は、本発明においてエッジ情報を求める方法を示す。基本的に、肺形状輪郭上におけるランドマークポイントは、画像154に示したように、それらの位置に応じて3つまたは4つのグループに分類される。縦隔に近接したランドマークポイント(グループ1)は、1次のX方向の導関数画像(画像150)から、それらのエッジ情報を選択する。より正確には、縦隔の左側のランドマークが導関数画像における最大エッジ(白色のピクセル)に収束しようとする一方で、縦隔の右側のランドマークが導関数画像における最小エッジ(黒色のピクセル)に収束しようとする。形状の上部のランドマークポイント(グループ2)に関しては、それらは、2次のY方向の導関数画像(画像151)における最小エッジ(黒色のピクセル)により深い関係がある。胸郭の近くのランドマークポイント(グループ3)は、2次のX方向の導関数画像(画像152)における最小エッジ(黒色のピクセル)を用いる。肺下部のランドマークポイント(グループ4)は、1次のY方向の導関数画像(画像153)から最大エッジ(白色のピクセル)を検索する。目標点は、ランドマークの局所的な検索領域から得られることから、局所的な検索領域においてエッジ情報が検出されないという可能性がある。そのような場合に、ランドマークポイントは、それがあるところにそのまま残されるが、後に、モデル制約条件によって、最終的には、妥当な位置に引き寄せられることになる。
第2の段階において、好適な目標点(XT)のセットが与えられており、最適なポーズパラメータは、肺平均形状からのランドマークとそれらの対応する目標点との間における距離の2乗の和を最小化することによって算出することが可能である。
Figure 2004188202
式中、
Figure 2004188202
θdは、適切な回転であり、Sdは、縮尺であり、td=(tdx,tdy)は、移動を表す。
統計的形状モデルによれば、任意の形状ベクトルXを、式(9)において与えられたように、平均形状
Figure 2004188202
およびその変動の加重和を用いて近似させることが可能である。
Figure 2004188202
式中、Ptは、最も重要な(most significant)固有ベクトルの行列であり、btは、各固有ベクトルについて1つである形状パラメータのセットである。平均形状
Figure 2004188202
および固有ベクトルの行列Ptは、統計的形状モデルにおいて与えられることから、第3の段階における局所的な変形は、事実上、形状パラメータbtを調整するためのものであり、その結果として、合成された形状は、目標点に、可能な限り近接して適合することになる。それを実現するために、変位ベクトルdxが、肺平均形状のランドマークポイントとそれらの対応する目標点との間における偏差として計算される。
Figure 2004188202
式(9)より、
Figure 2004188202
固有ベクトル行列の特性を用いて、次の式によって、最適な近似パラメータが計算される。
Figure 2004188202
統計的形状モデルを変形する間に、ありそうもない形状を避けるために所定の制限によって、形状パラメータ(ベクトルbtにおける成分)を確認する必要がある。これが原因となって、変形された形状が、時として正確に目標点に一致しないということがある。しかしながら、そのような不正確さは、十分な反復の後に、最終的には、最小限に抑えられたり、無くなったりすることが可能であり、最後には、肺形状モデルは、図16に示したように、肺領域の正しい境界に収束することとなる。
本発明による胸部放射線写真において肺領域を検出するための自動化された方法に係る1つの実施の形態を示すブロック図である。 知識モデルの構造を示す概略図であり、知識モデルには、胸部本体モデル(21)、脊柱モデル(23)、および左右の肺モデル(22,24)が含まれることを示す。 知識モデルの構造を示す概略図であり、各モデルの間における空間的な関係を示す。 胸部放射線写真の前処理方法を示すブロック図である。 胸部放射線写真のためのヒストグラム分析を示すグラフ図であり、元の胸部放射線写真のグレイレベルヒストグラムである。 胸部放射線写真のためのヒストグラム分析を示すグラフ図であり、平滑化されたヒストグラムを示す。 胸部放射線写真のためのヒストグラム分析を示すグラフ図であり、ヒストグラムにおいて検出された2つの閾値を示す。 胸部放射線写真の前処理を示す図であり、元の胸部放射線写真を示す。 胸部放射線写真の前処理を示す図であり、2つの閾値を用いることによってセグメント化された画像を示す。 胸部放射線写真の前処理を示す図であり、背景を除去した後の処理画像を示す。 胸部放射線写真の前処理を示す図であり、肺領域の推定域を示す。 縦隔領域(グレイ領域)の特定を示す概略図である。 元の胸部放射線写真を示す概略図である。 正規化された胸部放射線写真を示す概略図である。 胸部放射線写真の0次X方向の導関数画像(I0 0(x,y,σ))を示す概略図である。 胸部本体の正中線および2本の肺の中心線についての検索結果を示す概略図である。 胸部放射線写真における知識モデルの最初の配置を示す概略図である。 肺形状モデルの変形スキームを示すフローチャートである。 局所的な検索領域の構成を示す概略図である。 ランドマークに対する目標点の特定を示すフローチャートである。 検出された肺領域のグレイレベル分布を示す概略図である。 肺領域閾値の特定を示す概略図であり、検出された肺領域のグレイレベルヒストグラムを示す。 各ランドマークについて異なるエッジ情報を選択する方法を示す概略図である。画像150は、1次X方向の導関数画像からのエッジ情報が縦隔に近接したランドマークポイントのために選ばれるということを示す。画像151は、2次Y方向の導関数画像におけるエッジが肺上部の近くのランドマークポイントと関連づけられているということを示す。画像154は、肺形状モデルおよびそれらのランドマークポイントを示すが、これらは、その位置に応じてグループ化されている。画像152は、2次X方向の導関数画像からのエッジ情報が胸郭に近接したランドマークポイントのために用いられるということを示す。画像153は、1次Y方向の導関数画像におけるエッジが肺下部の近くのランドマークポイントと関連づけられているということを示す。 胸部放射線写真において検出された肺領域を示す概略図である。 胸部放射線写真において検出された肺領域を示す概略図である。 本発明を組み込む放射線写真撮影システムを示すブロック図である
符号の説明
21 胸部本体モデル、22 右肺モデル、23 脊柱モデル、24 左肺モデル、30 胸部放射線写真、150 1次X方向の導関数画像、151 2次Y方向の導関数画像、152 2次X方向の導関数画像からのエッジ情報、153 1次Y方向の導関数画像におけるエッジ、154 肺形状モデル画像。

Claims (3)

  1. 胸部放射線写真撮影画像における肺領域を自動的にセグメント化するための方法であって、
    入力デジタル胸部放射線写真撮影画像を提供して、
    前記入力デジタル放射線写真撮影画像を前処理して、
    前記前処理された画像から胸部本体の正中線および肺の中心線を抽出して、
    前記抽出された胸部本体の正中線および2本の肺の中心線に基づいて、前記画像における胸部本体モデル、脊柱モデル、および2つの肺モデルの位置を1つずつ特定して、
    領域情報とエッジ情報との両方を用いて正しい肺境界に収束するように肺形状モデルを変形させることによって肺輪郭を検出することを特徴とする方法。
  2. 請求項1に記載の方法であって、前記前処理において、
    前記入力デジタル胸部放射線写真撮影画像のグレイレベルヒストグラムを生成して、
    第1および第2の閾値を検出するために前記ヒストグラムを分析して、
    前記2つの閾値に基づいて前記画像をセグメント化して、
    前記セグメント化された画像から2つの肺領域および縦隔領域を推定して、
    前記推定された2つの肺領域および縦隔領域から抽出されたグレイレベル特性に基づいて前記放射線写真撮影画像を正規化することを特徴とする方法。
  3. 請求項2に記載の方法であって、前記第1の閾値(th1)を検出する際に、
    あらゆるノイズ干渉を低減するようにグレイレベルヒストグラムを平滑化して、
    ヒストグラムの導関数を計算して、
    導関数が最大である位置を検出して、それを第1の閾値(th1)として設定することを特徴とする方法。

JP2003410955A 2002-12-10 2003-12-09 デジタル胸部放射線写真の自動分析方法 Withdrawn JP2004188202A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/315,855 US7221786B2 (en) 2002-12-10 2002-12-10 Method for automatic construction of 2D statistical shape model for the lung regions
US10/315,884 US7221787B2 (en) 2002-12-10 2002-12-10 Method for automated analysis of digital chest radiographs

Publications (1)

Publication Number Publication Date
JP2004188202A true JP2004188202A (ja) 2004-07-08

Family

ID=32775592

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003410954A Pending JP2004188201A (ja) 2002-12-10 2003-12-09 肺領域のための2次元の統計的形状モデルを自動構成するための方法
JP2003410955A Withdrawn JP2004188202A (ja) 2002-12-10 2003-12-09 デジタル胸部放射線写真の自動分析方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2003410954A Pending JP2004188201A (ja) 2002-12-10 2003-12-09 肺領域のための2次元の統計的形状モデルを自動構成するための方法

Country Status (1)

Country Link
JP (2) JP2004188201A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527647A (ja) * 2007-05-18 2010-08-19 ノルディック・バイオサイエンス・イメージング・アクティーゼルスカブ 半自動式輪郭検出方法
WO2010095508A1 (ja) * 2009-02-23 2010-08-26 コニカミノルタエムジー株式会社 正中線決定装置およびプログラム
JP2012090880A (ja) * 2010-10-28 2012-05-17 Kitasato Institute 生体の電気的インピーダンス断層像測定装置
JP2012228407A (ja) * 2011-04-27 2012-11-22 Hitachi Medical Corp X線撮影装置
JP2013034660A (ja) * 2011-08-08 2013-02-21 Hitachi Medical Corp 医用画像処理装置及び医用画像処理方法
WO2016027840A1 (ja) * 2014-08-22 2016-02-25 国立大学法人東京農工大学 画像処理装置、方法、及びプログラム
JP2017510427A (ja) * 2014-04-08 2017-04-13 アイキャド, インコーポレイテッド 放射線画像の肺野セグメンテーション技術及び骨減弱技術
JP2018064627A (ja) * 2016-10-17 2018-04-26 キヤノン株式会社 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571378B2 (ja) * 2003-06-26 2010-10-27 富士フイルム株式会社 画像処理方法および装置並びにプログラム
CN102711626B (zh) * 2010-01-07 2014-12-10 株式会社日立医疗器械 医用图像诊断装置和医用图像的轮廓提取处理方法
RU2745400C2 (ru) * 2016-05-04 2021-03-24 Конинклейке Филипс Н.В. Регистрация медицинского атласа

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527647A (ja) * 2007-05-18 2010-08-19 ノルディック・バイオサイエンス・イメージング・アクティーゼルスカブ 半自動式輪郭検出方法
WO2010095508A1 (ja) * 2009-02-23 2010-08-26 コニカミノルタエムジー株式会社 正中線決定装置およびプログラム
JPWO2010095508A1 (ja) * 2009-02-23 2012-08-23 コニカミノルタエムジー株式会社 正中線決定装置およびプログラム
JP5626202B2 (ja) * 2009-02-23 2014-11-19 コニカミノルタ株式会社 正中線決定装置およびプログラム
JP2012090880A (ja) * 2010-10-28 2012-05-17 Kitasato Institute 生体の電気的インピーダンス断層像測定装置
JP2012228407A (ja) * 2011-04-27 2012-11-22 Hitachi Medical Corp X線撮影装置
JP2013034660A (ja) * 2011-08-08 2013-02-21 Hitachi Medical Corp 医用画像処理装置及び医用画像処理方法
JP2017510427A (ja) * 2014-04-08 2017-04-13 アイキャド, インコーポレイテッド 放射線画像の肺野セグメンテーション技術及び骨減弱技術
WO2016027840A1 (ja) * 2014-08-22 2016-02-25 国立大学法人東京農工大学 画像処理装置、方法、及びプログラム
JP2018064627A (ja) * 2016-10-17 2018-04-26 キヤノン株式会社 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
US10861197B2 (en) 2016-10-17 2020-12-08 Canon Kabushiki Kaisha Radiographing apparatus, radiographing system, radiographing method, and storage medium

Also Published As

Publication number Publication date
JP2004188201A (ja) 2004-07-08

Similar Documents

Publication Publication Date Title
US7221787B2 (en) Method for automated analysis of digital chest radiographs
JP6077993B2 (ja) 画像の異形を識別するための画像データの処理方法、システムおよびプログラム
Raba et al. Breast segmentation with pectoral muscle suppression on digital mammograms
US8913817B2 (en) Rib suppression in radiographic images
US8135199B2 (en) Method and apparatus of using probabilistic atlas for feature removal/positioning
US7792348B2 (en) Method and apparatus of using probabilistic atlas for cancer detection
US7724936B2 (en) Image generation apparatus and image generation method for detecting abnormalities
US7382907B2 (en) Segmenting occluded anatomical structures in medical images
US9269139B2 (en) Rib suppression in radiographic images
Wimmer et al. A generic probabilistic active shape model for organ segmentation
Pulagam et al. Automated lung segmentation from HRCT scans with diffuse parenchymal lung diseases
JP4640845B2 (ja) 画像処理装置およびそのプログラム
JP2003512112A (ja) 弾性的照合を用いる対側性および時間的な減法画像のコンピュータ化処理のための方法、システムおよびコンピュータ可読媒体
US20120099771A1 (en) Computer aided detection of architectural distortion in mammography
JP2008165773A (ja) 形状モデリング技法に基づいた確率的アトラスのための方法および装置
Timp et al. Interval change analysis to improve computer aided detection in mammography
US7480401B2 (en) Method for local surface smoothing with application to chest wall nodule segmentation in lung CT data
JP2006325937A (ja) 画像判定装置、画像判定方法およびそのプログラム
JP2004188202A (ja) デジタル胸部放射線写真の自動分析方法
US9672600B2 (en) Clavicle suppression in radiographic images
Farag et al. Detection and recognition of lung abnormalities using deformable templates
Schilham et al. Multi-scale nodule detection in chest radiographs
Dawoud Fusing shape information in lung segmentation in chest radiographs
JP2006130212A (ja) 異常陰影候補検出方法、および装置、ならびにプログラム
Iakovidis et al. Robust model-based detection of the lung field boundaries in portable chest radiographs supported by selective thresholding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071227

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080805