JP2004186832A - Apparatus control system - Google Patents

Apparatus control system Download PDF

Info

Publication number
JP2004186832A
JP2004186832A JP2002349046A JP2002349046A JP2004186832A JP 2004186832 A JP2004186832 A JP 2004186832A JP 2002349046 A JP2002349046 A JP 2002349046A JP 2002349046 A JP2002349046 A JP 2002349046A JP 2004186832 A JP2004186832 A JP 2004186832A
Authority
JP
Japan
Prior art keywords
identification information
information setting
setting element
element group
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002349046A
Other languages
Japanese (ja)
Inventor
Hiroaki Koshin
博昭 小新
Kiyoshi Goto
潔 後藤
Shinichiro Okamoto
信一郎 岡本
Akira Yoshitake
晃 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002349046A priority Critical patent/JP2004186832A/en
Publication of JP2004186832A publication Critical patent/JP2004186832A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus control system capable of easily assigning identification information items of apparatuses without overlap. <P>SOLUTION: In inverters 2a, 2b, 2c, the output terminals of an identification number setting element group 21a are connected to the input terminals of an identification number setting element group 21b, and the output terminals of the identification number setting element group 21b are connected to the input terminals of an identification number setting element group 21c. Identification number setting element groups are thus sequentially connected in series every time the number of the inverters is increased. When the outputs of a DC power supply E of a main circuit 3 are connected to the input terminals of the identification number setting element group 21a, voltages Va, Vb, Vc in the respective identification number setting element groups 21a, 21b, 21c differ from each other, and CPUs 20a, 20b, 20c respectively compare the voltages Va, Vb, Vc with threshold values so as to be able to set an identification number to an inverter different from those of the other inverters on the basis of a result of comparison. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、1台の制御装置によって制御される複数台の機器と、前記複数台の機器を制御する1台の制御装置とを備える機器制御システムに関するものである。
【0002】
【従来の技術】
複数台の機器と、これらの複数台の機器を制御する1台の制御装置とから構成されるシステムとして、図7に示す太陽電池1a,1b,1cと、太陽電池1a,1b,1cからの直流電力を交流電力に変換するインバータ2a,2b,2c(機器)と、連係保護機能を有してインバータ2a,2b,2cの出力を系統に流す主回路部3(制御装置)と、インバータ2a,2b,2c−主回路部3間に接続された通信線4とから構成される従来の分散制御型の太陽電池発電システムを例にして、以下説明する。
【0003】
インバータ2a,2b,2cは、太陽電池1a,1b,1cに各々対応して設置され、太陽電池1a,1b,1cの各発電出力を入力として、各々の太陽電池1a,1b,1cから独立して最大電力を引き出す出力制御を行う。また、CPU20a,20b,20cを各々備えておりその動作を制御する。
【0004】
主回路部3は、解列器30,31の直列回路と、本回路部の動作を制御するCPU32とを備え、インバータ2a,2b,2cとの間で通信線4を介した通信を行う。インバータ2a,2b,2cの出力は解列器30,31の直列回路を介して系統に流されており、異常時にはCPU32が判断して、インバータ2a,2b,2cに通信線4を介して停止指令を伝達し、同時に解列器30,31を開路として、系統への出力を遮断する。
【0005】
ここで主回路部3は、インバータ2a,2b,2cの個々の動作状態や異常状態を、通信線4を介した通信によって把握しており、インバータ2a,2b,2cを各々識別する番号が通信時に必要となる。本従来例では、インバータ2a,2b,2cにDIPスイッチやジャンパ線による数ビットのデジタル信号設定部25a,25b,25cを各々設けて、CPU20a,20b,20cの特定の入力端子に読み込ませることによって固有の識別番号(識別情報)(例えば、ID=1,2,3)がCPU20a,20b,20cに各々設定される。CPU20a,20b,20cは、この識別番号を基にして主回路部3との通信制御を行い、通信先が混信しないようにしている。(例えば、特許文献1参照。)。
【0006】
【特許文献1】
特開2002−199589号公報(4頁右欄第27行〜第48行、図1(a))
【0007】
【発明が解決しようとする課題】
しかし上記従来例では、システムの施工時及びインバータの交換時等に、必ず各インバータの識別番号が重ならないように設定しなければならず、施工ミス、設定忘れによる異常動作が発生する可能性がある。
【0008】
本発明は、上記事由に鑑みてなされたものであり、その目的は、機器の識別情報を重ならないように容易に割り当てることができる機器制御システムを提供することにある。
【0009】
【課題を解決するための手段】
請求項1の発明は、複数台の機器と、前記複数台の機器を制御する1台の制御装置とから構成され、前記制御装置は、所定電圧を出力する電源部と、前記複数の機器と通信を行う第1の通信部とを備え、前記機器は、識別情報設定素子群と、前記識別情報設定素子群に発生する電圧によって自回路に識別情報を設定する識別情報設定部と、前記識別情報設定部で設定した識別情報に基づいて前記制御装置と通信を行う第2の通信部とを備え、前記複数の機器の識別情報設定素子群は、各識別情報設定素子群を構成する識別情報設定素子のうち少なくとも1つが互いに直列接続となるように所定の識別情報設定素子群から順次接続されて、前記制御装置の電源部は、前記所定の識別情報設定素子群に接続して電源を供給することを特徴とする。
【0010】
請求項2の発明は、請求項1において、前記識別情報設定素子群は、1つ以上の抵抗で構成されることを特徴とする。
【0011】
請求項3の発明は、請求項1において、前記識別情報設定素子群は、少なくとも一部をダイオードで構成されることを特徴とする。
【0012】
請求項4の発明は、複数台の機器と、前記複数台の機器を制御する1台の制御装置とから構成され、前記制御装置は、所定周波数の信号を出力する発振部と、前記複数の機器と通信を行う第1の通信部とを備え、前記機器は、分周部と、前記分周部の出力の周波数によって自回路に識別情報を設定する識別情報設定部と、前記識別情報設定部で設定した識別情報に基づいて前記制御装置と通信を行う第2の通信部とを備え、前記複数の機器の分周部は、所定の分周部から順次直列に接続され、前記制御装置の発振部は、前記所定の分周部に接続して信号を出力することを特徴とする。
【0013】
請求項5の発明は、請求項1乃至3いずれかにおいて、前記識別情報設定部は、本システムの立上げ時のみ識別情報設定動作を行い、前記制御装置の電源部は、本システムの立上げ後、電源の供給を停止することを特徴とする。
【0014】
請求項6の発明は、請求項4において、前記識別情報設定部は、本システムの立上げ時のみ識別情報設定動作を行い、前記制御装置の発振部は、本システムの立上げ後、出力を停止することを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0016】
(実施形態1)
本実施形態では、複数台の機器と、これらの複数台の機器を制御する1台の制御装置とから構成されるシステムとして、図2に示す太陽電池1a,1b,1cと、太陽電池1a,1b,1cからの直流電力を交流電力に変換するインバータ2a,2b,2c(機器)と、連係保護機能を有してインバータ2a,2b,2cの出力を系統に流す主回路部3(制御装置)と、インバータ2a,2b,2c−主回路部3間に接続された通信線4とから構成される分散制御型の太陽電池発電システムを例にして、以下説明する。
【0017】
インバータ2a,2b,2cは、太陽電池1a,1b,1cに各々対応して設置され、太陽電池1a,1b,1cの各発電出力を入力として、各々の太陽電池1a,1b,1cから独立して最大電力を引き出す出力制御を行う。また、CPU20a,20b,20cを各々備えておりその動作を制御する。
【0018】
主回路部3は、解列器30,31の直列回路と、本回路部の動作を制御するCPU32とを備え、インバータ2a,2b,2cとの間で通信線4を介した通信を行う。インバータ2a,2b,2cの出力は解列器30,31の直列回路を介して系統に流されており、異常時にはCPU32が判断して、インバータ2a,2b,2cに通信線4を介して停止指令を伝達し、同時に解列器30,31を開路として、系統への出力を遮断する。このように、主回路部3とインバータ2a,2b,2cとは互いに通信によって制御されている。
【0019】
ここでインバータ2a,2b,2cは、自身の識別番号(識別情報)を設定するための識別番号設定素子群21a,21b,21cを各々備えており、図1は、図2のA部の詳細図であり、主回路部3とインバータ2a,2b,2cとの通信線4を介した接続と、識別番号設定素子群21a,21b,21cの接続とを示している。識別番号設定素子群21a,21b,21cは各々、抵抗R1a,R2aの直列回路、抵抗R1b,R2bの直列回路、抵抗R1c,R2cの直列回路から構成されて、識別番号設定素子群21aは抵抗R1a,R2aの直列回路の両端を入力端子とし、抵抗R1a,R2aの接続点と抵抗R2aの端部とを出力端子としている。識別番号設定素子群21b,21cにおいても同様の構成となる。さらに、抵抗R1a,R2a、抵抗R1b,R2b、抵抗R1c,R2cの各接続点の電圧Va,Vb,Vcは、CPU20a,20b,20cに各々入力される。そしてインバータ2a、インバータ2b、インバータ2cの順に、識別番号設定素子群21aの出力端子を識別番号設定素子群21bの入力端子に接続し、識別番号設定素子群21bの出力端子を識別番号設定素子群21cの入力端子に接続する。以降、インバータ台数が増える毎に識別番号設定素子群を順次、同様に直列接続していく。
【0020】
そして主回路3は所定電圧を発生する直流電源Eを備えており、直流電源Eの出力を識別番号設定素子群21aの入力端子に接続する。ここで例えば、直流電源Eが発生する電圧を5V、抵抗R1a,R1b,R1c=100Ω、抵抗R2a,R2b,R2c=510Ωとした場合、識別番号設定素子群21a,21b,21c内の電圧Va,Vb,Vcは図3のように各々異なる。すなわち、インバータ2a,2b,2cは、CPU20a,20b,20cにおいて電圧Va,Vb,Vcを閾値と比較することで、その比較結果に基づいて他のインバータとは異なる識別番号(例えば、ID=1,2,3)を設定することができる。この場合、閾値を3.3V及び2.2Vに設定して、各比較結果に対応した識別番号を割り振ると各々のCPU20a,20b,20cに異なった識別番号が設定されることになる。
【0021】
したがって、インバータ2a,2b,2c,...の各識別番号設定素子群21a,21b,21c,...を順次結線していくだけで、自動的に識別番号の設定を行うことができ、主回路3とインバータ2a,2b,2c,...との間の通信制御において混信の発生が無くなる。
【0022】
なお、本実施形態の識別番号設定素子群21a,21b,21cから抵抗R2a,R2b,R2cを削除して、識別番号設定素子群21a,21b,21cの一方の各入出力端子間に抵抗R1a,R1b,R1cを各々接続し、他方の各入出力端子間を各々短絡した構成とした場合は、終端のインバータの出力端子間にジャンパ線が必要となる。
【0023】
(実施形態2)
本実施形態のシステム構成は実施形態1の図2と略同様であるが、実施形態1の抵抗R1,R2を用いた識別番号設定素子群21をダイオードD1を用いた構成に変更した点と、主回路部3の直流電源Eに電流制限用の抵抗R3を直列接続した点とが異なり、その主回路部3とインバータ2a,2b,2cとの通信線4を介した接続と、識別番号設定素子群21a,21b,21cの接続とは図4に示される。他の構成は実施形態1と同様であり、同様の構成には同一の符号を付して説明は省略する。
【0024】
識別番号設定素子群21a,21b,21cは、一方の入力端子から一方の出力端子に向かってダイオードD1a,D1b,D1cを順方向に各々接続し、他方の入出力端子間を短絡して構成される。さらに、ダイオードD1a,D1b,D1cの各カソードの電圧Va,Vb,Vcは、CPU20a,20b,20cに各々入力される。そしてインバータ2a、インバータ2b、インバータ2cの順に、識別番号設定素子群21aの出力端子を識別番号設定素子群21bの入力端子に接続し、識別番号設定素子群21bの出力端子を識別番号設定素子群21cの入力端子に接続する。以降、インバータ台数が増える毎に識別番号設定素子群を順次、同様に直列接続していき、終端のインバータ(図4ではインバータ2c)の識別番号設定素子群(図4では識別番号設定素子群21c)の出力端子間にジャンパ線J1を接続する。
【0025】
そして主回路3の直流電源Eの出力を抵抗R3を介して識別番号設定素子群21aの入力端子に接続すれば、直流電源E、抵抗R3、ダイオードD1a、ダイオードD1b、ダイオードD1c、ジャンパ線J1の直列回路が完成し、電流が流れる。識別番号設定素子群21a,21b,21c内の電圧Va,Vb,VcはダイオードD1a,D1b,D1cの各順方向電圧降下分だけ順次低下し、電圧Va,Vb,Vcは各々異なる。ここで例えば、ダイオードD1a,D1b,D1cの各順方向電圧降下Vf=1.0Vとすると、電圧Va=2.0V、電圧Vb=1.0V、電圧Vc=0Vとなる。すなわち、インバータ2a,2b,2cは、CPU20a,20b,20cにおいて電圧Va,Vb,Vcを閾値と比較することで、その比較結果に基づいて他のインバータとは異なる識別番号(例えば、ID=1,2,3)を設定することができる。この場合、閾値を1.5V及び0.5Vに設定して、各比較結果に対応した識別番号を割り振ると各々のCPU20a,20b,20cに異なった識別番号が設定されることになる。
【0026】
したがって、インバータ2a,2b,2c,...の各識別番号設定素子群21a,21b,21c,...を順次結線していくだけで、自動的に識別番号の設定を行うことができ、主回路3とインバータ2a,2b,2c,...との間の通信制御において混信の発生が無くなる。
【0027】
さらに本実施形態は、終端のインバータにジャンパ線J1が必要ではあるものの、実施形態1と比べると、接続したインバータの台数による閾値の変化が無い点が異なる。
【0028】
(実施形態3)
本実施形態のシステム構成は実施形態1の図2と略同様であるが、実施形態1の識別番号設定素子群21a,21b,21cを分周器22a,22b,22cに変更した点と、主回路部3の直流電源Eを発振器33に変更した点とが異なり、その主回路部3とインバータ2a,2b,2cとの通信線4を介した接続と、分周器22a,22b,22cの接続とは図5に示される。他の構成は実施形態1と同様であり、同様の構成には同一の符号を付して説明は省略する。
【0029】
インバータ2a,2b,2cに各々設けた分周器22a,22b,22cは、信号Sa,Sb,Scを各々出力し、その分周比は1/2である。さらに、分周器22a,22b,22cが出力する各信号Sa,Sb,Scは、CPU20a,20b,20cに各々入力される。そしてインバータ2a、インバータ2b、インバータ2cの順に、分周器22aの出力端子を分周器22bの入力端子に接続し、分周器22bの出力端子を分周器22cの入力端子に接続する。以降、インバータ台数が増える毎に分周器を順次、同様に直列接続していく。また、主回路3の発振器33は所定周波数f0のパルス信号S0を出力するものである。
【0030】
そして主回路3の発振器33の信号S0を分周器22aの入力端子に接続すると、図6に示すように分周器22aが出力する信号Saは周波数f0/2、分周器22bが出力する信号Sbは周波数f0/4、分周器22cが出力する信号Scは周波数f0/8のパルス信号となり、信号Sa,Sb,Scの各周波数は異なる。すなわち、インバータ2a,2b,2cは、CPU20a,20b,20cにおいて信号Sa,Sb,Scの各周波数を判別し、その判別結果に対応した識別番号を割り振ると他のインバータとは異なる識別番号(例えば、ID=1,2,3)を設定することができる。
【0031】
したがって、インバータ2a,2b,2c,...の各分周器22a,22b,22c,...を順次結線していくだけで、自動的に識別番号の設定を行うことができ、主回路3とインバータ2a,2b,2c,...との間の通信制御において混信の発生が無くなる。
【0032】
さらに本実施形態は、ロジック信号で周波数を判別するためノイズに強く、また閾値を固定することができる。
【0033】
(実施形態4)
本実施形態は、実施形態1乃至3の分散制御型システムにおいて、前述の識別番号設定動作をシステムの立上げ時のみ行うものである。具体的に、実施形態1,2においては、インバータ2a,2b,2cの各CPU20a,20b,20cはシステムの立上げ時に識別番号設定動作を行い、主回路部3のCPU32はシステムの立上げ後に直流電源Eの出力を停止して、識別番号設定素子群21a,21b,21cへの電源の供給を停止させる。特に実施形態1では、識別番号設定動作時に限れば、抵抗R1,R2に流す電流を増加させることができ、S/N比を上げることができる。
【0034】
実施形態3においては、インバータ2a,2b,2cの各CPU20a,20b,20cはシステムの立上げ時に識別番号設定動作を行い、主回路部3のCPU32はシステムの立上げ後に発振器33の出力を停止して、分周器22a,22b,22cへのパルス信号出力を停止させる。
【0035】
【発明の効果】
請求項1の発明は、複数台の機器と、前記複数台の機器を制御する1台の制御装置とから構成され、前記制御装置は、所定電圧を出力する電源部と、前記複数の機器と通信を行う第1の通信部とを備え、前記機器は、識別情報設定素子群と、前記識別情報設定素子群に発生する電圧によって自回路に識別情報を設定する識別情報設定部と、前記識別情報設定部で設定した識別情報に基づいて前記制御装置と通信を行う第2の通信部とを備え、前記複数の機器の識別情報設定素子群は、各識別情報設定素子群を構成する識別情報設定素子のうち少なくとも1つが互いに直列接続となるように所定の識別情報設定素子群から順次接続されて、前記制御装置の電源部は、前記所定の識別情報設定素子群に接続して電源を供給するので、インバータの識別情報設定素子群を順次結線していくだけで、識別情報を重ならないように容易に割り当てることができ、施工時及びインバータ交換時の施工ミス、識別情報の設定忘れによる異常動作を防止することができるという効果がある。
【0036】
請求項2の発明は、請求項1において、前記識別情報設定素子群は、1つ以上の抵抗で構成されるので、識別情報設定素子群を低コストで構成することができるという効果がある。
【0037】
請求項3の発明は、請求項1において、前記識別情報設定素子群は、少なくとも一部をダイオードで構成されるので、識別情報設定素子群に発生する電圧によって自回路の識別情報を設定する際に、識別情報設定素子群の電圧と比較する閾値の設定を容易に行うことができるという効果がある。
【0038】
請求項4の発明は、複数台の機器と、前記複数台の機器を制御する1台の制御装置とから構成され、前記制御装置は、所定周波数の信号を出力する発振部と、前記複数の機器と通信を行う第1の通信部とを備え、前記機器は、分周部と、前記分周部の出力の周波数によって自回路に識別情報を設定する識別情報設定部と、前記識別情報設定部で設定した識別情報に基づいて前記制御装置と通信を行う第2の通信部とを備え、前記複数の機器の分周部は、所定の分周部から順次直列に接続され、前記制御装置の発振部は、前記所定の分周部に接続して信号を出力するので、識別情報設定動作をノイズに強くすることができるという効果がある請求項5の発明は、請求項1乃至3いずれかにおいて、前記識別情報設定部は、本システムの立上げ時のみ識別情報設定動作を行い、前記制御装置の電源部は、本システムの立上げ後、電源の供給を停止するので、消費電力を抑えることができるという効果がある。また、識別情報設定素子群として抵抗を用いた場合、識別情報設定時に限れば、抵抗に流す電流を増加させることができ、S/N比を上げることができる。
【0039】
請求項6の発明は、請求項4において、前記識別情報設定部は、本システムの立上げ時のみ識別情報設定動作を行い、前記制御装置の発振部は、本システムの立上げ後、出力を停止するので、消費電力を抑えることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施形態1の主回路部とインバータとの接続、及び識別番号設定素子群の接続を示す図である。
【図2】同上のシステム構成を示す図である。
【図3】同上の各識別番号設定素子群の出力電圧を示す図である。
【図4】本発明の実施形態2の主回路部とインバータとの接続、及び識別番号設定素子群の接続を示す図である。
【図5】本発明の実施形態3の主回路部とインバータとの接続、及び分周器の接続を示す図である。
【図6】同上の発振器と分周器との各出力信号波形を示す図である。
【図7】従来例のシステム構成を示す図である。
【符号の説明】
2a〜2c インバータ
3 主回路部
4 通信線
20a〜20c CPU
32 CPU
R1a〜R1c 抵抗
R2a〜R2c 抵抗
Va〜Vc 電圧
E 直流電源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device control system including a plurality of devices controlled by a single control device and a single control device for controlling the plurality of devices.
[0002]
[Prior art]
As a system including a plurality of devices and a single control device that controls the plurality of devices, a system including the solar cells 1a, 1b, and 1c shown in FIG. Inverters 2a, 2b, 2c (equipment) for converting DC power into AC power, a main circuit unit 3 (control device) having a link protection function and flowing the output of inverters 2a, 2b, 2c to the system, and inverter 2a , 2b, 2c and a communication line 4 connected between the main circuit section 3 will be described as an example of a conventional distributed control type solar cell power generation system.
[0003]
The inverters 2a, 2b, and 2c are provided corresponding to the solar cells 1a, 1b, and 1c, respectively, and receive power generation outputs of the solar cells 1a, 1b, and 1c as inputs, and are independent of the solar cells 1a, 1b, and 1c. Output control to extract the maximum power. In addition, each of the CPUs includes CPUs 20a, 20b, and 20c, and controls its operation.
[0004]
The main circuit unit 3 includes a series circuit of the disconnectors 30 and 31 and a CPU 32 that controls the operation of the circuit unit, and performs communication via the communication line 4 with the inverters 2a, 2b, and 2c. The outputs of the inverters 2a, 2b, 2c are sent to the system via a series circuit of the parallel-off devices 30, 31, and when an abnormality occurs, the CPU 32 determines and stops the inverters 2a, 2b, 2c via the communication line 4. The command is transmitted, and at the same time, the paralleling devices 30, 31 are opened to shut off the output to the system.
[0005]
Here, the main circuit unit 3 grasps the individual operating states and abnormal states of the inverters 2a, 2b, 2c by communication via the communication line 4, and the numbers identifying the inverters 2a, 2b, 2c are the communication numbers. Sometimes needed. In this conventional example, the inverters 2a, 2b, and 2c are provided with digital signal setting units 25a, 25b, and 25c of several bits each using a DIP switch or a jumper line, and read into specific input terminals of the CPUs 20a, 20b, and 20c. Unique identification numbers (identification information) (for example, ID = 1, 2, 3) are set in the CPUs 20a, 20b, 20c, respectively. The CPUs 20a, 20b, and 20c perform communication control with the main circuit unit 3 based on the identification numbers so that the communication destination does not interfere. (For example, refer to Patent Document 1).
[0006]
[Patent Document 1]
JP-A-2002-199589 (page 4, right column, lines 27 to 48, FIG. 1 (a))
[0007]
[Problems to be solved by the invention]
However, in the above-mentioned conventional example, the ID numbers of the inverters must be set so as not to overlap each other when the system is installed or the inverters are replaced, etc. is there.
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a device control system capable of easily assigning device identification information without overlapping.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 includes a plurality of devices, and one control device that controls the plurality of devices, wherein the control device includes a power supply unit that outputs a predetermined voltage, and the plurality of devices. A first communication unit that performs communication, the device includes: an identification information setting element group; an identification information setting unit configured to set identification information in its own circuit by a voltage generated in the identification information setting element group; A second communication unit that communicates with the control device based on the identification information set by the information setting unit, wherein the identification information setting element group of the plurality of devices includes identification information configuring each identification information setting element group. At least one of the setting elements is sequentially connected from a predetermined identification information setting element group so as to be connected in series to each other, and the power supply unit of the control device supplies power by connecting to the predetermined identification information setting element group. It is characterized by doing.
[0010]
According to a second aspect of the present invention, in the first aspect, the identification information setting element group includes one or more resistors.
[0011]
According to a third aspect of the present invention, in the first aspect, at least a part of the identification information setting element group includes a diode.
[0012]
The invention according to claim 4 includes a plurality of devices, and a single control device that controls the plurality of devices, wherein the control device includes: an oscillation unit that outputs a signal of a predetermined frequency; A first communication unit that communicates with a device, wherein the device includes a frequency divider, an identification information setting unit configured to set identification information in its own circuit according to an output frequency of the frequency divider, and the identification information setting unit. A second communication unit that communicates with the control device based on the identification information set by the unit. The frequency division units of the plurality of devices are sequentially connected in series from a predetermined frequency division unit. Is connected to the predetermined frequency divider and outputs a signal.
[0013]
According to a fifth aspect of the present invention, in any one of the first to third aspects, the identification information setting unit performs the identification information setting operation only when the system is started up, and the power supply unit of the control device starts the system startup. Thereafter, the supply of power is stopped.
[0014]
According to a sixth aspect of the present invention, in the fourth aspect, the identification information setting unit performs the identification information setting operation only when the system is started, and the oscillation unit of the control device outputs an output after the system is started. It is characterized by stopping.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
(Embodiment 1)
In the present embodiment, a solar cell 1a, 1b, 1c, a solar cell 1a, and a solar cell 1a shown in FIG. 2 are configured as a system including a plurality of devices and a single control device that controls the plurality of devices. Inverters 2a, 2b, 2c (equipment) for converting DC power from 1b, 1c into AC power, and a main circuit unit 3 (control device) having a link protection function and flowing the outputs of inverters 2a, 2b, 2c to the system. ) And a communication line 4 connected between the inverters 2a, 2b, 2c and the main circuit section 3, and a distributed control type solar cell power generation system will be described below as an example.
[0017]
The inverters 2a, 2b, and 2c are provided corresponding to the solar cells 1a, 1b, and 1c, respectively, and receive power generation outputs of the solar cells 1a, 1b, and 1c as inputs, and are independent of the solar cells 1a, 1b, and 1c. Output control to extract the maximum power. In addition, each of the CPUs includes CPUs 20a, 20b, and 20c, and controls the operation thereof.
[0018]
The main circuit unit 3 includes a series circuit of the disconnectors 30 and 31 and a CPU 32 that controls the operation of the circuit unit, and performs communication via the communication line 4 with the inverters 2a, 2b, and 2c. The outputs of the inverters 2a, 2b, 2c are sent to the system via a series circuit of the parallel-off devices 30, 31, and when an abnormality occurs, the CPU 32 determines and stops the inverters 2a, 2b, 2c via the communication line 4. The command is transmitted, and at the same time, the paralleling devices 30, 31 are opened to shut off the output to the system. Thus, the main circuit unit 3 and the inverters 2a, 2b, 2c are controlled by communication with each other.
[0019]
Here, the inverters 2a, 2b, 2c are provided with identification number setting element groups 21a, 21b, 21c for setting their own identification numbers (identification information), respectively. FIG. FIG. 4 shows a connection between the main circuit unit 3 and the inverters 2a, 2b, 2c via a communication line 4, and a connection between the identification number setting element groups 21a, 21b, 21c. Each of the identification number setting element groups 21a, 21b, and 21c includes a series circuit of resistors R1a and R2a, a series circuit of resistors R1b and R2b, and a series circuit of resistors R1c and R2c. , R2a as input terminals, and a connection point between the resistors R1a and R2a and an end of the resistor R2a as output terminals. The same configuration applies to the identification number setting element groups 21b and 21c. Further, voltages Va, Vb, Vc at respective connection points of the resistors R1a, R2a, the resistors R1b, R2b, and the resistors R1c, R2c are input to the CPUs 20a, 20b, 20c, respectively. Then, the output terminal of the identification number setting element group 21a is connected to the input terminal of the identification number setting element group 21b in the order of the inverter 2a, the inverter 2b, and the inverter 2c, and the output terminal of the identification number setting element group 21b is connected to the identification number setting element group. Connect to the input terminal of 21c. Thereafter, each time the number of inverters increases, the identification number setting element groups are sequentially and similarly connected in series.
[0020]
The main circuit 3 includes a DC power supply E that generates a predetermined voltage, and connects an output of the DC power supply E to an input terminal of the identification number setting element group 21a. Here, for example, when the voltage generated by the DC power supply E is 5 V, the resistances R1a, R1b, R1c = 100Ω, and the resistances R2a, R2b, R2c = 510Ω, the voltages Va, in the identification number setting element groups 21a, 21b, 21c are set. Vb and Vc are different from each other as shown in FIG. That is, the inverters 2a, 2b, and 2c compare the voltages Va, Vb, and Vc with the thresholds in the CPUs 20a, 20b, and 20c, and determine the identification number (for example, ID = 1) different from other inverters based on the comparison result. , 2, 3) can be set. In this case, when the thresholds are set to 3.3 V and 2.2 V and the identification numbers corresponding to the respective comparison results are assigned, different identification numbers are set to the respective CPUs 20a, 20b, and 20c.
[0021]
Therefore, inverters 2a, 2b, 2c,. . . Each of the identification number setting element groups 21a, 21b, 21c,. . . , The identification number can be automatically set by simply connecting the main circuit 3 and the inverters 2a, 2b, 2c,. . . The occurrence of interference in communication control with the communication device is eliminated.
[0022]
The resistors R2a, R2b, R2c are deleted from the identification number setting element groups 21a, 21b, 21c of the present embodiment, and the resistors R1a, R1a, In the case where R1b and R1c are connected to each other and the other input / output terminals are short-circuited, a jumper wire is required between the output terminals of the terminal inverter.
[0023]
(Embodiment 2)
The system configuration of this embodiment is substantially the same as that of FIG. 2 of the first embodiment, except that the identification number setting element group 21 using the resistors R1 and R2 of the first embodiment is changed to a configuration using a diode D1. The difference is that a current limiting resistor R3 is connected in series to the DC power supply E of the main circuit unit 3, and the connection between the main circuit unit 3 and the inverters 2a, 2b, 2c via the communication line 4 and the identification number setting The connection of the element groups 21a, 21b, 21c is shown in FIG. Other configurations are the same as those of the first embodiment, and the same configurations are denoted by the same reference numerals and description thereof is omitted.
[0024]
The identification number setting element groups 21a, 21b, 21c are configured by connecting diodes D1a, D1b, D1c in the forward direction from one input terminal to one output terminal, respectively, and short-circuiting the other input / output terminals. You. Further, the voltages Va, Vb, Vc of the respective cathodes of the diodes D1a, D1b, D1c are input to the CPUs 20a, 20b, 20c, respectively. Then, the output terminal of the identification number setting element group 21a is connected to the input terminal of the identification number setting element group 21b in the order of the inverter 2a, the inverter 2b, and the inverter 2c, and the output terminal of the identification number setting element group 21b is connected to the identification number setting element group. Connect to the input terminal of 21c. Thereafter, each time the number of inverters increases, the identification number setting element group is sequentially connected in series in the same manner, and the identification number setting element group of the terminal inverter (the inverter 2c in FIG. 4) (the identification number setting element group 21c in FIG. 4). ) Is connected to the jumper wire J1 between the output terminals.
[0025]
If the output of the DC power supply E of the main circuit 3 is connected to the input terminal of the identification number setting element group 21a via the resistor R3, the DC power supply E, the resistor R3, the diode D1a, the diode D1b, the diode D1c, and the jumper wire J1 are connected. The series circuit is completed and current flows. The voltages Va, Vb, and Vc in the identification number setting element groups 21a, 21b, and 21c sequentially decrease by the forward voltage drops of the diodes D1a, D1b, and D1c, and the voltages Va, Vb, and Vc are different from each other. Here, for example, assuming that the forward voltage drops Vf of the diodes D1a, D1b, and D1c are 1.0V, the voltages Va = 2.0V, Vb = 1.0V, and Vc = 0V. That is, the inverters 2a, 2b, and 2c compare the voltages Va, Vb, and Vc with the thresholds in the CPUs 20a, 20b, and 20c, and determine the identification number (for example, ID = 1) different from other inverters based on the comparison result. , 2, 3) can be set. In this case, when the thresholds are set to 1.5 V and 0.5 V and the identification numbers corresponding to the respective comparison results are assigned, different identification numbers are set to the respective CPUs 20a, 20b, and 20c.
[0026]
Therefore, inverters 2a, 2b, 2c,. . . Each of the identification number setting element groups 21a, 21b, 21c,. . . , The identification number can be automatically set by simply connecting the main circuit 3 and the inverters 2a, 2b, 2c,. . . The occurrence of interference in communication control with the communication device is eliminated.
[0027]
Further, the present embodiment requires a jumper wire J1 for the terminal inverter, but differs from the first embodiment in that the threshold value does not change according to the number of connected inverters.
[0028]
(Embodiment 3)
The system configuration of the present embodiment is substantially the same as that of FIG. 2 of the first embodiment, except that the identification number setting element groups 21a, 21b, and 21c of the first embodiment are changed to frequency dividers 22a, 22b, and 22c. The difference is that the DC power source E of the circuit unit 3 is changed to an oscillator 33. The connection between the main circuit unit 3 and the inverters 2a, 2b, 2c via the communication line 4 and the connection of the frequency dividers 22a, 22b, 22c The connection is shown in FIG. Other configurations are the same as those of the first embodiment, and the same configurations are denoted by the same reference numerals and description thereof is omitted.
[0029]
Frequency dividers 22a, 22b, 22c provided in inverters 2a, 2b, 2c respectively output signals Sa, Sb, Sc, and the frequency division ratio is 1/2. Further, the signals Sa, Sb, Sc output from the frequency dividers 22a, 22b, 22c are input to the CPUs 20a, 20b, 20c, respectively. The output terminal of the frequency divider 22a is connected to the input terminal of the frequency divider 22b, and the output terminal of the frequency divider 22b is connected to the input terminal of the frequency divider 22c in the order of the inverter 2a, the inverter 2b, and the inverter 2c. Thereafter, each time the number of inverters increases, frequency dividers are sequentially connected in series in the same manner. The oscillator 33 of the main circuit 3 outputs a pulse signal S0 having a predetermined frequency f0.
[0030]
When the signal S0 of the oscillator 33 of the main circuit 3 is connected to the input terminal of the frequency divider 22a, the signal Sa output from the frequency divider 22a is output at the frequency f0 / 2 and the frequency divider 22b as shown in FIG. The signal Sb has a frequency f0 / 4, and the signal Sc output from the frequency divider 22c is a pulse signal with a frequency f0 / 8, and the signals Sa, Sb, and Sc have different frequencies. That is, the inverters 2a, 2b, and 2c determine the frequencies of the signals Sa, Sb, and Sc in the CPUs 20a, 20b, and 20c, and assign an identification number corresponding to the determination result. , ID = 1, 2, 3) can be set.
[0031]
Therefore, inverters 2a, 2b, 2c,. . . Of the frequency dividers 22a, 22b, 22c,. . . , The identification number can be automatically set by simply connecting the main circuit 3 and the inverters 2a, 2b, 2c,. . . The occurrence of interference in communication control with the communication device is eliminated.
[0032]
Further, in the present embodiment, since the frequency is determined based on the logic signal, it is resistant to noise and the threshold value can be fixed.
[0033]
(Embodiment 4)
In the present embodiment, in the distributed control type systems of the first to third embodiments, the above-described identification number setting operation is performed only when the system is started. Specifically, in the first and second embodiments, the CPUs 20a, 20b, and 20c of the inverters 2a, 2b, and 2c perform an identification number setting operation when the system is started, and the CPU 32 of the main circuit unit 3 operates after the system is started. The output of the DC power supply E is stopped, and the supply of power to the identification number setting element groups 21a, 21b, 21c is stopped. In particular, in the first embodiment, the current flowing through the resistors R1 and R2 can be increased and the S / N ratio can be increased only during the identification number setting operation.
[0034]
In the third embodiment, each of the CPUs 20a, 20b, and 20c of the inverters 2a, 2b, and 2c performs an identification number setting operation when the system is started, and the CPU 32 of the main circuit unit 3 stops the output of the oscillator 33 after the system is started. Then, the output of the pulse signal to the frequency dividers 22a, 22b, 22c is stopped.
[0035]
【The invention's effect】
The invention according to claim 1 includes a plurality of devices, and one control device that controls the plurality of devices, wherein the control device includes a power supply unit that outputs a predetermined voltage, and the plurality of devices. A first communication unit that performs communication, the device includes: an identification information setting element group; an identification information setting unit configured to set identification information in its own circuit by a voltage generated in the identification information setting element group; A second communication unit that communicates with the control device based on the identification information set by the information setting unit, wherein the identification information setting element group of the plurality of devices includes identification information configuring each identification information setting element group. At least one of the setting elements is sequentially connected from a predetermined identification information setting element group so as to be connected in series to each other, and the power supply unit of the control device supplies power by connecting to the predetermined identification information setting element group. So that the inverter By simply connecting the different information setting element groups sequentially, identification information can be easily assigned so that they do not overlap, preventing abnormal operation due to construction mistakes at the time of construction and inverter replacement and forgetting to set identification information. There is an effect that can be.
[0036]
According to the second aspect of the present invention, in the first aspect, since the identification information setting element group includes one or more resistors, there is an effect that the identification information setting element group can be configured at low cost.
[0037]
According to a third aspect of the present invention, in the first aspect, at least a part of the identification information setting element group is configured by a diode, so that identification information of the own circuit is set by a voltage generated in the identification information setting element group. In addition, there is an effect that the threshold value to be compared with the voltage of the identification information setting element group can be easily set.
[0038]
The invention according to claim 4 includes a plurality of devices, and a single control device that controls the plurality of devices, wherein the control device includes: an oscillation unit that outputs a signal of a predetermined frequency; A first communication unit that communicates with a device, wherein the device includes a frequency divider, an identification information setting unit configured to set identification information in its own circuit according to an output frequency of the frequency divider, and the identification information setting unit. A second communication unit that communicates with the control device based on the identification information set by the unit. The frequency division units of the plurality of devices are sequentially connected in series from a predetermined frequency division unit. The oscillating unit of (1) is connected to the predetermined frequency dividing unit and outputs a signal, so that there is an effect that the identification information setting operation can be made resistant to noise. In the above, the identification information setting unit is used when the system is started up. Performed only identification information setting operation, the power supply unit of the control device, after startup of the system, because to stop the supply of the power supply, there is an effect that power consumption can be suppressed. When a resistor is used as the identification information setting element group, the current flowing through the resistor can be increased and the S / N ratio can be increased only when the identification information is set.
[0039]
According to a sixth aspect of the present invention, in the fourth aspect, the identification information setting unit performs the identification information setting operation only when the system is started, and the oscillation unit of the control device outputs an output after the system is started. Since the operation is stopped, there is an effect that power consumption can be suppressed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a connection between a main circuit unit and an inverter and a connection of an identification number setting element group according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a system configuration of the above.
FIG. 3 is a diagram showing an output voltage of each identification number setting element group of the above.
FIG. 4 is a diagram showing a connection between a main circuit unit and an inverter and a connection of an identification number setting element group according to a second embodiment of the present invention.
FIG. 5 is a diagram illustrating a connection between a main circuit unit and an inverter and a connection of a frequency divider according to a third embodiment of the present invention.
FIG. 6 is a diagram showing output signal waveforms of the oscillator and the frequency divider of the above.
FIG. 7 is a diagram showing a system configuration of a conventional example.
[Explanation of symbols]
2a to 2c Inverter 3 Main circuit unit 4 Communication line 20a to 20c CPU
32 CPU
R1a-R1c Resistance R2a-R2c Resistance Va-Vc Voltage E DC power supply

Claims (6)

複数台の機器と、前記複数台の機器を制御する1台の制御装置とから構成され、前記制御装置は、所定電圧を出力する電源部と、前記複数の機器と通信を行う第1の通信部とを備え、前記機器は、識別情報設定素子群と、前記識別情報設定素子群に発生する電圧によって自回路に識別情報を設定する識別情報設定部と、前記識別情報設定部で設定した識別情報に基づいて前記制御装置と通信を行う第2の通信部とを備え、前記複数の機器の識別情報設定素子群は、各識別情報設定素子群を構成する識別情報設定素子のうち少なくとも1つが互いに直列接続となるように所定の識別情報設定素子群から順次接続されて、前記制御装置の電源部は、前記所定の識別情報設定素子群に接続して電源を供給することを特徴とする機器制御システム。A control unit configured to control the plurality of devices; a control unit configured to control the plurality of devices; a power supply unit configured to output a predetermined voltage; and a first communication unit configured to perform communication with the plurality of devices. A device, comprising: an identification information setting element group; an identification information setting section configured to set identification information in its own circuit by a voltage generated in the identification information setting element group; and an identification set by the identification information setting section. A second communication unit that communicates with the control device based on information, wherein the identification information setting element group of the plurality of devices includes at least one of the identification information setting elements included in each identification information setting element group. A device which is sequentially connected from a predetermined identification information setting element group so as to be connected in series with each other, and a power supply unit of the control device supplies power by connecting to the predetermined identification information setting element group. Control system. 前記識別情報設定素子群は、1つ以上の抵抗で構成されることを特徴とする請求項1記載の機器制御システム。The device control system according to claim 1, wherein the identification information setting element group includes one or more resistors. 前記識別情報設定素子群は、少なくとも一部をダイオードで構成されることを特徴とする請求項1記載の機器制御システム。The device control system according to claim 1, wherein at least a part of the identification information setting element group is configured by a diode. 複数台の機器と、前記複数台の機器を制御する1台の制御装置とから構成され、前記制御装置は、所定周波数の信号を出力する発振部と、前記複数の機器と通信を行う第1の通信部とを備え、前記機器は、分周部と、前記分周部の出力の周波数によって自回路に識別情報を設定する識別情報設定部と、前記識別情報設定部で設定した識別情報に基づいて前記制御装置と通信を行う第2の通信部とを備え、前記複数の機器の分周部は、所定の分周部から順次直列に接続され、前記制御装置の発振部は、前記所定の分周部に接続して信号を出力することを特徴とする機器制御システム。The control device includes a plurality of devices and one control device that controls the plurality of devices. The control device includes an oscillation unit that outputs a signal of a predetermined frequency, and a first device that communicates with the plurality of devices. A communication unit, the device includes a frequency divider, an identification information setting unit that sets identification information in its own circuit according to an output frequency of the frequency divider, and identification information set by the identification information setting unit. A second communication unit that communicates with the control device based on the predetermined frequency. The frequency division units of the plurality of devices are sequentially connected in series from a predetermined frequency division unit. A device control system, which outputs a signal by connecting to a frequency divider of (1). 前記識別情報設定部は、本システムの立上げ時のみ識別情報設定動作を行い、前記制御装置の電源部は、本システムの立上げ後、電源の供給を停止することを特徴とする請求項1乃至3いずれか記載の機器制御システム。2. The system according to claim 1, wherein the identification information setting unit performs the identification information setting operation only when the system is started up, and the power supply unit of the control device stops the power supply after the system is started up. 4. The device control system according to any one of claims 3 to 3. 前記識別情報設定部は、本システムの立上げ時のみ識別情報設定動作を行い、前記制御装置の発振部は、本システムの立上げ後、出力を停止することを特徴とする請求項4記載の機器制御システム。The method according to claim 4, wherein the identification information setting unit performs the identification information setting operation only when the system is started, and the oscillation unit of the control device stops the output after the system is started. Equipment control system.
JP2002349046A 2002-11-29 2002-11-29 Apparatus control system Withdrawn JP2004186832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002349046A JP2004186832A (en) 2002-11-29 2002-11-29 Apparatus control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349046A JP2004186832A (en) 2002-11-29 2002-11-29 Apparatus control system

Publications (1)

Publication Number Publication Date
JP2004186832A true JP2004186832A (en) 2004-07-02

Family

ID=32751773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349046A Withdrawn JP2004186832A (en) 2002-11-29 2002-11-29 Apparatus control system

Country Status (1)

Country Link
JP (1) JP2004186832A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025551A (en) * 2004-07-08 2006-01-26 Mitsubishi Electric Corp Inverter device
JP2015104266A (en) * 2013-11-26 2015-06-04 株式会社ノーリツ Power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025551A (en) * 2004-07-08 2006-01-26 Mitsubishi Electric Corp Inverter device
JP4503375B2 (en) * 2004-07-08 2010-07-14 三菱電機株式会社 Inverter device
JP2015104266A (en) * 2013-11-26 2015-06-04 株式会社ノーリツ Power generation system

Similar Documents

Publication Publication Date Title
KR101517207B1 (en) Control device and led light emitting device using the control device
US8247993B2 (en) Apparatus for driving multi-light emitting devices
US20170297448A1 (en) Vehicle power management
JP4935893B2 (en) Battery abnormality determination device
US7608942B2 (en) Power management system
US6788036B1 (en) Method and system for current sharing among a plurality of power modules
US11018382B2 (en) System and method for assigning unique number to cell module controller
JP2009509471A (en) Adaptive input cell circuit
JP2771394B2 (en) Parallel operation power supply control method
JP2001258240A (en) Dc power supply circuit and electronic device
US7986106B2 (en) Protection circuit and discharge lamp driving device employing the same
KR20170002135A (en) Battery management system
JP2004186832A (en) Apparatus control system
US10535990B2 (en) Power supply device, detection circuit and power supply method thereof
US11116058B2 (en) LED dimming control circuit, dimming control method and LED power system thereof
CN111668808A (en) Overvoltage protection circuit and computer system power supply
JP2007330021A (en) Capacity regulator for battery pack
JP6671271B2 (en) Power discharge circuit
JP7052598B2 (en) Switch drive circuit
WO2020023761A1 (en) Programmable time-division multiplexed comparator
JPH10322931A (en) Input power control type charging system
JP2008102094A (en) Voltage monitoring method and its device
WO2019069375A1 (en) Switching element driving circuit, power conversion device, elevator apparatus, and switching element driving method
JP2016142597A (en) Power supply voltage monitoring circuit and power supply circuit including the same
US20130322492A1 (en) Device and Method for Measuring an Extremal Temperature

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207