JP2004186494A - Manufacturing method of laminated semiconductor device - Google Patents

Manufacturing method of laminated semiconductor device Download PDF

Info

Publication number
JP2004186494A
JP2004186494A JP2002352744A JP2002352744A JP2004186494A JP 2004186494 A JP2004186494 A JP 2004186494A JP 2002352744 A JP2002352744 A JP 2002352744A JP 2002352744 A JP2002352744 A JP 2002352744A JP 2004186494 A JP2004186494 A JP 2004186494A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor
semiconductor device
stacked
intermediate substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002352744A
Other languages
Japanese (ja)
Inventor
Tomohiro Iguchi
知洋 井口
Yasuto Saito
康人 斎藤
Masayuki Arakawa
雅之 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002352744A priority Critical patent/JP2004186494A/en
Publication of JP2004186494A publication Critical patent/JP2004186494A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a laminated semiconductor device with higher precision by suppressing displacement amount between connection lands, among substrates, when a semiconductor package is laminated. <P>SOLUTION: A plurality of wiring boards 2 provided with a semiconductor element region Ga mounted with a semiconductor chip 10 and an interlayer connection region Gb where a connection land 4 and a through hole 7 are formed, and a plurality of intermediate substrates 13 provided with a bump 8 for aligning with an open part S in which the semiconductor chip can be inserted, are prepared between a base board 14 and a ceiling board 15. In a first process, an adhesive layer is formed on the surface of the intermediate substrate. In a second process, the alignment bump of the intermediate substrate is aligned with the through hole of the wiring board while displacing to the base board, for mutual lamination, and the ceiling board is aligned with the top part for lamination. In a third process, the laminate is thermally press-bonded to thermally cure the adhesive of the adhesive layer, forming a laminated semiconductor device. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数の半導体パッケージを積層接続して形成した積層型半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、フラッシュメモリーを搭載した小型のメモリーカードが、デジタルスチルカメラや携帯情報端末等の携帯情報機器用として急速に市場を拡大している。特に、デジタルカメラの分野では既に主流になりつつあり、MDやフロッピーディスクの代替としてその位置を固めようとしている。
【0003】
このような背景の中、小型メモリーカードは、さらに大記録容量や小型軽量化および低コスト化等が求められており、様々なメモリICのパッケージ構造や、実装構造が提案されている。
【0004】
上記メモリーカードは、一般にTSOP(Thin Small Outline Package)等の薄型モールドパッケージをベース基板にはんだ付けする方法や、ベアチップをワイヤボンディングやフリップチップ実装方法等によって、ベース基板に直接接続する方法がとられている。
【0005】
しかしながら、同一面積に搭載できる容量は半導体チップ(半導体素子)のサイズで決定してしまうことから、さらに大容量化を進めるためには、半導体チップを3次元的に積層する実装構造を考える必要がある。
【0006】
このような半導体装置は、薄い配線基板に半導体チップを実装した半導体パッケージを積層するが、配線基板相互は離間しなければならず、そのため配線基板相互間に中間基板を介在させる。そして、この配線基板と中間基板をはんだ接合することにより、配線基板相互の電気的および構造的な接合を得られる。
【0007】
以下、従来構想の積層型半導体装置の製造方法について説明する。
図6は、3次元実装構造の半導体装置を組み立てるべく治具上にセットした状態を示す断面図であり、図7は治具上に組み立てられた3次元実装構造の半導体装置を示す断面図である。
【0008】
図中20は、はんだ等のバンプ22を備え、かつ接続ランド21が形成される薄板構造の配線基板18の表面上に、フリップチップ法を用いて半導体チップ19が実装され、パッケージ化された複数(ここでは4個)の半導体パッケージ20である。
【0009】
これら半導体パッケージ20の相互間には中間基板27が介在され、互いに交互に、かつ上下方向に積層される。上記中間基板27は、配線基板18に実装された半導体チップ19が挿入される開口部Sを備えている。
【0010】
この中間基板27にもはんだ等のバンプ22を備えた接続ランド21が形成されていて、それぞれのバンプ22を介して上記配線基板18と中間基板27が電気的、構造的に接続される。
【0011】
積層された半導体パッケージ20のうちの最下部のものは、ベース基板23のバンプ22と接続ランド21を介して、かつ最上部の半導体パッケージ20は、天井基板28に形成される接続ランド21を介して、それぞれ電気的、構造的に接続される。
【0012】
上記配線基板18は、ガラスエポキシ樹脂材等からなる絶縁基板の表面に、銅薄膜からなる配線パターン24が形成されている。この配線パターン24の所定箇所に半導体チップ19が異方性導電膜(ACF)25を用いて取付けられ、金材等の導電材料であるバンプ26を介してフリップチップ接続される。
【0013】
半導体チップ19と配線基板18、中間基板27、ベース基板23および天井基板28相互の隙間および半導体チップ19の側面はエポキシ等の樹脂29で封止されている。
【0014】
半導体チップ19と配線基板18、中間基板27、ベース基板23および天井基板28の所定位置には位置合わせ孔30が設けられていて、互いの基板の位置合わせ孔の全てが連通する。
【0015】
積層実装方法の点からなお説明すれば、4個の半導体チップ19をフリップチップ接続によりそれぞれ配線基板18に実装して4個の半導体パッケージ20を形成する。
【0016】
そして、組み立て用治具Zに立設されるピン29に位置合わせ孔30を介挿し各基板における接続ランド21の位置合わせをしながら、ベース基板23上に半導体パッケージ20と中間基板28を順次、マウントし積層していく。最後に、天井基板28が載る。
【0017】
このとき、ベース基板26、中間基板27および天井基板28にはエポキシ樹脂29を供給しておく。半導体パッケージ20を4段積層後、真空プレス装置に投入し、それぞれの接続ランド21相互の接続を行うと同時に樹脂29を硬化させることにより積層型半導体装置が完成する。
【0018】
【発明が解決しようとする課題】
この3次元実装構造の積層型半導体装置では、4層の積層半導体パッケージ20として、接続ランド21のバンプ22を介して接続する構造であるため、電気的な導通を正確に確保するためには各接続ランド21相互でずれ量を所定値(例えば、50μm)以内に保つ必要がある。
【0019】
しかしながら、この積層方式は配線基板18等に位置合わせ孔30を設け、この位置合わせ孔をピン29に介挿して位置合わせを行っている。位置合わせ孔29周面とピン30周面との間にはクリアランスが必要である。
【0020】
そのため、接続される接続ランド21相互の積層ずれ量が、クリアランスの分だけ発生し、上記所定値を越えることもある。この状態で半導体パッケージ20を積層して積層型半導体装置を製造してしまうと、電気的な導通不良を発生する虞れがある。
【0021】
本発明は、上記事情に着目してなされたものであり、その目的とするところは、半導体パッケージを積層する際の、各基板相互における接続ランド相互の位置ずれ量を抑制して、高精度化を図った積層型半導体装置の製造方法を提供しようとするものである。
【0022】
【課題を解決するための手段】
上記課題を解決し目的を達成するために、本発明の積層型半導体装置の製造方法は、ベース基板と天井基板との間に半導体素子が実装された半導体素子領域と接続ランドと掛止部が形成される層間接続領域をそれぞれ主面上に備えた複数の配線基板と、半導体素子が挿通可能な開口部と、接続ランドと、掛止部と噛合して掛合する掛合部を備えた複数の中間基板とをそれぞれ用意し、
中間基板の表面に接着剤層を形成する第1の工程と、ベース基板に対して中間基板の掛合部と配線基板の掛止部とをずらしながら位置合わせて交互に積層しかつこの積層体の最上部に天井基板を位置合わせして積層する第2の工程と、これら中間基板、ベース基板および天井基板からなる積層体を熱圧着して接着剤層の接着剤を熱硬化させ積層型半導体装置を成形する第3の工程とを具備する。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図面にもとづいて説明する。
図1は、半導体パッケージの構成を説明する縦断側面図である。
この半導体パッケージ1は、厚さが50μm程度のたとえばガラスエポキシ樹脂材からなる配線基板2を備えている。この配線基板2の主面上には、厚さが18μm程度の銅等の配線パターン3および、直径φ300μm程度の接続ランド4が形成されている。
【0024】
上記接続ランド4の表面には、厚さが10μm程度のはんだ等からなるバンプ5がメッキにより設けられている。そして、接続ランド4にははんだ等からなるバンプ6が形成され、配線基板2の裏面に突出している。
【0025】
また、配線パターン3の所定箇所には、厚さが60μm程度に形成され可撓性を有する半導体チップ(半導体素子)10が、高さ10μm〜30μmのバンプ11を介してフリップチップ接合により実装されている。
【0026】
この半導体チップ10をフリップチップ接合する際は、樹脂中に導電粒子を分散配置させた異方性導電膜(ACF)11を間に介在させる。そのうえで、例えば180℃の温度で熱圧着することにより、半導体チップ10と配線基板2との電気的接続が行えるとともに樹脂封止も行える。
【0027】
なお、フリップチップ接合については、上述の熱圧着以外にも、はんだ接続法や圧着接続法等を適宜用いることができる。また、フリップチップボンディングの代用として、シングルポイントボンディング等の接続方法を適宜選択し、配線基板2と半導体チップ10を接続してもよい。
【0028】
上記配線基板2は、半導体チップ10が実装される半導体素子領域Gaと、この領域の周囲もしくは左右両側に上記接続ランド4が設けられる層間接続領域Gbを備えている。
【0029】
特に、層間接続領域Gbには、接続ランド4相互の位置ずれを防止するための掛止部である貫通孔7と、この貫通孔の近傍部位に位置合わせ用バンプ8が複数、形成されている。
【0030】
上記貫通孔7と位置合わせ用バンプ8は、互いの直径が同一、もしくはバンプ8よりも貫通孔7が大きく形成される。このことにより、後述するようにして配線相互を積層した際に、配線基板2の貫通孔7とバンプ8に対して他の基板に形成されるバンプと貫通孔が確実に嵌合するようになっている。
【0031】
上記貫通孔7とバンプ8相互を確実に嵌合させるために、貫通孔7の周囲には突部9が形成されている。上記突部9は、たとえば高さ25μm程度のはんだ等の金属メッキが施されてなる。
【0032】
上記突部9は、金属メッキを用いるばかりでなく、この代用としてレジスト等の樹脂材を貫通孔7の周囲に沿って充填してもよく、突部9を形成するにあたって適宜選択できる。
【0033】
つぎに、このようにして構成される半導体パッケージ1を複数個(ここでは4個)積層して積層型半導体装置を得る製造方法の第1の実施の形態について説明する。
図2は、積層する以前(組み立て前)の状態の半導体装置の断面図、図3は組み立てして完成した状態の積層型半導体装置の断面図である。
【0034】
先に図1で説明したように一体に形成された4個の半導体パッケージ1が、それぞれ半導体チップ10を下面側に向け、配線基板2をその上面側に向けて用意される。
【0035】
各半導体パッケージ相互間には中間基板13が介在され、これらが交互に積層される。上記中間基板13には、半導体チップ10を収容する開口部Sが設けられ、積層した状態で半導体チップに接触しないように設計されている。
【0036】
上記中間基板13上の所定位置に複数の接続ランド4が配設され、この表面には、厚さが10μm程度のはんだ等からなるバンプ5がメッキにより設けられている。そして、接続ランド4には中間基板13の裏面側に突出するはんだ等のバンプ6が形成されている。
【0037】
また、中間基板13の所定部位には掛合部である位置決め用バンプ6が形成されている。この位置決め用バンプ8は、半導体パッケージ1相互間に中間基板13を介在させた状態で上記配線基板2に設けられる貫通孔7と正しく対向する位置にある。
【0038】
さらに、中間基板13における接続ランド4の近傍部位には掛止部である貫通孔7が設けられている。この貫通孔7の周囲に沿って、高さ25μm程度のはんだ等の金属メッキからなる突部9が設けられている。
【0039】
中間基板13の貫通孔7も、半導体パッケージ1相互間に中間基板13を介在させた状態で配線基板2に設けられる位置決め用バンプ8と対向する位置にある。そして、中間基板13における貫通孔7と位置決め用バンプ8の直径の関係も、配線基板における貫通孔7とバンプ8の直径の関係と同一になっている。
【0040】
各中間基板13の両面は、接着剤を所定の厚さで覆う接着剤層16が形成される。この接着剤層16は、接続ランド4を覆うとともに、バンプ5とほぼ同一の厚さで覆う。そして、バンプ6,8の先端がわずかに突出し、上記貫通孔7に充填してこれを完全に閉塞している。
【0041】
上述した半導体パッケージ1と中間基板13との積層とともに、これらの最下部にはベース基板14が重ねられ、最上部には天井基板15が重ねられる。なお、最下部の中間基板13とベース基板14との間には、ダミー半導体パッケージ18が介在される。
【0042】
このダミー半導体パッケージ18は、配線パターンを不要とし、かつ半導体チップを備えていない基板19を用意し、上記配線基板2と同一位置に全く同様構造のバンプ6,8が形成される接続ランド4および貫通孔7を備えている。その両面は接着剤層16で覆われ貫通孔7は接着剤で閉塞される。
【0043】
上記半導体パッケージ1を構成する配線基板2と中間基板13、天井基板15と配線基板2、中間基板13とダミー半導体パッケージ18の基板19およびベース基板14は、平板状の治具Za上に互いに重ね合わされる。
【0044】
そして、それぞれの基板2、13、…に形成される接続ランド4がバンプ6によって互いに電気的に接合され、かつ接着剤層16によって接合および封止され積層型半導体装置が得られる。
【0045】
つぎに、上述の4個の半導体パッケージ1を積層して形成する積層型半導体装置の製造方法について説明する。図4は、積層型半導体装置の製造方法のフローチャート図である。
【0046】
ステップS1として、図1に示した半導体チップ10をパッケージ化する以前の構成の配線基板2と、図2に示した接着剤層16を形成する以前の構造の中間基板13と、ダミー半導体パッケージ18と、ベース基板14および天井基板15をそれぞれ製造する。
【0047】
ステップS2として、中間基板13と、ダミー半導体パッケージ18のそれぞれ両面と、ベース基板14および天井基板15のそれぞれ片面に接着剤を塗布して接着剤層16を形成する。(第1の工程)
ステップS3として、各配線基板2に対してそれぞれ半導体チップ10を図1で説明したようにパッケージ化し、半導体パッケージ1を製作する。ここでは、4個の半導体パッケージ1が得られる。
【0048】
ステップS4として、ベース基板14上にダミー半導体パッケージ18を重ね合わせ、この上に順次、中間基板13と半導体パッケージ1を交互に積層する。このとき、半導体パッケージ1と中間基板13の位置合わせ用バンプ8と貫通孔7を視覚認識により位置合せをして配置する。
【0049】
たとえば、位置がずれて重ね合わされる場合には、掛合感が得られるまで中間基板13を位置合わせする。位置が合うと、位置合わせ用バンプ8と貫通孔7とが掛合してずらすことができなくなるので、そこで位置合せが完了する。
【0050】
互いの貫通孔7と位置合わせ用バンプ8の位置と設定条件から、それぞれの接続ランド4に相対的な位置ずれの発生する余地がない。最後に、これら半導体パッケージ1と中間基板13の積層体の最上部に、天井基板15を位置合せをして配置する。(第2の工程)
ステップS5として、積層状態にある半導体パッケージ1等を真空プレス機に投入する。プレス条件としてたとえば、真空度4.0kPa以下、温度180℃で60分間、荷重3.0MPa程度の圧力で加圧し熱圧着を行わせる。したがって、積層型半導体装置が完成する。(第3の工程)
上述の製造方法を採用することにより、半導体パッケージ1、中間基板13、ベース基板14および天井基板15等を積層接続する際に、認識による位置合せが可能であり、従来構想のように位置合わせをピン29にて行う場合に困難であった精密な位置決めが可能となる。
【0051】
また、層間接着時には接着剤の流れや熱応力により発生し易い位置ずれも確実に抑止して、所定仕様に合致した積層型半導体装置を効率よく生産することができる。
【0052】
図5は、積層型半導体装置の製造方法の、第2の実施の形態を説明する図である。
ここに示される配線基板2Aに半導体チップ10を実装した半導体パッケージ1Aと、中間基板13Aと、ベース基板14Aと、天井基板15Aおよびダミー半導体パッケージ18Aは、基本的には先に図1ないし図3で説明したものと同一構成であリ、同一部に同番号を付して新たな説明を省略する。
【0053】
相違点として、各基板2A、13A、…の少なくとも左右両側部が外方に延在されている。これらの延在量は、各基板とも全て同一であり、その延在部分に位置合わせ用孔aが設けられる。当然、位置合わせ用孔aの位置は正確に出されていて、互いの基板を積層した状態で、互いに対向した位置にある。
【0054】
一方、先に図6および図7で説明したような位置決め用治具Zを用意して、図2と図3で説明した順に各基板2A、13A、…相互を積層する。すなわち、各基板2A、13A、…の位置合わせ用孔aを位置決め用治具Zのピン29に介挿すればよい。
【0055】
すなわち、各基板2A、13A、…相互に設けられる貫通孔7と位置合わせ用バンプ8との位置合わせは、視覚認識にばかり限るものではなく、従来構想と同様、ピン17による位置合せを併用しても可能である。
このときも、ピン17とのクリアランスの範囲内で各基板を2A,13A、…をずらしながら掛合感が得られるまで位置合せを行うことは勿論である。
【0056】
【発明の効果】
以上説明したように本発明によれば、簡便な方法で生産効率よく積層でき、しかも接続ランドにおける位置ずれに起因する接続不良のない積層型半導体装置を製造することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る、半導体パッケージの断面側面図。
【図2】同実施の形態に係る、積層型半導体装置の組み立て前の断面図。
【図3】同実施の形態に係る、積層型半導体装置の組み立て後の断面図。
【図4】同実施の形態に係る、積層型半導体装置の製造方法のフローチャート図。
【図5】他の実施の形態に係る、積層型半導体装置の断面図。
【図6】従来構想の積層型半導体装置の組み立て前の断面図
【図7】従来構想の積層型半導体装置の組み立て後の断面図
【符号の説明】
10…半導体チップ(半導体素子)、Ga…半導体素子領域、4…接続ランド、7…貫通孔(掛止部)、Gb…層間接続領域、2…配線基板、S…開口部、8…位置合わせ用バンプ(掛合部)、13…中間基板、14…ベース基板、15…天井基板、16…接着剤層、10…半導体パッケージ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a stacked semiconductor device formed by stacking a plurality of semiconductor packages.
[0002]
[Prior art]
2. Description of the Related Art In recent years, small memory cards equipped with flash memories have been rapidly expanding their markets for use in portable information devices such as digital still cameras and portable information terminals. In particular, in the field of digital cameras, it is already becoming mainstream, and it is trying to solidify its position as an alternative to MDs and floppy disks.
[0003]
Against this background, small memory cards are required to have higher recording capacity, smaller size, lighter weight, lower cost, and the like, and various memory IC package structures and mounting structures have been proposed.
[0004]
The memory card generally employs a method of soldering a thin mold package such as TSOP (Thin Small Outline Package) to the base substrate, or a method of directly connecting a bare chip to the base substrate by wire bonding or flip chip mounting. ing.
[0005]
However, since the capacity that can be mounted in the same area is determined by the size of the semiconductor chip (semiconductor element), in order to further increase the capacity, it is necessary to consider a mounting structure in which semiconductor chips are three-dimensionally stacked. is there.
[0006]
In such a semiconductor device, a semiconductor package in which a semiconductor chip is mounted on a thin wiring board is stacked, but the wiring boards must be separated from each other, and therefore, an intermediate board is interposed between the wiring boards. Then, by electrically connecting the wiring board and the intermediate board by soldering, electrical and structural bonding between the wiring boards can be obtained.
[0007]
Hereinafter, a method of manufacturing a conventional stacked semiconductor device will be described.
FIG. 6 is a cross-sectional view showing a state where the semiconductor device having a three-dimensional mounting structure is set on a jig to assemble the same. FIG. 7 is a cross-sectional view showing the semiconductor device having a three-dimensional mounting structure assembled on the jig. is there.
[0008]
In the figure, reference numeral 20 denotes a plurality of packaged semiconductor chips 19 having bumps 22 made of solder or the like, and a semiconductor chip 19 mounted on the surface of a wiring board 18 having a thin plate structure on which connection lands 21 are formed using a flip chip method. (Here, four) semiconductor packages 20.
[0009]
Intermediate substrates 27 are interposed between the semiconductor packages 20, and are stacked alternately and vertically. The intermediate board 27 has an opening S into which the semiconductor chip 19 mounted on the wiring board 18 is inserted.
[0010]
The connection lands 21 having the bumps 22 made of solder or the like are also formed on the intermediate substrate 27, and the wiring substrate 18 and the intermediate substrate 27 are electrically and structurally connected via the respective bumps 22.
[0011]
The lowermost one of the stacked semiconductor packages 20 is connected via the bumps 22 of the base substrate 23 and the connection lands 21, and the uppermost semiconductor package 20 is connected via the connection lands 21 formed on the ceiling substrate 28. And are electrically and structurally connected.
[0012]
The wiring board 18 has a wiring pattern 24 made of a copper thin film on the surface of an insulating substrate made of a glass epoxy resin material or the like. A semiconductor chip 19 is attached to a predetermined portion of the wiring pattern 24 using an anisotropic conductive film (ACF) 25 and is flip-chip connected via a bump 26 made of a conductive material such as a gold material.
[0013]
The gap between the semiconductor chip 19 and the wiring board 18, the intermediate board 27, the base board 23, and the ceiling board 28 and the side surfaces of the semiconductor chip 19 are sealed with a resin 29 such as epoxy.
[0014]
Alignment holes 30 are provided at predetermined positions of the semiconductor chip 19 and the wiring substrate 18, the intermediate substrate 27, the base substrate 23, and the ceiling substrate 28, and all of the alignment holes of the substrates communicate with each other.
[0015]
To further explain in terms of the lamination mounting method, four semiconductor chips 19 are mounted on the wiring board 18 by flip-chip connection to form four semiconductor packages 20.
[0016]
Then, the semiconductor package 20 and the intermediate substrate 28 are sequentially placed on the base substrate 23 while positioning the connection lands 21 on the respective substrates by inserting the positioning holes 30 into the pins 29 erected on the assembly jig Z. Mount and stack. Finally, the ceiling substrate 28 is placed.
[0017]
At this time, an epoxy resin 29 is supplied to the base substrate 26, the intermediate substrate 27, and the ceiling substrate 28. After laminating the semiconductor package 20 in four stages, the semiconductor package 20 is put into a vacuum press device, and the connection lands 21 are connected to each other.
[0018]
[Problems to be solved by the invention]
In the stacked semiconductor device having the three-dimensional mounting structure, the four-layer stacked semiconductor package 20 is connected via the bumps 22 of the connection lands 21. It is necessary to keep the amount of displacement between the connection lands 21 within a predetermined value (for example, 50 μm).
[0019]
However, in this lamination method, positioning holes 30 are provided in the wiring board 18 and the like, and the positioning holes are inserted into the pins 29 to perform positioning. A clearance is required between the peripheral surface of the positioning hole 29 and the peripheral surface of the pin 30.
[0020]
Therefore, the amount of stacking deviation between the connection lands 21 to be connected is generated by the amount of the clearance, and may exceed the predetermined value. If the semiconductor package 20 is stacked in this state to manufacture a stacked semiconductor device, there is a possibility that electrical conduction failure may occur.
[0021]
The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the amount of displacement between connection lands on each substrate when stacking semiconductor packages, thereby improving accuracy. It is an object of the present invention to provide a method of manufacturing a stacked semiconductor device which aims at the above.
[0022]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, a method for manufacturing a stacked semiconductor device according to the present invention is directed to a method for manufacturing a stacked semiconductor device, comprising: a semiconductor element region in which a semiconductor element is mounted between a base substrate and a ceiling substrate; A plurality of wiring boards each provided with an interlayer connection region to be formed on the main surface, an opening through which a semiconductor element can be inserted, a connection land, and a plurality of hooks provided with a hook engaged with the hook. Prepare the intermediate board and each,
A first step of forming an adhesive layer on the surface of the intermediate substrate, and alternately stacking and aligning the engaging portions of the intermediate substrate and the engaging portions of the wiring substrate with respect to the base substrate while shifting the positions; A second step of aligning and laminating the ceiling substrate at the top, and thermocompression-bonding the laminated body composed of the intermediate substrate, the base substrate and the ceiling substrate to thermally cure the adhesive of the adhesive layer, thereby obtaining a laminated semiconductor device. And a third step of forming
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a vertical sectional side view illustrating the configuration of a semiconductor package.
The semiconductor package 1 includes a wiring board 2 having a thickness of about 50 μm and made of, for example, a glass epoxy resin material. On the main surface of the wiring board 2, a wiring pattern 3 made of copper or the like having a thickness of about 18 μm and a connection land 4 having a diameter of about 300 μm are formed.
[0024]
A bump 5 made of solder or the like having a thickness of about 10 μm is provided on the surface of the connection land 4 by plating. A bump 6 made of solder or the like is formed on the connection land 4 and protrudes from the back surface of the wiring board 2.
[0025]
A semiconductor chip (semiconductor element) 10 having a thickness of about 60 μm and having flexibility is mounted on a predetermined portion of the wiring pattern 3 by flip-chip bonding via a bump 11 having a height of 10 μm to 30 μm. ing.
[0026]
When the semiconductor chip 10 is flip-chip bonded, an anisotropic conductive film (ACF) 11 in which conductive particles are dispersed and arranged in a resin is interposed therebetween. Then, for example, by thermocompression bonding at a temperature of 180 ° C., electrical connection between the semiconductor chip 10 and the wiring board 2 can be performed, and resin sealing can be performed.
[0027]
For flip chip bonding, a solder connection method, a crimp connection method, or the like can be used as appropriate in addition to the thermocompression bonding described above. Alternatively, as an alternative to flip-chip bonding, a connection method such as single-point bonding may be appropriately selected to connect the wiring board 2 and the semiconductor chip 10.
[0028]
The wiring board 2 includes a semiconductor element region Ga on which the semiconductor chip 10 is mounted, and an interlayer connection region Gb in which the connection lands 4 are provided around the region or on both left and right sides.
[0029]
In particular, in the interlayer connection region Gb, a through hole 7 serving as a hook for preventing displacement between the connection lands 4 and a plurality of positioning bumps 8 are formed near the through hole. .
[0030]
The through hole 7 and the positioning bump 8 have the same diameter, or the through hole 7 is formed larger than the bump 8. As a result, when the wirings are stacked as described later, the bumps formed on the other substrate and the through holes are securely fitted to the through holes 7 and the bumps 8 of the wiring board 2. ing.
[0031]
A protrusion 9 is formed around the through hole 7 in order to securely fit the through hole 7 and the bump 8 together. The protrusion 9 is formed by applying a metal plating such as a solder having a height of about 25 μm.
[0032]
In addition to using metal plating, the protrusion 9 may be filled with a resin material such as a resist along the periphery of the through-hole 7 instead of the metal plating.
[0033]
Next, a first embodiment of a manufacturing method for obtaining a stacked semiconductor device by stacking a plurality (here, four) of the semiconductor packages 1 configured as described above will be described.
FIG. 2 is a cross-sectional view of the semiconductor device before lamination (before assembly), and FIG. 3 is a cross-sectional view of the stacked semiconductor device in a completed state after assembly.
[0034]
Four semiconductor packages 1 integrally formed as described above with reference to FIG. 1 are prepared with the semiconductor chip 10 facing the lower surface and the wiring board 2 facing the upper surface.
[0035]
Intermediate substrates 13 are interposed between the semiconductor packages, and these are alternately stacked. The intermediate substrate 13 is provided with an opening S for accommodating the semiconductor chip 10, and is designed so as not to contact the semiconductor chip in a stacked state.
[0036]
A plurality of connection lands 4 are provided at predetermined positions on the intermediate substrate 13, and bumps 5 made of solder or the like having a thickness of about 10 μm are provided on this surface by plating. The connection lands 4 are formed with bumps 6 made of solder or the like protruding on the back surface side of the intermediate substrate 13.
[0037]
In addition, positioning bumps 6 as hook portions are formed at predetermined portions of the intermediate substrate 13. The positioning bumps 8 are located at positions correctly facing the through holes 7 provided in the wiring board 2 with the intermediate substrate 13 interposed between the semiconductor packages 1.
[0038]
Further, a through hole 7 serving as a hook is provided in a portion of the intermediate substrate 13 near the connection land 4. Along the periphery of the through hole 7, a protrusion 9 made of metal plating such as solder having a height of about 25 μm is provided.
[0039]
The through holes 7 of the intermediate substrate 13 are also located at positions facing the positioning bumps 8 provided on the wiring substrate 2 with the intermediate substrate 13 interposed between the semiconductor packages 1. The relationship between the diameters of the through holes 7 and the positioning bumps 8 in the intermediate substrate 13 is the same as the relationship between the diameters of the through holes 7 and the bumps 8 in the wiring board.
[0040]
On both surfaces of each intermediate substrate 13, an adhesive layer 16 that covers the adhesive with a predetermined thickness is formed. The adhesive layer 16 covers the connection lands 4 and covers the bumps 5 with substantially the same thickness. Then, the tips of the bumps 6 and 8 slightly protrude, and fill the through holes 7 to completely close them.
[0041]
Along with the lamination of the semiconductor package 1 and the intermediate substrate 13 described above, a base substrate 14 is superimposed on the lowermost portion, and a ceiling substrate 15 is superimposed on the uppermost portion. Note that a dummy semiconductor package 18 is interposed between the lowermost intermediate substrate 13 and the base substrate 14.
[0042]
This dummy semiconductor package 18 does not require a wiring pattern and prepares a substrate 19 having no semiconductor chip. The connection lands 4 and the bumps 6 and 8 having exactly the same structure are formed at the same position as the wiring substrate 2. A through hole 7 is provided. Both surfaces are covered with an adhesive layer 16 and the through holes 7 are closed with an adhesive.
[0043]
The wiring substrate 2 and the intermediate substrate 13, the ceiling substrate 15 and the wiring substrate 2, the intermediate substrate 13 and the substrate 19 of the dummy semiconductor package 18 and the base substrate 14, which constitute the semiconductor package 1, are superimposed on a flat jig Za. Is done.
[0044]
The connection lands 4 formed on the respective substrates 2, 13,... Are electrically connected to each other by the bumps 6, and are bonded and sealed by the adhesive layer 16 to obtain a stacked semiconductor device.
[0045]
Next, a method of manufacturing a stacked semiconductor device formed by stacking the four semiconductor packages 1 described above will be described. FIG. 4 is a flowchart of a method for manufacturing a stacked semiconductor device.
[0046]
In step S1, the wiring board 2 having the configuration before packaging the semiconductor chip 10 shown in FIG. 1, the intermediate substrate 13 having the structure before forming the adhesive layer 16 shown in FIG. Then, the base substrate 14 and the ceiling substrate 15 are respectively manufactured.
[0047]
In step S2, an adhesive is applied to both surfaces of the intermediate substrate 13, the dummy semiconductor package 18, and one surface of each of the base substrate 14 and the ceiling substrate 15 to form an adhesive layer 16. (First step)
In step S3, the semiconductor chip 10 is packaged on each wiring board 2 as described with reference to FIG. Here, four semiconductor packages 1 are obtained.
[0048]
In step S4, the dummy semiconductor package 18 is overlaid on the base substrate 14, and the intermediate substrate 13 and the semiconductor package 1 are alternately stacked on the dummy semiconductor package 18. At this time, the alignment bumps 8 and the through holes 7 of the semiconductor package 1 and the intermediate substrate 13 are aligned by visual recognition and arranged.
[0049]
For example, in the case where the positions are shifted and superimposed, the intermediate substrate 13 is aligned until a feeling of engagement is obtained. When the positions are aligned, the alignment bumps 8 and the through holes 7 are engaged and cannot be shifted, so that the alignment is completed there.
[0050]
Due to the positions of the through holes 7 and the positioning bumps 8 and the setting conditions, there is no room for relative displacement between the connection lands 4. Finally, the ceiling substrate 15 is positioned and arranged at the top of the stacked body of the semiconductor package 1 and the intermediate substrate 13. (Second step)
In step S5, the semiconductor packages 1 and the like in a stacked state are put into a vacuum press. As the pressing conditions, for example, a pressure of about 3.0 MPa is applied under a pressure of about 3.0 MPa at a degree of vacuum of 4.0 kPa or less and a temperature of 180 ° C. for 60 minutes to perform thermocompression bonding. Therefore, a stacked semiconductor device is completed. (Third step)
By adopting the above-described manufacturing method, when the semiconductor package 1, the intermediate substrate 13, the base substrate 14, the ceiling substrate 15 and the like are stacked and connected, the alignment by recognition is possible, and the alignment is performed as in the conventional concept. Precise positioning, which has been difficult with the pin 29, can be performed.
[0051]
Further, at the time of interlayer bonding, misalignment that is likely to occur due to the flow of the adhesive or thermal stress is reliably suppressed, and a stacked semiconductor device that meets predetermined specifications can be efficiently produced.
[0052]
FIG. 5 is a diagram illustrating a second embodiment of the method of manufacturing the stacked semiconductor device.
The semiconductor package 1A in which the semiconductor chip 10 is mounted on the wiring substrate 2A, the intermediate substrate 13A, the base substrate 14A, the ceiling substrate 15A, and the dummy semiconductor package 18A are basically shown in FIGS. The same components as those described above are denoted by the same reference numerals, and a new description will be omitted.
[0053]
The difference is that at least the left and right sides of each of the substrates 2A, 13A,... Extend outward. These extending amounts are the same for each substrate, and a positioning hole a is provided in the extending portion. Naturally, the positions of the positioning holes a are accurately set, and are located at positions facing each other in a state where the substrates are stacked.
[0054]
On the other hand, the positioning jig Z as described above with reference to FIGS. 6 and 7 is prepared, and the respective substrates 2A, 13A,... Are stacked in the order described with reference to FIGS. That is, the positioning holes a of the substrates 2A, 13A,... May be inserted into the pins 29 of the positioning jig Z.
[0055]
That is, the positioning of the through holes 7 and the positioning bumps 8 provided in the respective substrates 2A, 13A,... Is not limited to visual recognition, and the positioning using the pins 17 is also used as in the conventional concept. It is possible.
At this time, it is needless to say that the respective substrates are shifted by 2A, 13A,... Within the range of the clearance with the pins 17 until the feeling of engagement is obtained.
[0056]
【The invention's effect】
As described above, according to the present invention, it is possible to manufacture a stacked semiconductor device that can be stacked with a simple method with high production efficiency and that is free from a connection failure due to a displacement in a connection land.
[Brief description of the drawings]
FIG. 1 is a cross-sectional side view of a semiconductor package according to an embodiment of the present invention.
FIG. 2 is a sectional view of the stacked semiconductor device according to the embodiment before being assembled;
FIG. 3 is an exemplary sectional view of the stacked semiconductor device according to the embodiment after assembly;
FIG. 4 is a flowchart of the method for manufacturing the stacked semiconductor device according to the embodiment.
FIG. 5 is a cross-sectional view of a stacked semiconductor device according to another embodiment.
FIG. 6 is a cross-sectional view before assembling a conventional stacked semiconductor device. FIG. 7 is a cross-sectional view after assembling a conventional stacked semiconductor device.
DESCRIPTION OF SYMBOLS 10 ... Semiconductor chip (semiconductor element), Ga ... Semiconductor element area, 4 ... Connection land, 7 ... Through hole (hook part), Gb ... Interlayer connection area, 2 ... Wiring board, S ... Opening, 8 ... Positioning Bumps (hook portions), 13: intermediate substrate, 14: base substrate, 15: ceiling substrate, 16: adhesive layer, 10: semiconductor package.

Claims (1)

ベース基板と天井基板との間に、半導体素子が実装された半導体素子領域と接続ランドと掛止部が形成される層間接続領域をそれぞれ主面上に備えた複数の配線基板と、上記半導体素子が挿通可能な開口部と、接続ランドと、上記掛止部と噛合して掛合する掛合部を備えた複数の中間基板とをそれぞれ用意し、
上記中間基板の表面に接着剤層を形成する第1の工程と、
上記ベース基板に対して、上記中間基板の掛合部と配線基板の掛止部とをずらしながら位置合わせて交互に積層し、かつこの積層体の最上部に天井基板を位置合わせして積層する第2の工程と、
これら中間基板、ベース基板および天井基板からなる積層体を熱圧着して上記接着剤層の接着剤を熱硬化させ積層型半導体装置を成形する第3の工程と
を具備することを特徴とする積層型半導体装置の製造方法。
A plurality of wiring boards each having, on a main surface thereof, a semiconductor element region in which a semiconductor element is mounted, an interlayer connection region in which a connection land and a hook portion are formed, between a base substrate and a ceiling substrate, An opening that can be inserted, a connection land, and a plurality of intermediate substrates each having a hooking portion that engages with the hooking portion are prepared,
A first step of forming an adhesive layer on the surface of the intermediate substrate;
With respect to the base substrate, the engaging portion of the intermediate substrate and the engaging portion of the wiring substrate are alternately stacked while being shifted, and the ceiling substrate is aligned and stacked on the top of the stacked body. Two steps,
A third step of thermocompression-bonding the laminated body including the intermediate substrate, the base substrate, and the ceiling substrate to thermally cure the adhesive of the adhesive layer to form a laminated semiconductor device. Of manufacturing a semiconductor device.
JP2002352744A 2002-12-04 2002-12-04 Manufacturing method of laminated semiconductor device Pending JP2004186494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352744A JP2004186494A (en) 2002-12-04 2002-12-04 Manufacturing method of laminated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352744A JP2004186494A (en) 2002-12-04 2002-12-04 Manufacturing method of laminated semiconductor device

Publications (1)

Publication Number Publication Date
JP2004186494A true JP2004186494A (en) 2004-07-02

Family

ID=32754276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352744A Pending JP2004186494A (en) 2002-12-04 2002-12-04 Manufacturing method of laminated semiconductor device

Country Status (1)

Country Link
JP (1) JP2004186494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173387A (en) * 2004-12-16 2006-06-29 Matsushita Electric Ind Co Ltd Multi-stage configuration semiconductor module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173387A (en) * 2004-12-16 2006-06-29 Matsushita Electric Ind Co Ltd Multi-stage configuration semiconductor module

Similar Documents

Publication Publication Date Title
US8575763B2 (en) Semiconductor device and method of manufacturing the same
CN101877348B (en) System and method for embedded chip package with chips stacked in an interconnecting laminate
TWI315096B (en) Semiconductor package stack with through-via connection
US7061122B2 (en) Components, methods and assemblies for multi-chip packages
US7299546B2 (en) Method for manufacturing an electronic module
US6555917B1 (en) Semiconductor package having stacked semiconductor chips and method of making the same
JP5259059B2 (en) Semiconductor device
TWI460845B (en) Stackable molded microelectronic packages with area array unit connectors
JP4830120B2 (en) Electronic package and manufacturing method thereof
US20140295620A1 (en) Method of manufacturing semiconductor device having plural semiconductor chips stacked one another
US20030156402A1 (en) Method for making a build-up package of a semiconductor die and structure formed from the same
JPH09331000A (en) Semiconductor package
TW201511209A (en) Semiconductor device and method of manufacturing the semiconductor device
JP2003115560A (en) Semiconductor device, laminated semiconductor device, manufacturing method of semiconductor device, and manufacturing method of laminated semiconductor device
JP2000138313A (en) Semiconductor device and its manufacture
US20080248611A1 (en) Manufacturing method of semiconductor device
JP2012109437A (en) Semiconductor device and method of manufacturing the same
JP2012212786A (en) Manufacturing method of semiconductor device
JP2013021058A (en) Manufacturing method of semiconductor device
JP2012146853A (en) Method of manufacturing semiconductor device
KR20070051165A (en) Semiconductor package having pre-solder bump, stack package using the same and manufacturing method thereof
JP2001250907A (en) Semiconductor device and method of manufacturing the same
JP2003007972A (en) Laminated semiconductor device and method of manufacturing the same
JP2004186494A (en) Manufacturing method of laminated semiconductor device
TWI435667B (en) Print circuit board assembly