JP2004186204A - Film-like adhesive for circuit member connection and semiconductor device using the same - Google Patents

Film-like adhesive for circuit member connection and semiconductor device using the same Download PDF

Info

Publication number
JP2004186204A
JP2004186204A JP2002348025A JP2002348025A JP2004186204A JP 2004186204 A JP2004186204 A JP 2004186204A JP 2002348025 A JP2002348025 A JP 2002348025A JP 2002348025 A JP2002348025 A JP 2002348025A JP 2004186204 A JP2004186204 A JP 2004186204A
Authority
JP
Japan
Prior art keywords
film
adhesive
resin
weight
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002348025A
Other languages
Japanese (ja)
Other versions
JP3991268B2 (en
Inventor
Akira Nagai
朗 永井
Kenzo Takemura
賢三 竹村
Katsuhide Aichi
且英 愛知
Koji Motomura
耕治 本村
Tetsuya Enomoto
哲也 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002348025A priority Critical patent/JP3991268B2/en
Publication of JP2004186204A publication Critical patent/JP2004186204A/en
Application granted granted Critical
Publication of JP3991268B2 publication Critical patent/JP3991268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide film-like adhesive for circuit member connection, which has stickiness and flexibility in a stage before sticking an adherend, in which a cut at the time of film work and a crack at the time of bending do not occur and which is superior in a hardened material physical property of storage stability and high temperature adhesive property, and to provide a semiconductor device using adhesive. <P>SOLUTION: Film-like adhesive for circuit member connection comprising three-dimensional bridging resin is laid between confronted semiconductor chip and circuit board, and connects the confronted semiconductor chip and the circuit board by heating and pressurization. Thermoplastic resin (A) epoxy resin (B), powdered phenol resin (C) having a methylol radical in a molecule, and insulating spherical inorganic filler (D) are made to be essential components. Blending quantity of (C) is 5 to 25 weight % with respect to (B), and (A) is 7 to 40 weight % when a whole resin component except for (D) is set to be 100 weight %. Thus, film-like adhesive for circuit member connection, which is superior in heat resistance, and the semiconductor device can be manufactured by using film-like adhesive for circuit member connection. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フェイスダウンボンディング方式で半導体チップを回路基板へ加熱、加圧によって接続するための回路部材接続用フィルム状接着剤及びこれを用いてフェイスダウン方式で半導体チップと回路基板を接続した半導体装置に関する。
【0002】
【従来の技術】
一般に、半導体チップをフェイスダウンボンディング方式により直接回路基板に実装する方式として、半導体チップの電極部分にはんだバンプを形成し回路基板にはんだ接続する方式や半導体チップに設けた突起電極に導電性接着剤を塗布し回路基板電極に電気的接続を行う方法が知られている。これらの方式では、各種環境下に曝した場合、接続するチップと基板の熱膨張係数差に基づくストレスが接続界面で発生するため接続信頼性が低下するという問題がある。このため、接続界面のストレスを緩和する目的で一般にチップと基板の間隙をエポキシ樹脂等のアンダーフィル材で充填する方式が検討されている。アンダーフィル材の充填方式としてはチップと基板を接続した後に低粘度の液状樹脂を注入する方式と基板上にアンダーフィル材を置いた後にチップを搭載する方式がある。(例えば非特許文献1参照。)。しかし、前者の液状樹脂の注入方式は、プロセスが煩雑化し、生産性、コストの面で不利になるという問題があり、一方後者のアンダーフィル材の先置き方法はプロセス簡易性の点でより有利であるものの、液状樹脂を押しつぶす際のボイドの発生が問題となる。このような問題を解決すべくフィルム状接着剤を用いたフリップチップ実装が、プロセス簡易性と接続信頼性の観点からより注目されている(例えば特許文献1参照。)。しかしながら、近年、環境に対する影響から、鉛フリーはんだの使用が検討されており、鉛フリーはんだにすることによって電子部品を基板に実装する際のはんだリフロー工程の温度が、例えば従来のはんだでは240℃であったものが、260℃以上と高温になっている。このため、フリップチップ実装用の接着剤に対しても260℃の高温で接着力が低下しないような実装信頼性が要求されている。
近年、エポキシ樹脂の耐熱性を向上させる新規なフェノール樹脂として分子骨格中に反応性を有するメチロール基を含有した高分子フェノール樹脂が報告された(例えば非特許文献2参照)。このフェノール樹脂とエポキシ樹脂からなる組成物は高耐熱性であり封止材として優れた特性を示すことが報告されている(例えば特許文献2参照)。しかしながら、フェノール樹脂とエポキシ樹脂の反応において、硬化促進剤が存在しない系であってもフェノール性水酸基が触媒となってメチロール基すなわちアルコール性水酸基とエポキシ基の反応が進行することが知られている(例えば非特許文献3)。このため、メチロール基含有の高分子フェノール樹脂を配合したエポキシ樹脂組成物の保存安定性は著しく損なわれる。
一方、フリップチップ実装に適用するフィルム状接着剤は、硬化物の物性が重要であると同時に、被着体貼付け前の段階では粘着フィルムのような性質を有するとともに、柔軟性を有し、フィルム加工時すなわち切断や折り曲げ時に割れなどが発生しないことが求められる。
【0003】
【特許文献1】
特許第3073532号公報
【特許文献2】
特開2000−336150号公報
【非特許文献1】
本間、「フリップチップ用アンダーフィル材料」、電子材料、株式会社工業調査会、2000年9月1日、第39巻、第9号、p.36−40
【非特許文献2】
「ベルパール」、ベルパールカタログ、カネボウ株式会社、H7年12月、改訂−10
【非特許文献3】
村井宗一、石村秀一共著、「入門エポキシ樹脂(新高分子文庫25)」、第1版、(株)高分子刊行会、1988年6月20日、p.91−92
【0004】
【発明が解決しようとする課題】
本発明は、被着体貼付け前の段階で粘着性や柔軟性を有し、フィルム加工時の切断や折り曲げ時に割れなどが発生せず、保存安定性、高温接着性等の硬化物物性に優れた回路部材接続用フィルム状接着剤及びこれを用いた半導体装置を提供する。
【0005】
【課題を解決するための手段】
本発明は、[1]相対向する半導体チップと回路基板間に介在され、相対向する半導体チップと回路基板を加熱、加圧によって接続する三次元架橋性樹脂を含有した回路部材接続用フィルム状接着剤であって、
(A)熱可塑性樹脂、
(B)エポキシ樹脂、
(C)分子内にメチロール基を有する粉末状フェノール樹脂、
(D)絶縁性球状無機質充填剤、
を必須成分とし、(C)の配合量が(B)に対して5〜25重量%であり、(D)を除く樹脂成分全体を100重量部とした時、(A)が7〜40重量部であることを特徴とする回路部材接続用フィルム状接着剤である。
また、本発明は。[2](B)エポキシ樹脂として25℃で液状のエポキシ樹脂を含むことを特徴とする上記[1]に記載の回路部材接続用フィルム状接着剤である。
また、本発明は、[3]前記(D)の絶縁性球状無機質充填剤が平均粒子径0.1〜5μmであり、最大粒径30μm以下であることを特徴とする上記[1]または上記[2]に記載の回路部材接続用フィルム状接着剤である。
また、本発明は、[4]前記(A)、(B)、(C)、(D)を必須成分とする材料を有機溶剤中で溶解、分散させたワニスを支持体上に塗布、乾燥させ有機溶剤を除去することにより得られる上記[1]ないし上記[3]のいずれかに記載の回路部材接続用フィルム状接着剤である。
また、本発明は、[5]硬化後の260℃の貯蔵弾性率が500MPa以上であることを特徴とする上記[1]ないし上記[4]のいずれかに記載の回路部材接続用フィルム状接着剤である。
また、本発明は、[6]硬化後の260℃の貯蔵弾性率が40℃の貯蔵弾性率に対して5〜20%であることを特徴とする上記[1]ないし上記[5]のいずれかに記載の回路部材接続用フィルム状接着剤である。
また、本発明は、[7]25℃に168時間放置した回路部材接続用フィルム状接着剤の切断加工時に切断面以外の部分への亀裂の発生またはフィルム割れによるフィルムの欠損が発生しないことを特徴とする上記[1]ないし上記[6]のいずれかに記載の回路部材接続用フィルム状接着剤である。
また、本発明は、[8]25℃に168時間放置した際、放置前の流動性に対して放置後の流動性の減少率が50%以内であることを特徴とする上記[1]ないし上記項[7]のいずれかに記載の回路部材接続用フィルム状接着剤である。
また、本発明は、[9]上記[1]ないし上記[8]のいずれかに記載の回路部材接続用フィルム状接着剤を用いて半導体チップと回路基板を接続した半導体装置である。
請求項1〜8の発明は、フェイスダウンボンディング方式で半導体チップを回路基板へ加熱、加圧によって接続するための回路部材接続用フィルム状接着剤において、加熱硬化前は取扱性に優れたフィルム状であり、加熱硬化後の高温の貯蔵弾性率が十分に大きいことによって硬化後の高温耐熱性に優れ、さらに加熱硬化前のフィルム特性が室温(25℃)で放置した後も損なわれることなく保存性に優れた回路部材接続用フィルム状接着剤を提供するものである。
請求項9の発明は、高温耐熱性に優れた半導体装置を提供するものである。
【0006】
【発明の実施の形態】
本発明の回路部材接続用フィルム状接着剤は、相対向する半導体チップと回路基板間に介在され、相対向する半導体チップと回路基板を加熱、加圧によって接続する三次元架橋性樹脂で、
(A)熱可塑性樹脂、
(B)エポキシ樹脂、
(C)分子内にメチロール基を有する粉末状フェノール樹脂、
(D)絶縁性球状無機質充填剤、を必須成分とする。
本発明で使用する(A)熱可塑性樹脂としては、一般公知の熱可塑性樹脂を使用することができる。例えば、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリアリレート樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、フェノキシ樹脂、ポリアクリレート樹脂、ポリブタジエン、アクリロニトリルブタジエン共重合体(NBR)、アクリロニトリルブタジエンスチレン樹脂(ABS)、スチレンブタジエン共重合体(SBR)等が挙げられ、これらは単独または2種以上を併用して使用することができる。特に、エポキシ樹脂との相溶性に優れる点でフェノキシ樹脂が好ましい。フェノキシ樹脂は、ビスフェノール類、ビフェノール類、レゾルシノール類とエピクロルヒドリンから成る重合物、またはビスフェノール類、ビフェノール類、レゾルシノール類とエピクロルヒドリンから誘導されたジグリシジルエーテルとビスフェノール類、ビフェノール類、レゾルシノール類から成る重合物であり、一般公知のものを使用することができる。
【0007】
本発明で使用する(B)エポキシ樹脂としては、室温(25℃)で液状のエポキシ樹脂を含むことが好ましい。室温で液状のエポキシ樹脂を含まない場合、加熱硬化前のフィルムの柔軟性が損なわれ、折り曲げや加工時の切断作業によってフィルムに亀裂が発生したり、フィルム割れによって欠損が生じたりするため好ましくない。このような室温で液状のエポキシ樹脂としてはエポキシ基を分子中に2個以上有するものを使用することができる。例えば、ビスフェノールA、ビスフェノールFのジグリシジルエーテル、フェノールノボラックとエピクロルヒドリンとの反応で得られるポリグリシジルエーテルで室温で液状のものを使用することができる。これらは単独でも2種以上混合しても差し支えない。また、本発明で使用する(B)エポキシ樹脂としては、室温(25℃)で固形のエポキシ樹脂を使用することができる。このようなエポキシ樹脂としてはエポキシ基を分子中に2個以上有するものが使用できる。例えば、ナフタレン骨格を有するエポキシ樹脂、ビスフェノールS、ビフェノール、レゾルシノール等のジグリシジルエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック樹脂をエポキシ化したもの、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラヒドロキシフェニルエタン型エポキシ樹脂等が挙げられる。これらは1種でも2種以上の混合でも使用することができる。
【0008】
エポキシ樹脂(B)は、不純物イオン(Na、Cl等)や、加水分解性塩素を低減した高純度品を用いることがエレクトロマイグレーション防止のため好ましい。
【0009】
本発明における(C)分子内にメチロール基を有する粉末状フェノール樹脂としては、フェノール類とホルムアルデヒドとの縮合物から成り、フェノールの2,4,6位の一カ所でメチレン基と結合し、そして少なくとも他の1カ所でメチロール基及び/又はメチレン基と結合したフェノール樹脂であり、常温で粉末状であり、平均粒子系10〜30μm程度のものである。このようなフェノール樹脂としては一般公知のものを使用することができる。分子内にメチロール基を有する粉末状フェノール樹脂は有機溶剤に対して可溶性であることが好ましく、アルコール系、ケトン系、エステル系の有機溶剤で20wt%〜70wt%の溶解成分を含む懸濁液を調整できることが好ましい。このような粉末状フェノール樹脂の分子量は溶解性が低くなるほど高分子量であり、高分子化の程度をメタノールに対する溶解度を指標として表すことが出来る。メタノールへの溶解度は規定量の粉末状フェノール樹脂をメタノール中で環流加熱した後の不溶物を回収して重量測定し、溶解前の重量と比較して求めることが出来る。この時、可溶部分はGPCのポリスチレン換算重量平均分子量1000以上であるものが好ましい。本発明で用いる粉末状フェノール樹脂としてはメタノール溶解度が10%以上、100%未満のものが好ましい。メタノール溶解度が10%未満と低い場合、アルコール系、ケトン系、エステル系の有機溶剤で懸濁液を調整することが困難であるため好ましくない。メタノール溶解性が100%である場合、高分子量成分が無いため、フィルム成形性が低下するとともに、フェノール樹脂の分子内に含まれるメチロール基含量が増加しフィルムの保存安定性が低下するため好ましくない。
【0010】
本発明の(D)絶縁性球状無機質充填剤は、球状であって平均粒径が0.1μm〜5μm範囲であり、最大粒径が30μm以下のものが好ましく、例えば、溶融シリカ、結晶質シリカ、ケイ酸カルシウム、アルミナ、炭酸カルシウム、酸化チタン等の粉体が挙げられる。絶縁性球状無機質充填剤の平均粒径は、例えばレーザ回折散乱式粒度分布測定器を用いて測定することが出来る。これら絶縁性球状無機質充填剤は、純度が高く、α(アルファ)線の放出量が少ないものが望ましい。半導体チップと回路基板電極の接続抵抗を低減するために、絶縁性球状無機質充填剤の平均粒径は、レーザ回折散乱式粒度分布測定器において0.1μm〜5μmの範囲にあることが好ましく、平均粒径は0.1μm〜4μmであることがより好ましく、さらに接続抵抗を低減するために平均粒径0.1μm〜2μmであることが特に好ましい。平均粒径が、0.1μm未満の場合、線膨張係数低減の効果が小さく、線膨張係数を低下させるためにはある程度粒子径が大きく、配合部数を増やす必要がある。また、平均粒径が、0.1μm未満の場合、フィルム状接着剤製造時のワニス粘度が高くなりすぎ、回路接続用フィルム状接着剤の製造が困難になるおそれがある。さらに、接着剤樹脂の機械強度が低下する傾向にあるため好ましくない。一方、平均粒径が5μmを超えて大きい場合、接続端子間に挟まれた絶縁性球状無機質充填剤によって回路の電気抵抗が上昇し、動作不良の原因となるため好ましくない。また、最大粒径が30μmを超えて大きい場合、フェイスダウンボンディングで半導体チップと回路基板電極を接続する際、半導体チップと回路基板電極の間に挟まり、各接続部材にダメージを与えることや接続の妨げとなったり動作不良の原因となる場合があるため好ましくない。また、球状でない絶縁性無機質充填材は、20μmを超えるとチップのパッシベーション膜へのダメージを与える可能性があるため好ましくない。絶縁性球状無機充填材の表面は、ジメチルシリコーンオイル、オクチルシラン及びトリメチルシリル基などの有機物、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤などのカップリング剤で表面処理されていても良い。
【0011】
本発明における(A)熱可塑性樹脂の配合量は、(D)を除く回路接続用フィルム状接着剤の樹脂組成物100重量部の中で、(A)が7〜40重量部であることが好ましく、7〜30重量部であることがより好ましく、10〜25重量部であることが特に好ましい。熱可塑性樹脂の配合量が40重量部を超える場合は硬化物特性における熱可塑性樹脂の特性が支配的となるため、高温時の弾性率が低下するため好ましくない。また、熱可塑性樹脂の配合量が7重量部未満ではフィルム形成性が低下するため好ましくない。
本発明における(B)エポキシ樹脂で常温(25℃)で液状のエポキシ樹脂と常温で固形のエポキシ樹脂の配合比は(液状エポキシ樹脂):(固形エポキシ樹脂)=1:4〜4:1が好ましく、1:2〜2:1がより好ましく、5:5が特に好ましい。(液状エポキシ樹脂)の割合が(液状エポキシ樹脂):(固形エポキシ樹脂)=1:4より少ない場合、加熱硬化前の回路部材接続用フィルム状接着剤の柔軟性が損なわれ、折り曲げや加工時の切断作業によってフィルムに亀裂が発生したり、フィルム割れによって欠損が生じたりするため好ましくない。また、液状エポキシ樹脂の割合が(液状エポキシ樹脂):(固形エポキシ樹脂)=4:1よりも多い場合、フィルム成形性が低下するため好ましくない。
(C)分子内にメチロール基を有する粉末状フェノール樹脂の配合量は(B)のエポキシ樹脂の総量に対し重量で5〜25%であることが好ましく、10〜25%であることがより好ましく、10〜20%であることが特に好ましい。(C)が(B)に対し重量で5%未満である場合、硬化特性及び硬化物の接着強度が低下するため好ましくない。一方、(C)が(B)に対し25%を超えて多い場合、硬化成分中に占める(C)のメチロール基の数が多くなりすぎ、硬化の進行が速く保存性が悪くなり、加熱硬化前のフィルムが破損しやすくなるとともに、流動性が低下しやすくなるため好ましくない。
本発明における(D)絶縁性球状無機質充填剤の配合量は(D)を除く回路接続用フィルム状接着剤の樹脂組成物100重量部に対して10〜300重量部の範囲が好ましく、20〜200重量部であることがより好ましく、50〜150重量部であることが特に好ましい。絶縁性無機質充填材の配合量が(D)を除く回路接続用フィルム状接着剤の樹脂組成物100重量部に対して10重量部未満では、線膨張係数が低減されないため接続信頼性が低下する傾向にあり、300重量部を超えると粘度が高くなりすぎるため、半導体チップと回路基板接続時の樹脂排除性が悪くなり、接続抵抗が上昇するため好ましくない。
【0012】
本発明の回路部材接着用フィルム状接着剤には、硬化反応の促進または硬化物特性の向上の目的で硬化促進剤を使用することができる。硬化促進剤には特に制限はないが、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、1,5−ジアザ−ビシクロ(4,3,0)ノネン、5,6−ジブチルアミノ−1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等のシクロアミジン化合物およびこれらの化合物に無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4−ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂などのπ結合を持つ化合物を付加してなる分子内分極を有する化合物、べンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類及びこれらの誘導体、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、2,4−ジアミノ−6−(2’−メチルイミダゾリル−(1’))−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール等のイミダゾール類及びこれらの誘導体、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類及びこれらのホスフィン類に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合を持つ化合物を付加してなる分子内分極を有するリン化合物、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2−エチル−4−メチルイミダゾールテトラフェニルボレート、N−メチルモルフォリンテトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体などが挙げられる。また、これらをカプセル化して潜在性を持たせたものを使用することも可能である。これらの硬化促進剤は単独もしくは2種以上の併用で使用することができる。硬化促進剤の配合量は、硬化促進効果が達成される量であれば特に限定されるものではないが、回路接続用フィルム状接着剤全体に対して0.005〜5重量部であることが好ましく、0.01〜3重量部であることがより好ましい。
【0013】
本発明の回路部材接着用フィルム状接着剤には、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤などのカップリング剤を含有することができる。これらのカップリング剤は単独もしくは2種以上を併用して使用することができる。これらのカップリング剤の配合量は回路部材接着用フィルム状接着剤全体に対して0.01〜10重量部が好ましく、0.1〜5重量部がより好ましい。
【0014】
本発明の回路部材接続用フィルム状接着剤には、圧着時の流動性特性を調整する目的で平均粒径が0.005〜0.05μmの無機質充填材を配合することができる。これらの無機質充填剤は樹脂にチクソ性を付与する目的の一般公知のものを使用することができる。この無機質充填剤の配合量としては、回路部材接続用フィルム状接着剤の(D)を除く樹脂組成物100重量部に対し、20重量部を超えない範囲で充填することが好ましい。20重量部を超えると回路接続用フィルム状接着剤製造時のワニス粘度が高くなりすぎ、回路部材接続用フィルム状接着剤の製造が困難になり、さらに、回路部材接続用フィルム状接着剤の機械強度が低下する傾向にあるため好ましくない。この無機質充填材の表面は、ジメチルシリコーンオイル、オクチルシラン及びトリメチルシリル基などの有機物、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤などのカップリング剤で表面処理されていても良い。
本発明の回路部材接続用フィルム状接着剤には、特性を損なわない範囲で、無機イオン交換体を配合することができる。この配合量としては、樹脂組成物量に対し0.5〜10重量部が好ましい。
【0015】
本発明の回路部材接続用フィルム状接着剤は上記記載の各材料を有機溶剤中で溶解、分散させたワニスを作製した後、このワニスを支持体上に塗布し、乾燥によって有機溶剤を除去することで作製することができる。有機溶剤としては特に制限するものはないが、メタノール、エタノール等のアルコール系、ジエチルエーテル等のエーテル系、トルエン、キシレン等の芳香族系、メチルエチルケトン、メチルイソブチルケトン等のケトン系、酢酸メチル、酢酸エチル等のエステル系、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の非プロトン系極性溶剤、テトラヒドロフラン、ジオキサン、アセトニトリル、シクロヘキサノン等の一般公知の溶剤を使用することができ、これらは混合溶剤として使用することができる。溶解、分散の手段としては特に制限するもではない。ワニスを塗布する支持体としては特に制限するものはないが、ポリエステル系、ポリオレフィン系、ポリイミド系、フッ素系等のプラスチックフィルムや金属箔、金属板など一般公知のものを使用することができ、これら支持体は離型処理、静電処理などを施されていることが好ましい。
本発明において、回路部材接続用フィルム状接着剤の硬化後の260℃における貯蔵弾性率が500MPa以上であることによって、高温時の接着強度の低下を抑制することができるため、硬化後の260℃の貯蔵弾性率は500MPa以上であることが好ましく、800MPa以上であることがより好ましく、1000MPa以上であることが特に好ましい。さらに、本発明において、硬化後の260℃の貯蔵弾性率と40℃の貯蔵弾性率の差が小さく、この貯蔵弾性率の変化が小さいことにより、高温時の接着強度の低下を抑制することが出来、吸湿後の高温リフローでの剥離不良などを抑制することが出来るため、硬化後の260℃の貯蔵弾性率は40℃の貯蔵弾性率に対して5〜20%であることが好ましい。硬化後の貯蔵弾性率は、例えば、セイコーインスツルメンツ株式会社製粘弾性測定装置DMS6100(引っ張りモード、周波数1Hz、5℃/分で昇温)を用いた粘弾性測定法により測定することができる。なお、回路部材接続用フィルム状接着剤の硬化は、完全硬化に到達する条件であれば特に制限するものではなく、例えば200℃のオーブンに1時間放置するなどして完全硬化させることができる。
【0016】
本発明の回路部材接続用フィルム状接着剤は半導体チップと回路基板の接続の際に、必要サイズにカッターナイフまたは打ち抜き用の金型によって切断して供給することが出来る。
本発明において、25℃に168時間放置した回路部材接続用フィルム状接着剤が切断加工時に切断面以外の部分への亀裂の発生またはフィルム割れによるフィルムの欠損が発生しないことによって、室温(25℃)で長時間の作業においてもフィルム加工時に安定した特性で作業を行うことが可能であり、半導体装置の製造において生産性を向上することが出来る。
【0017】
本発明において、25℃に168時間放置した回路部材接続用フィルム状接着剤の流動性が放置前の流動性に対して減少率50%以内であることによって、室温(25℃)で長時間の作業においても回路部材接続用フィルム状接着剤の圧着時の特性が安定しており、半導体装置の製造歩留まりを向上することが出来る。
回路部材接続用フィルム状接着剤の流動性は以下の手段によって測定する。すなわち、一辺5mmの正方形に切断加工した厚さ50μmの回路部材接続用フィルム状接着剤を、厚さ0.7mm、大きさ15mm角のガラス板に貼付けた後、支持体フィルムを剥がし、窒化シリコンパッシベーション膜付きの厚さ0.55mm、大きさ15mm角のシリコンウェハーをパッシベーション側から接着剤付きガラス板に貼り合わせる。このとき、回路部材接続用フィルム状接着剤の初期面積(A)は、25mmである。これを、加熱圧着機によって、加熱・加圧を行う。加熱・加圧後の接着剤面積(B)を、例えば画像処理装置を用いて測定し、回路接続用フィルム状接着剤の加熱・加圧前後の面積の比(B/A)を求め、回路部材接続用フィルム状接着剤の流動性とする。この際に加圧力は、0.1〜10MPa、温度は100〜250℃の範囲で行い、圧力、温度が同一の条件で行う。
放置後の流動性の減少率は前記流動性測定で測定した放置前の流動性(C)と放置後の流動性(D)から、((C−1)−(D−1))/(C−1)*100によって求める。 放置後の流動性減少率が50%を超える場合、回路部材接続用フィルム状接着剤の加熱加圧時の流動性が経時で変化しすぎるため、半導体装置製造工程において、一定条件で作業することが困難であり、歩留まりの低下の原因となり好ましくない。
【0018】
以上、説明した本発明の回路部材接続用フィルム状接着剤は、例えば、フェイスダウン方式により半導体チップと回路基板とを接着固定する際の接続材料として使用することができる。半導体チップとしては金ワイヤーバンプ、金メッキバンプ、ニッケルバンプ、はんだパンプ等の突起電極を有するものが挙げられ、回路基板としては半導体チップの突起電極に対応した接続端子を有するプリント基板、TAB基板、フレキシブル基板、ガラス基板、セラミックス基板、半導体チップ等が挙げられる。また、その他の回路部材として抵抗体チップ、コンデンサチップなどが挙げられる。また、本発明の回路部材接続用フィルム状接着剤は半導体チップと回路基板を接着固定する際の接続材料、半導体パッケージ同士を積層して固定する際の接続材料、ベアチップ実装された半導体チップの裏面に貼付けて半導体チップが外部衝撃によって破損することを防止するための保護用封止材料等として使用することができる。
【0019】
本発明の回路部材接続用フィルム状接着剤を用いて半導体チップと回路基板を接続した半導体装置は、例えば、フェイスダウン方式により半導体チップと回路基板とを接着固定して得ることができる。半導体チップの突起電極とこれに対応する回路基板の接続端子を、本発明の回路部材接続用フィルム状接着剤を介在させた状態で対向して配置し、加熱加圧して、半導体チップの突起電極と回路基板の接続端子の間から回路部材接続用フィルム状接着剤を排除すると共に半導体チップと回路基板の間の回路部材接続用フィルム状接着剤を硬化させることによって、半導体チップと回路基板を接着固定して半導体装置が得られる。この際、半導体チップの突起電極と回路基板の接続端子の電気的接続方法として、半導体チップの突起電極と回路基板の接続端子を接触させる方法、半導体チップの突起電極上または回路基板の接続端子上にSn−Pb、Sn−Au等のはんだ、またはSn,Au等を電極面に形成させて金属共晶を形成させて接合する方法、超音波等の機械的なエネルギーを加えながら半導体チップの突起電極と回路基板の接続端子を固着して接合する方法などを用いることが出来る。
【0020】
【実施例】
以下、実施例により本発明を具体的に説明する。
実施例に使用した材料を表1にまとめて示した。
(実施例1)
フェノキシ樹脂(A)10重量部、室温(25℃)で液状のエポキシ樹脂であるフェノールノボラック型エポキシ樹脂(B)36重量部、室温(25℃)で固形のエポキシ樹脂(C)36重量部、粉末状フェノール樹脂(D)18重量部およびシランカップリング剤(G)2重量部に2−ブタノン100重量部を加え混合、溶解した。この溶液に球状シリカフィラー(E)100重量部およびイミダゾール(F)1重量部を加え、サンドミル処理を行い、フィルム塗工用ワニスを得た。このフィルム塗工用ワニスを離型処理された50μm厚のPETフィルム上にロールコータで塗布し、70℃、10分間乾燥し厚み50μmの回路部材接続用フィルム状接着剤を作製した。
【0021】
(実施例2〜4)
実施例1と同様に、表2に示す割合で配合し、回路部材接続用フィルム状接着剤を作製した。
【0022】
(比較例1)
粉末状フェノール樹脂のエポキシ樹脂に対する配合の割合を100%とし、実施例1と同様の方法で、表3に示す割合で配合し、回路部材接続用フィルム状接着剤を作製した。
【0023】
(比較例2)
粉末状フェノール樹脂のエポキシ樹脂に対する配合の割合を50%とし、実施例1と同様の方法で、表3に示す割合で配合し、回路部材接続用フィルム状接着剤を作製した。
【0024】
(比較例3)
粉末状フェノール樹脂のエポキシ樹脂に対する配合の割合を4%とし、実施例1と同様の方法で、表3に示す割合で配合し、回路部材接続用フィルム状接着剤を作製した。
【0025】
(比較例4)
粉末状フェノール樹脂を配合せずに、実施例1と同様の方法で、表3に示す割合で配合し、回路部材接続用フィルム状接着剤を作製した。
【0026】
(比較例5)
粉末状フェノール樹脂を配合せずに、アルコール性官能基を持つ低分子量の変性フェノールノボラック樹脂を用い、実施例1と同様に、表3に示す割合で配合し、回路部材接続用フィルム状接着剤を作製した。
【0027】
実施例および比較例において、以下の方法で特性評価を行い、その評価結果を表2に示した。
(フィルム形成性):70℃、10分間で乾燥した後、離型処理されたPETフィルム上にムラおよびはじきが無くフィルム状接着剤が形成され、また、PETフィルムの塗工していない面からフィルム状接着剤とPETフィルムを同時に90°に曲げた際、フィルム状接着剤に割れが発生したか、否かを試験した。フィルム形成が良好で割れの発生が無いものを○、フィルム形成が不良または割れの発生またはその両方が発生したものを×として評価した。
【0028】
(放置後の加工性):25℃の恒温槽に168時間放置した後、回路部材接続用フィルム状接着剤面からPETフィルムごとカッターで切断し、切断面以外の部分への亀裂の発生またはフィルム割れによるフィルムの欠損が発生したか、否かを試験した。割れおよびかけの発生が無いものを○、発生したものを×として評価した。
(放置後の流動性減少率):一辺5mmの正方形に切断加工した厚さ50μmの回路部材接続用フィルム状接着剤を、厚さ0.7mm、大きさ15mm角のガラス板に貼付けた後、支持体フィルムを剥がし、窒化シリコンパッシベーション膜付きの厚さ0.55mm、大きさ15mm角のシリコンウェハーをパッシベーション側から接着剤付きガラス板に貼り合わせた。このとき、回路部材接続用フィルム状接着剤の初期面積(A)は、25mmである。これを、加熱圧着機によって、加熱温度180℃、荷重初期面積に対し1MPa、加熱時間20秒でシリコンウェハー側から加熱・加圧を行った。加熱・加圧後の接着剤面積(B)を、解像度600dpiのスキャナーで読みとって測定し、回路接続用フィルム状接着剤の加熱・加圧前後の面積の比(B/A)を求め、面積比(B/A)を回路部材接続用フィルム状接着剤の初期流動性(C)とした。次に、回路部材接続用フィルム状接着剤を25℃の恒温槽に168時間放置した後、前記方法と同様に流動性を測定し、放置後の流動性(D)を測定した。放置前の流動性(C)と放置後の流動性(D)から、[((C−1)−(D−1))/(C−1)]×100=[(C−D)/(C−1)]×100によって流動性減少率を求めた。
【0029】
(粘弾性測定):作製した回路接続用フィルム状接着剤を200℃のオーブン中に1時間放置し、硬化フィルムを作製した。硬化フィルムをセイコーインスツルメンツ株式会社製粘弾性測定装置DMS6100で引っ張りモード、周波数1Hz、5℃/分の昇温速度で粘弾性測定を行い、260℃の貯蔵弾性率を求めた。(耐熱性試験):作製した回路部材接続用フィルム状接着剤を離型処理されたPETフィルムごと12mm×12mmにカッターで切断し、Ni/Auめっきした銅回路付き回路基板(電極高さ:20μm、基板厚み:0.8mm)に80℃、1MPa、3秒で貼付けた後、PETフィルムを剥離した。ワイヤボールAuバンプ(高さ:30μm、バンプ数184)付き半導体チップ(大きさ:10mm×10mm、厚み:0.55mm)と回路部材接続用フィルム状接着剤を貼付けた前記回路基板の位置合わせを行った後、180℃、1N/バンプ、20秒の条件で半導体チップ上方から加熱、加圧を行い、半導体チップと回路基板を接続した。接続体を125℃のオーブンに24時間放置した後、30℃、60%RHの雰囲気下に192時間さらした後、最高温度260℃、10秒の赤外線リフロー炉を繰り返し3回通過させ、半導体チップの剥離の有無を確認した。
【0030】
【表1】

Figure 2004186204
【0031】
【表2】
Figure 2004186204
【0032】
表2の実施例1〜4および比較例1〜5から、本発明の(C)分子内にメチロール基を有する粉末状フェノール樹脂が(B)エポキシ樹脂に対して(C)/(B)=5〜25重量%である回路部材接続用フィルム状接着剤はフィルム成形性、保存性、耐熱性に優れる。一方、比較例1と2の(C)/(B)=100、50重量%では加工性に劣り、フィルム切断時に割れ、かけ、亀裂が生じた。また、比較例3,4の(C)/(B)=4、0重量%では、加工性は良いが、吸湿リフロー後の剥離を生じてしまう。また、分子内にメチロール基を有する粉末状フェノール樹脂でなく、アルコール性官能基を持つ低分子量の変性フェノールノボラック樹脂を用いた比較例5では、260℃の高温時の貯蔵弾性率が低く剥離を生じてしまう。
【0033】
【発明の効果】
本発明によれば、耐熱性に優れた回路部材接続用フィルム状接着剤および半導体装置を作製することが出来る。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a film-form adhesive for connecting a semiconductor chip to a circuit board by heating and pressing by a face-down bonding method and a semiconductor in which a semiconductor chip and a circuit board are connected by a face-down method using the same. Equipment related.
[0002]
[Prior art]
Generally, a method of directly mounting a semiconductor chip on a circuit board by a face-down bonding method includes a method of forming a solder bump on an electrode portion of the semiconductor chip and connecting it to the circuit board by soldering, or a method of using a conductive adhesive on a protruding electrode provided on the semiconductor chip. There is known a method of applying an electric current to a circuit board electrode to make electrical connection. In these systems, when exposed to various environments, there is a problem that stress based on a difference in thermal expansion coefficient between a chip to be connected and a substrate is generated at a connection interface, thereby lowering connection reliability. For this reason, a method of filling a gap between a chip and a substrate with an underfill material such as an epoxy resin is generally studied for the purpose of reducing stress at a connection interface. As a method of filling the underfill material, there are a method of injecting a low-viscosity liquid resin after connecting the chip and the substrate, and a method of mounting the chip after placing the underfill material on the substrate. (For example, see Non-Patent Document 1.) However, the former method of injecting a liquid resin has a problem that the process is complicated and disadvantageous in terms of productivity and cost, whereas the latter method of pre-loading the underfill material is more advantageous in terms of process simplicity. However, the generation of voids when crushing the liquid resin is a problem. In order to solve such a problem, flip-chip mounting using a film adhesive has attracted more attention from the viewpoint of process simplicity and connection reliability (for example, see Patent Document 1). However, in recent years, the use of lead-free solder has been studied from the influence on the environment, and the temperature of the solder reflow process when mounting an electronic component on a substrate by using lead-free solder is, for example, 240 ° C. for a conventional solder. Is high at 260 ° C. or higher. For this reason, mounting reliability is required for an adhesive for flip-chip mounting so that the adhesive strength does not decrease at a high temperature of 260 ° C.
In recent years, a high-molecular phenol resin containing a reactive methylol group in the molecular skeleton has been reported as a novel phenol resin for improving the heat resistance of an epoxy resin (for example, see Non-Patent Document 2). It has been reported that the composition comprising the phenol resin and the epoxy resin has high heat resistance and exhibits excellent properties as a sealing material (for example, see Patent Document 2). However, in the reaction between a phenolic resin and an epoxy resin, it is known that the reaction between a methylol group, that is, an alcoholic hydroxyl group and an epoxy group proceeds by a phenolic hydroxyl group as a catalyst even in a system in which a curing accelerator is not present. (For example, Non-Patent Document 3). For this reason, the storage stability of the epoxy resin composition containing the high molecular weight phenol resin containing a methylol group is significantly impaired.
On the other hand, the film adhesive applied to the flip chip mounting, while the physical properties of the cured product is important, at the stage before the adherend adheres to the properties like an adhesive film, and has flexibility, It is required that cracks or the like do not occur at the time of processing, that is, at the time of cutting or bending.
[0003]
[Patent Document 1]
Japanese Patent No. 3073532
[Patent Document 2]
JP 2000-336150 A
[Non-patent document 1]
Honma, "Underfill Material for Flip Chip", Electronic Materials, Industrial Research Institute, Inc., September 1, 2000, Vol. 39, No. 9, p. 36-40
[Non-patent document 2]
"Bell Pearl", Bell Pearl Catalog, Kanebo Corporation, December 2007, Revised-10
[Non-Patent Document 3]
Soichi Murai and Shuichi Ishimura, "Introductory Epoxy Resin (New Polymer Bunko 25)", 1st edition, Polymer Publishing Association, June 20, 1988, p. 91-92
[0004]
[Problems to be solved by the invention]
The present invention has adhesiveness and flexibility at the stage before the adherend is adhered, does not generate cracks or the like during cutting or bending during film processing, and has excellent storage physical properties such as storage stability and high-temperature adhesiveness. And a semiconductor device using the same.
[0005]
[Means for Solving the Problems]
The present invention provides [1] a circuit member connecting film containing a three-dimensional crosslinkable resin interposed between opposed semiconductor chips and a circuit board and connecting the opposed semiconductor chips and the circuit board by heating and pressing. An adhesive,
(A) a thermoplastic resin,
(B) epoxy resin,
(C) a powdery phenol resin having a methylol group in the molecule,
(D) an insulating spherical inorganic filler,
Is an essential component, and the blending amount of (C) is 5 to 25% by weight with respect to (B), and (A) is 7 to 40% by weight when the entire resin component except (D) is 100 parts by weight. A film-like adhesive for connecting circuit members.
Also, the present invention. [2] The film-like adhesive for connecting circuit members according to [1], wherein the epoxy resin contains a liquid epoxy resin at 25 ° C. as the epoxy resin (B).
In the present invention, [3] the insulating spherical inorganic filler of (D) has an average particle diameter of 0.1 to 5 μm and a maximum particle diameter of 30 μm or less. The film-like adhesive for connecting circuit members according to [2].
Further, the present invention provides [4] a varnish obtained by dissolving and dispersing the above-mentioned materials (A), (B), (C) and (D) in an organic solvent on a support, and drying the varnish. The film-like adhesive for connecting circuit members according to any one of the above [1] to [3], which is obtained by removing the organic solvent.
Further, the present invention provides [5] the film-like adhesive for connecting circuit members according to any of [1] to [4] above, wherein the storage elastic modulus at 260 ° C. after curing is 500 MPa or more. Agent.
The present invention further provides [6] a storage elastic modulus at 260 ° C. after curing of 5 to 20% of a storage elastic modulus at 40 ° C. according to any one of the above [1] to [5]. And a film-like adhesive for connecting circuit members.
The present invention also provides a method for preventing the occurrence of cracks in portions other than the cut surface or the occurrence of film loss due to film breakage during the cutting of the film-like adhesive for circuit member connection left at 25 ° C. for 168 hours. The film-like adhesive for connecting circuit members according to any one of the above [1] to [6].
[8] The present invention is also characterized in that [8] when left at 25 ° C. for 168 hours, the reduction rate of the fluidity after standing is 50% or less with respect to the fluidity before leaving. The film-like adhesive for connecting circuit members according to any one of the above items [7].
Further, the present invention provides [9] a semiconductor device in which a semiconductor chip and a circuit board are connected using the film-like adhesive for connecting circuit members according to any one of the above [1] to [8].
The invention according to claims 1 to 8 is a film-like adhesive for connecting circuit members for connecting a semiconductor chip to a circuit board by heating and pressing by a face-down bonding method. It has a sufficiently high storage elastic modulus at high temperature after heat curing, and thus has excellent heat resistance at high temperature after curing. Further, the film properties before heat curing can be stored without loss even after being left at room temperature (25 ° C.). An object of the present invention is to provide a film-like adhesive for connecting circuit members, which has excellent properties.
The ninth aspect of the present invention provides a semiconductor device having excellent high-temperature heat resistance.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The film-like adhesive for circuit member connection of the present invention is a three-dimensional cross-linkable resin that is interposed between the opposed semiconductor chip and the circuit board, and connects the opposed semiconductor chip and the circuit board by heating and pressing.
(A) a thermoplastic resin,
(B) epoxy resin,
(C) a powdery phenol resin having a methylol group in the molecule,
(D) Insulating spherical inorganic filler is an essential component.
As the thermoplastic resin (A) used in the present invention, a generally known thermoplastic resin can be used. For example, polyester resin, polyether resin, polyamide resin, polyamide imide resin, polyimide resin, polyarylate resin, polyvinyl butyral resin, polyurethane resin, phenoxy resin, polyacrylate resin, polybutadiene, acrylonitrile butadiene copolymer (NBR), acrylonitrile butadiene Styrene resin (ABS), styrene butadiene copolymer (SBR) and the like can be mentioned, and these can be used alone or in combination of two or more. In particular, a phenoxy resin is preferable because of its excellent compatibility with an epoxy resin. Phenoxy resins are polymers composed of bisphenols, biphenols, polymers composed of resorcinols and epichlorohydrin, or polymers composed of bisphenols, biphenols, diglycidyl ethers derived from resorcinols and epichlorohydrin and bisphenols, biphenols, resorcinols And generally known ones can be used.
[0007]
The epoxy resin (B) used in the present invention preferably contains a liquid epoxy resin at room temperature (25 ° C.). If the epoxy resin that is liquid at room temperature is not included, the flexibility of the film before heat curing is impaired, and the film may be cracked by bending or cutting work at the time of processing, or the fracture may be caused by film cracking, which is not preferable. . As such an epoxy resin which is liquid at room temperature, a resin having two or more epoxy groups in a molecule can be used. For example, a diglycidyl ether of bisphenol A or bisphenol F, or a polyglycidyl ether obtained by reacting phenol novolak with epichlorohydrin, which is liquid at room temperature, can be used. These may be used alone or in combination of two or more. As the epoxy resin (B) used in the present invention, an epoxy resin that is solid at room temperature (25 ° C.) can be used. As such an epoxy resin, those having two or more epoxy groups in a molecule can be used. For example, an epoxy resin having a naphthalene skeleton, a diglycidyl ether such as bisphenol S, biphenol and resorcinol, a diglycidylamine type epoxy resin obtained by the reaction of a polyamine such as diaminodiphenylmethane and isocyanuric acid with epichlorohydrin, and a copolymer of dicyclopentadiene and phenols Epoxidized condensed resin, phenol novolak type epoxy resin, orthocresol novolak type epoxy resin, epoxidized novolak resin such as naphthol novolak type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetrahydroxyphenylethane type epoxy resin, etc. Is mentioned. These can be used alone or in combination of two or more.
[0008]
The epoxy resin (B) contains impurity ions (Na + , Cl And the like, and use of a high-purity product with reduced hydrolyzable chlorine is preferred for preventing electromigration.
[0009]
The (C) powdery phenolic resin having a methylol group in the molecule according to the present invention comprises a condensate of phenols and formaldehyde, and binds to a methylene group at one of the 2, 4, and 6 positions of phenol; A phenolic resin bonded to a methylol group and / or a methylene group at at least one other place, is in a powder form at room temperature, and has an average particle size of about 10 to 30 μm. As such a phenol resin, generally known ones can be used. The powdery phenolic resin having a methylol group in the molecule is preferably soluble in an organic solvent, and an alcohol-based, ketone-based, or ester-based organic solvent containing a suspension containing 20 wt% to 70 wt% of a dissolved component. Preferably, it can be adjusted. The molecular weight of such a powdery phenol resin is higher as the solubility is lower, and the degree of polymerization can be represented by using the solubility in methanol as an index. The solubility in methanol can be determined by collecting an insoluble substance after refluxing a specified amount of a powdered phenol resin in methanol in methanol, measuring the weight, and comparing it with the weight before dissolution. At this time, the soluble portion preferably has a weight average molecular weight in terms of GPC of 1,000 or more in terms of polystyrene. The powdery phenol resin used in the present invention preferably has a methanol solubility of 10% or more and less than 100%. If the methanol solubility is as low as less than 10%, it is not preferable because it is difficult to prepare a suspension with an alcohol, ketone, or ester organic solvent. When the methanol solubility is 100%, since there is no high molecular weight component, the film formability decreases, and the content of methylol groups contained in the molecule of the phenol resin increases, and the storage stability of the film decreases, which is not preferable. .
[0010]
The (D) insulating spherical inorganic filler of the present invention is preferably spherical and has an average particle diameter in the range of 0.1 μm to 5 μm and a maximum particle diameter of 30 μm or less. For example, fused silica, crystalline silica , Calcium silicate, alumina, calcium carbonate, titanium oxide and the like. The average particle size of the insulating spherical inorganic filler can be measured using, for example, a laser diffraction / scattering type particle size distribution analyzer. It is desirable that these insulating spherical inorganic fillers have a high purity and a small emission amount of α (alpha) rays. In order to reduce the connection resistance between the semiconductor chip and the circuit board electrode, the average particle size of the insulating spherical inorganic filler is preferably in the range of 0.1 μm to 5 μm in a laser diffraction / scattering type particle size distribution analyzer. The particle size is more preferably from 0.1 μm to 4 μm, and particularly preferably from 0.1 μm to 2 μm in order to further reduce the connection resistance. When the average particle size is less than 0.1 μm, the effect of reducing the coefficient of linear expansion is small, and in order to reduce the coefficient of linear expansion, the particle size must be large to some extent and the number of blending parts must be increased. If the average particle size is less than 0.1 μm, the varnish viscosity at the time of producing the film adhesive may be too high, and it may be difficult to produce the film adhesive for circuit connection. Further, the mechanical strength of the adhesive resin tends to decrease, which is not preferable. On the other hand, when the average particle size is larger than 5 μm, the electric resistance of the circuit is increased by the insulating spherical inorganic filler sandwiched between the connection terminals, which causes an operation failure, which is not preferable. Also, when the maximum particle size is larger than 30 μm, when connecting the semiconductor chip and the circuit board electrode by face-down bonding, the semiconductor chip and the circuit board electrode are sandwiched between the semiconductor chip and the circuit board electrode, and each connecting member may be damaged. This is not preferable because it may hinder the operation or cause a malfunction. On the other hand, a non-spherical insulating inorganic filler is not preferred if it exceeds 20 μm because it may damage the passivation film of the chip. The surface of the insulating spherical inorganic filler is surface-treated with a coupling agent such as an organic substance such as dimethyl silicone oil, octylsilane and trimethylsilyl group, a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent. Is also good.
[0011]
The blending amount of the thermoplastic resin (A) in the present invention may be such that (A) is 7 to 40 parts by weight in 100 parts by weight of the resin composition of the film-like adhesive for circuit connection excluding (D). Preferably, it is more preferably 7 to 30 parts by weight, particularly preferably 10 to 25 parts by weight. If the blending amount of the thermoplastic resin exceeds 40 parts by weight, the characteristics of the thermoplastic resin in the properties of the cured product are dominant, and the elastic modulus at high temperatures is undesirably reduced. On the other hand, if the blending amount of the thermoplastic resin is less than 7 parts by weight, the film forming property is undesirably reduced.
In the present invention, the compounding ratio of (B) the epoxy resin liquid at room temperature (25 ° C.) and the epoxy resin solid at room temperature is (liquid epoxy resin) :( solid epoxy resin) = 1: 4 to 4: 1. Preferably, 1: 2 to 2: 1, more preferably, 5: 5. If the ratio of (liquid epoxy resin) is less than (liquid epoxy resin) :( solid epoxy resin) = 1: 4, the flexibility of the film-like adhesive for connecting circuit members before heating and curing is impaired, and the bending and processing may be difficult. This is not preferable because cracking occurs in the film due to the cutting operation described above, or loss occurs due to the film cracking. On the other hand, if the ratio of the liquid epoxy resin is more than (liquid epoxy resin) :( solid epoxy resin) = 4: 1, the film moldability deteriorates, which is not preferable.
(C) The compounding amount of the powdery phenol resin having a methylol group in the molecule is preferably from 5 to 25%, more preferably from 10 to 25% by weight based on the total amount of the epoxy resin of (B). , 10 to 20%. If (C) is less than 5% by weight with respect to (B), the curing properties and the adhesive strength of the cured product are undesirably reduced. On the other hand, when (C) is more than 25% of (B), the number of the methylol groups of (C) in the curing component becomes too large, the curing progresses quickly, and the preservability deteriorates. It is not preferable because the previous film is easily damaged and the fluidity is easily lowered.
The amount of the insulating spherical inorganic filler (D) in the present invention is preferably in the range of 10 to 300 parts by weight, preferably 20 to 300 parts by weight, per 100 parts by weight of the resin composition of the film-like adhesive for circuit connection excluding (D). It is more preferably 200 parts by weight, particularly preferably 50 to 150 parts by weight. If the amount of the insulating inorganic filler is less than 10 parts by weight based on 100 parts by weight of the resin composition of the film-like adhesive for circuit connection excluding (D), the linear expansion coefficient is not reduced and the connection reliability is reduced. When the content exceeds 300 parts by weight, the viscosity becomes too high, so that the resin excluding property at the time of connecting the semiconductor chip and the circuit board is deteriorated, and the connection resistance is undesirably increased.
[0012]
In the film-like adhesive for bonding circuit members of the present invention, a curing accelerator can be used for the purpose of accelerating the curing reaction or improving the properties of the cured product. Although there is no particular limitation on the curing accelerator, for example, 1,8-diaza-bicyclo (5,4,0) undecene-7, 1,5-diaza-bicyclo (4,3,0) nonene, 5,6 Cycloamidine compounds such as -dibutylamino-1,8-diaza-bicyclo (5,4,0) undecene-7 and these compounds are added to maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4 -Naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4 -A compound having an intramolecular polarization obtained by adding a compound having a π bond, such as a quinone compound such as benzoquinone, diazophenylmethane, and a phenol resin; Tertiary amines such as triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and derivatives thereof, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl- 2-phenylimidazole, 2,4-diamino-6- (2′-methylimidazolyl- (1 ′))-ethyl-s-triazine isocyanuric acid adduct, 2-phenyl-4-methyl-5-hydroxymethylimidazole, Imidazoles such as 2-phenyl-4,5-dihydroxymethylimidazole and derivatives thereof, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, phenylphosphine Organic phosphines and phosphorus compounds having an intramolecular polarization obtained by adding a compound having a π bond such as maleic anhydride, the above quinone compound, diazophenylmethane, and phenol resin to these phosphines, tetraphenylphosphonium tetraphenylborate And tetraphenylboron salts such as triphenylphosphine tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenylborate, and N-methylmorpholine tetraphenylborate, and derivatives thereof. It is also possible to encapsulate these and give them a potential. These curing accelerators can be used alone or in combination of two or more. The compounding amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is achieved, but may be 0.005 to 5 parts by weight based on the whole film adhesive for circuit connection. More preferably, it is 0.01 to 3 parts by weight.
[0013]
The film-like adhesive for bonding circuit members of the present invention can contain a coupling agent such as a silane coupling agent, a titanate coupling agent, or an aluminum coupling agent. These coupling agents can be used alone or in combination of two or more. The amount of these coupling agents is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on the whole film-like adhesive for bonding circuit members.
[0014]
An inorganic filler having an average particle size of 0.005 to 0.05 μm can be blended with the film-like adhesive for circuit member connection of the present invention for the purpose of adjusting the fluidity characteristics during pressure bonding. As these inorganic fillers, generally known ones for imparting thixotropy to the resin can be used. The amount of the inorganic filler is preferably not more than 20 parts by weight based on 100 parts by weight of the resin composition excluding (D) of the film-like adhesive for connecting circuit members. If the amount exceeds 20 parts by weight, the varnish viscosity at the time of producing the film-like adhesive for circuit connection becomes too high, and the production of the film-like adhesive for circuit member connection becomes difficult. This is not preferable because the strength tends to decrease. The surface of the inorganic filler may be surface-treated with a coupling agent such as an organic substance such as dimethyl silicone oil, octylsilane and trimethylsilyl group, a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent. .
An inorganic ion exchanger can be added to the film-like adhesive for circuit member connection of the present invention as long as the properties are not impaired. The amount is preferably 0.5 to 10 parts by weight based on the amount of the resin composition.
[0015]
The film-like adhesive for circuit member connection of the present invention is prepared by dissolving each of the above-described materials in an organic solvent to prepare a varnish in which the varnish is dispersed, then applying the varnish on a support, and removing the organic solvent by drying. It can be manufactured by the following. There are no particular restrictions on the organic solvent, but alcohols such as methanol and ethanol, ethers such as diethyl ether, aromatics such as toluene and xylene, ketones such as methyl ethyl ketone and methyl isobutyl ketone, methyl acetate, and acetic acid Ester-based solvents such as ethyl, dimethylformamide, dimethylacetamide, aprotic polar solvents such as N-methylpyrrolidone, and generally known solvents such as tetrahydrofuran, dioxane, acetonitrile, and cyclohexanone can be used, and these can be used as a mixed solvent. can do. Means for dissolution and dispersion are not particularly limited. The support on which the varnish is applied is not particularly limited, but polyester-based, polyolefin-based, polyimide-based, fluorine-based plastic films and metal foils, and generally known materials such as metal plates can be used. The support is preferably subjected to a release treatment, an electrostatic treatment or the like.
In the present invention, since the storage elastic modulus at 260 ° C. after curing of the film-like adhesive for circuit member connection is 500 MPa or more, a decrease in adhesive strength at a high temperature can be suppressed. Has a storage modulus of preferably 500 MPa or more, more preferably 800 MPa or more, and particularly preferably 1000 MPa or more. Furthermore, in the present invention, the difference between the storage elastic modulus at 260 ° C. after curing and the storage elastic modulus at 40 ° C. is small, and the change in the storage elastic modulus is small, so that a decrease in the adhesive strength at high temperatures can be suppressed. Therefore, the storage elastic modulus at 260 ° C. after curing is preferably 5 to 20% with respect to the storage elastic modulus at 40 ° C., because it is possible to suppress peeling failure at high temperature reflow after moisture absorption. The storage elastic modulus after curing can be measured by, for example, a viscoelasticity measuring method using a viscoelasticity measuring device DMS6100 (tensile mode, frequency 1 Hz, temperature rise at 5 ° C./min) manufactured by Seiko Instruments Inc. The curing of the film-like adhesive for circuit member connection is not particularly limited as long as it reaches the condition of complete curing. For example, it can be completely cured by leaving it in an oven at 200 ° C. for 1 hour.
[0016]
The film-like adhesive for circuit member connection of the present invention can be supplied by cutting with a cutter knife or a die for punching to a required size when connecting the semiconductor chip to the circuit board.
In the present invention, the film-like adhesive for connecting circuit members left at 25 ° C. for 168 hours does not cause cracks in portions other than the cut surface or chipping of the film due to film breakage during the cutting process. (2) It is possible to carry out work with stable characteristics during film processing even in long-time work, and it is possible to improve productivity in manufacturing semiconductor devices.
[0017]
In the present invention, since the fluidity of the film-form adhesive for circuit member connection left at 25 ° C. for 168 hours is within a reduction rate of 50% with respect to the fluidity before standing, it can be used for a long time at room temperature (25 ° C.). In the operation, the characteristics of the film-form adhesive for connecting circuit members at the time of pressure bonding are stable, and the production yield of the semiconductor device can be improved.
The fluidity of the film adhesive for connecting circuit members is measured by the following means. That is, a 50-μm-thick film-like adhesive for connecting circuit members cut into a square with a side of 5 mm was attached to a glass plate having a thickness of 0.7 mm and a size of 15 mm, and then the support film was peeled off. A silicon wafer having a passivation film and a thickness of 0.55 mm and a size of 15 mm square is bonded to a glass plate with an adhesive from the passivation side. At this time, the initial area (A) of the film-like adhesive for connecting circuit members is 25 mm. 2 It is. This is heated and pressurized by a thermocompression bonding machine. The area (B) of the adhesive after heating and pressing is measured using, for example, an image processing apparatus, and the ratio (B / A) of the area before and after heating and pressing of the film-like adhesive for circuit connection is determined. The fluidity of the film adhesive for member connection is used. At this time, the pressure is 0.1 to 10 MPa, the temperature is 100 to 250 ° C., and the pressure and the temperature are the same.
The rate of decrease in the fluidity after standing was determined from the fluidity (C) before standing and the fluidity (D) after standing as measured by the above-mentioned flowability measurement, and was calculated as ((C-1)-(D-1)) / ( C-1) Determined by * 100. If the decrease in fluidity after standing exceeds 50%, the fluidity of the film-like adhesive for connecting circuit members at the time of heating and pressurization changes too much with time. Is difficult, which causes a decrease in yield, which is not preferable.
[0018]
The circuit member connecting film-like adhesive of the present invention described above can be used, for example, as a connecting material when a semiconductor chip and a circuit board are bonded and fixed by a face-down method. Examples of the semiconductor chip include those having protruding electrodes such as gold wire bumps, gold plating bumps, nickel bumps, and solder bumps. The circuit board includes a printed board having connection terminals corresponding to the protruding electrodes of the semiconductor chip, a TAB board, and a flexible board. Substrates, glass substrates, ceramic substrates, semiconductor chips and the like can be mentioned. Other circuit members include a resistor chip and a capacitor chip. Further, the film-like adhesive for connecting a circuit member of the present invention is a connection material for bonding and fixing a semiconductor chip and a circuit board, a connection material for stacking and fixing semiconductor packages, and a back surface of a semiconductor chip mounted with bare chips. Can be used as a protective sealing material for preventing the semiconductor chip from being damaged by external impact.
[0019]
The semiconductor device in which the semiconductor chip and the circuit board are connected using the film-like adhesive for connecting circuit members of the present invention can be obtained by, for example, bonding and fixing the semiconductor chip and the circuit board by a face-down method. The protruding electrodes of the semiconductor chip are arranged with the protruding electrodes of the semiconductor chip and the corresponding connection terminals of the circuit board facing each other with the film-like adhesive for connecting circuit members of the present invention interposed therebetween, and heated and pressurized. The semiconductor chip and the circuit board are bonded by removing the film-form adhesive for connecting the circuit member from between the connection terminals of the circuit board and the circuit board and curing the film-form adhesive for connecting the circuit member between the semiconductor chip and the circuit board. The semiconductor device is obtained by fixing. At this time, as a method of electrically connecting the projecting electrode of the semiconductor chip and the connection terminal of the circuit board, a method of contacting the projecting electrode of the semiconductor chip with the connection terminal of the circuit board, on the projecting electrode of the semiconductor chip or on the connection terminal of the circuit board A method of forming a solder such as Sn-Pb, Sn-Au or the like or Sn, Au or the like on an electrode surface to form a metal eutectic and joining them, and projecting a semiconductor chip while applying mechanical energy such as ultrasonic waves. A method in which the electrode and the connection terminal of the circuit board are fixedly bonded to each other can be used.
[0020]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
The materials used in the examples are summarized in Table 1.
(Example 1)
10 parts by weight of a phenoxy resin (A), 36 parts by weight of a phenol novolak type epoxy resin (B) which is a liquid epoxy resin at room temperature (25 ° C.), 36 parts by weight of a solid epoxy resin (C) at room temperature (25 ° C.), To 18 parts by weight of the powdery phenol resin (D) and 2 parts by weight of the silane coupling agent (G), 100 parts by weight of 2-butanone were added, mixed and dissolved. 100 parts by weight of the spherical silica filler (E) and 1 part by weight of imidazole (F) were added to this solution, and a sand mill treatment was performed to obtain a varnish for film coating. This film coating varnish was applied on a release-treated 50 μm-thick PET film by a roll coater, and dried at 70 ° C. for 10 minutes to prepare a 50 μm-thick film-like adhesive for connecting circuit members.
[0021]
(Examples 2 to 4)
In the same manner as in Example 1, they were blended at the ratios shown in Table 2 to produce a film-like adhesive for connecting circuit members.
[0022]
(Comparative Example 1)
The proportion of the powdered phenol resin to the epoxy resin was set to 100%, and the mixture was blended in the same manner as in Example 1 at the proportions shown in Table 3 to prepare a film-like adhesive for connecting circuit members.
[0023]
(Comparative Example 2)
The proportion of the powdery phenolic resin to the epoxy resin was set to 50%, and in the same manner as in Example 1, the powdered phenolic resin was blended in the proportion shown in Table 3 to prepare a film-like adhesive for connecting circuit members.
[0024]
(Comparative Example 3)
The proportion of the powdery phenol resin to the epoxy resin was set to 4%, and in the same manner as in Example 1, the powdered phenol resin was blended in the proportion shown in Table 3 to prepare a film-like adhesive for connecting circuit members.
[0025]
(Comparative Example 4)
A film-like adhesive for connecting circuit members was prepared in the same manner as in Example 1 except that the powdery phenol resin was not mixed, but in the ratio shown in Table 3.
[0026]
(Comparative Example 5)
Using a low molecular weight modified phenol novolak resin having an alcoholic functional group without blending the powdery phenol resin, blending it in the ratio shown in Table 3 in the same manner as in Example 1 to obtain a film-like adhesive for connecting circuit members. Was prepared.
[0027]
In Examples and Comparative Examples, characteristics were evaluated by the following methods, and the evaluation results are shown in Table 2.
(Film forming property): After drying at 70 ° C. for 10 minutes, a film-like adhesive is formed on the release-treated PET film without unevenness and repelling, and from the uncoated side of the PET film. It was tested whether or not the film adhesive cracked when the film adhesive and the PET film were simultaneously bent at 90 °. A film having good film formation and no cracks was evaluated as ○, and a film having poor film formation and / or cracks was evaluated as x.
[0028]
(Workability after leaving): After leaving in a constant temperature bath at 25 ° C. for 168 hours, the PET film was cut from the surface of the film-like adhesive for connecting circuit members with a cutter, and cracks or films were generated in portions other than the cut surface. It was tested whether or not the film was broken due to cracking.無 い indicates that there was no occurrence of cracks and cracks, and X indicates that occurred.
(Rate of decrease in fluidity after standing): A 50 μm-thick film-like adhesive for circuit member connection cut into a square having a side of 5 mm was attached to a glass plate having a thickness of 0.7 mm and a size of 15 mm square. The support film was peeled off, and a silicon wafer having a silicon nitride passivation film and a thickness of 0.55 mm and a size of 15 mm square was bonded to a glass plate with an adhesive from the passivation side. At this time, the initial area (A) of the film-like adhesive for connecting circuit members is 25 mm. 2 It is. This was heated and pressurized from the silicon wafer side at a heating temperature of 180 ° C., a load initial area of 1 MPa, and a heating time of 20 seconds by a thermocompression bonding machine. The adhesive area after heating and pressing (B) was read and measured with a scanner having a resolution of 600 dpi, and the ratio (B / A) of the area before and after heating and pressing of the film-like adhesive for circuit connection was determined. The ratio (B / A) was defined as the initial fluidity (C) of the film-like adhesive for connecting circuit members. Next, after leaving the film-like adhesive for connecting circuit members in a thermostat at 25 ° C. for 168 hours, the fluidity was measured in the same manner as described above, and the fluidity (D) after the standing was measured. From the fluidity (C) before standing and the fluidity (D) after standing, [((C-1)-(D-1)) / (C-1)] × 100 = [(CD) / (C-1)] × 100 was used to determine the fluidity reduction rate.
[0029]
(Measurement of viscoelasticity): The prepared film-like adhesive for circuit connection was left in an oven at 200 ° C. for 1 hour to prepare a cured film. The cured film was subjected to viscoelasticity measurement using a viscoelasticity measuring apparatus DMS6100 manufactured by Seiko Instruments Inc. in a tensile mode at a frequency of 1 Hz and a heating rate of 5 ° C./min to determine a storage elastic modulus at 260 ° C. (Heat resistance test): A circuit board with a copper circuit, which is obtained by cutting the produced film-like adhesive for connecting circuit members together with a release-treated PET film into a 12 mm × 12 mm cutter and Ni / Au plating (electrode height: 20 μm) , Substrate thickness: 0.8 mm) at 80 ° C., 1 MPa, for 3 seconds, and then the PET film was peeled off. A semiconductor chip (size: 10 mm × 10 mm, thickness: 0.55 mm) with a wire ball Au bump (height: 30 μm, number of bumps: 184) is aligned with the circuit board to which a film-like adhesive for connecting circuit members is attached. After that, heating and pressing were performed from above the semiconductor chip under the conditions of 180 ° C., 1 N / bump, and 20 seconds, and the semiconductor chip and the circuit board were connected. After leaving the connected body in an oven at 125 ° C. for 24 hours, it was exposed to an atmosphere of 30 ° C. and 60% RH for 192 hours, and then passed through an infrared reflow furnace at a maximum temperature of 260 ° C. for 10 seconds repeatedly three times to obtain a semiconductor chip. The presence or absence of peeling was confirmed.
[0030]
[Table 1]
Figure 2004186204
[0031]
[Table 2]
Figure 2004186204
[0032]
From Examples 1 to 4 and Comparative Examples 1 to 5 in Table 2, the (C) powdered phenolic resin having a methylol group in the molecule of the present invention is (C) / (B) = The film-like adhesive for connecting circuit members having a content of 5 to 25% by weight is excellent in film formability, storage stability and heat resistance. On the other hand, when (C) / (B) = 100 and 50% by weight in Comparative Examples 1 and 2, the workability was poor, and the film was cracked, cut, and cracked at the time of cutting the film. Further, when (C) / (B) = 4 and 0% by weight in Comparative Examples 3 and 4, although the workability is good, peeling occurs after reflow due to moisture absorption. In Comparative Example 5 in which a low molecular weight modified phenol novolak resin having an alcoholic functional group was used instead of a powdery phenol resin having a methylol group in the molecule, the storage elastic modulus at a high temperature of 260 ° C. was low, and peeling was not performed. Will happen.
[0033]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the film-shaped adhesive for circuit member connection and a semiconductor device excellent in heat resistance can be manufactured.

Claims (9)

相対向する半導体チップと回路基板間に介在され、相対向する半導体チップと回路基板を加熱、加圧によって接続する三次元架橋性樹脂を含有した回路部材接続用フィルム状接着剤であって、
(A)熱可塑性樹脂、
(B)エポキシ樹脂、
(C)分子内にメチロール基を有する粉末状フェノール樹脂、
(D)絶縁性球状無機質充填剤、
を必須成分とし、(C)の配合量が(B)に対して5〜25重量%であり、(D)を除く樹脂成分全体を100重量部とした時、(A)が7〜40重量部であることを特徴とする回路部材接続用フィルム状接着剤。
A circuit member connecting film-like adhesive containing a three-dimensional crosslinkable resin that is interposed between the opposed semiconductor chip and the circuit board, and connects the opposed semiconductor chip and the circuit board by heating and pressing,
(A) a thermoplastic resin,
(B) epoxy resin,
(C) a powdery phenol resin having a methylol group in the molecule,
(D) an insulating spherical inorganic filler,
Is an essential component, and the blending amount of (C) is 5 to 25% by weight with respect to (B), and (A) is 7 to 40% by weight when the entire resin component except (D) is 100 parts by weight. A film-like adhesive for connecting circuit members, wherein the adhesive is a part.
(B)エポキシ樹脂として25℃で液状のエポキシ樹脂を含むことを特徴とする請求項1に記載の回路部材接続用フィルム状接着剤。2. The film-like adhesive according to claim 1, wherein the epoxy resin contains a liquid epoxy resin at 25 [deg.] C. as the epoxy resin. (D)絶縁性球状無機質充填剤が、平均粒子径0.1〜5μmであり、最大粒径30μm以下であることを特徴とする請求項1または請求項2に記載の回路部材接続用フィルム状接着剤。(D) The insulating spherical inorganic filler has an average particle diameter of 0.1 to 5 m and a maximum particle diameter of 30 m or less. adhesive. 前記(A)、(B)、(C)、(D)を必須成分とする材料を有機溶剤中で溶解、分散させたワニスを支持体上に塗布、乾燥させ有機溶剤を除去することにより得られる請求項1ないし請求項3のいずれかに記載の回路部材接続用フィルム状接着剤。A varnish obtained by dissolving and dispersing the above-mentioned materials (A), (B), (C) and (D) in an organic solvent is coated on a support and dried to remove the organic solvent. The film-like adhesive for connecting circuit members according to any one of claims 1 to 3. 硬化後の260℃の貯蔵弾性率が500MPa以上であることを特徴とする請求項1ないし請求項4のいずれかに記載の回路部材接続用フィルム状接着剤。The film adhesive for connecting circuit members according to any one of claims 1 to 4, wherein the storage elastic modulus at 260 ° C after curing is 500 MPa or more. 硬化後の260℃の貯蔵弾性率が40℃の貯蔵弾性率に対して5〜20%であることを特徴とする請求項1ないし請求項5のいずれかに記載の回路部材接続用フィルム状接着剤。The film-like adhesive for connecting circuit members according to any one of claims 1 to 5, wherein the storage elastic modulus at 260 ° C after curing is 5 to 20% with respect to the storage elastic modulus at 40 ° C. Agent. 25℃に168時間放置した回路部材接続用フィルム状接着剤の切断加工時に切断面以外の部分への亀裂の発生またはフィルム割れによるフィルムの欠損が発生しないことを特徴とする請求項1ないし請求項6のいずれかに記載の回路部材接続用フィルム状接着剤。4. The method according to claim 1, wherein when the film-like adhesive for connecting circuit members is left to stand at 25.degree. C. for 168 hours, no crack is generated in a portion other than the cut surface or the film is not broken due to the film crack. 6. The film-like adhesive for connecting circuit members according to any one of 6. 25℃に168時間放置した際、放置前の流動性に対して放置後の流動性の減少率が50%以内であることを特徴とする請求項1ないし請求項7のいずれかに記載の回路部材接続用フィルム状接着剤。The circuit according to any one of claims 1 to 7, wherein when left at 25 ° C for 168 hours, the reduction rate of the fluidity after standing is less than 50% of the fluidity before leaving. Film adhesive for member connection. 請求項1ないし請求項8のいずれかに記載の回路部材接続用フィルム状接着剤を用いて半導体チップと回路基板を接続した半導体装置。A semiconductor device in which a semiconductor chip and a circuit board are connected using the film-like adhesive for connecting circuit members according to claim 1.
JP2002348025A 2002-11-29 2002-11-29 Film adhesive for connecting circuit members and semiconductor device using the same Expired - Fee Related JP3991268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348025A JP3991268B2 (en) 2002-11-29 2002-11-29 Film adhesive for connecting circuit members and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348025A JP3991268B2 (en) 2002-11-29 2002-11-29 Film adhesive for connecting circuit members and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2004186204A true JP2004186204A (en) 2004-07-02
JP3991268B2 JP3991268B2 (en) 2007-10-17

Family

ID=32751051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348025A Expired - Fee Related JP3991268B2 (en) 2002-11-29 2002-11-29 Film adhesive for connecting circuit members and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP3991268B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335817A (en) * 2005-05-31 2006-12-14 Sumitomo Bakelite Co Ltd Pre-applied sealing resin composition and method for manufacturing semiconductor device using the same
JP2007009188A (en) * 2005-05-31 2007-01-18 Sumitomo Bakelite Co Ltd Resin composition, sealing material for preapplication, semiconductor device, method for producing the semiconductor device, and sealing part for preapplication
WO2007125650A1 (en) * 2006-04-27 2007-11-08 Sumitomo Bakelite Co., Ltd. Adhesive tape, semiconductor package, and electronic device
WO2008023452A1 (en) * 2006-08-25 2008-02-28 Sumitomo Bakelite Co., Ltd. Adhesive tape, joint structure, and semiconductor package
JP2009117813A (en) * 2007-10-15 2009-05-28 Hitachi Chem Co Ltd Semiconductor sealing film-like adhesive and semiconductor device manufacturing method using the adhesive, and semiconductor device
JP2010265359A (en) * 2009-05-13 2010-11-25 Hitachi Chem Co Ltd Adhesive composition, adhesive sheet for connection of circuit member, and method for manufacturing semiconductor device
WO2011111784A1 (en) * 2010-03-12 2011-09-15 日立化成工業株式会社 Adhesive reel
JP2013229613A (en) * 2008-03-26 2013-11-07 Hitachi Chemical Co Ltd Film-like adhesive for sealing semiconductor, semiconductor device, and method of manufacturing the same
JP2017171724A (en) * 2016-03-22 2017-09-28 株式会社巴川製紙所 Thermosetting adhesive sheet and manufacturing method therefor
JP2019044124A (en) * 2017-09-06 2019-03-22 株式会社巴川製紙所 Thermosetting adhesive sheet and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7132048B2 (en) 2018-09-13 2022-09-06 藤森工業株式会社 Hot-melt adhesive resin composition and hot-melt adhesive resin laminate

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009188A (en) * 2005-05-31 2007-01-18 Sumitomo Bakelite Co Ltd Resin composition, sealing material for preapplication, semiconductor device, method for producing the semiconductor device, and sealing part for preapplication
JP2006335817A (en) * 2005-05-31 2006-12-14 Sumitomo Bakelite Co Ltd Pre-applied sealing resin composition and method for manufacturing semiconductor device using the same
WO2007125650A1 (en) * 2006-04-27 2007-11-08 Sumitomo Bakelite Co., Ltd. Adhesive tape, semiconductor package, and electronic device
JPWO2007125650A1 (en) * 2006-04-27 2009-09-10 住友ベークライト株式会社 Adhesive tape, semiconductor package and electronic equipment
WO2008023452A1 (en) * 2006-08-25 2008-02-28 Sumitomo Bakelite Co., Ltd. Adhesive tape, joint structure, and semiconductor package
JPWO2008023452A1 (en) * 2006-08-25 2010-01-07 住友ベークライト株式会社 Adhesive tape, joined body and semiconductor package
US7838984B2 (en) 2006-08-25 2010-11-23 Sumitomo Bakelite Company, Ltd. Adhesive tape, connected structure and semiconductor package
JP2013080963A (en) * 2007-10-15 2013-05-02 Hitachi Chemical Co Ltd Film-like adhesive agent for semiconductor encapsulation
JP2009117813A (en) * 2007-10-15 2009-05-28 Hitachi Chem Co Ltd Semiconductor sealing film-like adhesive and semiconductor device manufacturing method using the adhesive, and semiconductor device
JP2013229613A (en) * 2008-03-26 2013-11-07 Hitachi Chemical Co Ltd Film-like adhesive for sealing semiconductor, semiconductor device, and method of manufacturing the same
JP2010265359A (en) * 2009-05-13 2010-11-25 Hitachi Chem Co Ltd Adhesive composition, adhesive sheet for connection of circuit member, and method for manufacturing semiconductor device
CN102712834A (en) * 2010-03-12 2012-10-03 日立化成工业株式会社 Adhesive reel
JPWO2011111784A1 (en) * 2010-03-12 2013-06-27 日立化成株式会社 Adhesive reel
WO2011111784A1 (en) * 2010-03-12 2011-09-15 日立化成工業株式会社 Adhesive reel
JP2014037544A (en) * 2010-03-12 2014-02-27 Hitachi Chemical Co Ltd Adhesive material reel
CN102712834B (en) * 2010-03-12 2014-11-26 日立化成株式会社 Adhesive reel
JP2015083691A (en) * 2010-03-12 2015-04-30 日立化成株式会社 Adhesive material reel
KR101763458B1 (en) * 2010-03-12 2017-07-31 히타치가세이가부시끼가이샤 Adhesive reel
JP2017171724A (en) * 2016-03-22 2017-09-28 株式会社巴川製紙所 Thermosetting adhesive sheet and manufacturing method therefor
JP2019044124A (en) * 2017-09-06 2019-03-22 株式会社巴川製紙所 Thermosetting adhesive sheet and method for producing the same

Also Published As

Publication number Publication date
JP3991268B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
US20230321765A1 (en) Sinterable films and pastes and methods for use thereof
JP4137827B2 (en) Conductive adhesive film and semiconductor device using the same
US9169425B2 (en) Adhesive film and electronic device including the same
JP2009194359A (en) Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same
JP2010010669A (en) Method of manufacturing semiconductor device, adhesive for sealing semiconductor, and semiconductor device
US9109147B2 (en) Adhesive composition for semiconductor and adhesive film comprising the same
TW201339273A (en) Adhesive composition for semiconductor, adhesive film and semiconductor device
JP4994743B2 (en) Film adhesive and method of manufacturing semiconductor package using the same
JP2014091744A (en) Underfill composition, semiconductor device and manufacturing method thereof
JP5252698B2 (en) Resin bump composition
JP4507488B2 (en) Bonding material
JP3991268B2 (en) Film adhesive for connecting circuit members and semiconductor device using the same
JP3785047B2 (en) Adhesive composition for semiconductor device and adhesive sheet
JP2009091510A (en) Liquid epoxy resin composition and semiconductor device using the composition
JP2005307037A (en) Film-shaped epoxy resin composition
JP3998564B2 (en) Curable adhesive composition for semiconductor encapsulation and adhesive sheet
JP2001288244A (en) Thermosetting resin composition, production method thereof, and product produced by using the same
JP4635412B2 (en) Conductive adhesive film and semiconductor device using the same
JP2003049145A (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP3911088B2 (en) Semiconductor device
JP2001106767A (en) Resin paste for semiconductor and semiconductor device using the same
JP2009057575A (en) Liquid epoxy resin composition and electronic component device
JP3976395B2 (en) Semiconductor device
KR101035873B1 (en) Fast curable adhesive film composition at high temperature and adhesive film using it
TW201924924A (en) Adhesive composition and adhesive film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees