JP2004183970A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004183970A
JP2004183970A JP2002350978A JP2002350978A JP2004183970A JP 2004183970 A JP2004183970 A JP 2004183970A JP 2002350978 A JP2002350978 A JP 2002350978A JP 2002350978 A JP2002350978 A JP 2002350978A JP 2004183970 A JP2004183970 A JP 2004183970A
Authority
JP
Japan
Prior art keywords
tank
concave curved
curved surface
tube
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002350978A
Other languages
Japanese (ja)
Other versions
JP4243097B2 (en
Inventor
Hiroshi Yamaguchi
博志 山口
Takashi Yoshida
吉田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Climate Systems Corp
Original Assignee
Japan Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Climate Systems Corp filed Critical Japan Climate Systems Corp
Priority to JP2002350978A priority Critical patent/JP4243097B2/en
Publication of JP2004183970A publication Critical patent/JP2004183970A/en
Application granted granted Critical
Publication of JP4243097B2 publication Critical patent/JP4243097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently secure pressure resistance without causing an increase in weight of a header tank disposed at both ends of a core tube and improve the moldability of a heat exchanger. <P>SOLUTION: The header tank 6 comprises a first tank component member 10 and a second tank component member 11 joined to the core inner side of the first tank component member 10 to form a hollow part therein. First recessed curve parts 10a swelling to the outside of the header tank 6 are continuously formed on the inner surface of the first tank component members 10 in a tube 2 and fin parallel arranging direction. A first partition part 10b projected to the inner surface of the second tank component member 11 and partitioning the hollow part in the tube 2 and fin parallel arranging direction and the other direction is formed on the inner surface of the first tank component member 10 between the adjacent first recessed curve parts 10a and 10a. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空調装置の冷凍サイクルの一要素を構成する熱交換器に関し、特に、複数のチューブ及びフィンを並設してなるコアの端部に各チューブと連通するタンクを配設した構造の技術分野に属する。
【0002】
【従来の技術】
従来より、この種の熱交換器として、コアのチューブ両端部に配設されて該各チューブと連通する中空部を有するタンクを備え、その中空部をチューブ及びフィン並設方向一側と他側とに仕切ることで熱交換器内の冷媒の経路を構成するようにした車両用空調装置の熱交換器が知られている(例えば、特許文献1参照。)。
【0003】
この特許文献1の熱交換器では、タンクとは別体に形成された仕切板をタンクの周壁部に形成されたスリットから中空部に挿入してろう付けすることにより、中空部を仕切るようにしている。
【0004】
【特許文献1】
特開平11―287587号公報(第4頁、第5頁、図1、図8)
【0005】
【発明が解決しようとする課題】
ところで、一般に、部材をろう付けする場合には、ろう付け不良を防止するために、各部材の形状の設定が煩雑になり、成形が難しくなることがある。特に、前記特許文献1の熱交換器では、仕切板が複数配設されているとともに、それらがろう付けされるようになっているので、タンクを構成する各部材の成形性が悪くなる虞れがある。
【0006】
一方、近年、冷凍サイクルの冷媒を従来のフロンから二酸化炭素に切り替えて環境への負担を軽減することが考えられており、二酸化炭素を用いる場合には、フロンを用いる場合と比べて蒸発器に作用する内圧が大幅に高くなるので、タンクの耐圧性を向上させなければならない。ところが、前記特許文献1の熱交換器では、タンクの周壁部が略平坦に形成されており、十分な耐圧性を確保するためには周壁部の厚みを厚くせざるを得ず、熱交換器の重量増加を招く。
【0007】
本発明は斯かる点に鑑みてなされたものであり、その目的とするところは、タンク内面の形状を適切に設定することにより、重量増加を招くことなく耐圧性を十分に確保し、かつ成形性の良いタンクを得ることにある。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明では、タンク内面に凹状湾曲面部を連続して形成し、それらの間に中空部を仕切る仕切部を一体に設けるようにした。
【0009】
具体的には、請求項1の発明では、複数のチューブ及びフィンが交互に並設されてなるコアと、該コアの各チューブ端部に配設され、チューブ及びフィン並設方向に延びる中空部を有し該中空部を前記各チューブに連通させたタンクとを備える熱交換器を前提とする。
【0010】
そして、前記タンク内面には、凹陥してなる複数の第1凹状湾曲面部をチューブ及びフィン並設方向に連続して形成し、前記タンク内面の隣り合う第1凹状湾曲面部の間には、該第1凹状湾曲面部に対向するタンク内面まで突出して前記中空部をチューブ及びフィン並設方向一側と他側とに仕切る第1仕切部を一体に設ける構成とする。
【0011】
この構成によれば、タンク内面に第1凹状湾曲面部が連続して形成されているので、従来のタンク周壁部を略平坦に形成したものに比べてタンクの耐圧性が十分に確保され、タンク周壁部の厚みを厚くすることによる熱交換器の重量増加が抑えられる。
【0012】
また、タンクの第1仕切部をチューブ及びフィン並設方向の任意の位置に設けることで中空部が仕切られて、熱交換器内に冷媒の経路を構成することが可能となる。この際、第1仕切部は、タンク内面に一体に設けられているので、ろう付け部品の点数が増加することはなく、タンクを構成する部材の成形性が悪くなることはない。さらに、隣り合う第1凹状湾曲面部間は、この第1凹状湾曲面部と対向するタンク内面に相対的に接近しており、そこから第1仕切部が突出しているので、仕切部の突出長さを短くすることが可能となり、例えば、プレス成形する場合には第1仕切部の成形が容易になり、よって、成形性の良いタンクが得られる。
【0013】
請求項2の発明では、請求項1の発明において、各チューブを、外部空気の通過方向に複数列並設し、第1凹状湾曲面部に対向するタンク内面には、前記複数のチューブ列に対応して凹陥してなる第2凹状湾曲面部を連続して形成する構成とする。
【0014】
この構成によれば、タンク内面に第2凹状湾曲面部が連続して形成されるとともに、その第2凹状湾曲面部の連続する方向と前記第1凹状湾曲面部の連続する方向とが互いに異なっているので、重量増加を招くことなくタンクの耐圧性がより一層向上する。
【0015】
請求項3の発明では、請求項2の発明において、タンク内面の隣り合う第2凹状湾曲面部の間には、第1凹状湾曲面部まで突出して中空部を外部空気の通過方向上流側のチューブが連通する上流側空間と下流側のチューブが連通する下流側空間とに仕切る第2仕切部を一体に設ける構成とする。
【0016】
この構成によれば、第2仕切部により、中空部が上流側空間と下流側空間とに仕切られるので、外部空気の通過方向に複数のチューブ列を有する熱交換器の冷媒経路の構成が可能となる。この際、請求項1の発明と同様に、第2仕切部は、隣り合う凹状湾曲面部の間に形成されているので、タンクの成形性が悪化することはない。
【0017】
請求項4の発明では、請求項3の発明において、第2仕切部には、中空部の上流側空間及び下流側空間を互いに連通させる連通路を設ける構成とする。
【0018】
この構成によれば、タンク外部に連通路を形成することなく、冷媒を上流側空間と下流側空間との間で流通させることが可能となるので、熱交換器のコンパクト化が図られる。
【0019】
請求項5の発明では、請求項2の発明において、タンクを、コア外側に配設される第1タンク構成部材と、該第1タンク構成部材のコア内側に接合されて内部に中空部を形成する第2タンク構成部材とから構成し、第1凹状湾曲面部を、前記第1タンク構成部材に形成するとともに、第2凹状湾曲面部を、前記第2タンク構成部材に形成する構成とする。
【0020】
この構成によれば、第1凹状湾曲面部が形成された第1タンク構成部材とは別体の第2タンク構成部材に、前記第1凹状湾曲面部と異なる方向に連続する第2凹状湾曲面部が形成されるので、両凹状湾曲面部の成形がより容易に行えるようになる。
【0021】
請求項6の発明では、請求項5の発明において、第1タンク構成部材及び第2タンク構成部材の少なくとも一方が板材をプレス成形してなる構成とする。
【0022】
この構成によれば、タンク構成部材をプレス加工品としてコストの低減が可能となる。
【0023】
請求項7の発明では、請求項5の発明において、第1タンク構成部材及び第2タンク構成部材の接合面の少なくとも一方には、ろう材を層状に設ける構成とする。
【0024】
この構成によれば、第1タンク構成部材と第2タンク構成部材とを組み付けた後、炉内に搬入することで、両部材の接合面全体が同時にろう付けされるので、製造工数の低減が図られる。
【0025】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0026】
図2は、本発明の実施形態に係る熱交換器を示し、本例では熱交換器が車両用空調装置の冷凍サイクルの一要素を構成する蒸発器1である場合を示す。この蒸発器1は、上下に延びる複数のチューブ2,2,…及びフィン3,3,…を車幅方向に交互に並設してなるコア4と、該コア4の上端及び下端にそれぞれ配設されてチューブ2及びフィン3並設方向に延びる中空部Wを有する上側ヘッダタンク6及び下側ヘッダタンク7とを備えてなる。また、この蒸発器1は、図示しない送風機から送風された外部空気がコア4を車体前方から後方(図5に白抜きの矢印Yにて示す)へ通過することにより熱交換されるように車両に搭載されている。
【0027】
前記コア4のチューブ2は、図1に示すように、外部空気の通過方向に2列並設されている。これら上流側のチューブ2a及び下流側のチューブ2bは、外部空気の通過方向に長い矩形状断面を有する扁平チューブであり、一方、各フィン3はチューブ2の上端近傍から下端近傍に亘るように形成されたコルゲートフィンであり、これらチューブ2及びフィン3は表面にろう材が層状に設けられたアルミ合金製の薄板材を成形してなる。車幅方向に隣り合うチューブ2,2の離間距離はフィン3の車幅方向の長さに対応していて、該フィン3の車幅方向両端がチューブ2,2の側面にろう付けされるようになっている。これらフィン3,3,…のうちコア4の車幅方向左端及び右端に位置するフィン3は、エンドプレート8,8によりそれぞれ保持されている。
【0028】
前記上側及び下側ヘッダタンク6,7は、各々、コア4の車幅方向(チューブ2及びフィン3並設方向)両端に亘って延びる細長い箱状に形成されていて、コア4外側に配設される第1タンク構成部材10と、この第1タンク構成部材10のコア4内側に接合されて内部に前記中空部Wを形成する第2タンク構成部材11とを備えている。尚、上側ヘッダタンク6と下側ヘッダタンク7とは同様に構成されているので、以下、上側ヘッダタンク6について詳しく説明する。
【0029】
前記第1タンク構成部材10は、そのタンク内面及び外面にろう材が層状に設けられたアルミ合金製の板材をプレス加工してなり、タンク内面には、ヘッダタンク6外方へ凹陥してなる複数の第1凹状湾曲面部10a,10a,…がチューブ2及びフィン3並設方向に連続して形成されている。各第1凹状湾曲面部10aは、車体前後方向に延びる中心線を有する円周面の一部を構成するように形成されており、第1タンク構成部材10の車体前後方向両端に亘って延びている。隣り合う第1凹状湾曲面部10a,10aの間は、第2タンク構成部材11内面に相対的に接近しており、かつ車幅方向に隣り合うチューブ2,2の略中央部に位置している。図1に示すように、第1タンク構成部材10の車体前後方向両縁部は、コア4内側へ略直角に折り曲げられていて、その両縁部の間に第2タンク構成部材11の車体前後方向両縁部が嵌合してろう付けされるようになっている。
【0030】
前記第2タンク構成部材11は、前記第1タンク構成部材10と同様に、ろう材が層状に設けられたアルミ合金製の板材をプレス加工してなり、該第1タンク構成部材10内面と対向する内面には、上流側チューブ2aの列及び下流側チューブ2bの列にそれぞれ対応してヘッダタンク6外方へ凹陥してなる2つの第2凹状湾曲面部11a,11aが外部空気の通過方向に連続して形成されている。各第2凹状湾曲面部11aは、車幅方向に延びる中心線を有する円周面の一部を構成するように形成されており、第2タンク構成部材11のチューブ2及びフィン3並設方向両端に亘って延びている。第2タンク構成部材11には、チューブ2の外形に対応するチューブ挿入孔11b,11b,…がチューブ2,2,…の間隔に対応して形成されており、各チューブ2の端部が第2タンク構成部材11に挿入保持されるようになっている。
【0031】
前記上側及び下側ヘッダタンク6,7の第1タンク構成部材10と第2タンク構成部材11とを組み付けると、それぞれ車幅方向両端が開口(図示せず)した筒状をなし、これら開口は、図2に示すように、前記エンドプレート8,8の上端側及び下端側により閉塞されるようになっている。こうして形成された中空部Wは、第2タンク構成部材11のチューブ挿入孔11bに挿入されたチューブ2と連通する。
【0032】
また、前記上側及び下側ヘッダタンク6,7の各第1タンク構成部材10には、中空部Wをチューブ2及びフィン3並設方向一側と他側とに仕切る第1仕切部10bが設けられている。さらに、第2タンク構成部材11には、各中空部Wを外部空気の通過方向上流側のチューブ2aが連通する上流側空間W1と下流側のチューブ2bが連通する下流側空間W2とに仕切る第2仕切部11cが設けられており、これにより、蒸発器1内の冷媒の経路が構成されている。
【0033】
すなわち、前記第2仕切部11cは、図4に示すように、前記第2タンク構成部材11内面の隣り合う第2凹状湾曲面部11a,11aの間から第1タンク構成部材10内面に当接するまで突出している。この第2仕切部11cの先端は、第2タンク構成部材11の車体前後方向両縁部と略同一面に位置している。一方、前記第1仕切部10bは、図3に示すように、前記第1タンク構成部材10内面の隣り合う第1凹状湾曲面部10a,10aの間から第2タンク構成部材11内面まで突出している。さらに、この第1仕切部10bの先端は、第2タンク構成部材11に形成された嵌入孔11eに嵌入しており、これにより、ろう付けの際の炉内への搬入時や加熱時に第1タンク構成部材10と第2タンク構成部材11との位置ずれが防止される。また、この蒸発器1では、図5に概略的に示すように、前記第1仕切部10bが3箇所設けられており、それらは、下側ヘッダタンク7の下流側空間W2の車幅方向右寄りの部位、上側ヘッダタンク6の下流側空間W2の車幅方向左寄りの部位及び上側ヘッダタンク6の上流側空間W1の車幅方向略中央部にそれぞれ設けられている。
【0034】
第1タンク構成部材10内面の車体前後方向略中央部には、図1及び図4に示すように、第2タンク構成部材11側に突出する突出部10cがチューブ2及びフィン3並設方向両端に亘って延びるように形成されており、この突出部10cの先端に前記第2タンク構成部材11の第2仕切部11c先端が当接するようになっている。また、第2仕切部11cの先端には、半円状の切欠11dがチューブ2及びフィン3並設方向に3つ並設されており、該各切欠11dと第1タンク構成部材10の内面との間に上流側空間W1及び下流側空間W2を互いに連通させる連通路Rが形成される。
【0035】
さらに、前記第1タンク構成部材10の突出部10cは、前記第2仕切部11cの切欠11d近傍に対応する箇所には形成されておらず、これにより、前記上流側空間W1及び下流側空間W2の連通路Rの面積が十分に確保されるようになっている。この際、各切欠11dの大きさや数、第1タンク構成部材10の突出部10cの突出長さ等により、上流側空間W1と下流側空間W2との間の冷媒の流通量を変更することが可能である。尚、連通路Rとしては、図示しないが、第2仕切部11cに貫通孔を形成するようにしてもよい。
【0036】
前記の如く構成された蒸発器1では、図5に示すように、下側ヘッダタンク7の車幅方向右側から下流側空間W2に流入した冷媒は、該下流側空間W2の第1仕切部10bよりも車幅方向右側に位置する下流側チューブ2bに分配された後、該チューブ2bを通って上側ヘッダタンク6の下流側空間W2に流入して集合する。この上側ヘッダタンク6に集合した冷媒は、下側ヘッダタンク7の下流側空間W2の第1仕切部10bと上側ヘッダタンク6の下流側空間W2の第1仕切部10bとの間の下流側チューブ2bに分配された後、該チューブ2bを通って下側ヘッダタンク7の下流側空間W2に集合する。その後、冷媒は、上側ヘッダタンク6の第1仕切部10bよりも車幅方向左側の下流側チューブ2bを通って、上側ヘッダタンク6の下流側空間W2に集合し、連通路Rを介して上側ヘッダタンク6の上流側空間W1に流入する。該上流側空間W1に流入した冷媒は、この上流側空間W1の第1仕切部10bよりも車幅方向左側の上流側チューブ2aを通って下側ヘッダタンク7の上流側空間W1に流入し、上側ヘッダタンク6の上流側空間W1の第1仕切部10bよりも車幅方向右側の上流側チューブ2aを上方へ流れて該上流側空間W1に流入する。そして、このように蒸発器1内の経路を流れた冷媒は、上側ヘッダタンク6の上流側空間W1の車幅方向右側から流出する。
【0037】
したがって、この実施形態に係る蒸発器1によれば、ヘッダタンク6,7の各々の内面に第1凹状湾曲面部10aをチューブ2及びフィン3並設方向に連続して形成したので、従来のヘッダタンクの周壁部を略平坦に形成したものに比べヘッダタンク6,7の耐圧性を十分に確保でき、よって、ヘッダタンク6,7周壁部の厚みを厚くすることによる蒸発器1の重量増加を抑制できる。
【0038】
また、第2タンク構成部材11の第2仕切部11cにより中空部Wを上流側空間W1と下流側空間W2とに仕切ることができ、かつそれら各空間W1,W2をチューブ2及びフィン3並設方向の所定の位置で、第1タンク構成部材10の第1仕切部10bにより仕切ることができる。これにより、チューブ2が外部空気の通過方向に2列並設されている蒸発器1において、冷媒経路を自由に構成できる。
【0039】
この際、第1仕切部10b及び第2仕切部11cは、第1タンク構成部材10内面及び第2タンク構成部材11内面にそれぞれ一体に設けられているので、ろう付け部品の点数が増加することはなく、ヘッダタンク6,7を構成する各部材10,11の成形性が悪くなることはない。さらに、第1タンク構成部材10内面の隣り合う第1凹状湾曲面部10a,10a間は、第2凹状湾曲面部11aに相対的に接近しており、この第1凹状湾曲面部10a間に第1仕切部10bを形成しているので、該第1仕切部10bの突出長さを短くすることができる。これにより、第1タンク構成部材10に第1仕切部10bを一体に設けるようにしても、該第1仕切部10bの成形を容易に行うことができて、第1タンク構成部材10の成形性が悪くなることはない。また、第2タンク構成部材11も同様に、第2仕切部11cを第2凹状湾曲面部11a,11a間に形成するようにしており、よって、成形性の良好なヘッダタンク6,7を得ることができる。
【0040】
また、第1タンク構成部材10及び第2タンク構成部材11は、板材のプレス成形品であるので、押し出し加工したものに比べてコストを低減できる。この際、ろう材が層状に設けられた板材を用いているので、第1タンク構成部材10と第2タンク構成部材11とを組み付けた後、炉内に搬入することで、両部材10,11の接合面全体を同時にかつ確実にろう付けでき、よって、製造工数を低減できる。
【0041】
また、第1凹状湾曲面部10aがチューブ2及びフィン3並設方向に連続する一方、第2凹状湾曲面部11aが外部空気の通過方向に連続しているので、両凹状湾曲面部10a,11aの連続する方向は直交しており、これにより、ヘッダタンク6,7の剛性が十分に確保されて、耐圧性をより一層向上できる。
【0042】
さらに、連通路Rにより上側ヘッダタンク6の下流側空間W2から上流側空間W1へ冷媒を流通させるようにしているので、ヘッダタンク6外部に連通路を形成する必要がなく、蒸発器1をコンパクトにできる。
【0043】
(他の実施形態)
尚、本発明は前記実施形態に限定されるものではなく、その他の種々の実施形態を包含するものである。すなわち、前記実施形態では、第1タンク構成部材10をプレス加工により成形するようにしているが、これに限らず、図6及び図7に示すように、押し出し加工により成形するようにしてもよい。
【0044】
この場合には、前記実施形態と同様に、第1タンク構成部材30内面に、第1凹状湾曲面部30aがチューブ2及びフィン3並設方向に連続して形成される一方、外面がチューブ2及びフィン3並設方向に延びる略平坦面とされている。第2タンク構成部材11は、前記実施形態と同様に構成されており、タンク内面及び外面にろう材が層状に設けられた板材のプレス加工品である。前記第1タンク構成部材30内面には、図7(b)に示すように、第2タンク構成部材11の第2仕切部11c先端が嵌入する溝部30bが形成されている。さらに、この第1タンク構成部材30内面の隣り合う第1凹状湾曲面部30a,30aの間には、第2タンク構成部材11内面まで突出する第1仕切部30cが形成され、該第1仕切部30cは、第2タンク構成部材11に形成された嵌入孔11eに嵌入している。
【0045】
また、第2仕切部11cには、上流側空間W1と下流側空間W2とを連通させる連通路Rが切欠11dにより形成されている。
【0046】
この場合では、第1タンク構成部材30を押し出し成形するようにして、部分的に肉厚を厚くしたので、大幅な重量の増加を招くことなく、ヘッダタンク6,7の耐圧性を十分に確保できる。
【0047】
尚、前記実施形態の蒸発器1では、コア4のチューブ2が外部空気の通過方向に2列並設されているが、これに限らず、チューブ2は1列であってもよいし、3列以上並設するようにしてもよい。チューブ2が1列の場合には、第2仕切部を省略すればよい。
【0048】
また、前記実施形態では、本発明を空調装置の蒸発器1に適用した場合について説明しているが、これに限らず、空調装置の凝縮器にも適用できる。
【0049】
【発明の効果】
以上説明したように、請求項1の発明に係る熱交換器によると、タンク内面に複数の第1凹状湾曲面部を連続して形成したので、重量増加を招くことなくタンクの耐圧性を十分に確保でき、また、このタンク内面の隣り合う第1凹状湾曲面部の間に、タンク内部の中空部をチューブ及びフィン並設方向一側と他側とに仕切る第1仕切部を一体に設けたので、ろう付け部品の点数を増加させることなく、冷媒の経路を構成できるとともに、仕切部の突出長さを短くでき、よって、成形性の良いタンクを得ることができる。
【0050】
請求項2記載の発明によると、第1凹状湾曲面部に対向するタンク内面に複数のチューブ列に対応する第2凹状湾曲面部を連続して形成するようにしたので、第2凹状湾曲面部の連続する方向と前記第1凹状湾曲面部の連続する方向とを互いに異ならせることができ、よって、重量増加を招くことなくタンクの耐圧性をより一層向上できる。
【0051】
請求項3記載の発明によると、タンク内面の隣り合う第2凹状湾曲面部の間に、中空部を上流側空間と下流側空間とに仕切る第2仕切部を一体に設けたので、タンクの成形性を悪化させることなく、外部空気の通過方向に複数のチューブ列を有する熱交換器の冷媒経路を構成できる。
【0052】
請求項4記載の発明によると、上流側空間及び下流側空間を互いに連通させる連通路を第2仕切部に設けるようにしたので、熱交換器をコンパクトにできる。
【0053】
請求項5記載の発明によると、タンクを、コア外側の第1タンク構成部材と、該第1タンク構成部材のコア内側に接合されて中空部を形成する第2タンク構成部材とから構成し、第1凹状湾曲面部を前記第1タンク構成部材に形成するとともに、第2凹状湾曲面部を前記第2タンク構成部材に形成するようにしたので、互いに異なる方向に連続する第1凹状湾曲面部と第2凹状湾曲面部とを別体の第1及び第2タンク構成部材にそれぞれ形成することができ、これにより、各凹状湾曲面部をより容易に成形できる。
【0054】
請求項6記載の発明によると、タンク構成部材をプレス加工品としてコストを低減できる。
【0055】
請求項7記載の発明によると、第1タンク構成部材及び第2タンク構成部材の接合面の少なくとも一方にろう材が層状に設けられているので、炉内で両部材の接合面全体を同時にろう付けでき、よって、製造工数を低減できる。
【図面の簡単な説明】
【図1】上側ヘッダタンク及びチューブの車幅方向左側をフィンを省略して示す分解斜視図である。
【図2】本発明に係る蒸発器を車体後側から見た図である。
【図3】上側ヘッダタンクにおける外部空気の通過方向上流側の縦断面図である。
【図4】(a)は図3におけるA−A線断面図であり、(b)は図3におけるB−B線断面図であり、(c)は図3におけるC−C線断面図である。
【図5】蒸発器の冷媒経路を示す概略図である。
【図6】他の実施形態に係る図3相当図である。
【図7】(a)は図6におけるD−D線断面図であり、(b)は図6におけるE−E線断面図であり、(c)は図6におけるF−F線断面図である。
【符号の説明】
2 チューブ
2a 上流側チューブ
2b 下流側チューブ
3 フィン
4 コア
6,7 ヘッダタンク
10 第1タンク構成部材
10a 第1凹状湾曲面部
10b 第1仕切部
11 第2タンク構成部材
11a 第2凹状湾曲面部
11c 第2仕切部
R 連通路
W 中空部
W1 上流側空間
W2 下流側空間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger that constitutes one element of a refrigeration cycle of an air conditioner, and more particularly, to a heat exchanger having a structure in which a tank communicating with each tube is disposed at an end of a core having a plurality of tubes and fins arranged in parallel. Belongs to the technical field.
[0002]
[Prior art]
Conventionally, as this type of heat exchanger, a tank having a hollow portion disposed at both ends of a tube of a core and communicating with each of the tubes is provided, and the hollow portion is provided on one side and the other side in the direction in which the tubes and fins are arranged. There is known a heat exchanger of a vehicle air conditioner in which a refrigerant passage in a heat exchanger is configured by partitioning the heat exchanger into two sections (see, for example, Patent Document 1).
[0003]
In the heat exchanger of Patent Document 1, the hollow portion is partitioned by inserting a partition plate formed separately from the tank into a hollow portion from a slit formed in a peripheral wall portion of the tank and brazing. ing.
[0004]
[Patent Document 1]
JP-A-11-287587 (pages 4, 5; FIGS. 1 and 8)
[0005]
[Problems to be solved by the invention]
By the way, in general, when brazing a member, the setting of the shape of each member is complicated in order to prevent poor brazing, and molding may be difficult. In particular, in the heat exchanger of Patent Literature 1, since a plurality of partition plates are provided and are brazed, there is a possibility that the moldability of each member constituting the tank may be deteriorated. There is.
[0006]
On the other hand, in recent years, it has been considered to reduce the burden on the environment by switching the refrigerant of the refrigeration cycle from conventional chlorofluorocarbon to carbon dioxide. Since the working internal pressure is greatly increased, the pressure resistance of the tank must be improved. However, in the heat exchanger of Patent Document 1, the peripheral wall of the tank is formed substantially flat, and the thickness of the peripheral wall must be increased in order to ensure sufficient pressure resistance. Weight increase.
[0007]
The present invention has been made in view of such a point, and an object of the present invention is to appropriately secure the pressure resistance without increasing the weight by appropriately setting the shape of the inner surface of the tank, and forming the tank. The goal is to get a good tank.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a concave curved surface portion is continuously formed on an inner surface of a tank, and a partition portion for partitioning a hollow portion is integrally provided therebetween.
[0009]
Specifically, in the invention of claim 1, a core in which a plurality of tubes and fins are alternately arranged in parallel, and a hollow portion which is arranged at each tube end of the core and extends in the tube and fin juxtaposition direction And a tank having the hollow portion communicated with each of the tubes.
[0010]
And, on the inner surface of the tank, a plurality of recessed first concave curved surface portions are continuously formed in the tube and fin juxtaposition direction, and between the adjacent first concave curved surface portions of the tank inner surface, A first partitioning portion that protrudes to the tank inner surface facing the first concave curved surface portion and partitions the hollow portion into one side and the other side in the direction in which the tubes and fins are arranged is integrally provided.
[0011]
According to this configuration, since the first concave curved surface portion is continuously formed on the inner surface of the tank, the pressure resistance of the tank is sufficiently secured as compared with the conventional tank peripheral wall portion formed substantially flat, An increase in the weight of the heat exchanger caused by increasing the thickness of the peripheral wall portion can be suppressed.
[0012]
Further, by providing the first partition portion of the tank at an arbitrary position in the direction in which the tubes and the fins are juxtaposed, the hollow portion is partitioned, and it is possible to form a refrigerant passage in the heat exchanger. At this time, since the first partition is integrally provided on the inner surface of the tank, the number of brazing parts does not increase, and the moldability of the members constituting the tank does not deteriorate. Further, the space between the adjacent first concave curved surface portions is relatively close to the tank inner surface opposed to the first concave curved surface portion, and the first partition portion protrudes therefrom. Can be shortened, and, for example, in the case of press forming, the forming of the first partition portion is facilitated, so that a tank having good formability can be obtained.
[0013]
According to a second aspect of the present invention, in the first aspect of the present invention, a plurality of tubes are arranged in a row in the direction in which the external air passes, and the inner surface of the tank facing the first concave curved surface portion corresponds to the plurality of tube rows. Then, the second concave curved surface portion which is depressed is formed continuously.
[0014]
According to this configuration, the second concave curved surface portion is continuously formed on the inner surface of the tank, and the continuous direction of the second concave curved surface portion is different from the continuous direction of the first concave curved surface portion. Therefore, the pressure resistance of the tank is further improved without increasing the weight.
[0015]
According to the invention of claim 3, in the invention of claim 2, between the adjacent second concave curved surface portions on the inner surface of the tank, a tube protruding up to the first concave curved surface portion and passing through the hollow portion on the upstream side in the external air passage direction is formed. A second partition part is provided integrally for partitioning the upstream space that communicates with the downstream space that communicates with the tube on the downstream side.
[0016]
According to this configuration, since the hollow portion is partitioned into the upstream space and the downstream space by the second partition portion, it is possible to configure the refrigerant path of the heat exchanger having a plurality of tube rows in the direction in which external air passes. It becomes. At this time, similarly to the first aspect of the invention, since the second partition portion is formed between the adjacent concave curved surface portions, the formability of the tank does not deteriorate.
[0017]
According to a fourth aspect of the present invention, in the third aspect of the present invention, the second partitioning portion is provided with a communication path for communicating the upstream space and the downstream space of the hollow portion with each other.
[0018]
According to this configuration, the refrigerant can be circulated between the upstream space and the downstream space without forming a communication passage outside the tank, so that the heat exchanger can be downsized.
[0019]
According to a fifth aspect of the present invention, in the second aspect of the present invention, the tank is provided with a first tank constituent member disposed outside the core and a hollow portion formed inside the first tank constituent member inside the core. And a second concave curved surface portion is formed on the first tank structural member, and a second concave curved surface portion is formed on the second tank structural member.
[0020]
According to this configuration, a second concave curved surface portion that is continuous in a different direction from the first concave curved surface portion is provided on a second tank constituent member that is separate from the first tank structural member on which the first concave curved surface portion is formed. Since it is formed, the bi-concave curved surface portion can be formed more easily.
[0021]
According to a sixth aspect of the present invention, in the fifth aspect of the invention, at least one of the first tank component and the second tank component is formed by pressing a plate material.
[0022]
According to this configuration, the cost can be reduced by using the tank constituent member as a pressed product.
[0023]
According to a seventh aspect of the present invention, in the fifth aspect of the invention, at least one of the joining surfaces of the first tank component and the second tank component is provided with a brazing material in a layered manner.
[0024]
According to this configuration, after assembling the first tank constituent member and the second tank constituent member, by bringing the first tank constituent member and the second tank constituent member into the furnace, the entire joining surface of both members is simultaneously brazed, so that the number of manufacturing steps is reduced. It is planned.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0026]
FIG. 2 shows a heat exchanger according to an embodiment of the present invention. In this example, a case where the heat exchanger is an evaporator 1 which constitutes one element of a refrigeration cycle of a vehicle air conditioner is shown. The evaporator 1 has a core 4 in which a plurality of vertically extending tubes 2, 2, ... and fins 3, 3, ... are alternately arranged in the vehicle width direction, and is disposed at an upper end and a lower end of the core 4, respectively. An upper header tank 6 and a lower header tank 7 are provided and have a hollow portion W extending in the direction in which the tubes 2 and the fins 3 are arranged. Further, the evaporator 1 is configured such that heat is exchanged when external air blown from a blower (not shown) passes through the core 4 from the front to the rear of the vehicle body (indicated by a white arrow Y in FIG. 5). It is installed in.
[0027]
As shown in FIG. 1, the tubes 2 of the core 4 are arranged in two rows in the direction in which external air passes. The upstream tube 2a and the downstream tube 2b are flat tubes having a rectangular cross section that is long in the direction in which external air passes, while each fin 3 is formed to extend from near the upper end to near the lower end of the tube 2. The tubes 2 and the fins 3 are formed by molding a thin plate made of an aluminum alloy having a brazing material layered on the surface. The distance between the tubes 2, 2 adjacent in the vehicle width direction corresponds to the length of the fins 3 in the vehicle width direction, and both ends of the fins 3 in the vehicle width direction are brazed to the side surfaces of the tubes 2, 2. It has become. The fins 3 located at the left end and the right end of the core 4 in the vehicle width direction are held by end plates 8, 8.
[0028]
The upper and lower header tanks 6, 7 are each formed in an elongated box shape extending over both ends of the core 4 in the vehicle width direction (the direction in which the tubes 2 and the fins 3 are arranged), and are disposed outside the core 4. And a second tank component 11 joined to the inside of the core 4 of the first tank component 10 to form the hollow portion W therein. Since the upper header tank 6 and the lower header tank 7 have the same configuration, the upper header tank 6 will be described in detail below.
[0029]
The first tank component 10 is formed by pressing an aluminum alloy plate material in which a brazing material is provided in layers on the inner and outer surfaces of the tank, and the inner surface of the tank is recessed outward of the header tank 6. Are formed continuously in the direction in which the tubes 2 and the fins 3 are juxtaposed. Each first concave curved surface portion 10a is formed so as to constitute a part of a circumferential surface having a center line extending in the vehicle longitudinal direction, and extends across both ends of the first tank component 10 in the vehicle longitudinal direction. I have. The space between the adjacent first concave curved surface portions 10a, 10a is relatively close to the inner surface of the second tank constituent member 11, and is located substantially at the center of the tubes 2, 2 adjacent in the vehicle width direction. . As shown in FIG. 1, both edges of the first tank component 10 in the vehicle front-rear direction are bent at substantially right angles toward the inside of the core 4, and the front and rear edges of the second tank component 11 are interposed between the two edges. Both edges in the direction are fitted and brazed.
[0030]
Like the first tank component 10, the second tank component 11 is formed by pressing an aluminum alloy plate material in which a brazing material is provided in a layer form, and faces the inner surface of the first tank component 10. On the inner surface, two second concave curved surface portions 11a, 11a which are depressed outward of the header tank 6 corresponding to the rows of the upstream tubes 2a and the rows of the downstream tubes 2b, respectively, are provided in the direction in which the external air passes. It is formed continuously. Each second concave curved surface portion 11a is formed so as to constitute a part of a circumferential surface having a center line extending in the vehicle width direction, and both ends of the second tank component member 11 in the tube 2 and fin 3 juxtaposition direction. Extending over Tube insertion holes 11b, 11b,... Corresponding to the outer shape of the tubes 2 are formed in the second tank constituent member 11 at intervals of the tubes 2, 2,. The two-tank constituent member 11 is inserted and held.
[0031]
When the first tank constituent member 10 and the second tank constituent member 11 of the upper and lower header tanks 6 and 7 are assembled, each has a tubular shape with both ends in the vehicle width direction opened (not shown). As shown in FIG. 2, the upper and lower ends of the end plates 8 are closed. The hollow portion W thus formed communicates with the tube 2 inserted into the tube insertion hole 11b of the second tank constituent member 11.
[0032]
The first tank component 10 of each of the upper and lower header tanks 6, 7 is provided with a first partition 10b that partitions the hollow portion W into one side and the other side in the direction in which the tubes 2 and the fins 3 are arranged. Have been. Further, the second tank constituent member 11 divides each hollow portion W into an upstream space W1 communicating with the tube 2a on the upstream side in the passage direction of the external air and a downstream space W2 communicating with the tube 2b on the downstream side. A two-partition portion 11c is provided, whereby a path for the refrigerant in the evaporator 1 is formed.
[0033]
That is, as shown in FIG. 4, the second partitioning portion 11 c is provided between the adjacent second concave curved surface portions 11 a on the inner surface of the second tank constituent member 11 and until the second partitioning portion 11 c contacts the inner surface of the first tank constituent member 10. It is protruding. The distal end of the second partition 11c is located on substantially the same plane as both edges of the second tank component 11 in the vehicle longitudinal direction. On the other hand, as shown in FIG. 3, the first partition portion 10b protrudes from between adjacent first concave curved surface portions 10a on the inner surface of the first tank constituent member 10 to the inner surface of the second tank constituent member 11. . Further, the front end of the first partition 10b is fitted into a fitting hole 11e formed in the second tank component 11, whereby the first partition 10b is brought into the furnace at the time of brazing or at the time of heating during heating. The displacement between the tank constituent member 10 and the second tank constituent member 11 is prevented. Further, in the evaporator 1, as schematically shown in FIG. 5, the first partitioning portions 10 b are provided at three places, which are located on the right side in the vehicle width direction of the downstream space W <b> 2 of the lower header tank 7. , A portion of the downstream space W2 of the upper header tank 6 on the left side in the vehicle width direction, and a substantially central portion of the upstream space W1 of the upper header tank 6 in the vehicle width direction.
[0034]
As shown in FIGS. 1 and 4, projecting portions 10 c protruding toward the second tank forming member 11 are provided substantially at the center of the inner surface of the first tank forming member 10 in the front-rear direction of the vehicle body. , And the tip of the second partition 11c of the second tank component 11 abuts on the tip of the projection 10c. Also, at the tip of the second partition 11c, three semicircular notches 11d are juxtaposed in the direction in which the tubes 2 and the fins 3 are juxtaposed, and each of the notches 11d and the inner surface of the first tank constituent member 10 A communication path R that connects the upstream space W1 and the downstream space W2 to each other is formed therebetween.
[0035]
Further, the protruding portion 10c of the first tank component 10 is not formed at a location corresponding to the vicinity of the notch 11d of the second partitioning portion 11c, whereby the upstream space W1 and the downstream space W2 are formed. Is sufficiently secured. At this time, the flow rate of the refrigerant between the upstream space W1 and the downstream space W2 may be changed depending on the size and number of each notch 11d, the protrusion length of the protrusion 10c of the first tank component 10, and the like. It is possible. Although not shown, a through hole may be formed in the second partition 11c as the communication path R.
[0036]
In the evaporator 1 configured as described above, as shown in FIG. 5, the refrigerant flowing into the downstream space W2 from the right side in the vehicle width direction of the lower header tank 7 is supplied to the first partition 10b of the downstream space W2. After being distributed to the downstream tube 2b located on the right side in the vehicle width direction, the air flows into the downstream space W2 of the upper header tank 6 through the tube 2b and gathers. The refrigerant collected in the upper header tank 6 is a downstream tube between the first partition 10b of the downstream space W2 of the lower header tank 7 and the first partition 10b of the downstream space W2 of the upper header tank 6. After being distributed to the second header 2b, they are collected in the downstream space W2 of the lower header tank 7 through the tube 2b. Thereafter, the refrigerant passes through the downstream tube 2b on the left side of the first partition portion 10b of the upper header tank 6 in the vehicle width direction, gathers in the downstream space W2 of the upper header tank 6, and passes through the communication passage R to the upper side. It flows into the upstream space W1 of the header tank 6. The refrigerant flowing into the upstream space W1 flows into the upstream space W1 of the lower header tank 7 through the upstream tube 2a on the left side in the vehicle width direction with respect to the first partition 10b of the upstream space W1, It flows upward through the upstream tube 2a on the right side in the vehicle width direction from the first partition portion 10b of the upstream space W1 of the upper header tank 6, and flows into the upstream space W1. Then, the refrigerant flowing through the path in the evaporator 1 flows out from the right side of the upstream space W1 of the upper header tank 6 in the vehicle width direction.
[0037]
Therefore, according to the evaporator 1 according to this embodiment, the first concave curved surface portion 10a is continuously formed in the inner surface of each of the header tanks 6 and 7 in the direction in which the tubes 2 and the fins 3 are arranged. The pressure resistance of the header tanks 6 and 7 can be sufficiently ensured as compared with the case where the peripheral wall portions of the tanks are formed substantially flat. Can be suppressed.
[0038]
Further, the hollow portion W can be partitioned into the upstream space W1 and the downstream space W2 by the second partition portion 11c of the second tank constituent member 11, and the spaces W1, W2 are arranged in parallel with the tube 2 and the fin 3. At a predetermined position in the direction, the first tank component 10 can be partitioned by the first partition portion 10b. Thereby, in the evaporator 1 in which the tubes 2 are arranged in two rows in the passage direction of the external air, the refrigerant path can be freely configured.
[0039]
At this time, the first partition 10b and the second partition 11c are integrally provided on the inner surface of the first tank component 10 and the inner surface of the second tank component 11, respectively, so that the number of brazing parts increases. Therefore, the moldability of the members 10 and 11 constituting the header tanks 6 and 7 does not deteriorate. Furthermore, between the adjacent first concave curved surface portions 10a, 10a on the inner surface of the first tank constituent member 10, the second concave curved surface portion 11a is relatively close, and a first partition is provided between the first concave curved surface portions 10a. Since the portion 10b is formed, the protruding length of the first partition 10b can be reduced. Thereby, even if the first partition part 10b is provided integrally with the first tank constituent member 10, the first partition part 10b can be easily formed, and the formability of the first tank constituent member 10 can be improved. Will not get worse. Similarly, in the second tank component 11, the second partitioning portion 11c is formed between the second concave curved surface portions 11a, 11a, so that the header tanks 6, 7 having good moldability can be obtained. Can be.
[0040]
Further, since the first tank constituent member 10 and the second tank constituent member 11 are press-formed products of a plate material, the cost can be reduced as compared with the case where the members are extruded. At this time, since the brazing material is a plate material provided in a layered form, the first tank constituent member 10 and the second tank constituent member 11 are assembled and then loaded into a furnace, so that both members 10, 11 Can be brazed simultaneously and reliably over the entire joint surface, thereby reducing the number of manufacturing steps.
[0041]
In addition, since the first concave curved surface portion 10a is continuous in the direction in which the tube 2 and the fin 3 are arranged, the second concave curved surface portion 11a is continuous in the direction in which external air passes, so that the continuation of the double concave curved surface portions 10a, 11a The directions are orthogonal to each other, whereby the rigidity of the header tanks 6, 7 is sufficiently ensured, and the pressure resistance can be further improved.
[0042]
Further, since the refrigerant is circulated from the downstream space W2 of the upper header tank 6 to the upstream space W1 by the communication passage R, there is no need to form a communication passage outside the header tank 6, and the evaporator 1 can be made compact. Can be.
[0043]
(Other embodiments)
It should be noted that the present invention is not limited to the above embodiment, but includes other various embodiments. That is, in the above-described embodiment, the first tank component 10 is formed by press working. However, the present invention is not limited to this. The first tank constituent member 10 may be formed by extrusion as shown in FIGS. 6 and 7. .
[0044]
In this case, similarly to the above-described embodiment, the first concave curved surface portion 30a is continuously formed on the inner surface of the first tank component 30 in the direction in which the tube 2 and the fin 3 are arranged, while the outer surface is formed of the tube 2 and the fin 3. The fin 3 has a substantially flat surface extending in the direction in which the fins 3 are arranged. The second tank component 11 is configured in the same manner as in the above-described embodiment, and is a pressed product of a plate material in which brazing material is provided in layers on the inner surface and the outer surface of the tank. As shown in FIG. 7B, a groove 30b into which the tip of the second partition 11c of the second tank component 11 is fitted is formed on the inner surface of the first tank component 30. Further, a first partition 30c protruding to the inner surface of the second tank component 11 is formed between the adjacent first concave curved surface portions 30a, 30a on the inner surface of the first tank component 30. Reference numeral 30c is fitted in a fitting hole 11e formed in the second tank constituent member 11.
[0045]
In the second partition 11c, a communication passage R that connects the upstream space W1 and the downstream space W2 is formed by the notch 11d.
[0046]
In this case, the first tank constituent member 30 is extruded and partially thickened, so that the pressure resistance of the header tanks 6 and 7 is sufficiently secured without causing a significant increase in weight. it can.
[0047]
In the evaporator 1 of the embodiment, the tubes 2 of the core 4 are arranged in two rows in the direction in which the external air passes. However, the present invention is not limited to this. You may make it arrange in rows or more. When the tubes 2 are arranged in one row, the second partition portion may be omitted.
[0048]
Further, in the above embodiment, the case where the present invention is applied to the evaporator 1 of the air conditioner is described. However, the present invention is not limited to this, and can be applied to the condenser of the air conditioner.
[0049]
【The invention's effect】
As described above, according to the heat exchanger according to the first aspect of the present invention, since the plurality of first concave curved surface portions are continuously formed on the inner surface of the tank, the pressure resistance of the tank can be sufficiently increased without increasing the weight. Also, the first partitioning portion that partitions the hollow portion inside the tank into one side and the other side in the direction in which the tubes and fins are arranged is integrally provided between the adjacent first concave curved surface portions on the tank inner surface. In addition, it is possible to configure the refrigerant path without increasing the number of brazing parts, and to shorten the projecting length of the partition portion, thereby obtaining a tank having good moldability.
[0050]
According to the second aspect of the present invention, since the second concave curved surface portions corresponding to the plurality of tube rows are formed continuously on the tank inner surface facing the first concave curved surface portion, the second concave curved surface portion is continuous. And the direction in which the first concave curved surface portion continues can be made different from each other, so that the pressure resistance of the tank can be further improved without increasing the weight.
[0051]
According to the third aspect of the invention, since the second partitioning portion that partitions the hollow portion into the upstream space and the downstream space is integrally provided between the adjacent second concave curved surface portions on the tank inner surface, the tank is formed. The refrigerant path of the heat exchanger having a plurality of tube rows in the passage direction of the external air can be configured without deteriorating the performance.
[0052]
According to the fourth aspect of the present invention, since the communication path for communicating the upstream space and the downstream space with each other is provided in the second partition, the heat exchanger can be made compact.
[0053]
According to the invention as set forth in claim 5, the tank is composed of the first tank constituent member outside the core, and the second tank constituent member joined to the inside of the core of the first tank constituent member to form a hollow portion, Since the first concave curved surface portion is formed on the first tank constituent member and the second concave curved surface portion is formed on the second tank constituent member, the first concave curved surface portion and the second concave curved surface portion which are continuous in different directions from each other. The two concave curved surface portions can be formed separately on the first and second tank constituent members, whereby each concave curved surface portion can be more easily formed.
[0054]
According to the sixth aspect of the invention, the cost can be reduced by using the tank constituent member as a pressed product.
[0055]
According to the invention described in claim 7, since the brazing material is provided in a layer on at least one of the joining surfaces of the first tank component and the second tank component, the entire joining surface of both members is simultaneously brazed in the furnace. Therefore, the number of manufacturing steps can be reduced.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a left side of an upper header tank and a tube in a vehicle width direction without fins.
FIG. 2 is a view of the evaporator according to the present invention as viewed from the rear side of the vehicle body.
FIG. 3 is a vertical cross-sectional view of an upper header tank on the upstream side in a direction in which external air passes.
4A is a sectional view taken along line AA in FIG. 3, FIG. 4B is a sectional view taken along line BB in FIG. 3, and FIG. 4C is a sectional view taken along line CC in FIG. is there.
FIG. 5 is a schematic diagram showing a refrigerant path of an evaporator.
FIG. 6 is a diagram corresponding to FIG. 3 according to another embodiment.
7A is a sectional view taken along line DD in FIG. 6, FIG. 7B is a sectional view taken along line EE in FIG. 6, and FIG. 7C is a sectional view taken along line FF in FIG. is there.
[Explanation of symbols]
2 Tube 2a Upstream tube 2b Downstream tube 3 Fin 4 Core 6,7 Header tank 10 First tank component 10a First concave curved surface 10b First partition 11 Second tank component 11a Second concave curved surface 11c 2 partition R communication path W hollow space W1 upstream space W2 downstream space

Claims (7)

複数のチューブ及びフィンが交互に並設されてなるコアと、該コアの各チューブ端部に配設され、チューブ及びフィン並設方向に延びる中空部を有し該中空部を前記各チューブに連通させたタンクとを備える熱交換器において、
前記タンク内面には、凹陥してなる複数の第1凹状湾曲面部がチューブ及びフィン並設方向に連続して形成され、
前記タンク内面の隣り合う第1凹状湾曲面部の間には、該第1凹状湾曲面部に対向するタンク内面まで突出して前記中空部をチューブ及びフィン並設方向一側と他側とに仕切る第1仕切部が一体に設けられていることを特徴とする熱交換器。
A core having a plurality of tubes and fins alternately arranged in parallel, and a hollow portion provided at an end of each tube of the core and extending in the direction in which the tubes and fins are arranged, and communicating the hollow portion with each of the tubes; In a heat exchanger comprising
On the inner surface of the tank, a plurality of first concave curved surface portions that are depressed are continuously formed in the tube and fin juxtaposition direction,
A first portion between the adjacent first concave curved surface portions of the tank inner surface that protrudes to the tank inner surface facing the first concave curved surface portion to partition the hollow portion into one side and the other side in the tube and fin juxtaposition direction. A heat exchanger wherein a partition is provided integrally.
請求項1において、
各チューブは、外部空気の通過方向に複数列並設され、
第1凹状湾曲面部に対向するタンク内面には、前記複数のチューブ列に対応して凹陥してなる第2凹状湾曲面部が連続して形成されていることを特徴とする熱交換器。
In claim 1,
Each tube is arranged in multiple rows in the direction of passage of external air,
A heat exchanger, wherein a second concave curved surface portion which is depressed corresponding to the plurality of tube rows is continuously formed on an inner surface of the tank opposed to the first concave curved surface portion.
請求項2において、
タンク内面の隣り合う第2凹状湾曲面部の間には、第1凹状湾曲面部まで突出して中空部を外部空気の通過方向上流側のチューブが連通する上流側空間と下流側のチューブが連通する下流側空間とに仕切る第2仕切部が一体に設けられていることを特徴とする熱交換器。
In claim 2,
Between the adjacent second concave curved surface portions of the tank inner surface, the upstream concave space protrudes to the first concave curved surface portion, and the downstream space in which the downstream tube communicates with the upstream space in which the upstream tube communicates with the upstream tube in the external air passage direction. A heat exchanger characterized in that a second partition part for partitioning with a side space is provided integrally.
請求項3において、
第2仕切部には、中空部の上流側空間及び下流側空間を互いに連通させる連通路が設けられていることを特徴とする熱交換器。
In claim 3,
A heat exchanger characterized in that the second partition portion is provided with a communication passage for communicating the upstream space and the downstream space of the hollow portion with each other.
請求項2において、
タンクは、コア外側に配設される第1タンク構成部材と、該第1タンク構成部材のコア内側に接合されて内部に中空部を形成する第2タンク構成部材とから構成され、
第1凹状湾曲面部は、前記第1タンク構成部材に形成されるとともに、第2凹状湾曲面部は、前記第2タンク構成部材に形成されていることを特徴とする熱交換器。
In claim 2,
The tank is composed of a first tank component disposed outside the core, and a second tank component joined to the inside of the core of the first tank component to form a hollow portion therein,
A heat exchanger, wherein a first concave curved surface portion is formed on the first tank constituent member, and a second concave curved surface portion is formed on the second tank constituent member.
請求項5において、
第1タンク構成部材及び第2タンク構成部材の少なくとも一方は板材をプレス成形してなることを特徴とする熱交換器。
In claim 5,
A heat exchanger, wherein at least one of the first tank constituent member and the second tank constituent member is formed by pressing a plate material.
請求項5において、
第1タンク構成部材及び第2タンク構成部材の接合面の少なくとも一方には、ろう材が層状に設けられていることを特徴とする熱交換器。
In claim 5,
A heat exchanger, wherein a brazing material is provided in a layer on at least one of the joining surfaces of the first tank constituent member and the second tank constituent member.
JP2002350978A 2002-12-03 2002-12-03 Heat exchanger Expired - Fee Related JP4243097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350978A JP4243097B2 (en) 2002-12-03 2002-12-03 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350978A JP4243097B2 (en) 2002-12-03 2002-12-03 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2004183970A true JP2004183970A (en) 2004-07-02
JP4243097B2 JP4243097B2 (en) 2009-03-25

Family

ID=32753014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350978A Expired - Fee Related JP4243097B2 (en) 2002-12-03 2002-12-03 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4243097B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038429A (en) * 2004-07-30 2006-02-09 Calsonic Kansei Corp Evaporator
JP2006349275A (en) * 2005-06-16 2006-12-28 Japan Climate Systems Corp Heat exchanger
CN100460783C (en) * 2005-11-20 2009-02-11 陈苏红 Combined type collecting pipe for automobile air conditioner
JP2011158127A (en) * 2010-01-29 2011-08-18 Showa Denko Kk Heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038429A (en) * 2004-07-30 2006-02-09 Calsonic Kansei Corp Evaporator
JP4547205B2 (en) * 2004-07-30 2010-09-22 カルソニックカンセイ株式会社 Evaporator
JP2006349275A (en) * 2005-06-16 2006-12-28 Japan Climate Systems Corp Heat exchanger
JP4731212B2 (en) * 2005-06-16 2011-07-20 株式会社日本クライメイトシステムズ Heat exchanger
CN100460783C (en) * 2005-11-20 2009-02-11 陈苏红 Combined type collecting pipe for automobile air conditioner
JP2011158127A (en) * 2010-01-29 2011-08-18 Showa Denko Kk Heat exchanger

Also Published As

Publication number Publication date
JP4243097B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4419140B2 (en) Tube for heat exchanger
JP3814917B2 (en) Stacked evaporator
US7571761B2 (en) Heat exchanger
JP2005326135A (en) Heat exchanger
JPH04203895A (en) Heat exchanger
WO2005124259A1 (en) Heat exchanger
US9163881B2 (en) Heat exchanger
WO2005121683A1 (en) Heat exchanger
JP2007298260A (en) Heat exchanger
JP4751662B2 (en) Plate for manufacturing flat tube, method for manufacturing flat tube, and method for manufacturing heat exchanger
US20130255926A1 (en) Heat exchanger and method of manufacturing the same
JPH11351777A (en) Flat heat transfer tube for heat exchanger
US7918266B2 (en) Heat exchanger
JP4217469B2 (en) Heat exchanger
JPH09329397A (en) Heat exchanger
JP4448354B2 (en) Heat exchanger
JPH11142087A (en) Heat-exchanger
JP2004183970A (en) Heat exchanger
JP2004271143A (en) Heat exchanger
JP4540839B2 (en) Combined heat exchanger
JP2005037037A (en) Heat exchanger
JP2005195318A (en) Evaporator
JP4759297B2 (en) Heat exchanger
JP4041727B2 (en) Tube for heat exchanger
JPH10153393A (en) Flat heating pipes for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051011

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20081226

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees