JP2004183752A - Reciprocating slide type air seal mechanism and sliding material used therefor - Google Patents

Reciprocating slide type air seal mechanism and sliding material used therefor Download PDF

Info

Publication number
JP2004183752A
JP2004183752A JP2002350252A JP2002350252A JP2004183752A JP 2004183752 A JP2004183752 A JP 2004183752A JP 2002350252 A JP2002350252 A JP 2002350252A JP 2002350252 A JP2002350252 A JP 2002350252A JP 2004183752 A JP2004183752 A JP 2004183752A
Authority
JP
Japan
Prior art keywords
sliding
air seal
air
seal mechanism
sliding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002350252A
Other languages
Japanese (ja)
Inventor
Yoshihisa Serizawa
義久 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002350252A priority Critical patent/JP2004183752A/en
Publication of JP2004183752A publication Critical patent/JP2004183752A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bearings For Parts Moving Linearly (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reciprocating slide type air seal mechanism in which abrasion progress of an air seal material is reduced, and a sliding material used therefore. <P>SOLUTION: In an air seal mechanism, air seal is executed by reciprocating slide contact between an air seal material and a sliding material, wherein the priority of slide abrasion is given to the air material relative to the sliding material. In the evaluation standard of the sliding surface of the sliding material where the evaluation length is 2.5 mm and the cut off is 0.25 Gaussian, the following relations are satisfied : Wca obtained from the cross section curve: ≤0.30μm, Ra obtained from the roughness curve: ≤0.25μm, and load length ratio tp: ≤20% at 20% of the cut ratio and ≥50% at 30% of of the cut ratio. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エアシール材と摺動材との往復摺動接触によりエアシールする機構およびそれに用いる摺動材に関する。
【0002】
【従来の技術】
従来、往復摺動エアシール機構はエアバネ等のように無潤滑下で往復摺動可能な気密シール機構であり、例えば特許文献1(特開平9−303566号公報)に、シリンダチューブとピストンとの往復摺動接触によりエアシールする機構が記載されている。この場合、ピストンの周溝に嵌め込まれたフッ素樹脂等から成るシールリングと金属製シリンダチューブとの往復摺動接触によりエアシールが行なわれる。すなわち、往復運動するピストンの周溝に嵌め込んだ樹脂製シールリングの外周面が、固定された金属製シリンダチューブの内周面に摺動接触する形式である。往復摺動エアシール機構としては、これとは逆に、固定されたシリンダチューブの周溝に嵌め込んだ樹脂製シールリングの内周面が、往復運動する金属製ピストンの外周面に摺動接触する形式のものも多い。
【0003】
いずれの形式でも、樹脂、ゴム等の比較的軟らかい材料で作られたエアシール材と、金属等の比較的硬い材料で作られた摺動材との往復摺動接触によりエアシールが行なわれる。
【0004】
このようにエアシール材は、気密性を確保するために、金属よりも軟質な樹脂等の材料を用いているが、耐摩耗性を高めるには高価な材料を用いる必要がある。また、相手材となる摺動材は摺動面が金属となる場合が多く、表面粗さを小さくしてシール性を確保するのが通例であった。
【0005】
しかし、エアシールは摺動面に潤滑オイルを用いるとエア圧に影響を及ぼすため、無潤滑下もしくは低潤滑下で摺動を行なう必要があり、エアシール材の早期摩耗進行による気密性能の低下、更にそれに起因する装置の不具合を引き起こすという問題があった。
【0006】
【特許文献1】
特開平9−303566号公報(段落0013〜0018、図1)
【0007】
【発明が解決しようとする課題】
本発明は、上記従来の問題を解消し、エアシール材の摩耗進行を低減した往復摺動エアシール機構およびそれに用いるための摺動材を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明によれば、エアシール材と摺動材との往復摺動接触によりエアシールを行い、摺動材に対してエアシール材の方が優先的に摺動摩耗するエアシール機構において、
上記摺動材の摺動面が、評価長さ:2.5mm、カットオフ:0.25ガウシアンという評価条件において、下記の関係:
断面曲線より求めたWca:0.30μm以下、
粗さ曲線より求めたRa :0.25μm以下、
負荷長さ率tp :カット率20%で20%以下かつカット率30%で50%以上、
を満たすことを特徴とする往復摺動エアシール機構が提供される。
【0009】
更に、本発明によれば、エアシール材と摺動材との往復摺動接触によりエアシールを行い、摺動材に対してエアシール材の方が優先的に摺動摩耗するエアシール機構に用いる摺動材であって、
摺動面が、評価長さ:2.5mm、カットオフ:0.25ガウシアンという評価条件において、下記の関係:
断面曲線より求めたWca:0.30μm以下、
粗さ曲線より求めたRa :0.25μm以下、
負荷長さ率tp :カット率20%で20%以下かつカット率30%で50%以上、
を満たすことを特徴とする往復摺動エアシール機構用摺動材が提供される。
【0010】
【発明の実施の形態】
本発明は表面形態の指標としてWca、Ra、tpを上記のとおりに規定する。ここで、Wcaは断面曲線に含まれるうねり成分等の波長の長い成分を代表しており、一方、Raは算術平均粗さであり、断面曲線から上記の長波長成分を除去(カットオフ)した粗さ曲線から求められる。
【0011】
すなわち、本発明では、表面形態のうち、うねり等の波長の長い凹凸をWcaを指標として制限し、同時に、一般に表面粗さを代表する波長の短い凹凸をRaを指標として制限する。
【0012】
本発明はこれに加えて、更に負荷長さ率tpも制限する。負荷長さ率tpは、摺動面を構成する凹凸の断面プロファイルに依存する。負荷長さ率tpが本発明の規定範囲を満たす場合のベアリングカーブ(カット率による負荷長さ率の変化を表す曲線)は、例えば図1に示すようになる。横軸がカット率、縦軸が負荷長さ率tpであり、ベアリングカーブは摺動面凹凸の断面プロファイル(詳しくは摺動面を構成する個々の凹凸の断面プロファイルの総平均)に対応している。本発明はカット率と負荷長さ率との関係を表面形態の一指標として用い、カット率20%で負荷長さ率tpが20%以下となる点(図示の例では点A)と、カット率30%で負荷長さ率tpが50以上となる点(図示の例では点B)とを通るようにベアリングカーブを規定し、それにより摺動面を構成する凹凸の断面プロファイルを規定する。
【0013】
エアシール材との摺動相手となる摺動材の摺動面形態を上記規定範囲内とすることにより、エアシール材の摩耗進行を大幅に低減することができる。
【0014】
エアシール材は、一般にフッ素樹脂等の樹脂、シリコーンゴム等の合成ゴムなどが用いられ、その摺動相手となる摺動材は一般にアルミニウム合金等の金属などが用いられる。
【0015】
摺動材の摺動面形態を本発明の規定範囲内とする方法は特に限定しない。例えば、下記の方法を用いることができる。
【0016】
〔方法1〕
円筒状摺動材の摺動面となる外周面を予め鏡面に加工しておき、これにレーザビームをパルス照射して微小な窪みを形成する。その際、形成する窪みの寸法およびピッチは、摺動材周方向については円筒軸回りの回転速度とレーザビームのパルス制御により望みの値に制御しながら、同時に、摺動材長さ方向については円筒軸方向の移動速度およびピッチ対応のスリットにより望みの値に制御する加工が可能である。レーザビームのスポット径は一般に50μm以下とすることが望ましい。
【0017】
〔方法2〕
摺動材の摺動面を機械加工により仕上げた後、多段ショットブラストにより所望の表面形態とする。すなわち、初期ショットは平滑性を高めるためにショット粒として大粒径のものを用い、最終ショットは微小窪み生成のため小粒径のものを用いる。最終ショット用のショット粒は、粒径50μm以下であることが望ましい。
【0018】
以上の方法はほんの一例であり、必要な表面形態を形成できる表面加工方法であればよい。上記の例も含めて一般に表面形態の調整には、機械研削、ショットブラスト、各種研磨、化学エッチング、電解エッチング、電子ビーム加工等による局部的加工あるいはこれらを組み合わせた加工方法等を用いることができる。
【0019】
【実施例】
本発明による往復摺動エアシール機構として、図2に示すエアバネを用いて、エアシール材の摺動相手である摺動材の摺動面形態を種々に変化させて、シール材摩耗量およびエアー漏れを測定した。
【0020】
図2の往復摺動エアシール機構10は、シリンダチューブ11の内周に沿って設けた周溝11A内にリング状のエアシール材12が嵌め込まれており、ピストンとしての摺動材13がシリンダチューブ11内を軸方向に往復摺動する(図中の矢印)。摺動材13の外周面が、エアシール材12の内周面との摺動面となる。図中、摺動材13の下方にあるエア室14内に所定圧のエアが維持されており、摺動材13の上面に負荷される荷重に対してバネ作用を発揮する。
【0021】
エアシール材12はテフロン(商標名)製の市販品を用いた。摺動材13はアルミニウム合金製であり、アルミニウム合金丸棒を機械切削して所定形状に加工した後、ショットブラスト、機械研削、研磨により種々の表面形態に調整した。
【0022】
エアシール材12の内径および摺動材13の外径はいずれも約30mmであった。エア室14内のエア圧力は約1MPaとし、外部の加圧ボンベよりレギュレータを介してエアを供給した。往復摺動ストロークは30mmとし、摺動速度を1000ストローク/分から最高9000ストローク/分まで徐々に上昇させて60分間持続させ、試験前後でのボンベの圧力変化によりエア漏れの有無を判定した。
【0023】
試験結果を表1にまとめて示す。表1中のRz値(十点平均粗さ)は本発明の規定対象ではないが、参考として併記した。
【0024】
【表1】

Figure 2004183752
【0025】
表1中、サンプルA〜Kは比較例であり、指標値Ra、Wca、tp(カット率20%、30%)の少なくともいずれか1つが本発明の規定範囲外であり、サンプルL〜Rは本発明例であり指標値がいずれも本発明の規定範囲内である。
【0026】
表1に示したデータを図3および図4にプロットして示す。図3には、表1中の各サンプルについて、Ra値とWca値の組み合わせに対するエアー漏れの有無を示し、図4には、表1中の各サンプルについて、カット率20%でのtp値(tp20)とカット率30%でのtp値(tp30)の組み合わせに対するエアー漏れの有無を示している。
【0027】
図3において、エアー漏れ無し(〇)は、Raが本発明の規定範囲である0.25μm以下で且つWcaが本発明の規定範囲である0.30μm以下の場合にのみ生じている。ただし、この場合であっても、エアー漏れ有り(×)も生じている。ここでエアー漏れ有り(×)のサンプルは、Ra値およびWca値は本発明の規定範囲であったが、tp値が本発明の規定範囲外であった。
【0028】
すなわち図4に示すように、カット率20%でのtp値(tp20)が20%以下であって且つカット率30%でのtp値(tp30)が50%以上である、という本発明の規定範囲内にある組み合わせのサンプルのみがエアー漏れ無し(〇)であった。
【0029】
すなわち、Ra、Wca、tp20、tp30の全ての指標値が本発明の規定範囲内にある場合にのみエアー漏れを防止することができ、指標値のいずれか1つでも本発明の規定範囲から外れた場合にはエアー漏れを防止できなかった。
【0030】
このように摺動材の摺動面形態を本発明の規定範囲内に制御することにより、エアー漏れを防止できることが分かる。
【0031】
更に、エアシール材の摩耗量についても、表1に示したように比較例サンプルA〜Kが180〜250μmであるのに対して、本発明例サンプルL〜Rは100〜120μmとほぼ半減していることが分かる。
【0032】
【発明の効果】
本発明によれば、エアシール材の摩耗進行を低減した往復摺動エアシール機構およびそれに用いるための摺動材が提供される。
【図面の簡単な説明】
【図1】図1は、カット率と負荷長さ率との関係が本発明の規定範囲内である場合について、カット率に対する負荷長さ率tpの変化を表すベアリングカーブの一例を示すグラフである。
【図2】図2は、評価試験に用いた往復摺動エアシール機構の一部を模式的に示す断面図である。
【図3】図3は、Ra値とWca値との組み合わせに対するエアー漏れの有無を示すグラフである。
【図4】図4は、カット率20%での負荷長さ率(tp20)とカット率30%での負荷長さ率(tp30)との組み合わせに対するエアー漏れの有無を示すグラフである。
【符号の説明】
10…往復摺動エアシール機構
11…シリンダチューブ
11A…周溝
12…エアシール材
13…摺動材
14…エア室[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mechanism for air sealing by reciprocating sliding contact between an air seal material and a sliding material, and a sliding material used for the mechanism.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a reciprocating sliding air seal mechanism is an air-tight sealing mechanism that can reciprocate and slide without lubrication, such as an air spring. A mechanism for air sealing by sliding contact is described. In this case, air sealing is performed by reciprocating sliding contact between a seal ring made of a fluororesin or the like fitted into the circumferential groove of the piston and the metal cylinder tube. That is, the outer peripheral surface of the resin seal ring fitted in the peripheral groove of the reciprocating piston slides on the inner peripheral surface of the fixed metal cylinder tube. On the contrary, as the reciprocating sliding air seal mechanism, the inner peripheral surface of the resin seal ring fitted in the peripheral groove of the fixed cylinder tube comes into sliding contact with the outer peripheral surface of the reciprocating metal piston. There are many forms.
[0003]
In either case, air sealing is performed by reciprocating sliding contact between an air sealing material made of a relatively soft material such as resin and rubber and a sliding material made of a relatively hard material such as metal.
[0004]
As described above, a material such as a resin softer than a metal is used for the air seal material in order to secure airtightness, but an expensive material needs to be used to enhance wear resistance. In addition, a sliding material to be a mating material often has a sliding surface made of metal, and it is customary to reduce the surface roughness and secure the sealing property.
[0005]
However, the use of lubricating oil on the sliding surface of the air seal affects the air pressure, so it is necessary to perform sliding without lubrication or with low lubrication. There has been a problem that this causes a failure of the device.
[0006]
[Patent Document 1]
JP-A-9-303566 (paragraphs 0013 to 0018, FIG. 1)
[0007]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a reciprocating sliding air seal mechanism which solves the above-mentioned conventional problems and reduces the progress of wear of the air seal material, and a sliding material for use in the mechanism.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, air sealing is performed by reciprocating sliding contact between an air seal material and a sliding material, and the air seal material is preferentially slidably worn on the sliding material. In the air seal mechanism,
Under the evaluation conditions that the sliding surface of the sliding material has an evaluation length of 2.5 mm and a cutoff of 0.25 Gaussian, the following relationship is obtained:
Wca obtained from the sectional curve: 0.30 μm or less,
Ra determined from a roughness curve: 0.25 μm or less,
Load length rate tp: 20% or less at a cut rate of 20% and 50% or more at a cut rate of 30%
And a reciprocating sliding air seal mechanism is provided.
[0009]
Furthermore, according to the present invention, an air seal is performed by reciprocating sliding contact between the air seal material and the sliding material, and the sliding material used in the air seal mechanism in which the air seal material slides and wears preferentially with respect to the sliding material. And
Under the evaluation condition that the sliding surface has an evaluation length of 2.5 mm and a cutoff of 0.25 Gaussian, the following relationship is obtained:
Wca obtained from the sectional curve: 0.30 μm or less,
Ra determined from a roughness curve: 0.25 μm or less,
Load length rate tp: 20% or less at a cut rate of 20% and 50% or more at a cut rate of 30%
Slidable material for a reciprocating sliding air seal mechanism, characterized in that:
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention defines Wca, Ra, and tp as indices of the surface morphology as described above. Here, Wca represents a component having a long wavelength such as an undulation component included in the cross-sectional curve, while Ra is an arithmetic average roughness, and the above-mentioned long-wavelength component is removed (cut off) from the cross-sectional curve. It is determined from the roughness curve.
[0011]
That is, in the present invention, among the surface morphologies, irregularities having a long wavelength such as undulation are limited using Wca as an index, and at the same time, irregularities having a short wavelength that is representative of surface roughness are generally limited using Ra as an index.
[0012]
The present invention additionally limits the load length ratio tp. The load length ratio tp depends on the cross-sectional profile of the unevenness forming the sliding surface. When the load length ratio tp satisfies the specified range of the present invention, a bearing curve (a curve representing a change in the load length ratio depending on the cut ratio) is as shown in FIG. 1, for example. The horizontal axis is the cut rate, the vertical axis is the load length rate tp, and the bearing curve corresponds to the cross-sectional profile of the unevenness of the sliding surface (specifically, the total average of the cross-sectional profiles of the individual unevennesses forming the sliding surface). I have. The present invention uses the relationship between the cut rate and the load length rate as an index of the surface morphology. The point at which the load length rate tp becomes 20% or less at a cut rate of 20% (point A in the illustrated example) is determined. The bearing curve is defined so as to pass through a point (point B in the illustrated example) at which the load length ratio tp becomes 50 or more at a rate of 30%, thereby defining the cross-sectional profile of the unevenness forming the sliding surface.
[0013]
By setting the sliding surface configuration of the sliding material that is to be slid with the air seal material within the above specified range, the wear progress of the air seal material can be significantly reduced.
[0014]
A resin such as a fluorine resin, a synthetic rubber such as a silicone rubber, or the like is generally used for the air seal material, and a metal such as an aluminum alloy is generally used for a sliding material as a sliding partner.
[0015]
There is no particular limitation on the method for setting the sliding surface form of the sliding material within the range specified in the present invention. For example, the following method can be used.
[0016]
[Method 1]
An outer peripheral surface serving as a sliding surface of the cylindrical sliding member is processed in advance into a mirror surface, and a laser beam is irradiated to the mirror surface to form a minute depression. At this time, the size and pitch of the dents to be formed are controlled in the circumferential direction of the sliding material to a desired value by controlling the rotation speed around the cylindrical axis and pulse control of the laser beam, and at the same time, in the longitudinal direction of the sliding material. Processing to control to a desired value is possible by the slit corresponding to the moving speed in the cylindrical axis direction and the pitch. Generally, it is desirable that the spot diameter of the laser beam be 50 μm or less.
[0017]
[Method 2]
After finishing the sliding surface of the sliding material by machining, a desired surface form is obtained by multi-stage shot blasting. That is, shot particles having a large particle size are used for the initial shot in order to enhance smoothness, and particles having a small particle size are used for the final shot in order to generate minute depressions. The shot particles for the final shot preferably have a particle size of 50 μm or less.
[0018]
The above method is only an example, and any surface processing method capable of forming a required surface morphology may be used. In general, including the above examples, the surface morphology can be adjusted by local processing such as mechanical grinding, shot blasting, various types of polishing, chemical etching, electrolytic etching, electron beam processing, or a combination thereof. .
[0019]
【Example】
As the reciprocating sliding air seal mechanism according to the present invention, the air spring shown in FIG. 2 is used to change the sliding surface form of the sliding material, which is the sliding partner of the air sealing material, in various ways to reduce the amount of seal material wear and air leakage. It was measured.
[0020]
The reciprocating sliding air seal mechanism 10 shown in FIG. 2 has a ring-shaped air seal material 12 fitted in a circumferential groove 11A provided along the inner circumference of a cylinder tube 11, and a sliding material 13 as a piston is Reciprocatingly slides in the axial direction (arrows in the figure). The outer peripheral surface of the sliding member 13 is a sliding surface with the inner peripheral surface of the air seal member 12. In the figure, air at a predetermined pressure is maintained in an air chamber 14 below the sliding member 13, and exerts a spring action against a load applied to the upper surface of the sliding member 13.
[0021]
As the air seal material 12, a commercially available product manufactured by Teflon (trade name) was used. The sliding material 13 is made of an aluminum alloy, and is machined into a predetermined shape by mechanically cutting an aluminum alloy round bar, and then adjusted to various surface forms by shot blasting, mechanical grinding, and polishing.
[0022]
The inner diameter of the air seal member 12 and the outer diameter of the sliding member 13 were both about 30 mm. The air pressure in the air chamber 14 was about 1 MPa, and air was supplied from an external pressurized cylinder via a regulator. The reciprocating sliding stroke was 30 mm, the sliding speed was gradually increased from 1000 strokes / minute to a maximum of 9000 strokes / minute, and was maintained for 60 minutes.
[0023]
The test results are summarized in Table 1. Rz values (ten-point average roughness) in Table 1 are not specified in the present invention, but are also shown for reference.
[0024]
[Table 1]
Figure 2004183752
[0025]
In Table 1, Samples A to K are comparative examples, and at least one of index values Ra, Wca, and tp (cut ratio 20%, 30%) is out of the specified range of the present invention. This is an example of the present invention, and each index value is within the range specified by the present invention.
[0026]
The data shown in Table 1 are plotted and shown in FIGS. FIG. 3 shows the presence or absence of air leakage with respect to the combination of the Ra value and the Wca value for each sample in Table 1, and FIG. 4 shows the tp value (at a cut rate of 20%) for each sample in Table 1 tp20) and the tp value (tp30) at a cut rate of 30% indicate the presence or absence of air leakage.
[0027]
In FIG. 3, no air leakage (〇) occurs only when Ra is 0.25 μm or less, which is the specified range of the present invention, and Wca is 0.30 μm or less, which is the specified range of the present invention. However, even in this case, there is air leakage (x). Here, in the sample with air leakage (x), the Ra value and the Wca value were within the specified range of the present invention, but the tp value was out of the specified range of the present invention.
[0028]
That is, as shown in FIG. 4, the present invention defines that the tp value (tp20) at a cut rate of 20% is 20% or less and the tp value (tp30) at a cut rate of 30% is 50% or more. Only the samples of the combinations within the range showed no air leakage (〇).
[0029]
That is, air leakage can be prevented only when all index values of Ra, Wca, tp20, and tp30 are within the specified range of the present invention, and any one of the index values falls outside the specified range of the present invention. Air leak could not be prevented.
[0030]
It can be seen that air leakage can be prevented by controlling the sliding surface configuration of the sliding member within the range specified in the present invention.
[0031]
Furthermore, as for the abrasion loss of the air seal material, as shown in Table 1, Comparative Samples A to K were 180 to 250 μm, whereas Samples L to R of the present invention were almost halved to 100 to 120 μm. I understand that there is.
[0032]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the reciprocating sliding air seal mechanism which reduced the abrasion progress of an air seal material and the sliding material used for it are provided.
[Brief description of the drawings]
FIG. 1 is a graph showing an example of a bearing curve representing a change of a load length ratio tp with respect to a cut ratio when a relationship between a cut ratio and a load length ratio is within a range specified by the present invention. is there.
FIG. 2 is a cross-sectional view schematically showing a part of a reciprocating sliding air seal mechanism used in an evaluation test.
FIG. 3 is a graph showing the presence or absence of air leakage with respect to a combination of a Ra value and a Wca value.
FIG. 4 is a graph showing the presence / absence of air leakage with respect to a combination of a load length ratio (tp20) at a cut rate of 20% and a load length ratio (tp30) at a cut rate of 30%.
[Explanation of symbols]
10 reciprocating sliding air seal mechanism 11 cylinder cylinder 11A peripheral groove 12 air seal 13 sliding member 14 air chamber

Claims (2)

エアシール材と摺動材との往復摺動接触によりエアシールを行い、摺動材に対してエアシール材の方が優先的に摺動摩耗するエアシール機構において、
上記摺動材の摺動面が、評価長さ:2.5mm、カットオフ:0.25ガウシアンという評価条件において、下記の関係:
断面曲線より求めたWca:0.30μm以下、
粗さ曲線より求めたRa :0.25μm以下、
負荷長さ率tp :カット率20%で20%以下かつカット率30%で50%以上、
を満たすことを特徴とする往復摺動エアシール機構。
The air seal mechanism performs air sealing by reciprocating sliding contact between the air seal material and the sliding material, and the air seal material preferentially slides and wears on the sliding material.
Under the evaluation conditions that the sliding surface of the sliding material has an evaluation length of 2.5 mm and a cutoff of 0.25 Gaussian, the following relationship is obtained:
Wca obtained from the sectional curve: 0.30 μm or less,
Ra determined from a roughness curve: 0.25 μm or less,
Load length rate tp: 20% or less at a cut rate of 20% and 50% or more at a cut rate of 30%
A reciprocating sliding air seal mechanism characterized by satisfying the following.
エアシール材と摺動材との往復摺動接触によりエアシールを行い、摺動材に対してエアシール材の方が優先的に摺動摩耗するエアシール機構に用いる摺動材であって、
摺動面が、評価長さ:2.5mm、カットオフ:0.25ガウシアンという評価条件において、下記の関係:
断面曲線より求めたWca:0.30μm以下、
粗さ曲線より求めたRa :0.25μm以下、
負荷長さ率tp :カット率20%で20%以下かつカット率30%で50%以上、
を満たすことを特徴とする往復摺動エアシール機構用摺動材。
A sliding member used for an air seal mechanism in which an air seal is performed by reciprocating sliding contact between the air sealing member and the sliding member, and the air sealing member preferentially slides and wears on the sliding member,
Under the evaluation condition that the sliding surface has an evaluation length of 2.5 mm and a cutoff of 0.25 Gaussian, the following relationship is obtained:
Wca obtained from the sectional curve: 0.30 μm or less,
Ra determined from a roughness curve: 0.25 μm or less,
Load length rate tp: 20% or less at a cut rate of 20% and 50% or more at a cut rate of 30%
A sliding material for a reciprocating sliding air seal mechanism, characterized by satisfying the following.
JP2002350252A 2002-12-02 2002-12-02 Reciprocating slide type air seal mechanism and sliding material used therefor Pending JP2004183752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350252A JP2004183752A (en) 2002-12-02 2002-12-02 Reciprocating slide type air seal mechanism and sliding material used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350252A JP2004183752A (en) 2002-12-02 2002-12-02 Reciprocating slide type air seal mechanism and sliding material used therefor

Publications (1)

Publication Number Publication Date
JP2004183752A true JP2004183752A (en) 2004-07-02

Family

ID=32752531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350252A Pending JP2004183752A (en) 2002-12-02 2002-12-02 Reciprocating slide type air seal mechanism and sliding material used therefor

Country Status (1)

Country Link
JP (1) JP2004183752A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196487A (en) * 2007-02-09 2008-08-28 General Electric Co <Ge> Screw pump rotor and slip flow reducing method
US7872617B2 (en) 2005-10-12 2011-01-18 Canon Kabushiki Kaisha Display apparatus and method for driving the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872617B2 (en) 2005-10-12 2011-01-18 Canon Kabushiki Kaisha Display apparatus and method for driving the same
JP2008196487A (en) * 2007-02-09 2008-08-28 General Electric Co <Ge> Screw pump rotor and slip flow reducing method
US8597007B2 (en) 2007-02-09 2013-12-03 General Electric Company Screw pump rotor and method of reducing slip flow

Similar Documents

Publication Publication Date Title
JP2582245B2 (en) Metalworking mold and method for improving its durability
JP2002525510A (en) Improved stuffing box packing assembly
EP1979635B1 (en) Shaped composites and method of making thereof
JP2006161801A (en) Sliding device
CN111108227A (en) Sliding member and piston ring
KR20220097525A (en) Manufacturing method of cylinder device and piston rod
JP6095090B2 (en) Sliding method, manufacturing method of sliding structure, sliding structure and device
CN112969873B (en) Piston ring
US10371178B2 (en) Hydraulic actuator device
EP1835175B1 (en) Shoe for swash plate compressor
JP2004183752A (en) Reciprocating slide type air seal mechanism and sliding material used therefor
KR100769411B1 (en) Reciprocating compressor and manufacturing method thereof
JP4749073B2 (en) Mold and manufacturing method thereof
JP2018003880A (en) Slide member
JP5393967B2 (en) Sliding material and fluid compression machine
CN206668662U (en) A kind of oil cylinder piston guiding mechanism
Uhlmann et al. Influence of structuring by abrasive machining on the tribological properties of workpiece surfaces
JP6401796B2 (en) Wear resistant material, puffer cylinder and puffer type gas circuit breaker
US20200009622A1 (en) Cleaning assembly and method for a shaft
JP4927067B2 (en) Piston ring for non-lubricated reciprocating compressor and reciprocating compressor using the same
JP2017053469A (en) Slide member and its process of manufacture
CN106536692A (en) Anti-galling method for treating materials
JP2013050133A (en) Sealing device and method for manufacturing the same
JP2010209925A (en) Seal ring
JP5014289B2 (en) Combination of sliding materials