JP2004183733A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2004183733A
JP2004183733A JP2002349692A JP2002349692A JP2004183733A JP 2004183733 A JP2004183733 A JP 2004183733A JP 2002349692 A JP2002349692 A JP 2002349692A JP 2002349692 A JP2002349692 A JP 2002349692A JP 2004183733 A JP2004183733 A JP 2004183733A
Authority
JP
Japan
Prior art keywords
bearing
shaft
sleeve
pressure generating
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002349692A
Other languages
Japanese (ja)
Inventor
Daisuke Ito
大輔 伊藤
Takafumi Asada
隆文 淺田
Hiroaki Saito
浩昭 斎藤
Keigo Kusaka
圭吾 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002349692A priority Critical patent/JP2004183733A/en
Publication of JP2004183733A publication Critical patent/JP2004183733A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in a conventional fluid bearing that as the inclination unexpected in design, is generated in a sleeve hollow part because of the variation in manufacturing, a thrust bearing flying height differs from a design value, whereby the rubbing may occur in the thrust direction when the flying height is smaller than the design value, and the thrust bearing may over-fly when the flying height is larger than the design value. <P>SOLUTION: Bearing lengths of an upper bearing and a lower bearing of a radial bearing are determined in accordance with the inclination direction of a sleeve (a bearing length is short at a narrow hollow part, and a bearing length is long at a wide hollow part), whereby the rubbing in the thrust direction, and the over-flying of the thrust bearing can be prevented. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ハードディスクドライブ等に使用される流体軸受に関するものである。
【0002】
【従来の技術】
以下図5または図6を参照しながら従来の流体軸受装置の一例について説明する。図5または図6は従来の流体軸受装置の断面図である。図5または図6において、1はシャフトであり、スリーブ2と共に回転自在に嵌め合わされている。前記シャフト1の端面1Aには、スラスト板3が当接し、前記スリーブ2の端部に固定されている。前記スラスト板3には圧力発生溝3Aが設けられ、潤滑剤4が注入され、スラスト軸受を構成する。前記スリーブ2の内周または前記シャフト1の外周には圧力発生溝2A、2Bが設けられ、潤滑剤4が注入され、ラジアル軸受を構成する。前記ラジアル軸受は2つ以上設けられ、ラジアル軸受の上側にある上軸受5の軸受長さは上側より下側の方が短く、ラジアル軸受の下側にある下軸受6は下側より上側の方が短い。一方、前記スリーブ2の中空部の形状は設計上傾きがないが、実際に製造するとバラツキにより、図5のように上側が広く下側が狭くなったり、図6のように上側が狭く下側が広くなったりする。
【0003】
以上のように構成された流体軸受について、以下その動作について説明する。図示しないモータに通電すると、前記シャフト1または前記スリーブ2と前記スラスト板3が回転を始める。前記潤滑剤4は圧力発生溝2A、2B、3Aのポンピング作用により圧力を発生し、無接触回転する。
【0004】
【特許文献1】
特開平3−163212号公報
【0005】
【発明が解決しようとする課題】
しかしながら、近年流体軸受は従来以上に高精度なものが要求されているが、均一になるように設計されているシャフトとスリーブの軸受隙間を実際に製造すると、スリーブの中空部に傾きが生じ、軸受隙間が均一にならず、悪影響が顕著になってきた。すなわち、図5のように、スリーブ中空部の上側が広く下側が狭いと、ラジアル軸受の上側の軸受隙間が広く下側の軸受隙間が狭くなり、下軸受の下側の軸受長さが上側の軸受長さより長いため、その不均等部分に潤滑剤が滞ってスラスト軸受側に流れにくくなり、スラスト軸受の浮上量が設計値より小さくなり、スラスト方向のコスレが生じるという悪影響が現れ、逆に、図6のように、スリーブ中空部の上側が狭く下側が広いと、上側の軸受隙間が狭く下側の軸受隙間が広くなり、上軸受の上側の軸受長さが下側の軸受長さよりも長いため、上軸受からの潤滑剤のポンピング作用が過大となって、スラスト軸受の浮上量が設計値より大きくなり、スラスト軸受の過浮上が引き起こされる悪影響が現れるということである。
【0006】
【課題を解決するための手段】
上記課題を解決するために、設計上スリーブ中空部の上側を広く下側を狭くした上で、ラジアル軸受の軸受隙間の上側を広く下側を狭くし、ラジアル軸受の上軸受、下軸受とも軸受長さを上側が長く下側が短くなるようにする。または、設計上スリーブ中空部の上側を狭く下側を広くした上で、軸受隙間の上側を広く下側を狭くし、上軸受、下軸受とも軸受長さを上側が短く下側が長くなるようにする。いずれの場合も、スラスト軸受の浮上量を適正にできるので、スラスト方向のコスレを防止し、かつ、スラスト軸受の過浮上を防止する。
【0007】
【発明の実施の形態】
図1〜図4に本発明の実施の形態を示す。
【0008】
(実施の形態1)
図1は、請求項1に記載の流体軸受装置の断面図である。図1において、11はシャフトであり、スリーブ12と共に回転自在に嵌め合わされている。前記シャフト11の端面11Aにはスラスト板13が当接し、前記スリーブ12の端面に固定されている。前記スラスト板13には、圧力発生溝13Aが設けられ、潤滑剤14が注入され、スラスト軸受を構成する。前記スリーブ12の内周または前記シャフト11の外周には圧力発生溝12A、12Bが設けられ、潤滑剤14が注入され、ラジアル軸受を構成する。このラジアル軸受は2つ設けられている。また、前記スリーブ12は、上側で広く下側で狭くなるようにしておく。この時、前記シャフト11と前記スリーブ12の間の軸受隙間は、上側で広く下側で狭くなっている。
【0009】
以上のように構成された流体軸受について、以下その動作について説明する。図示しないモータに通電すると、前記シャフト11または前記スリーブ12と前記スラスト板13が回転を始める。前記潤滑剤14は圧力発生溝12A、12B、13Aのポンピング作用により圧力を発生し、無接触回転する。
【0010】
ここで、ラジアル軸受の上側にある上軸受15、下側にある下軸受16の軸受長さの不均等を、それぞれ上側の長さの方が下側の長さよりも長くなるようにしておく。前記下軸受16の下側軸受長さが短いため、前記潤滑剤14が滞ることなくスラスト軸受に流れ、スラスト方向のコスレが防止できる。なお、前記スリーブ12の形状では、スラスト軸受の過浮上は元来起こらない。
【0011】
(実施の形態2)
図2は、請求項2に記載の流体軸受装置の断面図である。図2において、11はシャフトであり、スリーブ12と共に回転自在に嵌め合わされている。前記シャフト11の端面11Aにはスラスト板13が当接し、前記スリーブ12の端面に固定されている。前記スラスト板13には、圧力発生溝13Aが設けられ、潤滑剤14が注入され、スラスト軸受を構成する。前記スリーブ12の内周または前記シャフト11の外周には圧力発生溝12A、12Bが設けられ、潤滑剤14が注入され、ラジアル軸受を構成する。このラジアル軸受は2つ設けられている。また、前記スリーブ12は、上側で狭く下側で広くなるようにしておく。この時、前記シャフト11と前記スリーブ12の間の軸受隙間は、上側で狭く下側で広くなっている。
【0012】
以上のように構成された流体軸受について、以下その動作について説明する。図示しないモータに通電すると、前記シャフト11または前記スリーブ12と前記スラスト板13が回転を始める。前記潤滑剤14は圧力発生溝12A、12B、13Aのポンピング作用により圧力を発生し、無接触回転する。
【0013】
ここで、ラジアル軸受の上側にある上軸受15、下側にある下軸受16の軸受長さの不均等を、それぞれ上側の長さの方が下側の長さよりも短くなるようにしておく。前記上軸受15の下側軸受長さが長いため、前記潤滑剤14が前記下軸受16に行きにくくなるため、スラスト軸受に余分な前記潤滑剤14が回りにくくなり、スラスト軸受の過浮上が防止できる。なお、前記スリーブ12の形状では、スラスト方向のコスレは元来起こらない。
【0014】
(実施の形態3)
図3は、請求項3に記載の流体軸受装置の断面図である。図3において、11はシャフトであり、スリーブ12と共に回転自在に嵌め合わされている。前記シャフト11の端面11Aにはスラスト板13が当接し、前記スリーブ12の端面に固定されている。前記スラスト板13には、圧力発生溝13Aが設けられ、潤滑剤14が注入され、スラスト軸受を構成する。前記スリーブ12の内周または前記シャフト11の外周には圧力発生溝12A、12Bが設けられ、潤滑剤14が注入され、ラジアル軸受を構成する。このラジアル軸受は2つ設けられている。また、前記スリーブ12は、ラジアル軸受の上側にある上軸受15の上側で狭く下側で広く、ラジアル軸受の下側にある下軸受16の上側で広く下側で狭くなるようにしておく。この時、前記シャフト11と前記スリーブ12の間の軸受隙間は、前記上軸受15では上側で狭く下側で広く、前記下軸受16では上側で広く下側で狭くなっている。
【0015】
以上のように構成された流体軸受について、以下その動作について説明する。図示しないモータに通電すると、前記シャフト11または前記スリーブ12と前記スラスト板13が回転を始める。前記潤滑剤14は圧力発生溝12A、12B、13Aのポンピング作用により圧力を発生し、無接触回転する。
【0016】
ここで、前記上軸受15の軸受長さの不均等は上側の長さを短く下側の長さを長くし、前記下軸受16の軸受長さの不均等は上側の長さを長く下側の長さを短くなるようにしておく。前記上軸受15の下側軸受長さが長いため、前記潤滑剤14が前記下軸受16に行きにくくなるため、スラスト軸受に余分な前記潤滑剤14が回りにくくなり、スラスト軸受の過浮上が防止できる。前記下軸受16の下側軸受長さが短いため、前記潤滑剤14が滞ることなくスラスト軸受に流れ、スラスト方向のコスレが防止できる。
【0017】
(実施の形態4)
図4は、請求項4に記載の流体軸受装置の断面図である。図3において、11はシャフトであり、スリーブ12と共に回転自在に嵌め合わされている。前記シャフト11の端面11Aにはスラスト板13が当接し、前記スリーブ12の端面に固定されている。前記スラスト板13には、圧力発生溝13Aが設けられ、潤滑剤14が注入され、スラスト軸受を構成する。前記スリーブ12の内周または前記シャフト11の外周には圧力発生溝12A、12Bが設けられ、潤滑剤14が注入され、ラジアル軸受を構成する。このラジアル軸受は2つ設けられている。また、前記スリーブ12は、ラジアル軸受の上側にある上軸受15の上側で広く下側で狭く、ラジアル軸受の下側にある下軸受16の上側で狭く下側で広くなるようにしておく。この時、前記シャフト11と前記スリーブ12の間の軸受隙間は、前記上軸受15では上側で広く下側で狭く、前記下軸受16では上側で狭く下側で広くなっている。
【0018】
以上のように構成された流体軸受について、以下その動作について説明する。図示しないモータに通電すると、前記シャフト11または前記スリーブ12と前記スラスト板13が回転を始める。前記潤滑剤14は圧力発生溝12A、12B、13Aのポンピング作用により圧力を発生し、無接触回転する。
【0019】
ここで、前記上軸受15の軸受長さの不均等は上側の長さを長く下側の長さを短くし、前記下軸受16の軸受長さの不均等は上側の長さを短く下側の長さを長くなるようにしておく。前記シャフト11と前記スリーブ12の形状から、スラスト軸受の過浮上の防止とスラスト方向のコスレの防止が同時にできる。
【0020】
【発明の効果】
以上から明らかなように、スリーブの中空部の傾きに応じて、広い所の軸受長さを長く、狭い所の軸受長さを短くすることにより、スラスト方向のコスレとスラスト軸受の過浮上を同時に防止する。
【図面の簡単な説明】
【図1】本発明の実施の形態1を示す断面図
【図2】本発明の実施の形態2を示す断面図
【図3】本発明の実施の形態3を示す断面図
【図4】本発明の実施の形態4を示す断面図
【図5】従来の流体軸受装置を示す断面図
【図6】従来の流体軸受装置を示す断面図
【符号の説明】
1 シャフト
1A シャフト1の端面
2 スリーブ
2A スリーブ2の内周またはシャフト1の外周における圧力発生溝
2B スリーブ2の内周またはシャフト1の外周における圧力発生溝
3 スラスト板
3A スラスト板3における圧力発生溝
4 潤滑剤
5 ラジアル軸受の上軸受
6 ラジアル軸受の下軸受
11 シャフト
11A シャフト11の端面
12 スリーブ
12A スリーブ12の内周またはシャフト11の外周における圧力発生溝
12B スリーブ12の内周またはシャフト11の外周における圧力発生溝
13 スラスト板
13A スラスト板13における圧力発生溝
14 潤滑剤
15 ラジアル軸受の上軸受
16 ラジアル軸受の下軸受
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluid bearing used for a hard disk drive and the like.
[0002]
[Prior art]
Hereinafter, an example of a conventional hydrodynamic bearing device will be described with reference to FIG. 5 or FIG. FIG. 5 or FIG. 6 is a sectional view of a conventional hydrodynamic bearing device. In FIG. 5 or FIG. 6, reference numeral 1 denotes a shaft, which is rotatably fitted together with the sleeve 2. A thrust plate 3 is in contact with the end face 1 </ b> A of the shaft 1 and is fixed to an end of the sleeve 2. The thrust plate 3 is provided with a pressure generating groove 3A, into which a lubricant 4 is injected to constitute a thrust bearing. Pressure generating grooves 2A, 2B are provided on the inner circumference of the sleeve 2 or the outer circumference of the shaft 1, and a lubricant 4 is injected to form a radial bearing. Two or more radial bearings are provided, and the length of the upper bearing 5 above the radial bearing is shorter on the lower side than on the upper side, and the lower bearing 6 below the radial bearing is on the upper side from the lower side. Is short. On the other hand, the shape of the hollow portion of the sleeve 2 has no inclination in design, but due to variations in actual manufacture, the upper side is wider and the lower side is narrower as shown in FIG. 5, or the upper side is narrower and the lower side is wide as shown in FIG. Or become.
[0003]
The operation of the fluid bearing configured as described above will be described below. When a motor (not shown) is energized, the shaft 1 or the sleeve 2 and the thrust plate 3 start rotating. The lubricant 4 generates pressure by the pumping action of the pressure generating grooves 2A, 2B, 3A, and rotates without contact.
[0004]
[Patent Document 1]
JP-A-3-163212
[Problems to be solved by the invention]
However, in recent years, fluid bearings are required to have higher precision than before.However, if the bearing gap between the shaft and the sleeve designed to be uniform is actually manufactured, the hollow portion of the sleeve is inclined, The bearing gap is not uniform, and the adverse effects have become significant. That is, as shown in FIG. 5, when the upper side of the sleeve hollow portion is wider and the lower side is narrower, the upper bearing gap of the radial bearing is wider and the lower bearing gap is narrower, and the lower bearing length of the lower bearing is smaller than that of the upper bearing. Since it is longer than the bearing length, the lubricant stagnates in the uneven part and it is difficult for it to flow to the thrust bearing side, the floating amount of the thrust bearing becomes smaller than the design value, and the adverse effect that thrust in the thrust direction appears, conversely, As shown in FIG. 6, when the upper side of the sleeve hollow portion is narrow and the lower side is wide, the upper bearing gap is narrow and the lower bearing gap is wide, and the upper bearing length of the upper bearing is longer than the lower bearing length. Therefore, the pumping action of the lubricant from the upper bearing becomes excessive, the floating amount of the thrust bearing becomes larger than a design value, and an adverse effect of causing the floating of the thrust bearing excessively appears.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the upper side of the hollow portion of the sleeve is designed wider and the lower side is narrowed, and then the upper side of the bearing gap of the radial bearing is widened and the lower side is narrowed. The length should be longer on the upper side and shorter on the lower side. Or, by design, the upper side of the sleeve hollow is narrower and the lower side is wider, then the upper side of the bearing gap is wider and the lower side is narrower, so that both the upper and lower bearings have a shorter bearing length so that the upper side is shorter and the lower side is longer. I do. In any case, the floating amount of the thrust bearing can be made appropriate, so that the thrust bearing is prevented from being displaced and the thrust bearing is prevented from floating excessively.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 4 show an embodiment of the present invention.
[0008]
(Embodiment 1)
FIG. 1 is a sectional view of the hydrodynamic bearing device according to the first embodiment. In FIG. 1, reference numeral 11 denotes a shaft, which is rotatably fitted together with a sleeve 12. A thrust plate 13 is in contact with an end face 11 </ b> A of the shaft 11 and is fixed to an end face of the sleeve 12. A pressure generating groove 13A is provided in the thrust plate 13, and a lubricant 14 is injected into the thrust plate 13 to constitute a thrust bearing. Pressure generating grooves 12A and 12B are provided on the inner periphery of the sleeve 12 or the outer periphery of the shaft 11, and a lubricant 14 is injected to constitute a radial bearing. Two radial bearings are provided. The sleeve 12 is designed to be wide on the upper side and narrow on the lower side. At this time, the bearing gap between the shaft 11 and the sleeve 12 is wide on the upper side and narrow on the lower side.
[0009]
The operation of the fluid bearing configured as described above will be described below. When a motor (not shown) is energized, the shaft 11 or the sleeve 12 and the thrust plate 13 start rotating. The lubricant 14 generates pressure by the pumping action of the pressure generating grooves 12A, 12B, 13A, and rotates without contact.
[0010]
Here, the unequal bearing lengths of the upper bearing 15 above the radial bearing and the lower bearing 16 below the radial bearing are set such that the upper length is longer than the lower length. Since the lower bearing length of the lower bearing 16 is short, the lubricant 14 flows into the thrust bearing without stagnation, thereby preventing the friction in the thrust direction. In the shape of the sleeve 12, overfloating of the thrust bearing does not originally occur.
[0011]
(Embodiment 2)
FIG. 2 is a sectional view of the hydrodynamic bearing device according to the second aspect. In FIG. 2, reference numeral 11 denotes a shaft, which is rotatably fitted together with the sleeve 12. A thrust plate 13 is in contact with an end face 11 </ b> A of the shaft 11 and is fixed to an end face of the sleeve 12. A pressure generating groove 13A is provided in the thrust plate 13, and a lubricant 14 is injected into the thrust plate 13 to constitute a thrust bearing. Pressure generating grooves 12A and 12B are provided on the inner periphery of the sleeve 12 or the outer periphery of the shaft 11, and a lubricant 14 is injected to constitute a radial bearing. Two radial bearings are provided. The sleeve 12 is made narrower on the upper side and wider on the lower side. At this time, the bearing gap between the shaft 11 and the sleeve 12 is narrow on the upper side and wide on the lower side.
[0012]
The operation of the fluid bearing configured as described above will be described below. When a motor (not shown) is energized, the shaft 11 or the sleeve 12 and the thrust plate 13 start rotating. The lubricant 14 generates pressure by the pumping action of the pressure generating grooves 12A, 12B, 13A, and rotates without contact.
[0013]
Here, the unequal bearing lengths of the upper bearing 15 on the upper side of the radial bearing and the lower bearing 16 on the lower side are set such that the length of the upper side is shorter than the length of the lower side. Since the lower bearing length of the upper bearing 15 is long, the lubricant 14 does not easily reach the lower bearing 16, so that the excess lubricant 14 does not easily turn around the thrust bearing, and the thrust bearing is prevented from floating excessively. it can. In addition, in the shape of the sleeve 12, the shear in the thrust direction does not originally occur.
[0014]
(Embodiment 3)
FIG. 3 is a sectional view of the hydrodynamic bearing device according to the third aspect. In FIG. 3, reference numeral 11 denotes a shaft, which is rotatably fitted together with the sleeve 12. A thrust plate 13 is in contact with an end face 11 </ b> A of the shaft 11 and is fixed to an end face of the sleeve 12. A pressure generating groove 13A is provided in the thrust plate 13, and a lubricant 14 is injected into the thrust plate 13 to constitute a thrust bearing. Pressure generating grooves 12A and 12B are provided on the inner periphery of the sleeve 12 or the outer periphery of the shaft 11, and a lubricant 14 is injected to constitute a radial bearing. Two radial bearings are provided. The sleeve 12 is narrower on the upper side of the upper bearing 15 above the radial bearing and wider on the lower side, and wider on the lower bearing 16 below the radial bearing and narrower on the lower side. At this time, the bearing gap between the shaft 11 and the sleeve 12 is narrower on the upper side in the upper bearing 15 and wider on the lower side, and is wider on the upper side in the lower bearing 16 and narrower on the lower side.
[0015]
The operation of the fluid bearing configured as described above will be described below. When a motor (not shown) is energized, the shaft 11 or the sleeve 12 and the thrust plate 13 start rotating. The lubricant 14 generates pressure by the pumping action of the pressure generating grooves 12A, 12B, 13A, and rotates without contact.
[0016]
Here, the unequal bearing length of the upper bearing 15 shortens the upper length and lengthens the lower length, and the unequal bearing length of the lower bearing 16 increases the upper length and lowers the lower length. Keep the length of Since the lower bearing length of the upper bearing 15 is long, the lubricant 14 does not easily reach the lower bearing 16, so that the excess lubricant 14 does not easily turn around the thrust bearing, and the thrust bearing is prevented from floating excessively. it can. Since the lower bearing length of the lower bearing 16 is short, the lubricant 14 flows into the thrust bearing without stagnation, thereby preventing the friction in the thrust direction.
[0017]
(Embodiment 4)
FIG. 4 is a sectional view of the hydrodynamic bearing device according to the fourth aspect. In FIG. 3, reference numeral 11 denotes a shaft, which is rotatably fitted together with the sleeve 12. A thrust plate 13 is in contact with an end face 11 </ b> A of the shaft 11 and is fixed to an end face of the sleeve 12. A pressure generating groove 13A is provided in the thrust plate 13, and a lubricant 14 is injected into the thrust plate 13 to constitute a thrust bearing. Pressure generating grooves 12A and 12B are provided on the inner periphery of the sleeve 12 or the outer periphery of the shaft 11, and a lubricant 14 is injected to constitute a radial bearing. Two radial bearings are provided. In addition, the sleeve 12 is designed to be wide above the upper bearing 15 above the radial bearing and narrow at the lower side, and narrow above the lower bearing 16 below the radial bearing and wide at the lower side. At this time, the bearing gap between the shaft 11 and the sleeve 12 is wide on the upper bearing 15 and narrow on the lower side, and on the lower bearing 16 is narrower on the upper side and wider on the lower side.
[0018]
The operation of the fluid bearing configured as described above will be described below. When a motor (not shown) is energized, the shaft 11 or the sleeve 12 and the thrust plate 13 start rotating. The lubricant 14 generates pressure by the pumping action of the pressure generating grooves 12A, 12B, 13A, and rotates without contact.
[0019]
Here, the unequal bearing length of the upper bearing 15 increases the upper length and shortens the lower length, and the unequal bearing length of the lower bearing 16 shortens the upper length and reduces the lower length. Make the length longer. Due to the shapes of the shaft 11 and the sleeve 12, it is possible to prevent the overfloating of the thrust bearing and to prevent the thrust in the thrust direction at the same time.
[0020]
【The invention's effect】
As is clear from the above, according to the inclination of the hollow part of the sleeve, the bearing length in a wide place is made longer and the bearing length in a narrow place is made shorter, so that thrust in the thrust direction and over-floating of the thrust bearing can be simultaneously achieved. To prevent.
[Brief description of the drawings]
1 is a sectional view showing a first embodiment of the present invention; FIG. 2 is a sectional view showing a second embodiment of the present invention; FIG. 3 is a sectional view showing a third embodiment of the present invention; FIG. 5 is a cross-sectional view showing a conventional hydrodynamic bearing device. FIG. 6 is a cross-sectional view showing a conventional hydrodynamic bearing device.
DESCRIPTION OF SYMBOLS 1 Shaft 1A End face 2 of shaft 1 Sleeve 2A Pressure generating groove 2B on inner circumference of sleeve 2 or outer circumference of shaft 1 Pressure generating groove 3 on inner circumference of sleeve 2 or outer circumference of shaft 1 Thrust plate 3A Pressure generating groove on thrust plate 3 Reference Signs List 4 Lubricant 5 Upper bearing of radial bearing 6 Lower bearing 11 of radial bearing 11 Shaft 11A End face 12 of shaft 11 Sleeve 12A Pressure generation groove 12B in inner circumference of sleeve 12 or outer circumference of shaft 11 Inner circumference of sleeve 12 or outer circumference of shaft 11 Pressure generating groove 13 in thrust plate 13A Pressure generating groove 14 in thrust plate 13 Lubricant 15 Upper bearing of radial bearing 16 Lower bearing of radial bearing

Claims (4)

シャフトと前記シャフトに対して相対的に回転自在に嵌め合わされたスリーブを備え、前記シャフトの外周または前記スリーブの内周のいずれか一方に圧力発生溝を備えて、前記圧力発生溝の間に密封された所に液体または気体である流体を備えたラジアル軸受を構成し、前記シャフトの端面にスラスト板を備え、前記スラスト板に前記と別の圧力発生溝を備えて、この圧力発生溝の間に密封された所に液体または気体である流体を備えたスラスト軸受を構成した流体軸受において、前記スリーブの中空部を上側で広く下側で狭くして、前記ラジアル軸受の軸受長さが上側で長く下側で短いことを特徴とする流体軸受装置。A shaft and a sleeve rotatably fitted to the shaft are provided. A pressure generating groove is provided on one of an outer periphery of the shaft and an inner periphery of the sleeve, and a seal is provided between the pressure generating grooves. A radial bearing provided with a fluid that is a liquid or a gas at a place where it is provided, a thrust plate is provided on the end face of the shaft, and another pressure generating groove is provided on the thrust plate, and between the pressure generating groove In a fluid bearing configured with a fluid that is a liquid or a gas in a sealed place, the hollow portion of the sleeve is broadly narrowed on the upper side and lower on the lower side, and the bearing length of the radial bearing is on the upper side. A hydrodynamic bearing device characterized by being long and short on the lower side. シャフトと前記シャフトに対して相対的に回転自在に嵌め合わされたスリーブを備え、前記シャフトの外周または前記スリーブの内周のいずれか一方に圧力発生溝を備えて、前記圧力発生溝の間に密封された所に液体または気体である流体を備えたラジアル軸受を構成し、前記シャフトの端面にスラスト板を備え、前記スラスト板に前記と別の圧力発生溝を備えて、この圧力発生溝の間に密封された所に液体または気体である流体を備えたスラスト軸受を構成した流体軸受において、前記スリーブの中空部を上側で狭く下側で広くして、前記ラジアル軸受の軸受長さが上側で短く下側で長いことを特徴とする流体軸受装置。A shaft and a sleeve rotatably fitted to the shaft are provided. A pressure generating groove is provided on one of an outer periphery of the shaft and an inner periphery of the sleeve, and a seal is provided between the pressure generating grooves. A radial bearing provided with a fluid that is a liquid or a gas at a place where it is provided, a thrust plate is provided on the end face of the shaft, and another pressure generating groove is provided on the thrust plate, and between the pressure generating groove In a fluid bearing configured with a fluid that is a liquid or a gas in a place sealed in a fluid bearing, the hollow portion of the sleeve is narrowed on the upper side and widened on the lower side, and the bearing length of the radial bearing is on the upper side. A hydrodynamic bearing device characterized by being short and long on the lower side. シャフトと前記シャフトに対して相対的に回転自在に嵌め合わされたスリーブを備え、前記シャフトの外周または前記スリーブの内周のいずれか一方に圧力発生溝を備えて、前記圧力発生溝の間に密封された所に液体または気体である流体を備えたラジアル軸受を構成し、前記シャフトの端面にスラスト板を備え、前記スラスト板に前記と別の圧力発生溝を備えて、この圧力発生溝の間に密封された所に液体または気体である流体を備えたスラスト軸受を構成した流体軸受において、前記スリーブの中空部について、ラジアル軸受の上軸受では上側で狭く下側で広く、下軸受では上側が広く下側で狭くして、前記ラジアル軸受の軸受長さが、上軸受では上側で短く下側で長く、下軸受では上側で長く下側で短いことを特徴とする流体軸受装置。A shaft and a sleeve rotatably fitted to the shaft are provided. A pressure generating groove is provided on one of an outer periphery of the shaft and an inner periphery of the sleeve, and a seal is provided between the pressure generating grooves. A radial bearing provided with a fluid that is a liquid or a gas at a place where it is provided, a thrust plate is provided on the end face of the shaft, and another pressure generating groove is provided on the thrust plate, and between the pressure generating groove In a fluid bearing configured with a fluid that is a liquid or a gas in a sealed place, the hollow portion of the sleeve is narrower on the upper side in the upper bearing of the radial bearing, wider on the lower side, and in the lower bearing on the upper side. A hydrodynamic bearing device characterized in that the bearing length of the radial bearing is widened narrowly on the lower side, and the bearing length of the radial bearing is shorter on the upper side and longer on the lower side, and the lower bearing is longer on the upper side and shorter on the lower side. シャフトと前記シャフトに対して相対的に回転自在に嵌め合わされたスリーブを備え、前記シャフトの外周または前記スリーブの内周のいずれか一方に圧力発生溝を備えて、前記圧力発生溝の間に密封された所に液体または気体である流体を備えたラジアル軸受を構成し、前記シャフトの端面にスラスト板を備え、前記スラスト板に前記と別の圧力発生溝を備えて、この圧力発生溝の間に密封された所に液体または気体である流体を備えたスラスト軸受を構成した流体軸受において、前記スリーブの中空部について、ラジアル軸受の上軸受では上側で広く下側で狭く、下軸受では上側で狭く下側で広くして、前記ラジアル軸受の軸受長さが、上軸受では上側で長く下側で短く、下軸受では上側で短く下側で長いことを特徴とする流体軸受装置。A shaft and a sleeve rotatably fitted to the shaft are provided. A pressure generating groove is provided on one of an outer periphery of the shaft and an inner periphery of the sleeve, and a seal is provided between the pressure generating grooves. A radial bearing provided with a fluid that is a liquid or a gas at a place where it is provided, a thrust plate is provided on the end face of the shaft, and another pressure generating groove is provided on the thrust plate, and between the pressure generating groove In a fluid bearing configured with a fluid that is a liquid or a gas in a sealed place, the hollow portion of the sleeve is narrower on the upper side in the upper bearing of the radial bearing, narrower on the lower side, and on the upper side in the lower bearing. Hydrodynamic bearing device characterized in that the radial bearing is narrower and wider on the lower side, and the bearing length of the radial bearing is longer on the upper side and shorter on the lower side, and shorter on the upper side and shorter on the lower side in the lower bearing.
JP2002349692A 2002-12-02 2002-12-02 Fluid bearing device Pending JP2004183733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002349692A JP2004183733A (en) 2002-12-02 2002-12-02 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349692A JP2004183733A (en) 2002-12-02 2002-12-02 Fluid bearing device

Publications (1)

Publication Number Publication Date
JP2004183733A true JP2004183733A (en) 2004-07-02

Family

ID=32752152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349692A Pending JP2004183733A (en) 2002-12-02 2002-12-02 Fluid bearing device

Country Status (1)

Country Link
JP (1) JP2004183733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158230A (en) * 2014-02-24 2015-09-03 ミネベア株式会社 Liquid bearing, motor, and polygon motor
DE102014006498A1 (en) * 2014-05-06 2015-11-12 Minebea Co., Ltd. Fluid dynamic storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158230A (en) * 2014-02-24 2015-09-03 ミネベア株式会社 Liquid bearing, motor, and polygon motor
DE102014006498A1 (en) * 2014-05-06 2015-11-12 Minebea Co., Ltd. Fluid dynamic storage system

Similar Documents

Publication Publication Date Title
US20030002757A1 (en) Dynamic bearing device and motor having the same
JP2001187920A (en) Spindle motor
JP2009257445A (en) Tilting pad thrust bearing
JP2005003115A (en) Dynamic pressure bearing device, and manufacturing method for the same
JP2006183787A (en) Dynamic pressure fluid bearing device, and small motor provided with dynamic pressure fluid bearing device
JP2002266861A (en) Fluid dynamic pressure bearing device
JP2005114165A (en) Fluid dynamic pressure bearing, spindle motor, and hard disk drive device
JP2007247711A (en) Rolling bearing for underwater rotary device
JP2002139026A (en) Fluid bearing device
JP4360482B2 (en) Hydrodynamic bearing device
JPH1151043A (en) Fluid dynamic pressure bearing, spindle motor incorporating this bearing and rotor device incorporating this spindle motor
JP2004183733A (en) Fluid bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2006329391A (en) Dynamic pressure bearing arrangement
JP2004135467A (en) Motor equipped with dynamic-pressure bearing arrangement
JP2002061635A (en) Dynamic pressure bearing and motor using the same
JP2004176817A (en) Dynamic pressure bearing device and method of manufacturing the same
JPH10295057A (en) Spindle motor provided with herringbone-type thrust bearing
KR101039335B1 (en) motor
KR101148242B1 (en) Spindle Motor
JP3691009B2 (en) Hydrodynamic bearing device and spindle motor using the same
JP2005009578A (en) Fluid bearing device
JP2004183867A (en) Dynamic pressure fluid bearing device, and motor provided with the same
KR20070048543A (en) A hydrodynamic bearing structure
JP2005009579A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060112

A977 Report on retrieval

Effective date: 20080514

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080603

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106