JP2004183657A - Method and device for controlling fuel amount adjusting system of internal combustion engine - Google Patents

Method and device for controlling fuel amount adjusting system of internal combustion engine Download PDF

Info

Publication number
JP2004183657A
JP2004183657A JP2003402025A JP2003402025A JP2004183657A JP 2004183657 A JP2004183657 A JP 2004183657A JP 2003402025 A JP2003402025 A JP 2003402025A JP 2003402025 A JP2003402025 A JP 2003402025A JP 2004183657 A JP2004183657 A JP 2004183657A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
drive time
time
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003402025A
Other languages
Japanese (ja)
Inventor
Patrick Mattes
パトリック マッテス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2004183657A publication Critical patent/JP2004183657A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2432Methods of calibration
    • F02D41/2435Methods of calibration characterised by the writing medium, e.g. bar code
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2416Interpolation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To improve quality of control and to reduce time required for compensating the amount of an injecting. <P>SOLUTION: A driving time from a start value is increased or decreased in at least one driving state of an internal combustion engine to generate a certain rotation speed in the internal combustion engine. The driving time when the certain rotation speed occurs is stored as a minimum driving time in at least one driving state. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、電気的に操作される少なくとも1つのインジェクタの駆動時間により噴射燃料量を定めるために、所定の駆動状態でまず燃料がまさに噴射される最小駆動時間を求める、内燃機関の燃料調量システムの制御方法に関する。   The invention relates to a fuel metering for an internal combustion engine, which first determines the minimum drive time during which fuel is exactly injected in a given drive state, in order to determine the amount of fuel injected by the drive time of at least one electrically operated injector. The present invention relates to a system control method.

本発明はまた、電気的に操作される少なくとも1つのインジェクタの駆動時間により噴射燃料量を定めるために、所定の駆動状態でまず燃料がまさに噴射される最小駆動時間を求め、内燃機関の少なくとも1つの駆動状態で開始値から駆動時間を増大するかまたは低減し、信号に変化が生じた駆動時間を最小駆動時間として記憶する手段を備えている内燃機関の燃料調量システムの制御装置に関する。   The invention also provides for determining the amount of fuel to be injected by the drive time of at least one electrically operated injector, first determining a minimum drive time during which fuel is just injected in a given drive state, The invention relates to a control device for a fuel metering system for an internal combustion engine, comprising means for increasing or decreasing the drive time from a start value in two drive states and storing the drive time at which the signal has changed as a minimum drive time.

内燃機関の燃料調量システムの制御方法および装置は、例えば独国特許出願公開第19945618号明細書に記載されている。この公知の手法では、電気的に操作される少なくとも1つのバルブの駆動時間により噴射燃料量が定められる。所定の駆動状態で燃料がまさに噴射される最小駆動時間が求められる。すなわち、開始値から出発して駆動時間が増大または低減され、ここで噴射を表す信号に変化の生じた時点までの駆動時間が最小駆動時間として記憶される。この手法によれば噴射ノズルの寿命のかぎり噴射量のドリフトをパイロット噴射の領域で補正することができる。   A control method and a device for a fuel metering system of an internal combustion engine are described, for example, in DE-A-199 45 618. In this known method, the amount of injected fuel is determined by the drive time of at least one electrically operated valve. The minimum drive time during which fuel is just injected in a given drive state is determined. That is, the drive time is increased or decreased starting from the start value, and the drive time up to the time when the signal representing the injection has changed is stored as the minimum drive time. According to this method, the drift of the injection amount can be corrected in the pilot injection region as long as the life of the injection nozzle is maintained.

未公開の独国特許出願第10215610号明細書にはインジェクタの噴射特性の補正方法およびシステムが記載されている。ここでは品質改善のためにインジェクタ量補償が複数の検査ポイントで行われる。これは有利にはパイロット噴射、アイドリング動作、放出点、全負荷動作の4つのポイントで行われる。   Unpublished German patent application DE 102 15 610 describes a method and a system for correcting the injection characteristics of an injector. Here, injector quantity compensation is performed at a plurality of inspection points to improve quality. This preferably takes place at four points: pilot injection, idle operation, discharge point, full load operation.

こうしたインジェクタ量補償は必須である。なぜならこの種のインジェクタが機械的な製造誤差のためにそれぞれ異なる量特性マップを有するからである。量特性マップとは噴射量・レール圧・駆動時間の相互関係を表すものである。これにより電気的に定義された制御を行っても個々のインジェクタからは異なる燃料量が燃焼室へ噴射されてしまう。   Such injector amount compensation is essential. This is because such injectors have different quantity characteristic maps due to mechanical manufacturing errors. The quantity characteristic map represents the correlation among the injection quantity, the rail pressure, and the drive time. As a result, different fuel amounts are injected into the combustion chambers from the individual injectors even when electrically defined control is performed.

厳しい排気ガス基準を遵守しつつできる限り燃費を小さくしなければならないので、インジェクタには噴射量に関してきわめて小さな製造誤差しか許されない。インジェクタの誤差の小さい正確な噴射量形成を保証するために、製造後、特徴的な動作点または検査ポイントで噴射量が測定され、クラシフィケーションされる。各クラスは内燃機関の駆動モードとして機関制御装置に既知となっていなければならず、制御プロセスはインジェクタごとにクラスの特徴に適合化される。クラシフィケーション情報は種々のコード(例えばバーコード)としてインジェクタに記憶されたり、インジェクタの抵抗によって表されたり、クリアテキストとして貼付されたりする。   Since the fuel consumption must be kept as low as possible while complying with strict exhaust gas standards, very small production tolerances are allowed for the injectors in terms of injection volume. After production, the injection quantity is measured and classified at a characteristic operating point or test point in order to ensure accurate injection quantity formation with low injector errors. Each class must be known to the engine control as the operating mode of the internal combustion engine, and the control process is adapted to the characteristics of the class for each injector. The classification information is stored in the injector as various codes (for example, a bar code), represented by the resistance of the injector, or pasted as clear text.

さらにインジェクタに電子記憶手段を設け、クラシフィケーション情報を記憶させることもできる。制御装置はこうした値をインタフェースを介してインジェクタから読み出し、後の動作に利用する。   Further, an electronic storage means may be provided in the injector to store the classification information. The controller reads these values from the injector via the interface and uses them for subsequent operations.

こうしたインジェクタ量補償法(IMA法)は基本的に相関をベースとした手段である。4つの検査ポイントで観察された量補償特性に基づいて相関および外挿により量のドリフトが特性マップとして結論される。
独国特許出願公開第19945618号明細書 独国特許出願第10215610号明細書(未公開)
Such an injector amount compensation method (IMA method) is basically a means based on correlation. A quantity drift is concluded as a property map by correlation and extrapolation based on the quantity compensation properties observed at the four test points.
German Patent Application Publication No. 199 45 618 German Patent Application No. 10215610 specification (not disclosed)

本発明の課題は、冒頭に言及した形式のインジェクタ量を補償する方法および装置において、制御の品質を向上させたうえで、さらにインジェクタ量の補償にかかる時間を短縮することである。   It is an object of the present invention to provide a method and a device for compensating for an injector quantity of the type mentioned at the outset, while improving the quality of the control and further reducing the time required for injector quantity compensation.

この課題は、内燃機関の少なくとも1つの駆動状態において開始値から駆動時間を増大するかまたは低減して内燃機関に一定の回転数を生じさせ、一定の回転数の生じた駆動時間を少なくとも1つの駆動状態における最小駆動時間として記憶することにより解決される。   The object is to increase or decrease the drive time from a starting value in at least one operating state of the internal combustion engine to produce a constant rotational speed in the internal combustion engine, and to reduce the drive time at which the constant rotational speed occurs to at least one drive time. This is solved by storing the minimum drive time in the drive state.

課題はまた、少なくとも1つの駆動状態で内燃機関に一定の回転数が生じるように駆動時間を増大または低減する手段が設けられていることにより解決される。   The object is also achieved by providing means for increasing or decreasing the drive time in such a way that a constant speed of the internal combustion engine occurs in at least one operating state.

本発明のコンセプトはインジェクタ量補償の検査ポイントの数を低減して検査時間を短縮することである。すなわち内燃機関の少なくとも1つの駆動状態において当該の状態に対応する検査ポイントで噴射量を変化させることにより一定の回転数を発生させ、その回転数の生じた駆動時間を最小駆動時間として当該の状態の検査ポイントに対応して記憶する。こうした手法は、特に新しい内燃機関で一定の摩擦比が存在し、一定の回転数が達成されることは所定の噴射量が調量されたことに相応するという知識に基づいている。   The concept of the present invention is to reduce the number of inspection points for injector quantity compensation and shorten the inspection time. That is, in at least one driving state of the internal combustion engine, a constant rotation speed is generated by changing the injection amount at the inspection point corresponding to the state, and the driving time at which the rotation number occurs is set as the minimum driving time, and the state is set as the minimum driving time. Is stored in correspondence with the inspection point of (1). Such an approach is based on the knowledge that a constant friction ratio exists, especially in new internal combustion engines, and that a constant rotational speed is achieved corresponding to a predetermined injection quantity being metered.

本発明の有利な実施形態によれば、駆動時間を変化させることにより一定の回転数を生じさせ、そこで得られる最小駆動時間を内燃機関のアイドリング動作時に求めることとする。この実施形態は本発明がアイドリング制御回路を有する内燃機関で使用される場合に特に有利である。このようなアイドリング制御回路によれば一定のアイドリング回転数を設定することができる。このようにして一定のアイドリング回転数のもとで求められた最小駆動時間は、インジェクタ量補償について、有利には内燃機関の放出点で求められた最小駆動時間を外挿することにより補正され、補正された値がインジェクタまたは機関制御装置に記憶される。   According to an advantageous embodiment of the invention, a constant rotational speed is generated by varying the drive time, and the minimum drive time obtained is determined during idling of the internal combustion engine. This embodiment is particularly advantageous when the invention is used in an internal combustion engine having an idling control circuit. According to such an idling control circuit, a constant idling speed can be set. The minimum drive time determined in this way under a constant idling speed is corrected for injector quantity compensation, preferably by extrapolating the minimum drive time determined at the discharge point of the internal combustion engine, The corrected value is stored in the injector or the engine control device.

噴射を表す信号として例えば回転不均一性を表すパラメータ、ラムダセンサの出力信号、またはイオン流センサの出力信号などが使用される。さらに信号として量補償制御部のパラメータまたは量補償制御部の出力信号そのものを使用することもできる。   For example, a parameter indicating rotation non-uniformity, an output signal of a lambda sensor, an output signal of an ion flow sensor, or the like is used as the signal indicating the injection. Furthermore, the parameter of the quantity compensation control unit or the output signal itself of the quantity compensation control unit can be used as the signal.

本発明の他の特徴および利点を以下に図示の実施例に則して詳細に説明する。   Other features and advantages of the present invention will be described in detail below with reference to the illustrated embodiment.

図1にはコモンレール蓄圧噴射システムの高圧部が示されている。以下では本発明を理解するために重要な主たるコンポーネントのみを説明する。   FIG. 1 shows the high-pressure section of the common rail accumulator injection system. In the following, only the main components that are important for understanding the invention will be described.

システムは高圧ポンプ10を有しており、これは高圧管路12を介して高圧蓄圧器(レール)14へ接続されている。高圧蓄圧器14はさらなる高圧管路16を介してインジェクタ18へ接続されている。インジェクタ18は車両の内燃機関に組み込まれている。図示のシステムは機関制御装置20によって制御される。機関制御装置20は特にインジェクタ18の制御を行う。   The system has a high-pressure pump 10, which is connected via a high-pressure line 12 to a high-pressure accumulator (rail) 14. The high-pressure accumulator 14 is connected to an injector 18 via a further high-pressure line 16. The injector 18 is incorporated in a vehicle internal combustion engine. The illustrated system is controlled by the engine control device 20. The engine control device 20 controls the injector 18 in particular.

インジェクタ18には個別のインジェクタ18に関する情報を記憶する装置22が設けられている。この装置22に記憶された情報は機関制御装置20により考慮され、各インジェクタ18が個別に制御される。有利にはこの情報はインジェクタ18の量特性マップに対する補正値である。情報を記憶する装置22は例えばデータメモリであってもよいし、1つまたは複数の電気抵抗(例えばバーコード)や英数字のロックコードなどであってもよく、またインジェクタ18に配置される半導体集積回路によって実現してもよい。機関制御装置20は同様に装置22に記憶された情報を評価する半導体集積回路を有している。   The injector 18 is provided with a device 22 for storing information about the individual injector 18. The information stored in this device 22 is considered by the engine control device 20 and each injector 18 is individually controlled. This information is preferably a correction value for the quantity characteristic map of the injector 18. The information storage device 22 may be, for example, a data memory, one or more electrical resistors (eg, bar codes), alphanumeric lock codes, etc., and a semiconductor located on the injector 18. It may be realized by an integrated circuit. The engine control device 20 also has a semiconductor integrated circuit for evaluating the information stored in the device 22.

各インジェクタ18から調量される噴射量はレール圧に依存して機関制御装置20に記憶された特性マップにおいて設定される。ここでこの特性マップは内燃機関の種々の駆動状態を表す複数の検査ポイント、すなわちパイロット噴射、アイドリング動作、放出点、全負荷に基づいて求められる。これらの検査ポイントでそれぞれ1回ずつ、それ自体周知の手法で(例えば未公開の独国特許出願第10215610号明細書に記載されている手法で)量補償が行われる。噴射量はインジェクタ18の噴射時間、つまり噴射開始から噴射終了までの時間によって定められる。   The injection amount measured from each injector 18 is set in a characteristic map stored in the engine control device 20 depending on the rail pressure. Here, this characteristic map is determined on the basis of a plurality of test points representing various operating states of the internal combustion engine, namely pilot injection, idling operation, discharge point and full load. Once at each of these inspection points, a quantity compensation is performed in a manner known per se (for example, in the manner described in unpublished German patent application DE 102 15 610). The injection amount is determined by the injection time of the injector 18, that is, the time from the start of injection to the end of injection.

燃料調量を内燃機関およびインジェクタ18の全駆動領域(特性マップ)で行えるようにするために、検査ポイントによって定義されるサポート位置のあいだの補償値が補間される。検査ポイントによって定義されるサポート位置以外の補償値は外挿によって求められる。   In order to be able to perform fuel metering over the entire operating range (characteristics map) of the internal combustion engine and the injector 18, the compensation values between the support positions defined by the test points are interpolated. Compensation values other than the support position defined by the inspection point are obtained by extrapolation.

内燃機関はアイドリング制御回路30を有しており、その出力信号は機関制御装置20へ供給される。アイドリング制御回路30により一定のアイドリング回転数nが予め設定される。 The internal combustion engine has an idling control circuit 30, and an output signal thereof is supplied to the engine control device 20. Constant idling speed n 0 by the idling control circuit 30 is set in advance.

例えば未公開の独国特許出願第10215610号明細書から知られる検査ポイントの全てで量補償プロセスを行わなくてもよく、この点を以下に図2に則して説明する。   For example, it is not necessary to carry out the quantity compensation process at all of the inspection points known from the unpublished German patent application DE 102 15 610, which will be described below with reference to FIG.

まずステップS100でインジェクタ量補償IMAがそれ自体周知の手法で(例えば未公開の独国特許出願第10215610号明細書から知られる手法で)行われる。このインジェクタ量補償は全ての検査ポイントでは行われず、例えばパイロット噴射、放出点、全負荷の3点でのみ行われる。第4の検査ポイントであるアイドリング動作は続いてステップ120で、インジェクタ量補償により求められた値に基づいて求められる。これは既知の相関を考慮して例えば放出点‐IMA値を外挿することにより行われる。ここで得られた値はさしあたってアイドリング点最小駆動時間として記憶される。   First, in step S100, the injector amount compensation IMA is performed by a method known per se (for example, by a method known from unpublished German Patent Application No. 10215610). This injector quantity compensation is not performed at all inspection points, but is performed only at three points, for example, pilot injection, discharge point, and full load. The idling operation, which is the fourth inspection point, is subsequently determined in step 120 based on the value determined by the injector amount compensation. This is done, for example, by extrapolating the emission point-IMA value taking into account known correlations. The value obtained here is stored as the idling point minimum driving time for the time being.

さらにステップS140でアイドリング制御回路30により一定のアイドリング回転数nが調整される。これは設定されたアイドリング回転数nに差を形成してインジェクタ18の駆動時間を変化させることにより行われる。つまり所望の目標回転数に達するまで駆動時間が低減および/または増大される。これは特に新しい内燃機関では一定の摩擦比が存在し、一定の目標回転数に達したことによって所定の噴射量が求められるという知識に基づいている。アイドリング回転数nの生じた時点での駆動時間が求められ、この値がアイドリング点最小駆動時間として例えばインジェクタ18または機関制御装置20に記憶される。 Constant idling speed n 0 is adjusted by the idle control circuit 30 in further step S140. This is done by changing the driving time of the injector 18 to form a difference in the idling speed n 0 that has been set. That is, the drive time is reduced and / or increased until the desired target rotational speed is reached. This is based in particular on the knowledge that in a new internal combustion engine a constant friction ratio exists and a predetermined injection quantity is determined when a certain target speed is reached. The drive time at the time when the idling rotational speed n 0 occurs is obtained, and this value is stored in, for example, the injector 18 or the engine control device 20 as the idling point minimum drive time.

このようにしてアイドリング点でのインジェクタの量補償なしにアイドリング点‐IMA値が求められる。   In this way, the idling point-IMA value is obtained without compensating the injector quantity at the idling point.

一定のアイドリング回転数での最小駆動時間を求め、これを放出点‐IMA値の外挿/相関によって補正することにより、予めアイドリング点‐IMA値が求められる。ただし本発明はこうしたプロセスに限定されるものではなく、これに代えてまたはこれに加えて他のIMA検査ポイントを前述したように求めてもよい。これは例えば一定の回転数を形成し、これをIMA値に基づいて外挿/相関して補正することによって行われる。純粋に基本的には最小駆動時間を求める検査ポイントは一定の回転数を形成することにより特性マップの任意のポイントに置くことができる。このようにして例えば第2のパイロット噴射を補償し、インジェクタ量補償の品質をさらに向上させることができる。   The idling point-IMA value is obtained in advance by finding the minimum driving time at a constant idling rotation speed and correcting this by extrapolation / correlation of the emission point-IMA value. However, the invention is not limited to such a process, and alternatively or additionally other IMA inspection points may be determined as described above. This is done, for example, by forming a constant rotational speed and extrapolating / correlating it based on the IMA value. The test point for which the minimum drive time is genuinely required can be located at any point in the characteristic map by forming a constant rotational speed. In this way, for example, the second pilot injection can be compensated, and the quality of injector amount compensation can be further improved.

本発明のコモンレールシステムの一部を示す図である。It is a figure showing a part of common rail system of the present invention.

本発明の方法の実施例のフローチャートである。4 is a flowchart of an embodiment of the method of the present invention.

符号の説明Explanation of reference numerals

10 高圧ポンプ
12、16 高圧管路
14 レール
18 インジェクタ
20 機関制御装置
22 情報を記憶する装置
30 アイドリング制御回路
DESCRIPTION OF SYMBOLS 10 High-pressure pump 12, 16 High-pressure pipe 14 Rail 18 Injector 20 Engine control device 22 Device for storing information 30 Idling control circuit

Claims (7)

電気的に操作される少なくとも1つのインジェクタの駆動時間により噴射燃料量を定めるために、所定の駆動状態でまず燃料がまさに噴射される最小駆動時間を求める、
内燃機関の燃料調量システムの制御方法において、
内燃機関の少なくとも1つの駆動状態において開始値から駆動時間を増大するかまたは低減して内燃機関に一定の回転数を生じさせ、
一定の回転数の生じた駆動時間を少なくとも1つの駆動状態における最小駆動時間として記憶する
ことを特徴とする内燃機関の燃料調量システムの制御方法。
In order to determine the amount of fuel injected by the drive time of the at least one electrically operated injector, the minimum drive time during which fuel is just injected in a given drive state is first determined;
In a control method of a fuel metering system for an internal combustion engine,
Increasing or decreasing the drive time from the starting value in at least one operating state of the internal combustion engine to produce a constant rotational speed in the internal combustion engine;
A method for controlling a fuel metering system for an internal combustion engine, wherein a driving time at which a certain number of revolutions occurs is stored as a minimum driving time in at least one driving state.
噴射を表す信号に変化が生じるまで駆動時間を増大するかまたは低減し、当該の駆動時間を最小駆動時間として記憶する(インジェクタ量補償)、請求項1記載の方法。   2. The method according to claim 1, wherein the drive time is increased or decreased until a change in the signal representing the injection takes place, and the drive time is stored as a minimum drive time (injector quantity compensation). 噴射を表す信号は回転不均一性を表すパラメータ、ラムダセンサの出力信号、イオン流センサの出力信号、量補償制御部のパラメータ、量補償制御部の出力信号のうち1つまたは複数の信号である、請求項2記載の方法。   The signal representing the injection is one or more of a parameter representing rotation non-uniformity, an output signal of the lambda sensor, an output signal of the ion flow sensor, a parameter of the quantity compensation control unit, and an output signal of the quantity compensation control unit. 3. The method of claim 2. インジェクタ量補償をパイロット噴射、放出点、全負荷の検査ポイントに対して行う、請求項2または3記載の方法。   4. The method as claimed in claim 2, wherein the injector quantity compensation is performed for pilot injection, discharge points and full load test points. 一定の回転数の生じる最小駆動時間を内燃機関のアイドリング動作において求めることとし、駆動時間の増大または低減に用いる開始値をインジェクタ量補償で求められた少なくとも1つの最小噴射時間を外挿することにより求める、請求項1から4までのいずれか1項記載の方法。   By determining the minimum drive time at which a constant rotational speed occurs in the idling operation of the internal combustion engine, and by extrapolating the starting value used for increasing or decreasing the drive time to at least one minimum injection time determined by injector quantity compensation. The method according to claim 1, wherein the method determines. インジェクタ量補償により内燃機関の放出点で求められた少なくとも1つの最小噴射時間を外挿することにより開始値を求める、請求項5記載の方法。   6. The method according to claim 5, wherein the starting value is determined by extrapolating at least one minimum injection time determined at the discharge point of the internal combustion engine by means of injector quantity compensation. 電気的に操作される少なくとも1つのインジェクタの駆動時間により噴射燃料量を定めるために、所定の駆動状態でまず燃料がまさに噴射される最小駆動時間を求め、内燃機関の少なくとも1つの駆動状態で開始値から駆動時間を増大するかまたは低減し、信号に変化が生じた駆動時間を最小駆動時間として記憶する手段を備えている
内燃機関の燃料調量システムの制御装置において、
少なくとも1つの駆動状態で内燃機関に一定の回転数が生じるように駆動時間を増大または低減する手段が設けられている
ことを特徴とする内燃機関の燃料調量システムの制御装置。
In order to determine the amount of fuel injected by the operating time of the at least one electrically operated injector, the minimum operating time during which fuel is exactly injected in a given operating state is first determined, and the internal combustion engine is started in at least one operating state. A control device for a fuel metering system for an internal combustion engine, comprising: means for increasing or decreasing a drive time from a value and storing a drive time at which a signal has changed as a minimum drive time.
A control device for a fuel metering system for an internal combustion engine, comprising means for increasing or decreasing a driving time so that a constant rotation speed is generated in the internal combustion engine in at least one driving state.
JP2003402025A 2002-12-02 2003-12-01 Method and device for controlling fuel amount adjusting system of internal combustion engine Pending JP2004183657A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10256239A DE10256239A1 (en) 2002-12-02 2002-12-02 Process and device to control a combustion engine fuel measuring system stores the control period for fuel injection to give constant engine speed

Publications (1)

Publication Number Publication Date
JP2004183657A true JP2004183657A (en) 2004-07-02

Family

ID=32308915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402025A Pending JP2004183657A (en) 2002-12-02 2003-12-01 Method and device for controlling fuel amount adjusting system of internal combustion engine

Country Status (4)

Country Link
JP (1) JP2004183657A (en)
DE (1) DE10256239A1 (en)
FR (1) FR2848253A1 (en)
IT (1) ITMI20032331A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275046A (en) * 2005-03-25 2006-10-12 Delphi Technologies Inc Process for determining operating parameter of injection device
JP2011526984A (en) * 2008-07-07 2011-10-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Control method and control device for injection system of internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685074B1 (en) * 2012-07-13 2018-04-18 Delphi Automotive Systems Luxembourg SA Fuel injection control in an internal combustion engine
JP5918702B2 (en) * 2013-01-18 2016-05-18 日立オートモティブシステムズ株式会社 Engine control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190433A (en) * 1983-04-13 1984-10-29 Mazda Motor Corp Idle rotation control device of engiene
DE3929746A1 (en) * 1989-09-07 1991-03-14 Bosch Gmbh Robert METHOD AND DEVICE FOR CONTROLLING AND REGULATING A SELF-IGNITIONING INTERNAL COMBUSTION ENGINE
DE4312587C2 (en) * 1993-04-17 2002-08-01 Bosch Gmbh Robert Method and device for controlling a fuel injection system
DE19700711C2 (en) * 1997-01-10 1999-05-12 Siemens Ag Method for compensating for the systematic error in injection devices for an internal combustion engine
DE19945618B4 (en) 1999-09-23 2017-06-08 Robert Bosch Gmbh Method and device for controlling a fuel metering system of an internal combustion engine
JP4908728B2 (en) 2001-04-10 2012-04-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング System and method for correcting injection characteristics of at least one injector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275046A (en) * 2005-03-25 2006-10-12 Delphi Technologies Inc Process for determining operating parameter of injection device
JP2011526984A (en) * 2008-07-07 2011-10-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Control method and control device for injection system of internal combustion engine

Also Published As

Publication number Publication date
DE10256239A1 (en) 2004-06-09
FR2848253A1 (en) 2004-06-11
ITMI20032331A1 (en) 2004-06-03

Similar Documents

Publication Publication Date Title
KR101070937B1 (en) Method for operating an internal combustion engine
US7703437B2 (en) Electronic control device for controlling the internal combustion engine in a motor vehicle
KR101551164B1 (en) Method for calibrating a lambda sensor and internal combustion engine
JP5032701B2 (en) Control method and control device for injection system of internal combustion engine
JP5118808B2 (en) Method and apparatus for controlling an internal combustion engine
US7093586B2 (en) Method for controlling a fuel metering system of an internal combustion engine
CN1330869C (en) Internal combustion engine fuel property estimation
JP2009523945A (en) Control method and control apparatus for internal combustion engine
US7769535B2 (en) Method and device for dosing fuel which is to be injected into a combustion chamber of an internal combustion engine
US8275536B2 (en) Method for the determination of an injected fuel mass of a preinjection
US8775058B2 (en) Method for the injector-individual adaption of the injection time of motor vehicles
JP4235552B2 (en) Method for operating an internal combustion engine, computer program, open loop and / or closed loop control device, and internal combustion engine
US6947826B2 (en) Method for compensating injection quality in each individual cylinder in internal combustion engines
JP2004183657A (en) Method and device for controlling fuel amount adjusting system of internal combustion engine
JP2004506836A (en) Control method and control device for internal combustion engine
JP2007211589A (en) Fuel injection control device
US20090157282A1 (en) Air-Fuel Ratio Control Apparatus by Sliding Mode Control of Engine
JP2000249017A (en) Method for operating direct injection type internal combustion engine for automobile especially in start operation and device therefor
KR102431892B1 (en) Method for detecting a voltage offset at least in a portion of a voltage lambda characteristic curve
KR101933817B1 (en) Pilot control of internal combustion engine
JP2005201141A (en) Fuel injection device of internal combustion engine
JP4537098B2 (en) Internal combustion engine operation method and internal combustion engine operation control device
US20090288637A1 (en) Method for calibrating an accelerator pedal
JP6008986B2 (en) Method of operating internal combustion engine and control device and / or adjusting device for controlling injection valve of internal combustion engine
JP2009074496A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081010

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090107

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100108