JP2004183294A - Connecting unit for penetration trenches and construction method for penetration trench - Google Patents

Connecting unit for penetration trenches and construction method for penetration trench Download PDF

Info

Publication number
JP2004183294A
JP2004183294A JP2002350368A JP2002350368A JP2004183294A JP 2004183294 A JP2004183294 A JP 2004183294A JP 2002350368 A JP2002350368 A JP 2002350368A JP 2002350368 A JP2002350368 A JP 2002350368A JP 2004183294 A JP2004183294 A JP 2004183294A
Authority
JP
Japan
Prior art keywords
unit
water
trench
units
storage area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002350368A
Other languages
Japanese (ja)
Other versions
JP4002820B2 (en
Inventor
Hisato Yoshida
寿人 吉田
Masanobu Matsuno
正信 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHICHIBU CHEMICAL KK
Sanko Co Ltd
Original Assignee
CHICHIBU CHEMICAL KK
Sanko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHICHIBU CHEMICAL KK, Sanko Co Ltd filed Critical CHICHIBU CHEMICAL KK
Priority to JP2002350368A priority Critical patent/JP4002820B2/en
Publication of JP2004183294A publication Critical patent/JP2004183294A/en
Application granted granted Critical
Publication of JP4002820B2 publication Critical patent/JP4002820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/108Rainwater harvesting

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connecting unit for penetration trenches, taking the place of a porous water conveyance pipe and crushed stone in the conventional penetration trench, and to provide a construction method for a penetration trench using the connecting unit. <P>SOLUTION: This connecting unit 1 includes a frame composed of a plurality of walls 2 to 5. A storage area for rainwater is partitioned inside the frame. Each wall is provided with a number of water flow holes 6 for securing water flow from the storage area to the outside. A substantially cylindrical water conveyance pipe part 10 communicating with the storage area is provided in the frame. Each connecting unit is constructed to be connected in series to the other unit disposed adjacent thereto. In connecting a plurality of units in series, a chain of water conveyance passages is constructed in the penetration trench by the respective water conveyance pipe parts 10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、浸透トレンチ用連結ユニットと、それを使用した浸透トレンチの施工方法に関する。
【0002】
【従来の技術】
一般に家屋等に降り注がれた雨水は最終的に下水道や河川に流れ込むが、下水道や河川への雨水の集中は水害の原因となる。このため水害防止対策の一つとして各家屋からの雨水流出を抑制することが考えられ、そのための一施設として浸透トレンチが考案された。従来の浸透トレンチは、例えば家屋からの雨水を一旦集める集水桝と下水道等とをつなぐ経路に沿って所定の幅及び深さの溝を掘り、その溝内に多数の孔が穿設された導水配管を配置すると共にその配管の周りに砕石を敷設して構成される(特許文献1参照)。かかる浸透トレンチによれば、雨水が集水桝から前記導水配管を経由して下水道等に導かれる過程で、雨水が配管から砕石層に浸みだし更には砕石層を介して地下に浸透するので、下水道等に流れ込む雨水の量が低減される。また、浸透トレンチではないが、一時的に雨水を貯留すると共にその貯留水が地下に浸透するまでの時間稼ぎをするための貯留浸透施設が提案されている。例えば、地面を掘り下げた窪地に、多数の孔を有する容器状部材等を多数個縦横かつ上下に配設し、これにより地下浸透可能な貯留タンク部を構成するものが知られている(特許文献2及び3参照)。
【0003】
【特許文献1】特公昭62−31129号公報(特許請求の範囲)
【特許文献2】特公平4−26648号公報(特許請求の範囲)
【特許文献3】特公平4−35580号公報(特許請求の範囲)
【0004】
【発明が解決しようとする課題】
しかしながら、従来の浸透トレンチでは、掘削溝内の所定高さまで砕石を一旦敷設した後、その上に多孔導水配管を配置し、その後更に砕石を前記配管の上に敷設するという具合に複数の工程を要し、非常に手間がかかった。また、多孔導水配管の周囲に砕石で構成される砕石層の空隙率はせいぜい25〜35%程度という低さであり、そのために浸透トレンチの敷設長をかなり長くしなければ、十分な雨水の貯留浸透能力が得られない場合もある。
【0005】
他方、特許文献2及び3のような貯留浸透施設は、多数の孔を有する容器状部材(又は複数の区画に仕切られた区画枠体)を縦、横及び高さの三方向に配設することで、地下層へ雨水を浸透可能な貯留空間としてのタンク部を構成するものに過ぎない。このため、特許文献2等に開示された容器状部材等を、何の工夫もなくそのまま浸透トレンチの構成部材として利用することはできない。
【0006】
本発明の目的は、従来の浸透トレンチにおける多孔導水配管及び砕石に代替し得る新発想の浸透トレンチ用連結ユニットを提供することにある。また、そのような浸透トレンチ用連結ユニットを利用して、少ない手間で効率的に浸透トレンチを構築可能な浸透トレンチの施工方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の浸透トレンチ用連結ユニットは、複数個を連結することで浸透トレンチを構成可能な連結ユニットであって、内側に貯留領域を区画すると共にその貯留領域から外部への通水を確保するための通水部が設けられた枠体と、その枠体内に設けられて前記貯留領域と連通可能な導水管部とを備え、当該ユニットに隣接配置される他のユニットに対して直列連結可能に構成されており、複数ユニットの直列連結時には各導水管部により浸透トレンチ内に一連の導水経路を構築可能であることを特徴とする浸透トレンチ用連結ユニットである。
【0008】
本発明の浸透トレンチ用連結ユニットにおいて、前記導水管部は、前記貯留領域のうちの上部領域においてユニットの連結方向に延設されており、その導水管部の壁部には、当該導水管部を流れる水の一部を貯留領域に導くための導水開口が形成されていることは好ましい。また、前記導水管部は略円筒状をなすと共に、当該導水管部の一端部と他端部とで内外径が異なることにより、直列連結時に隣り合う二つのユニットのうちの一方のユニットの導水管部の一端部と、他方のユニットの導水管部の他端部とが相互嵌合可能となっており、その相互嵌合に基づき、隣り合う二つのユニットの位置決め及びそれらの導水管部の相互連結が達成されることは好ましい。あるいは、前記枠体の縁部には、複数ユニットの直列連結時において、各ユニットをユニット連結方向と略直交する方向に対して位置決めするための位置決め部が設けられていることは好ましい。
【0009】
更に、前記貯留領域のうちの下部領域には、枠体内に入り込んだ固体進入物をユニット外又は浸透トレンチ内の特定場所に移送するための移送機構が設けられていることは好ましい。また、前記移送機構は、ユニットの連結方向に延設されると共に複数ユニットの直列連結時に一連の移送経路を構築可能な移送管部と、枠体内に入り込んだ固体進入物を捕捉して前記移送管部内に誘導するための板状ガイド部とを具備することは好ましい。
【0010】
(連結ユニットの作用等の説明) 本発明の浸透トレンチ用連結ユニットによれば、複数ユニットの直列連結時には、各ユニットの貯留領域と連通可能な各導水管部により一連の導水経路が構築され、この導水経路が従来の浸透トレンチにおける多孔導水配管と同じ機能を担う。また、通水部が設けられた枠体内に区画された貯留領域は、従来の浸透トレンチにおける砕石層に代替するものとして雨水等の一時貯留機能を担う。そして、このような導水経路及び貯留領域(浸透トレンチの主要部)は、複数個のユニットを直列連結するだけという極めて簡便な施工作業で簡単に構築することができる。
【0011】
また、連結ユニットの貯留領域に移送機構を設けた場合には、この移送機構を介して、各ユニットの枠体内に入り込んだ固体進入物を当該ユニットの外又は浸透トレンチ内の特定場所に移送することにより、個々のユニットから固体進入物を排除して浸透トレンチ内を掃除することができる。尚、連結ユニットに設けた移送機構は、固体進入物の搬出経路を提供するものであれば足り、後記発明の実施の形態で説明するように、浸透トレンチの近傍又は浸透トレンチの外に設けられた流体流れ発生手段との協働により移送機能を発揮する性質のものである。
【0012】
尚、前記連結ユニットがプラスチック製であることは好ましく、その場合にはユニットの軽量化が図られ、施工時の作業性等が向上する。また、「前記移送機構の構成要素である移送管部が略円筒状をなすと共に、当該移送管部の一端部と他端部とで内外径が異なることにより、直列連結時に隣り合う二つのユニットのうちの一方のユニットの移送管部の一端部と、他方のユニットの移送管部の他端部とが相互嵌合可能となっていること」、あるいは「移送管部には、板状ガイド部によって導かれた固体進入物を同管部内に取り込むための集塵開口が形成されていること」、あるいは「板状ガイド部が移送管部に近い側ほど高さが低くなるような傾斜勾配を有すること」は好ましい。
【0013】
本発明の浸透トレンチの施工方法は、内側に貯留領域を区画すると共にその貯留領域から外部への通水を確保するための通水部が設けられた枠体と、その枠体内に設けられて前記貯留領域と連通可能な導水管部とを備えた連結ユニットを複数個準備し、地面を掘削してできた溝内に前記複数個の連結ユニットを直列連結状態で配置し、相互連結された連結ユニット群を透水シートで覆い、その後に透水シートで覆われた連結ユニット群を地下に埋設することを特徴とする。
【0014】
この浸透トレンチの施工方法は、いわば上記連結ユニットの好ましい使用方法を述べたものである。この方法によれば、複数個の連結ユニットを直列連結状態で溝内に配置することで、各ユニットの導水管部により、従来の浸透トレンチにおける多孔導水配管に代替する一連の導水経路が構築され、又、各ユニットの貯留領域により、従来の浸透トレンチにおける砕石層に代替する雨水等の一時貯留領域が確保される。それ故、この方法によれば、砕石等を用いることなく少ない手間で効率的に浸透トレンチを構築することができる。なお、請求項7の浸透トレンチの施工方法において、複数個準備する連結ユニットとして、請求項1〜6のいずれかに記載の連結ユニットを採用することは非常に好ましい。
【0015】
【発明の実施の形態】
以下、本発明の一実施形態を図面を参照して説明する。
【0016】
図1〜図5は、浸透トレンチ用連結ユニットの具体例を示す。連結ユニット1は、左右の側壁2,2、上壁3及び下壁4を備えており、これら四つの壁により前面側(正面側)及び後面側(背面側)にそれぞれ開口した略直方体状の開口型容器として構成されている。前記各壁2〜4の前後方向中心位置には、当該ユニット1を前後に二分するように直立した中央壁5が設けられている。その中央壁5の左右上下の四辺は前記左右上下の各壁2〜4に接続されており、左右の側壁2,2、上壁3、下壁4及び中央壁5により当該ユニット1の基本骨格をなす枠体が構成されている。この枠体の内側には後述するような各種の突設物が存在するが、枠体の中は概して中空な空間となっており、当該ユニット1を複数個連結したときに枠体内側に区画される領域は、雨水等を一時的に貯留する貯留領域として機能する。
【0017】
連結ユニット1の枠体を構成する前記五つの壁2〜5の各々には、通水部としての通水孔6が多数貫通形成されている。個々の通水孔6の形状や大きさはその設置位置等によって微妙に異なるが、その機能は、枠体内に貯留された雨水等を貯留領域から枠体の外に導くという点で共通する。また、複数個のユニット1の連結時に隣り合う二つの貯留領域が、中央壁5に設けられた通水孔6を介して相互連通することは言うまでもない。
【0018】
更に枠体の内側で且つ中央壁5の前面側及び後面側にはそれぞれ、複数の板状垂直リブ7(本例では5枚)及び複数の板状水平リブ8(本例では7枚)が設けられている(図2及び図3(A)参照)。これらの垂直及び水平リブ7,8は、中央壁5の前面及び後面から前方及び後方に突設されている。また、各垂直リブ7の上端及び下端はそれぞれ上壁3及び下壁4の各内面に接続され、各水平リブ8の左端及び右端はそれぞれ左右側壁2,2の各内面に接続されている。これらの垂直及び水平リブ7,8は、枠体を構成する各壁2〜5を相互連結することにより、枠体全体の強度や剛性を補強し、更には寸法安定性を高めている。
【0019】
尚、図3(A)に示すように、中央壁5から各リブ7,8の先端縁までの距離(例えば同図に示す距離L1)が、中央壁5から他の四壁2〜4の先端縁までの距離(例えば同図に示す距離L2)よりも短くなるように、各リブ7,8の中央壁5からの突出長が設定されている。このため、複数ユニットの連結時に隣り合う二つのユニット1,1の対応する四壁2〜4の各先端縁同士が互いに当接する場合でも、隣り合う二つのユニットのうちの一方のユニットのリブ7又は8の先端縁と、他方のユニットのリブ7又は8の先端縁とは当接し得ず、対向し合うリブ間には隙間が確保される。それ故、各ユニット1の枠体内に垂直及び水平リブ7,8を設けたにもかかわらず、これらのリブ7,8は、貯留領域内で水が上下左右に自由に流通することを阻害しない。
【0020】
図1〜図3に示すように、枠体内の上壁3に近い位置において中央壁5には、該中央壁を貫通する略円筒状の導水管部10が、ユニットの連結方向に延びるように設けられている。特に図3(A)に示すように、この導水管部10は、中央壁5の前面から前方に突出した前半筒部11と、中央壁5の後面から後方に突出した後半筒部12とから構成されている。そして、前半筒部11の内径D1は、後半筒部12の外径D2よりも若干大きく設定されている。また、前半筒部11の先端位置は、左右上下の各壁2〜4の前後方向先端位置に一致しているのに対し、後半筒部12の後端は、左右上下の各壁2〜4の後端縁よりも更に後方に突出している。導水管部10を構成する前半筒部11及び後半筒部12におけるこのような径及び前後方向長の設定により、複数ユニットの連結時には、ある一つのユニットの導水管部後半筒部12の後端部が、そのユニットの直後に配置される別のユニットの導水管部前半筒部11内に嵌入可能となっている。
【0021】
また、導水管部の前半筒部11の周壁には、複数の導水開口13(本例では4つ)が切り欠き形成されている。各導水開口13の前後方向長は、前記後半筒部12の後端部が各壁2〜4の後端縁から突出している量(突出長)よりも長く設定されており、二つのユニット1が連結されて一方の導水管部後半筒部12の後端部が他方の導水管部前半筒部11に嵌入された場合でも、導水管部の各導水開口13が完全に閉塞されることはない。即ち、導水管部10に切り欠き形成された導水開口13により、複数ユニットの連結時においても、導水管部10の内部と枠体内貯留領域との間の連通(又は通水)が確保される。
【0022】
この連結ユニット1の枠体内の下部領域には、枠体内に入り込んだ土埃等の固体進入物を集めて当該ユニット1の外又は浸透トレンチ内の特定場所に移送するための移送機構が設けられている。即ち、図1〜図3に示すように、枠体内の下壁4に近い位置において中央壁5には、該中央壁を貫通する略円筒状の移送管部20が、ユニットの連結方向に延びるように設けられている。この移送管部20の径は前記導水管部10の径よりも小さく設定されている。
【0023】
特に図3(A)に示すように、この移送管部20も、中央壁5の前面から前方に突出した前半筒部21と、中央壁5の後面から後方に突出した後半筒部22とから構成されている。そして、前記導水管部10の場合と同様、移送管部の前半筒部21の内径D3は、後半筒部22の外径D4よりも若干大きく設定されている。また、前半筒部21の先端位置は、左右上下の各壁2〜4の前後方向先端位置に一致しているのに対し、後半筒部22の後端は、左右上下の各壁2〜4の後端縁よりも更に後方に突出している。移送管部20を構成する前半筒部21及び後半筒部22におけるこのような径及び前後方向長の設定により、複数ユニットの連結時には、ある一つのユニットの移送管部後半筒部22の後端部が、そのユニットの直後に配置される別のユニットの移送管部前半筒部21内に嵌入可能となっている。
【0024】
移送管部20の内部には、その長手方向(前後方向)に延びる、横断面十文字状の補強リブ23が設けられている(図2及び図3(A)参照)。また、移送管部の前半筒部21の周壁には、複数の集塵開口24(本例では左右に各1つ)が切り欠き形成されている。各集塵開口24の前後方向長は、前記後半筒部22の後端部が各壁2〜4の後端縁から突出している量(突出長)よりも長く設定されており、二つのユニット1が連結されて一方の移送管部後半筒部22の後端部が他方の移送管部前半筒部21に嵌入された場合でも、移送管部の各集塵開口24が完全に閉塞されることはない。
【0025】
更に、枠体内の下壁4に近い位置において中央壁5の前後各面からは、前記移送管部20の左右に位置する一対の板状ガイド部25,25が突設されている。各板状ガイド部25は、左又は右の側壁2に連なる外端部において最も高くなり且つ移送管部の集塵開口24に連絡する内端部において最も低くなるように傾斜して設けられている。傾斜した板状ガイド部25,25の各々は、枠体内に入り込んで上から落下してくる土埃等の固体進入物を捕捉すると共に、その傾斜勾配に起因するガイド作用により、捕捉した固体進入物を前記集塵開口24に導き移送管部20の中に送り込む働きをする。このように、少なくとも集塵開口24を備えた移送管部20と、左右一対の板状ガイド部25,25とにより、移送機構が構成される。
【0026】
なお、これまで説明してきた枠体(壁2〜5)及び枠体内の突設物(7,8,10,20,23,25等)は全てプラスチック(例えばポリエチレン又はポリプロピレン)からできており、射出成形装置を用いた一体成形及びその成形品に対するプラスチック部材の接着により、単一の連結ユニット製品として一体化されている。ちなみに本実施形態の連結ユニット1の枠体寸法は、連結方向の長さが25cm、幅が50cm、高さが100cmであり、その重さは約5kgである。また、連結ユニット1内部の空隙率は約95%である。
【0027】
更に、複数ユニットを連結する際の作業性向上及び相互連結の確実性確保のために、個々の連結ユニット1には複数の結合パーツ30が予め装着されている。図6に示すように、結合パーツ30は、例えば可撓性素材(例えば軟質プラスチック)からなるバンド状の部材であり、その結合パーツ30の裏面には、キノコのように先端部が膨出した第1及び第2の脚部31,32が設けられている。
【0028】
他方、連結ユニット1の左右上下の各壁2〜4には、前記結合パーツ30の各脚部を挿入するための穴が貫通形成されている。例えば図4に示すように、上壁3の前面側の両端付近には、支持穴33及び仮止め穴34が横並びに形成され、上壁の後面側の両端付近には、本止め穴35が形成されている。支持穴33及び本止め穴35の内径はほぼ等しいが、仮止め穴34の内径は他の穴33,35の内径よりも若干大きくなっている。このような支持穴33、仮止め穴34及び本止め穴35からなる三穴の組合せは、上壁3の左右両端域にそれぞれ各一組(図4参照)、下壁4の左右両端域にそれぞれ各一組(図示略)、左右側壁2,2の各々の上端域、中央域及び下端域にそれぞれ各一組(図3(B)参照)が設けられている。
【0029】
例えば図5及び図6に示すように、結合パーツの第1脚部31を支持穴33に嵌入することにより、当該結合パーツ30が上壁3に対し第1脚部31を軸として回動可能に装着される。そして、ユニット1の非連結時(即ち倉庫への保管時や運搬時などの不使用時)には、結合パーツの第2脚部32を仮止め穴34に差し込んでおくことで、結合パーツ30がユニット1の側面でぶらぶらしたり邪魔になったりするのを防止している。これに対し、複数ユニットの連結時には、例えば図5に示すように、隣り合う二つのユニット1,1が一方の後面側と他方の前面側とが接合するように配置される。すると、一方のユニットの後面側の端部に設けられた本止め穴35と、他方のユニットの前面側の端部に設けられた支持穴33とが相向き合う配置関係になると共に、その配置時における本止め穴35と支持穴33との距離が、結合パーツ30の第1及び第2脚部31,32間の距離にほぼ一致する。それ故、結合パーツの第2脚部32を仮止め穴34から外して、隣のユニットの本止め穴35に差し込むことにより、当該連結パーツ30を介して、隣り合う二つのユニット1,1が緊密に連結される。
【0030】
次に、図1〜図6に示す連結ユニット1を用いて浸透トレンチを構築する際の施工方法について説明する。なお、例えば図7に示すように、浸透トレンチTは建物の敷地内の地下に設置される。敷地内には、建物に降り注いだ雨水を集めるための集水桝41が設けられ、雨水は、集水桝41から地下導水管42を介して敷地外の下水道又は河川に放出可能となっている。図7の例では、最初の集水桝41と下水道又は河川とをつなぐ地下導水管42の途中に、分岐用の集水桝43を設けると共に、その集水桝43から所定距離だけ離れた位置に点検用の桝44を設け、分岐用の集水桝43と点検用の桝44とをつなぐ地下に浸透トレンチTを設置している。具体的には、図8及び図9に示す手順で施工する。
【0031】
まず図8(A)及び(B)に示すように、地面に対し溝を掘る。溝の大きさは例えば長さが5m以上、幅が約1m、深さが約1.5mである。次に、掘削した溝の底及び内側面の全体を覆うように透水シート45を敷き詰める。この透水シート45は、浸透作用により水は通し得るが土や砂などの固体は通し得ないという性質(透水性)を有するシート状部材であり、例えば不織布からできている。そして、溝底に敷かれた透水シート45上に、前記連結ユニット1を複数個直列に配置する。この直列配置に際しては、前側に位置するユニット1の導水管部後半筒部12の突出端及び移送管部後半筒部22の突出端が、後側に位置するユニット1の導水管部前半筒部11及び移送管部前半筒部21内にそれぞれ嵌合するように二つのユニットを配置する。この導水管部10及び移送管部20の相互嵌合に基づいて、各ユニットにおける左右方向及び上下方向への位置ずれが規制され、前後に隣り合う二つのユニット間で位置決めが確実に行われる。
【0032】
図8(C)に示すように、所定個数のユニット1(同図では16個)の直列配置が完了したら、各ユニット1の左右側壁2,2及び上壁3に装着された結合パーツ30を用いて、隣り合うユニットを互いに離脱不能に連結する。具体的には各ユニット1に装着された各結合パーツ30の第2脚部32を仮止め穴34から離脱させると共に結合パーツ30を約90度回動させ、その第2脚部32を当該ユニットの前側に位置する別のユニットの本止め穴35に差し込む。この結合パーツ30の付け替え操作により、前後に隣り合う二つのユニット1,1間の緊密な直列連結が達成される。また、各ユニット1の導水管部10が直列接続されると共に各ユニット1の移送管部20が直列接続されることで、その直列連結されたユニット群の内部には、水平方向に延びる一連の導水経路及び水平方向に延びる一連の移送経路が構築される。
【0033】
複数ユニットの直列連結完了後、当該連結ユニット群の前端位置及び後端位置のそれぞれに、前記分岐用の集水桝43及び点検用の桝44を設置する。これらの桝43,44は設置目的は異なるものの、いずれも直立した円筒状又は角筒状の部材である。そして、集水桝43と、前記連結ユニット群の先頭に位置するユニットの導水管部10とを導管46で接続し、両者間で通水可能とする。また、点検用桝44と、前記連結ユニット群の末尾に位置するユニットの移送管部20とを導管47で接続し、両者を連通可能とする。導管46,47としては、例えば塩化ビニル樹脂製の円筒パイプが使用される。なお、導管46,47の各々の端部開口46a,47aに、原則として水だけを通す土粒子進入防止用シートを装着して、連結ユニット内に土粒子が極力入り込まないようにすることは好ましい。また、連結ユニット群の末尾に位置するユニットの導水管部10の後端と、連結ユニット群の先頭に位置するユニットの移送管部20の先端にそれぞれ目盲栓48,49を施し、そこから連結ユニット群の導水経路及び移送経路内に土砂が進入するのを防止する。
【0034】
続いて、連結ユニット群の前後左右の各側面及び上面を前記透水シート45で覆う。そして、溝掘削時に発生した土、砂、砕石又は置き換え用の土などを用いて、透水シート45でくるまれた連結ユニット群並びに集水桝43及び点検用桝44を埋め戻す。こうして、建物の敷地内の地下には、連結ユニット群により構成される浸透トレンチTが埋設される(図9参照)。
【0035】
本実施形態の浸透トレンチTの働きは、従来の浸透トレンチと基本的に同じである。即ち、雨が降ったときに集水桝43に流れ込んだ雨水は、導管46を介して連結ユニット群の導水経路に導かれ、更にこの導水経路を経由して複数あるユニット1の各々に分配される。各ユニット1では、導水経路を構成する導水管部10を流れる雨水の一部が、導水開口13を通ってユニット内部の貯留領域に流れ落ち、そこに雨水が一時貯留される。ユニットの枠体を構成する各壁2〜5には通水孔6が形成されているため、貯留領域に一時貯留される水もその通水孔6を通って土中に浸み出す。このような浸透トレンチTの基本機能により、建物等に降り注いだ雨水の多くが敷地内の地下層に浸透し、下水道や河川への放出が極力低減又は抑制される。
【0036】
なお、図7に示すように敷地内に複数の浸透トレンチTを設置することは好ましい。浸透トレンチTの設置数又は総設置長については、行政機関が定めた指導基準に従って算出される処理流量(単位時間あたりの水量)を浸透処理するために必要な処理能力を備えるように決定される。但し、浸透トレンチ群の処理能力を超えるような降雨があった場合には、そのオーバーフロー分については下水道等に放流されることになる。それ故、下水道等に放流するための放流管の配置レベルは、各浸透トレンチTの導管46の配置レベルよりも高く設定される。浸透トレンチTを複数設置する場合の配列形態については、図7に示すような並列配置に限定されるものではなく、複数の浸透トレンチTを長手方向に連ねることで直列配置してもよい。
【0037】
浸透トレンチTを構成する連結ユニット1に前述のような移送機構(20,25等)を設けたことで、本実施形態の浸透トレンチTには、従来の浸透トレンチには無いトレンチ内部の掃除機能が追加された。まず掃除の必要性について言及すると、一般に雨水は純粋な水ではなく細かな土砂や異物を含んだ固液混合物であり、又、前記透水シート45は固体を通し得ない部材である。このため、長期使用により、各ユニット1の貯留領域の底には次第に土埃等の固体進入物が堆積し、これを放置すると貯留領域が固体進入物で埋まってしまって浸透トレンチTの雨水処理機能が低下する虞がある。このような事態を未然に回避すべく設けられたのが移送機構(20,25等)である。
【0038】
この移送機構は、例えば図9に示すような態様で利用される。即ち雨が降った翌日等の浸透トレンチT内及び点検用桝44内に雨水が溜まっているときを見計らって、点検用桝44内に流体流れ発生手段としての水中ポンプ51を降ろす。この水中ポンプ51はホース52と接続され、そのホース52の端部は集水桝43の上方に導かれる。集水桝43の上部開口とホース52の端部との間に、フィルタ手段53(例えば透水シートや目の細かいネット)を配置する。そして、水中ポンプ51を作動させて点検用桝44から水を吸い上げ、その吸い上げた水をフィルタ手段53を通してから集水桝43に戻す。すると、点検用桝44から水中ポンプ51、ホース52及びフィルタ手段53を介して集水桝43に戻る水の流れが生じるに伴い、導管46を経由して浸透トレンチT内に水が進入し、浸透トレンチTの各ユニットの移送管部20により構成される移送経路に沿って、集水桝43側から点検用桝44側に向かう水の流れが発生する。その結果、浸透トレンチTの内外を巡る水の循環が起きる。
【0039】
各ユニット1の移送管部20内に一方向に向かう強力な水流が発生する結果、その強力な水流に誘発されて、各ユニット1の貯留領域内には、移送管部20の集塵開口24に吸い寄せられるような二次水流が発生する。その二次水流の影響で、ユニット内壁面に引っ掛かっていた固体進入物や板状ガイド部25の上面に積もっていた固体進入物が集塵開口24に引き寄せられ、そこを通って移送管部20内に引き込まれる。そして、移送管部20内を流れる強力な水流に乗って、点検用桝44内に吸い出される。点検用桝44内に吸い出された土粒子などの固体進入物は水中ポンプ51及びホース52を介してフィルタ手段53に到達し、そのフィルタ手段53によって捕捉、つまり、こし取られる。
【0040】
このように水中ポンプ51を利用して、浸透トレンチTの各移送管部20内に水流を強制的に発生させることにより、各ユニット1の貯留領域内に進入した固体進入物を浸透トレンチTの外に移送して、個々のユニット1の内部を掃除することができる。
【0041】
前記移送機構と流体流れ発生手段とを利用した掃除作業は、浸透トレンチTの長期使用後の定期点検時のみならず、浸透トレンチTの新設時に行ってもよい。浸透トレンチTの施工時に、意に反して各連結ユニット1の内部に土埃等が進入することがあるからである。また、各連結ユニット1における板状ガイド部25は傾斜勾配を持つため、前記二次水流による吸引作用が存在しないときでも、その傾斜勾配によるガイド作用に基づき、当該板状ガイド部25が捕捉した固体進入物を集塵開口24に誘導できることは当然である。
【0042】
なお、図9では、搬送流体として水(液体)を利用したユニット内の掃除手法を示したが、搬送流体としてエアー(気体)を利用すると共に流体流れ発生手段としてエアーの圧縮機又は送風ポンプを用い、浸透トレンチTの各移送管部20内にエアーを強制圧送又は強制吸引することによっても同様の効果を得ることができる。エアーを使う場合には、上述のように流体を循環させるのではなく、例えば各移送管部20によって構成される搬送経路に沿って一方向の気流を発生させ、各ユニット1の貯留領域内に進入した固体進入物を、複数あるユニットのうちの一箇所(例えば、目盲栓49に隣接する図9左端のユニット1)に集めるようにしてもよい。
【0043】
(効果)本実施形態によれば、導水管部10が一体化された連結ユニット1を複数個直列連結するだけで、導水経路を備えた浸透トレンチTの主要部を簡単に構築することができるので、従来のトレンチ工法のような配管作業や砕石の敷設作業を必要としない。又、連結ユニット1の重量も約5kg程度と非常に軽く、砕石を扱う場合に比べて設置作業が格段に楽になる。故に、従来のトレンチ工法に比べて施工工数が大幅に少なくて済み、非常に少ない手間で効率的且つ短時間に浸透トレンチTを設置することができる。
【0044】
従来の浸透トレンチでは、砕石層の空隙率はせいぜい25〜35%程度であったのに対し、本実施形態の連結ユニット1の内部空隙率は約95%と高く、この連結ユニット1を用いた浸透トレンチTにおける内部空隙率もほぼ同様のパーセンテージを示す。このため、単位体積あたりの雨水の貯留能力が従来に比べて飛躍的に向上し、浸透トレンチの小型化や設置面積の縮小、ひいては設置コストの低減を図ることができる。
【0045】
更に各連結ユニット1に移送機構を設けたことで、浸透トレンチTの設置後に地面をあらためて掘り返すことなく、浸透トレンチTの内部を適宜掃除することができる。このため、浸透トレンチTの保守管理に要するコストを大幅に低減できるのみならず、浸透トレンチTの有効寿命を飛躍的に延ばすことができる。
【0046】
(変更例)本発明の実施形態を以下のように変更してもよい。
連結ユニット1の枠体の外表面(例えば側壁2の外表面)に土圧による浮き上がり防止のための凸部(例えば略水平方向に延びるリブ又はフランジ)を設けてもよい。これによれば、個々の連結ユニット1が土中に埋設された結果、ユニットの土との比重差に基づき当該ユニットを浮上させようとする土圧が生じた場合でも、前記浮上防止凸部が周囲の透水シート45(又は土)に引っ掛かり前記浮力に対抗するため、ユニットの浮き上がりが防止される。
【0047】
上記実施形態では、隣り合う二つのユニット1,1間における導水管部10同士及び移送管部20同士の相互嵌合に基づいて、各ユニットをユニット連結方向と直交する方向(即ち左右方向や上下方向)に位置決めしていた。これに代えて又はこれに追加して、例えば枠体の周囲を構成する四壁2〜4の縁部に位置決め用の部位(例えば凹凸部)を形成し、隣り合う二つのユニット1,1間における前記位置決め部の相互嵌合に基づいて、各ユニットをユニット連結方向と直交する方向(即ち左右方向や上下方向)に位置決めしてもよい。また、前記実施形態では各連結ユニット1に移送機構を設けたが、そのような移送機構を設けない連結ユニットとしてもよい。かかる簡易設計のユニットとした場合には、図7〜図9に示した点検用桝44の設置は不要である。
【0048】
【発明の効果】
本発明の浸透トレンチ用連結ユニットによれば、当該ユニットを複数個直列連結することにより、砕石等を用いることなく少ない手間で効率的に浸透トレンチを構築することができる。また、連結ユニットの枠体によって区画される内部領域を貯留領域としたので、ユニット内部の空隙率を高めて単位体積あたりの雨水等の貯留能力を従来よりも高めることができる。
【0049】
本発明の浸透トレンチの施工方法によれば、砕石等を用いることなく少ない手間で効率的に浸透トレンチを構築することができる。即ち、従来の砕石等を用いたトレンチ工法に比べて、作業工程数の減少による施工の簡便化及び省力化を図ることができる。
【図面の簡単な説明】
【図1】浸透トレンチ用連結ユニットの一例を示す斜視図。
【図2】図1の連結ユニットの正面図。
【図3】(A)は図2のA−A線断面図、(B)は連結ユニット側面図。
【図4】連結ユニットの上面を示す平面図。
【図5】二つのユニットの連結状態を一部拡大して示す部分平面図。
【図6】図5のB−B線での拡大断面図。
【図7】建物敷地内での浸透トレンチの施工事例を示す平面図。
【図8】(A)〜(C)は浸透トレンチの施工手順を示す断面図。
【図9】浸透トレンチの施工完了後の状態を示す断面図。
【符号の説明】
1…連結ユニット、2…左右の側壁、3…上壁、4…下壁、5…中央壁(2〜5は枠体を構成する)、6…通水孔(通水部)、10…導水管部、13…導水開口、20…移送管部、24…集塵開口、25…板状ガイド部(20,24及び25は移送機構を構成する)、45…透水シート、51…水中ポンプ(流体流れ発生手段)、T…浸透トレンチ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a connection unit for a penetration trench and a method for constructing a penetration trench using the connection unit.
[0002]
[Prior art]
Generally, rainwater that has fallen into houses and the like eventually flows into sewers and rivers, but the concentration of rainwater on sewers and rivers causes flooding. For this reason, it was conceivable to control rainwater runoff from each house as one of the measures to prevent flood damage, and a penetration trench was devised as one facility for that purpose. Conventional permeation trenches, for example, dug a groove of a predetermined width and depth along a path connecting a catchment basin that once collects rainwater from a house and a sewer, and a number of holes were drilled in the groove. It is configured by arranging a water guide pipe and laying crushed stone around the pipe (see Patent Document 1). According to such an infiltration trench, in the process where rainwater is guided from the catchment basin to the sewer via the water conveyance pipe, rainwater seeps into the crushed stone layer from the pipe and further penetrates into the underground through the crushed stone layer, The amount of rainwater flowing into the sewer etc. is reduced. In addition, although not a permeation trench, a storage permeation facility for temporarily storing rainwater and gaining time until the stored water permeates underground has been proposed. For example, it is known that a large number of container-like members having a large number of holes are arranged vertically and horizontally and vertically in a depression dug down into the ground, thereby forming a storage tank portion capable of penetrating underground (Patent Documents) 2 and 3).
[0003]
[Patent Document 1] Japanese Patent Publication No. Sho 62-31129 (Claims)
[Patent Document 2] Japanese Patent Publication No. Hei 4-26648 (Claims)
[Patent Document 3] Japanese Patent Publication No. 4-35580 (Claims)
[0004]
[Problems to be solved by the invention]
However, in the conventional infiltration trench, after laying crushed stone once to a predetermined height in the excavation trench, arranging a porous water conveyance pipe thereon, and then further laying crushed stone on the pipe, a plurality of steps such as. It took a lot of time and effort. In addition, the porosity of the crushed stone layer composed of crushed stone around the perforated water pipe is as low as about 25 to 35% at most. Therefore, unless the laying length of the infiltration trench is considerably lengthened, sufficient rainwater can be stored. In some cases, the ability to penetrate cannot be obtained.
[0005]
On the other hand, the storage and infiltration facilities as in Patent Documents 2 and 3 dispose a container-like member having a large number of holes (or a division frame divided into a plurality of divisions) in three directions of length, width, and height. This merely constitutes a tank as a storage space capable of penetrating rainwater into the underground layer. For this reason, the container-shaped member and the like disclosed in Patent Document 2 and the like cannot be directly used as a constituent member of the penetration trench without any contrivance.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a connection unit for a permeation trench of a new concept which can be replaced with a porous water conveyance pipe and crushed stone in a conventional permeation trench. Another object of the present invention is to provide a method for constructing a penetration trench that can efficiently construct a penetration trench with a small amount of labor by using such a connection unit for a penetration trench.
[0007]
[Means for Solving the Problems]
The connection unit for a permeation trench of the present invention is a connection unit capable of forming a permeation trench by connecting a plurality of units, and for partitioning a storage area inside and securing water flow from the storage area to the outside. A frame body provided with a water passage portion, and a water guide tube portion provided in the frame body and capable of communicating with the storage region, so that the water passage portion can be connected in series to another unit disposed adjacent to the unit. This is a connecting unit for a permeation trench, wherein a series of water conveyance paths can be constructed in the permeation trench by each water conveyance pipe portion when a plurality of units are connected in series.
[0008]
In the connection unit for a permeation trench of the present invention, the headrace section extends in a connection direction of the unit in an upper region of the storage region, and a wall of the headrace section includes the headrace section. It is preferable that a water introduction opening for guiding a part of the water flowing through the storage area to the storage area is formed. The water pipe section has a substantially cylindrical shape, and the inner and outer diameters of the water pipe section at one end and the other end are different, so that one of the two adjacent units at the time of serial connection is connected. One end of the water pipe section and the other end of the water pipe section of the other unit can be fitted to each other, and based on the mutual fitting, the positioning of two adjacent units and the positioning of those water pipe sections are performed. Preferably, an interconnection is achieved. Alternatively, it is preferable that a positioning portion for positioning each unit in a direction substantially orthogonal to the unit connection direction is provided at an edge of the frame when a plurality of units are connected in series.
[0009]
Furthermore, it is preferable that a transfer mechanism for transferring a solid intruder that has entered the frame to the outside of the unit or to a specific place in the permeation trench is provided in a lower region of the storage region. Further, the transfer mechanism includes a transfer pipe portion that extends in the unit connection direction and is capable of constructing a series of transfer paths when a plurality of units are connected in series, and captures a solid intruder that has entered the frame to transfer the unit. It is preferable to provide a plate-shaped guide portion for guiding the inside of the tube portion.
[0010]
(Explanation of operation of connection unit, etc.) According to the connection unit for a permeation trench of the present invention, when a plurality of units are connected in series, a series of water conveyance paths are constructed by the water conveyance pipe portions that can communicate with the storage area of each unit, This water conveyance path has the same function as the conventional water transmission pipe in the infiltration trench. In addition, the storage area partitioned in the frame body provided with the water passage portion has a temporary storage function of rainwater or the like as an alternative to the crushed stone layer in the conventional infiltration trench. And such a water conveyance path and a storage area (a main part of a permeation trench) can be easily constructed by an extremely simple construction work of simply connecting a plurality of units in series.
[0011]
When a transfer mechanism is provided in the storage area of the connection unit, the solid intruder that has entered the frame of each unit is transferred to a specific place outside the unit or in a permeation trench via the transfer mechanism. Thereby, the inside of the infiltration trench can be cleaned by removing solid intruders from the individual units. It is sufficient that the transfer mechanism provided in the connection unit is one that provides a carry-out route for the solid entering material, and is provided near the permeation trench or outside the permeation trench, as described in an embodiment of the present invention described later. It has a property of exhibiting a transfer function in cooperation with the fluid flow generating means.
[0012]
In addition, it is preferable that the connection unit is made of plastic. In this case, the weight of the unit is reduced, and workability during construction is improved. Further, "a transfer pipe part, which is a component of the transfer mechanism, has a substantially cylindrical shape, and one end and the other end of the transfer pipe part have different inner and outer diameters. One end of the transfer pipe of one of the units and the other end of the transfer pipe of the other unit can be fitted to each other. " A dust-collecting opening for taking solid inducts led by the section into the pipe section, or "a slope where the height decreases as the plate-like guide section is closer to the transfer pipe section." Is preferred.
[0013]
The method for constructing a permeation trench according to the present invention includes a frame provided with a water passage section for securing water flow from the storage region to the outside while partitioning the storage region inside, and a frame provided inside the frame. A plurality of connecting units each including a water guiding pipe portion capable of communicating with the storage area are prepared, and the plurality of connecting units are arranged in series in a groove formed by excavating the ground, and are interconnected. The connecting unit group is covered with a permeable sheet, and then the connecting unit group covered with the permeable sheet is buried underground.
[0014]
The method of constructing this infiltration trench is a so-called preferred method of using the connecting unit. According to this method, by arranging a plurality of connection units in series in a groove in a series connection state, a series of water conveyance paths are constructed by the water conveyance pipe section of each unit in place of the conventional porous water conveyance pipe in the infiltration trench. In addition, the storage area of each unit secures a temporary storage area for rainwater or the like that replaces the crushed stone layer in the conventional infiltration trench. Therefore, according to this method, it is possible to efficiently construct the infiltration trench without using crushed stone or the like and with a small amount of labor. In the method of constructing a permeation trench according to claim 7, it is very preferable to employ the connecting unit according to any one of claims 1 to 6 as a connecting unit for preparing a plurality of connecting units.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0016]
1 to 5 show a specific example of a connecting unit for a permeation trench. The connecting unit 1 includes left and right side walls 2 and 2, an upper wall 3 and a lower wall 4, and is formed in a substantially rectangular parallelepiped shape opened on the front side (front side) and the rear side (rear side) by these four walls. It is configured as an open container. At the center of each of the walls 2 to 4 in the front-back direction, there is provided a central wall 5 that stands upright so as to bisect the unit 1 back and forth. The left, right, upper and lower four sides of the central wall 5 are connected to the left, right, upper and lower walls 2 to 4, respectively, and the basic skeleton of the unit 1 is formed by the left and right side walls 2, 2, the upper wall 3, the lower wall 4, and the central wall 5. Is formed. Various protruding objects as described later exist inside the frame body, but the inside of the frame body is generally a hollow space, and when a plurality of the units 1 are connected, the inside of the frame body is partitioned. The area to be functioned as a storage area for temporarily storing rainwater or the like.
[0017]
Each of the five walls 2 to 5 constituting the frame of the connection unit 1 is formed with a large number of water passage holes 6 as water passage portions. Although the shape and size of each water passage hole 6 are slightly different depending on the installation position and the like, the function is common in that rainwater or the like stored in the frame is guided from the storage area to the outside of the frame. Needless to say, two adjacent storage areas communicate with each other via the water holes 6 provided in the central wall 5 when the plurality of units 1 are connected.
[0018]
Further, a plurality of plate-like vertical ribs 7 (five in this example) and a plurality of plate-like horizontal ribs 8 (seven in this example) are provided inside the frame body and on the front side and the rear side of the center wall 5, respectively. (See FIGS. 2 and 3A). The vertical and horizontal ribs 7 and 8 project forward and rearward from the front and rear surfaces of the central wall 5. The upper and lower ends of the vertical ribs 7 are connected to the inner surfaces of the upper wall 3 and the lower wall 4, respectively, and the left and right ends of the horizontal ribs 8 are connected to the inner surfaces of the left and right side walls 2 and 2, respectively. The vertical and horizontal ribs 7, 8 reinforce the strength and rigidity of the entire frame by interconnecting the walls 2 to 5 constituting the frame, and further enhance the dimensional stability.
[0019]
As shown in FIG. 3A, the distance from the center wall 5 to the leading edge of each of the ribs 7 and 8 (for example, the distance L1 shown in FIG. 3) is different from the distance from the center wall 5 to the other four walls 2 to 4. The protruding length of each of the ribs 7, 8 from the central wall 5 is set so as to be shorter than the distance to the leading edge (for example, the distance L2 shown in the figure). For this reason, even when the respective leading edges of the corresponding four walls 2 to 4 of the adjacent two units 1 and 1 abut upon each other when the plurality of units are connected, the rib 7 of one of the two adjacent units may be contacted. Or, the leading edge of the rib 8 cannot contact the leading edge of the rib 7 or 8 of the other unit, and a gap is secured between the opposing ribs. Therefore, even though the vertical and horizontal ribs 7, 8 are provided in the frame of each unit 1, these ribs 7, 8 do not prevent water from flowing freely up, down, left, and right in the storage area. .
[0020]
As shown in FIGS. 1 to 3, at a position close to the upper wall 3 of the frame, a substantially cylindrical water pipe section 10 penetrating the center wall 5 extends in the connecting direction of the units. Is provided. In particular, as shown in FIG. 3 (A), the water pipe section 10 includes a front half cylindrical portion 11 protruding forward from the front surface of the central wall 5 and a rear half cylindrical portion 12 protruding rearward from the rear surface of the central wall 5. It is configured. The inner diameter D1 of the front half cylinder portion 11 is set slightly larger than the outer diameter D2 of the rear half cylinder portion 12. In addition, the front end position of the front half cylinder portion 11 matches the front end position of the left, right, upper and lower walls 2 to 4, while the rear end of the rear half cylinder portion 12 has the left, right, upper and lower walls 2 to 4. Projecting further rearward than the rear edge. By setting the diameter and the length in the front-rear direction in the front half tubular portion 11 and the rear half tubular portion 12 constituting the water guide tube portion 10, the rear end of the water guide tube portion rear half tubular portion 12 of one unit is connected when a plurality of units are connected. The part can be fitted into the water pipe front half tube part 11 of another unit disposed immediately after the unit.
[0021]
Further, a plurality of water guide openings 13 (four in this example) are cut out and formed on the peripheral wall of the front half cylindrical portion 11 of the water guide pipe portion. The length in the front-rear direction of each water introduction opening 13 is set to be longer than the amount (projection length) of the rear end of the rear half cylindrical portion 12 protruding from the rear end edge of each of the walls 2 to 4. Are connected, and even if the rear end of one of the water pipe sections 12 is fitted into the front pipe section 11 of the other water pipe section, each water supply opening 13 of the water pipe section is completely closed. Absent. That is, even when a plurality of units are connected, communication (or water flow) between the inside of the water guide pipe 10 and the storage area in the frame is ensured by the water guide opening 13 formed by cutting out the water guide pipe 10. .
[0022]
In a lower region of the frame of the connecting unit 1, a transfer mechanism for collecting solid intrusion such as dust and the like that has entered the frame and transferring it to a specific place outside the unit 1 or in a permeation trench is provided. I have. That is, as shown in FIGS. 1 to 3, a substantially cylindrical transfer pipe portion 20 penetrating the central wall at the position close to the lower wall 4 in the frame extends in the connecting direction of the units. It is provided as follows. The diameter of the transfer pipe 20 is set smaller than the diameter of the water pipe 10.
[0023]
In particular, as shown in FIG. 3A, the transfer pipe portion 20 also includes a front half tube portion 21 protruding forward from the front surface of the center wall 5 and a rear half tube portion 22 protruding rearward from the rear surface of the center wall 5. It is configured. And, as in the case of the water pipe section 10, the inner diameter D3 of the front half tubular section 21 of the transfer pipe section is set slightly larger than the outer diameter D4 of the rear half tubular section 22. Further, the front end position of the front half cylinder portion 21 coincides with the front end position of the left, right, upper and lower walls 2 to 4, while the rear end of the rear half cylinder portion 22 has the left, right, upper and lower walls 2 to 4. Projecting further rearward than the rear edge. By setting the diameter and the length in the front-rear direction in the front half tube portion 21 and the rear half tube portion 22 constituting the transfer tube portion 20, the rear end of the transfer tube portion rear half tube portion 22 of one unit when a plurality of units are connected. The part can be fitted into the transfer tube front half cylinder part 21 of another unit arranged immediately after the unit.
[0024]
Inside the transfer pipe section 20, a reinforcing rib 23 having a cross-shaped cross section is provided extending in the longitudinal direction (front-rear direction) (see FIGS. 2 and 3A). In addition, a plurality of dust collection openings 24 (one each on the left and right in this example) are cut out and formed in the peripheral wall of the front half cylindrical portion 21 of the transfer pipe portion. The length of each dust collection opening 24 in the front-rear direction is set to be longer than the amount (projection length) of the rear end of the rear half cylindrical portion 22 projecting from the rear end edge of each of the walls 2 to 4. 1 is connected, and even if the rear end portion of one transfer tube portion rear half tube portion 22 is fitted into the other transfer tube portion front half tube portion 21, each dust collection opening 24 of the transfer tube portion is completely closed. Never.
[0025]
Further, a pair of plate-like guide portions 25, 25 located on the left and right sides of the transfer pipe portion 20 protrude from front and rear surfaces of the central wall 5 at positions near the lower wall 4 in the frame body. Each plate-shaped guide portion 25 is inclined and provided so as to be highest at an outer end portion connected to the left or right side wall 2 and lowest at an inner end portion connected to the dust collection opening 24 of the transfer pipe portion. I have. Each of the inclined plate-shaped guide portions 25, 25 captures a solid intruder such as dust entering the frame and falling from above, and also captures the captured solid intruder by a guiding action caused by the inclination gradient. Is guided to the dust collecting opening 24 and fed into the transfer pipe section 20. As described above, the transfer mechanism is constituted by the transfer pipe portion 20 having at least the dust collection opening 24 and the pair of left and right plate-like guide portions 25, 25.
[0026]
The frame (walls 2 to 5) and the projecting objects (7, 8, 10, 20, 23, 25, etc.) described above are all made of plastic (for example, polyethylene or polypropylene). By integral molding using an injection molding device and bonding of a plastic member to the molded product, they are integrated as a single connected unit product. Incidentally, the dimensions of the frame of the connecting unit 1 of the present embodiment are as follows: the length in the connecting direction is 25 cm, the width is 50 cm, the height is 100 cm, and the weight is about 5 kg. The porosity inside the connection unit 1 is about 95%.
[0027]
Furthermore, in order to improve the workability when connecting a plurality of units and to ensure the reliability of the mutual connection, a plurality of connecting parts 30 are mounted on each connecting unit 1 in advance. As shown in FIG. 6, the connecting part 30 is a band-shaped member made of, for example, a flexible material (for example, soft plastic), and the front end of the connecting part 30 bulges like a mushroom on the back surface. First and second legs 31, 32 are provided.
[0028]
On the other hand, holes for inserting the legs of the connecting part 30 are formed through the left, right, upper and lower walls 2 to 4 of the connecting unit 1. For example, as shown in FIG. 4, a support hole 33 and a temporary fixing hole 34 are formed side by side near both ends on the front side of the upper wall 3, and a permanent fixing hole 35 is formed near both ends on the rear side of the upper wall 3. Is formed. The inner diameters of the support hole 33 and the final stop hole 35 are substantially equal, but the inner diameter of the temporary stop hole 34 is slightly larger than the inner diameters of the other holes 33 and 35. Such a combination of three holes including the support hole 33, the temporary fixing hole 34, and the final fixing hole 35 is provided in each of the left and right end regions of the upper wall 3 (see FIG. 4), and in the left and right end regions of the lower wall 4 respectively. Each set (not shown) and each set (see FIG. 3B) are provided in the upper end area, the central area, and the lower end area of each of the left and right side walls 2 and 2.
[0029]
For example, as shown in FIGS. 5 and 6, by fitting the first leg 31 of the connecting part into the support hole 33, the connecting part 30 can rotate about the first leg 31 with respect to the upper wall 3. Attached to. When the unit 1 is not connected (that is, when the unit 1 is not used for storage in a warehouse or during transportation), the second leg 32 of the connecting part is inserted into the temporary fixing hole 34 so that the connecting part 30 can be connected. Is prevented from hanging around or getting in the way of the side of the unit 1. On the other hand, when connecting a plurality of units, for example, as shown in FIG. 5, two adjacent units 1 and 1 are arranged so that one rear surface side and the other front surface side are joined. Then, the permanent retaining hole 35 provided at the rear end of the one unit and the support hole 33 provided at the front end of the other unit are opposed to each other. Is substantially equal to the distance between the first and second leg portions 31 and 32 of the coupling part 30. Therefore, by removing the second leg portion 32 of the connecting part from the temporary fixing hole 34 and inserting the second leg portion 32 into the permanent fixing hole 35 of the adjacent unit, two adjacent units 1, 1 are connected via the connecting part 30. Tightly connected.
[0030]
Next, a method of constructing a penetration trench using the connecting unit 1 shown in FIGS. 1 to 6 will be described. In addition, as shown in FIG. 7, for example, the infiltration trench T is installed underground on the site of the building. A collection basin 41 for collecting rainwater that has fallen into the building is provided on the site, and the rainwater can be discharged from the collection basin 41 to a sewer or a river outside the site via an underground water conduit 42. . In the example of FIG. 7, a water collecting basin 43 for branching is provided in the middle of an underground water conduit 42 connecting the first water collecting basin 41 and a sewer or a river, and is located at a predetermined distance from the water collecting basin 43. An inspection cell 44 is provided in the base, and a seepage trench T is installed in the basement connecting the water collecting cell 43 for branching and the cell 44 for inspection. Specifically, the construction is performed according to the procedure shown in FIGS.
[0031]
First, as shown in FIGS. 8A and 8B, a groove is dug in the ground. The size of the groove is, for example, 5 m or more in length, about 1 m in width, and about 1.5 m in depth. Next, the water permeable sheet 45 is laid so as to cover the entire bottom and inner surface of the excavated trench. The water-permeable sheet 45 is a sheet member having a property (water permeability) that allows water to pass therethrough but does not allow solids such as soil and sand to pass therethrough, and is made of, for example, a nonwoven fabric. Then, a plurality of the connection units 1 are arranged in series on the water-permeable sheet 45 laid on the groove bottom. At the time of this series arrangement, the projecting end of the water pipe section rear half tubular section 12 of the unit 1 located on the front side and the projecting end of the transfer pipe section rear half tubular section 22 of the unit 1 are connected to the front pipe section of the water pipe section of the unit 1 located on the rear side. The two units are arranged so as to be fitted into the inner tube 11 and the transfer tube part front half tube part 21, respectively. Based on the mutual fitting of the water pipe section 10 and the transfer pipe section 20, the displacement of each unit in the left-right direction and the up-down direction is regulated, and the positioning is reliably performed between the two units adjacent to each other.
[0032]
As shown in FIG. 8C, when a predetermined number of units 1 (16 units in the figure) are arranged in series, the connecting parts 30 attached to the left and right side walls 2, 2 and the upper wall 3 of each unit 1 are removed. Used to permanently connect adjacent units to each other. Specifically, the second leg 32 of each connecting part 30 attached to each unit 1 is detached from the temporary fixing hole 34, and the connecting part 30 is rotated by about 90 degrees, and the second leg 32 is moved to the unit. Into the final stop hole 35 of another unit located on the front side of. By this replacement operation of the connecting parts 30, a tight series connection between the two units 1, 1 adjacent to each other in front and rear is achieved. In addition, the water pipe sections 10 of each unit 1 are connected in series, and the transfer pipe sections 20 of each unit 1 are connected in series. A headrace path and a series of horizontally extending transfer paths are established.
[0033]
After the series connection of the plurality of units is completed, the water collecting tub 43 for branching and the tub 44 for inspection are installed at each of the front end position and the rear end position of the connection unit group. Each of these squares 43 and 44 is an upright cylindrical or square tubular member, although the purpose of installation is different. Then, the water collecting basin 43 and the water conduit section 10 of the unit located at the head of the connection unit group are connected by a conduit 46 so that water can flow between them. In addition, the inspection box 44 and the transfer pipe section 20 of the unit located at the end of the connection unit group are connected by a conduit 47 so that they can communicate with each other. As the conduits 46 and 47, for example, cylindrical pipes made of vinyl chloride resin are used. In addition, it is preferable to attach a sheet for preventing soil particles from penetrating only water in principle to each end opening 46a, 47a of the conduits 46, 47 so that soil particles do not enter the connecting unit as much as possible. . In addition, blind plugs 48 and 49 are respectively applied to the rear end of the water pipe section 10 of the unit located at the end of the connection unit group and the front end of the transfer pipe section 20 of the unit located at the head of the connection unit group. Preventing earth and sand from entering the water conveyance path and the transfer path of the connection unit group.
[0034]
Subsequently, the front, rear, left and right side surfaces and the upper surface of the connecting unit group are covered with the water-permeable sheet 45. Then, using a soil, sand, crushed stone, or replacement soil generated at the time of excavation of the trench, the connecting unit group wrapped by the water-permeable sheet 45 and the water collecting tub 43 and the inspection tub 44 are backfilled. Thus, the penetration trench T constituted by the connection unit group is buried under the building site (see FIG. 9).
[0035]
The function of the penetration trench T of this embodiment is basically the same as that of the conventional penetration trench. That is, the rainwater that has flowed into the catchment basin 43 when it rains is guided to the water conveyance path of the connected unit group via the conduit 46, and further distributed to each of the plurality of units 1 via this water conveyance path. You. In each unit 1, a part of the rainwater flowing through the water guide pipe part 10 constituting the water guide path flows down into the storage area inside the unit through the water guide opening 13, and the rainwater is temporarily stored therein. Since the water holes 6 are formed in the walls 2 to 5 constituting the frame of the unit, the water temporarily stored in the storage area also seeps into the soil through the water holes 6. By the basic function of the permeation trench T, much of the rainwater that has poured into a building or the like penetrates into the underground layer in the site, and discharge to the sewer or a river is reduced or suppressed as much as possible.
[0036]
Note that it is preferable to install a plurality of penetration trenches T in the site as shown in FIG. The number or total length of the infiltration trenches T is determined so as to have a processing capacity necessary to infiltrate the processing flow rate (water amount per unit time) calculated according to the guidance standard determined by the administrative organization. . However, if there is rainfall exceeding the processing capacity of the infiltration trench group, the overflow is discharged to sewerage or the like. Therefore, the arrangement level of the discharge pipe for discharging to the sewerage or the like is set higher than the arrangement level of the conduit 46 of each infiltration trench T. The arrangement form when a plurality of penetration trenches T are provided is not limited to the parallel arrangement as shown in FIG. 7, and a plurality of penetration trenches T may be arranged in series by connecting in a longitudinal direction.
[0037]
By providing the transfer mechanism (20, 25, etc.) as described above in the connecting unit 1 constituting the permeation trench T, the permeation trench T of the present embodiment has a function of cleaning the inside of the trench which is not provided in the conventional permeation trench. Was added. First, the necessity of cleaning is mentioned. Generally, rainwater is not pure water but a solid-liquid mixture containing fine earth and sand and foreign matters, and the water-permeable sheet 45 is a member through which solids cannot pass. For this reason, due to long-term use, solid intrusion such as dust gradually accumulates at the bottom of the storage area of each unit 1, and if left undisturbed, the storage area is buried with the solid intrusion and the rainwater treatment function of the penetration trench T is performed. May decrease. The transfer mechanism (20, 25, etc.) is provided to avoid such a situation.
[0038]
This transfer mechanism is used, for example, in a mode as shown in FIG. That is, when the rainwater accumulates in the permeation trench T and the check box 44 on the day after the rain, etc., the underwater pump 51 as a fluid flow generating means is dropped into the check box 44. The submersible pump 51 is connected to a hose 52, and an end of the hose 52 is guided above the water collecting tub 43. A filter means 53 (for example, a water-permeable sheet or a fine net) is arranged between the upper opening of the water collecting basin 43 and the end of the hose 52. Then, the submersible pump 51 is operated to suck up water from the inspection box 44, and the sucked water is returned to the water collecting box 43 after passing through the filter means 53. Then, with the flow of water returning from the inspection tub 44 to the water collecting basin 43 via the submersible pump 51, the hose 52 and the filter means 53, water enters the penetration trench T via the conduit 46, Along the transfer path constituted by the transfer pipe section 20 of each unit of the infiltration trench T, a flow of water is generated from the water collecting tub 43 to the check tub 44. As a result, circulation of water around the inside and outside of the permeation trench T occurs.
[0039]
As a result of the generation of a strong water flow in one direction in the transfer pipe section 20 of each unit 1, the strong water flow induces the dust collection opening 24 of the transfer pipe section 20 in the storage area of each unit 1. A secondary water stream is generated that is drawn to the water. Due to the influence of the secondary water flow, solid intruders trapped on the inner wall surface of the unit and solid intruders accumulated on the upper surface of the plate-shaped guide portion 25 are drawn to the dust collection opening 24, and pass therethrough, and the transfer pipe portion 20 passes therethrough. Drawn into. Then, the water is sucked into the inspection tub 44 on the strong water flowing in the transfer pipe portion 20. The solid entering material such as soil particles sucked into the inspection tub 44 reaches the filter means 53 via the submersible pump 51 and the hose 52, and is captured by the filter means 53, that is, is removed.
[0040]
As described above, the submerged pump 51 is used to forcibly generate a water flow in each transfer pipe portion 20 of the permeation trench T, so that the solid intruder that has entered the storage region of each unit 1 can be subjected to the permeation trench T. It can be transported out to clean the interior of the individual units 1.
[0041]
The cleaning operation using the transfer mechanism and the fluid flow generating means may be performed not only at the time of periodic inspection after the long-term use of the penetration trench T, but also at the time of newly establishing the penetration trench T. This is because dust and the like may enter the inside of each connecting unit 1 unexpectedly when the penetration trench T is constructed. In addition, since the plate-shaped guide portion 25 in each connection unit 1 has a slope, even when the suction action by the secondary water flow does not exist, the plate-shaped guide section 25 is captured based on the guide action by the slope. Naturally, it is possible to guide the solid inflow to the dust collection opening 24.
[0042]
Although FIG. 9 shows a method of cleaning the inside of the unit using water (liquid) as a carrier fluid, air (gas) is used as a carrier fluid and an air compressor or a blower pump is used as a fluid flow generating means. The same effect can be obtained by forcibly pumping or forcibly sucking air into each transfer pipe section 20 of the permeation trench T. In the case of using air, instead of circulating the fluid as described above, for example, a unidirectional airflow is generated along a transport path formed by each transfer pipe unit 20 and the airflow is generated in the storage area of each unit 1. The solid intruder that has entered may be collected at one of a plurality of units (for example, the unit 1 at the left end in FIG. 9 adjacent to the blind plug 49).
[0043]
(Effect) According to the present embodiment, the main part of the infiltration trench T having the water guide path can be easily constructed only by connecting a plurality of connection units 1 in which the water guide pipe parts 10 are integrated in series. Therefore, there is no need for a plumbing operation or a crushed stone laying operation as in the conventional trench method. Also, the weight of the connecting unit 1 is very light, about 5 kg, which makes the installation work much easier than when handling crushed stone. Therefore, the number of construction steps is significantly reduced as compared with the conventional trench method, and the penetration trench T can be installed efficiently and in a short time with very little labor.
[0044]
In the conventional infiltration trench, the porosity of the crushed stone layer was at most about 25 to 35%, whereas the internal porosity of the connecting unit 1 of the present embodiment was as high as about 95%, and this connecting unit 1 was used. The internal porosity in the infiltration trench T also shows almost the same percentage. For this reason, the storage capacity of rainwater per unit volume is dramatically improved as compared with the related art, and the size of the penetration trench can be reduced, the installation area can be reduced, and the installation cost can be reduced.
[0045]
Further, by providing the transfer mechanism in each connection unit 1, the inside of the penetration trench T can be appropriately cleaned without re-digging the ground after installation of the penetration trench T. For this reason, not only can the cost required for the maintenance management of the penetration trench T be significantly reduced, but also the effective life of the penetration trench T can be drastically extended.
[0046]
(Modification) The embodiment of the present invention may be modified as follows.
A convex portion (for example, a rib or a flange extending in a substantially horizontal direction) may be provided on the outer surface of the frame of the connecting unit 1 (for example, the outer surface of the side wall 2) to prevent floating due to earth pressure. According to this, even when the individual connecting units 1 are buried in the soil, when the earth pressure that causes the unit to float based on the specific gravity difference between the unit and the soil is generated, the floating prevention convex portion is provided. Since the unit is caught by the surrounding water-permeable sheet 45 (or soil) and opposes the buoyancy, the unit is prevented from rising.
[0047]
In the above-described embodiment, each unit is connected in a direction orthogonal to the unit connection direction (that is, in the left-right direction or the vertical Direction). Instead of or in addition to this, for example, a positioning portion (for example, an uneven portion) is formed at an edge of the four walls 2 to 4 constituting the periphery of the frame body, and a portion between two adjacent units 1 and 1 is formed. The respective units may be positioned in a direction orthogonal to the unit connecting direction (ie, in the left-right direction or the up-down direction) based on the mutual fitting of the positioning portions. In the above-described embodiment, a transfer mechanism is provided in each connection unit 1, but a connection unit without such a transfer mechanism may be used. In the case of such a unit having a simple design, the installation of the inspection tub 44 shown in FIGS. 7 to 9 is unnecessary.
[0048]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the connection unit for permeation trenches of this invention, a permeation trench can be efficiently constructed by using a small number of labor without using crushed stone etc. by connecting a plurality of said units in series. Further, since the internal area defined by the frame of the connecting unit is set as the storage area, the porosity inside the unit can be increased, and the storage capacity of rainwater or the like per unit volume can be increased as compared with the conventional case.
[0049]
ADVANTAGE OF THE INVENTION According to the construction method of the penetration trench of this invention, a penetration trench can be efficiently constructed with little effort, without using crushed stone. That is, compared to the conventional trench method using crushed stones, the number of work steps can be reduced to simplify the construction and save labor.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a connecting unit for a penetration trench.
FIG. 2 is a front view of the connection unit shown in FIG. 1;
3A is a sectional view taken along line AA of FIG. 2, and FIG. 3B is a side view of the connecting unit.
FIG. 4 is a plan view showing the upper surface of the connection unit.
FIG. 5 is a partial plan view showing a connection state of two units in a partially enlarged manner.
FIG. 6 is an enlarged sectional view taken along line BB in FIG. 5;
FIG. 7 is a plan view showing a construction example of a penetration trench in a building site.
8 (A) to 8 (C) are cross-sectional views showing a procedure for forming a penetration trench.
FIG. 9 is a cross-sectional view showing a state after completion of construction of a penetration trench.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Connecting unit, 2 ... Left and right side walls, 3 ... Upper wall, 4 ... Lower wall, 5 ... Central wall (2-5 form a frame), 6 ... Water hole (water passage part), 10 ... Water guide pipe part, 13: water guide opening, 20: transfer pipe part, 24: dust collection opening, 25: plate-shaped guide part (20, 24 and 25 constitute a transfer mechanism), 45: water-permeable sheet, 51: submersible pump (Fluid flow generating means), T: penetration trench.

Claims (7)

複数個を連結することで浸透トレンチを構成可能な連結ユニットであって、
内側に貯留領域を区画すると共にその貯留領域から外部への通水を確保するための通水部が設けられた枠体と、その枠体内に設けられて前記貯留領域と連通可能な導水管部とを備え、当該ユニットに隣接配置される他のユニットに対して直列連結可能に構成されており、複数ユニットの直列連結時には各導水管部により浸透トレンチ内に一連の導水経路を構築可能であることを特徴とする浸透トレンチ用連結ユニット。
A connection unit capable of forming a penetration trench by connecting a plurality of units,
A frame body that defines a storage area inside and that is provided with a water passage part for securing water flow from the storage area to the outside, and a water guide pipe part that is provided in the frame body and that can communicate with the storage area. It is configured so that it can be connected in series to other units arranged adjacent to the unit, and when connecting a plurality of units in series, it is possible to construct a series of water passages in the infiltration trench by each water pipe section A connection unit for a permeation trench, characterized in that:
前記導水管部は、前記貯留領域のうちの上部領域においてユニットの連結方向に延設されており、その導水管部の壁部には、当該導水管部を流れる水の一部を貯留領域に導くための導水開口が形成されていることを特徴とする請求項1に記載の浸透トレンチ用連結ユニット。The water pipe section extends in the connection direction of the unit in an upper region of the storage area, and a wall of the water pipe section partially transfers water flowing through the water pipe section to the storage area. The connecting unit for a permeation trench according to claim 1, wherein a water introduction opening for guiding is formed. 前記導水管部は略円筒状をなすと共に、当該導水管部の一端部と他端部とで内外径が異なることにより、直列連結時に隣り合う二つのユニットのうちの一方のユニットの導水管部の一端部と、他方のユニットの導水管部の他端部とが相互嵌合可能となっており、その相互嵌合に基づき、隣り合う二つのユニットの位置決め及びそれらの導水管部の相互連結が達成されることを特徴とする請求項1又は2に記載の浸透トレンチ用連結ユニット。The water pipe section has a substantially cylindrical shape, and the inner and outer diameters are different at one end and the other end of the water pipe section. One end and the other end of the water pipe section of the other unit can be fitted to each other. Based on the mutual fitting, positioning of two adjacent units and interconnection of those water pipe sections are performed. The connection unit for a penetration trench according to claim 1 or 2, wherein the following is achieved. 前記枠体の縁部には、複数ユニットの直列連結時において、各ユニットをユニット連結方向と略直交する方向に対して位置決めするための位置決め部が設けられていることを特徴とする請求項1〜3のいずれかに記載の浸透トレンチ用連結ユニット。The positioning part for positioning each unit in the direction substantially orthogonal to the unit connection direction at the time of serial connection of a plurality of units is provided at the edge of the frame. 4. The connecting unit for a permeation trench according to any one of the above-described items. 前記貯留領域のうちの下部領域には、枠体内に入り込んだ固体進入物をユニット外又は浸透トレンチ内の特定場所に移送するための移送機構が設けられていることを特徴とする請求項1〜4のいずれかに記載の浸透トレンチ用連結ユニット。A transfer mechanism for transferring a solid intruder entering the frame to a specific place outside the unit or in the permeation trench is provided in a lower region of the storage region. 5. The connection unit for a penetration trench according to any one of 4. 前記移送機構は、ユニットの連結方向に延設されると共に複数ユニットの直列連結時に一連の移送経路を構築可能な移送管部と、枠体内に入り込んだ固体進入物を捕捉して前記移送管部内に誘導するための板状ガイド部とを具備することを特徴とする請求項5に記載の浸透トレンチ用連結ユニット。The transfer mechanism extends in the unit connection direction and is capable of constructing a series of transfer paths when a plurality of units are connected in series. The connection unit for a penetration trench according to claim 5, further comprising: a plate-shaped guide portion for guiding to the penetration trench. 内側に貯留領域を区画すると共にその貯留領域から外部への通水を確保するための通水部が設けられた枠体と、その枠体内に設けられて前記貯留領域と連通可能な導水管部とを備えた連結ユニットを複数個準備し、地面を掘削してできた溝内に前記複数個の連結ユニットを直列連結状態で配置し、相互連結された連結ユニット群を透水シートで覆い、その後に透水シートで覆われた連結ユニット群を地下に埋設することを特徴とする浸透トレンチの施工方法。A frame body that defines a storage area inside and that is provided with a water passage part for securing water flow from the storage area to the outside, and a water guide pipe part that is provided in the frame body and can communicate with the storage area. Preparing a plurality of connecting units having, and arranging the plurality of connecting units in series connection in a groove formed by excavating the ground, covering the interconnected connection unit group with a permeable sheet, A connecting unit group covered with a water-permeable sheet is buried underground.
JP2002350368A 2002-12-02 2002-12-02 Osmosis trench connection unit and method of osmosis trench construction Expired - Lifetime JP4002820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350368A JP4002820B2 (en) 2002-12-02 2002-12-02 Osmosis trench connection unit and method of osmosis trench construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350368A JP4002820B2 (en) 2002-12-02 2002-12-02 Osmosis trench connection unit and method of osmosis trench construction

Publications (2)

Publication Number Publication Date
JP2004183294A true JP2004183294A (en) 2004-07-02
JP4002820B2 JP4002820B2 (en) 2007-11-07

Family

ID=32752616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350368A Expired - Lifetime JP4002820B2 (en) 2002-12-02 2002-12-02 Osmosis trench connection unit and method of osmosis trench construction

Country Status (1)

Country Link
JP (1) JP4002820B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200243A (en) * 2005-01-21 2006-08-03 Shinichiro Hayashi Storage tank and/or infiltration tank
JP2014214519A (en) * 2013-04-26 2014-11-17 アロン化成株式会社 Rainwater storage permeation system
JP2014234643A (en) * 2013-06-03 2014-12-15 アロン化成株式会社 Rainwater storage infiltration system
JP2018145732A (en) * 2017-03-08 2018-09-20 秩父ケミカル株式会社 Permeation box

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200243A (en) * 2005-01-21 2006-08-03 Shinichiro Hayashi Storage tank and/or infiltration tank
JP2014214519A (en) * 2013-04-26 2014-11-17 アロン化成株式会社 Rainwater storage permeation system
JP2014234643A (en) * 2013-06-03 2014-12-15 アロン化成株式会社 Rainwater storage infiltration system
JP2018145732A (en) * 2017-03-08 2018-09-20 秩父ケミカル株式会社 Permeation box

Also Published As

Publication number Publication date
JP4002820B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
US4919568A (en) System for draining land areas through siphoning from a permeable catch basin
KR101133580B1 (en) Dust-removal managing pit
WO2011083915A2 (en) Water pocket using a percolation well for the in-ground storage of percolated rainwater
PT734478E (en) UNDERGROUND DRAINAGE SYSTEM
JP5117932B2 (en) Underground storage infiltration tank
JP2003201722A (en) Rainwater storage and/or infiltration equipment and filling member used for the same
JP4997009B2 (en) Rainwater penetration
JP2009052366A (en) Underground water tank
JP3660917B2 (en) Facility for storing and / or infiltrating rainwater etc. and filling member used for this facility
JP2008208521A (en) Rainwater storage facility
JP4002820B2 (en) Osmosis trench connection unit and method of osmosis trench construction
JP2015224450A (en) Rainwater storage system
JP2009024453A (en) Assembly for rainwater storing and penetrating facility and rainwater storing and penetrating facility using the same
JP3974214B2 (en) Box arrangement type storage penetration tank
KR100728583B1 (en) De-Watering system
JP2006152741A (en) Rainwater storage unit, greening facility using this rainwater storage unit and underground water storage facility
JP2005023589A (en) Rainwater storing and/or permeating facility
CN211368666U (en) Siphon drainage collection system
CN216108549U (en) Side slope drainage device
JP2009097151A (en) Permeable structure
JP2005179919A (en) Facility for storage and percolation of rainwater and the like
JP6391008B2 (en) Rainwater storage pipe structure and rainwater tank used for it
JP2004360231A (en) Filling member for use in facility for storage and/or permeation of rainwater and the like, and construction method therefor
EP2397615B1 (en) Infiltration and transport sewer
JP2008308974A (en) Dust-removal managing pit for water storage tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070622

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070625

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4002820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term