JP2004183082A - Coated metallic sheet having excellent electroconductivity, corrosion resistance and formability - Google Patents

Coated metallic sheet having excellent electroconductivity, corrosion resistance and formability Download PDF

Info

Publication number
JP2004183082A
JP2004183082A JP2002354867A JP2002354867A JP2004183082A JP 2004183082 A JP2004183082 A JP 2004183082A JP 2002354867 A JP2002354867 A JP 2002354867A JP 2002354867 A JP2002354867 A JP 2002354867A JP 2004183082 A JP2004183082 A JP 2004183082A
Authority
JP
Japan
Prior art keywords
particle size
coating layer
conductive particles
corrosion resistance
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002354867A
Other languages
Japanese (ja)
Other versions
JP3959021B2 (en
Inventor
Hiroshi Kanai
洋 金井
Masahiro Fuda
雅裕 布田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002354867A priority Critical patent/JP3959021B2/en
Priority to CN038166933A priority patent/CN1668460B/en
Priority to KR1020047018310A priority patent/KR100619638B1/en
Priority to AU2003234918A priority patent/AU2003234918A1/en
Priority to US10/514,369 priority patent/US7390564B2/en
Priority to PCT/JP2003/006027 priority patent/WO2003095195A1/en
Publication of JP2004183082A publication Critical patent/JP2004183082A/en
Application granted granted Critical
Publication of JP3959021B2 publication Critical patent/JP3959021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated metallic sheet which has stable weldability (electroconductivity) and earth properties, and also has excellent formability and corrosion resistance. <P>SOLUTION: In the coated metallic sheet having excellent electroconductivity, corrosion resistance and formability, as to the metallic sheet in which a coating layer comprising electroconductive particles is formed at least on one side, provided that the mode in the number distribution per particle diameter of the electroconductive particles is defined as Mn, the mode in the volume distribution per particle diameter of the electroconductive particles as Mv, and the thickness of the coating layer as H, H/10≤Mv≤10H5Mn≤H≤200Mn12≤Mv/Mn≤50 is satisfied, and the content of the electroconductive particles in the coating layer is also 15 to 60 vol.%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、家電、OA機器、土木・建材、自動車用等に用いられる導電性粒子を含有する被覆層が形成された金属板に関する。
【0002】
【従来の技術】
金属板上に形成される被覆層は、そのバインダーとして導電性を持たない樹脂等を用いるため、導電性を持たず、溶接することができないし、アースを取ることも難しい。そこで、導電性粒子を含有する被覆層を金属板上に形成することによって、導電性を付与し、溶接を可能とする技術や、アースを取るための導電性を付与する技術が提案されている。
【0003】
例えば、特開平9−234820号公報には、導電性粒子としてリン化鉄を使用した樹脂被覆を金属板に施すことによって溶接性を付与する技術が例示されている。ここでは、導電性粒子の量が20〜45質量%に規定されており、この量の制御で溶接性が確保されている。粒子の粒径については、平均粒径20μm以下が良いと述べられている。
【0004】
また、特開平7−314601号公報には、導電性粒子としてNi系粒子を使用することによって、アース性を付与する技術が例示されている。ここでは、導電性粒子の粒径について平均値と最大値が規定され、燐片状の場合には長径最大100μm、平均15μmのものを11〜200部、さらに鎖状のものを加える場合には最大44μm、平均2.5μmのものを10部以下加えることが、導電性を確保する上で重要であることが記載されている。
【0005】
また、特開平1−60668号公報には、導電性を付与するための金属系粒子の平均粒径と塗膜厚みとの比を規定し、平均粒径が膜厚の0.5〜3倍の場合に導電性が確保できることが記載されている。粒径についての詳細な記述はないが、実施例には平均粒径で7.5〜25μmの例が記載されている。
【0006】
最近でも、特開2002−172363号公報には、粒径0.5〜10μmのフェロシリコンを10〜70質量%含有した有機樹脂皮膜を2.5〜8μmの厚みで亜鉛系めっき鋼板に被覆することで、溶接性に優れた表面処理鋼板を得る技術が提案されている。
【0007】
上記の各発明は、被覆層に導電性を付与し、それによって、被覆金属板として溶接性やアース性を確保するという点では十分な技術を提示している。しかし、安定した溶接性やアース性を得ると共に、成形性や耐食性をも両立するという点では、不十分であった。これは、粒子の粒径について、平均粒径、あるいは最大粒径という概念だけが用いられ、粒径分布については考慮されていないことに一因がある。
【0008】
耐食性を向上する観点で、防錆顔料を入れることが上記の特開平9−234820号公報や特開2002−172363号公報には記載されているが、導電性顔料の他に防錆顔料を入れることで、導電性や成形性は低下するため、可能であれば、防錆顔料の添加は最小限に抑える必要がある。また、特開2002−172363号公報には、下地となるめっき鋼板について、亜鉛合金めっき鋼板を使用すると耐食性により優れた被覆鋼板が得られることが記述されているが、めっき種類を変えることで価格が高くなったり、他の性能を犠牲にしたりすることもあり、下地となる鋼板の種類によらず高い耐食性や成形性を得られることが望まれる。
【0009】
【特許文献1】
特開平9−234820号公報
【特許文献2】
特開平7−314601号公報
【特許文献3】
特開平1−60668号公報
【特許文献4】
特開2002−172363号公報
【0010】
【発明が解決しようとする課題】
本発明は、上述のような問題点を解決するために、導電性(例えば、溶接性やアース性)、耐食性、成形性に優れる被覆金属板を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の技術的なポイントのひとつは、金属板上に形成される導電性粒子の粒径について、特開平7−314601号公報、特開2000−319790号公報等で提案されている「平均粒径」ではなく、粒度分布まで考慮に入れることによって、導電性、耐食性、成形性が両立できることを見出したことである。もう一点は、従来は、平均粒径が比較的大きく、例えば、特開平1−60668号公報にみられるように、塗膜厚みに対しても、ある程度以上の大きさとなる導電性粒子を加えることによって、導電性を確保することが行われているのに対し、小さな粒径の導電性粒子を使用する方が、導電性が安定し、かつ耐食性や成形性にも良い影響を及ぼすことを見出したことである。
【0012】
具体的には、
(1) 導電性粒子を含有する被覆層が少なくとも片面に形成された金属板において、導電性粒子の粒径毎の個数分布における最頻値をMn、導電性粒子の粒径毎の体積分布における最頻値をMv、被覆層の厚みをHとしたときに、
H/10≦Mv≦10H
5Mn≦H≦200Mn
12≦Mv/Mn≦50
であり、かつ導電性粒子の被覆層中の含有量が15〜60容量%であることを特徴とする導電性、耐食性、成形性に優れる被覆金属板、
(2) Mnが0.05〜1.5μm、Mvが2〜30μmであることを特徴とする(1)に記載の被覆金属板、
(3) 被覆層の厚みHが2〜20μmであることを特徴とする(1)又は(2)に記載の被覆金属板、
(4) 前記導電性粒子の最大粒径が35μm以下であることを特徴とする(1)〜(3)のいずれかに記載の被覆金属板、
(5) 前記導電性粒子がフェロシリコンであることを特徴とする(1)〜(4)のいずれかに記載の被覆金属板、
(6) 被覆層中のバインダー成分がウレタン結合を含む樹脂を主成分とすることを特徴とする(1)〜(5)のいずれかに記載の被覆金属板、
(7) 被覆層中のバインダー成分が熱可塑性樹脂を主成分とすることを特徴とする(1)〜(6)のいずれかに記載の被覆金属板、
(8) 被覆層中に防錆顔料及び/又はシリカを併せて20容量%以下含有することを特徴とする(1)〜(7)のいずれかに記載の被覆金属板、
である。
【0013】
【発明の実施の形態】
本発明は、導電性を有する粒子を含有する被覆層を金属板上の少なくとも片面に形成することが必須である。その導電性粒子の粒径分布について、粒径毎の個数分布の最頻値をMn、粒径毎の体積分布における最頻値をMvとしたときに、12≦Mv/Mn≦50なる関係が成立する場合に、特に導電性(溶接性、アース性)、成形性、耐食性が高いレベルとなることを見出した。この数字は、粒径分布を規定したもので、特に、粒径毎の個数分布の最頻値の粒径に対して、大きな粒子が多く存在すると、この値は大きくなる。この指標は、最大粒径とも異なる指標であり、最大粒径が同じでも、体積分布における最頻値は異なることがある。このように、分布を規定するところに本発明の一つの特徴がある。Mv/Mnが12を下回る場合、粒度分布をこのように調整するためには、大きめの粒径の粒子を除く作業が必要となり、非経済的であるばかりでなく、溶接性が低下する。一方、Mv/Mnが50を上回る場合には、成形性や耐食性が低下する。
【0014】
また、被覆層の厚みをHとしたときに、これらの間にH/10≦Mv≦10H、5Mn≦H≦200Mnなる関係を規定する。これは、特開平1−60668号公報に提案されているように、粒径の指標と膜厚の指標との関係がある範囲にある場合に、性能が良いことを述べているが、指標として、下記に述べるように、個数分布の最頻値及び体積分布の最頻値を用いていることで、従来言われているよりも(例えば特開平1−60668号公報の記載)、粒径が膜厚に対して小さい領域にも適当な領域があることを示している点で、従来技術とは異なっている。MvがH/10未満となると溶接性が低下し、10Hを超えると成形性と耐食性とが低下する。また、Hが5Mnより小さくなると耐食性と成形性が低下し、200Mnより大きくなると溶接性が低下する。
【0015】
粒径には分布があるが、従来技術においては単純に「平均粒径」という概念が用いられていた。これは、各粒子の粒径を単純に算術計算して求められたものである。しかし、発明者らは、粒径の単純な平均ではなく、粒径分布が重要であり、特に、どの粒径の粒子が多いかが、被覆金属板全体の導電性(溶接性やアース性)、耐食性、成形性に多大な影響を及ぼしていることを知見した。粒子の粒径を測定し、その粒径を持つ粒子の数を数え、粒径毎の個数の分布を調べ、その個数が最も多くなる粒径(最頻値)を求める。個数分布を調べる際には、粒径の範囲を0.05μm(粒径表示値の前後の0.025μmの範囲)として、データを採取することが望ましい。粒径分布の最頻値となる粒径が1μmを越える場合には、粒径範囲を0.1μmとしてデータを採取しても良い。粒径分布は、塗料(液体)の状態であれば、粒度分布計で容易に調べることができる。塗膜の状態の場合には、塗膜の断面の二次電子像を撮影し、粒子の粒径を実測する。球状でない場合には、長径をもって、その粒子の粒径とする。粒径分布が正規分布であれば、平均粒径と、本発明で言う最頻値は一致するが、実際には、粉砕したままの場合、あるいは塗料の状態にしてから分散した場合には、粒径の大きい方の粒子がより多く残り、大粒径側にテールができ、両値は一致しない。
【0016】
導電性粒子の粒径が従来の発明に比べて小さくなっていることも、本発明の特徴の一つである。従来は、塗膜厚みに対して粒径をある程度以上大きくすることで、塗膜を粒子が貫通していることによって、あるいは溶接時には電極の圧力によって、塗膜が一部破れ、導電性粒子が電極に接触することによって導電性を確保する、という考え方が一般的であった。この場合には、膜厚が厚くなると、導電性を確保するための粒子の粒径も大きくする必要があり、実質的に低い被覆厚みでのみ有効な技術となっていた。本発明は、粒径の小さい粒子を比較的多量に被覆層中に含有させることによって通電パスを確保するという考え方にたっており、そのために、粒子全体を小さくするとともに、小さい粒径の粒子の量を確保するために最頻値という尺度を使う。これによって、膜厚が厚くなる場合にも、粒径が小さくても導電性が確保可能となる。
【0017】
発明者らは、さらに、導電性粒子の粒径毎の体積分布における最頻値も重要であることを知見した。この値は、各粒径の粒子毎の体積を求め、その粒径の粒子の体積合計が、粒子全体の体積に対してどの程度の割合となっているかを求めたものである。この値が最も大きくなる粒径を、ここでは粒径毎の体積分布における最頻値とする。粒径が大きい粒子の影響がより強くでる指標で、大きい粒子の数が多いと、より顕著にこの値が大きくなる。個数分布の最頻値が同じでも、粒径の大きい側の分布が多いと、この値は大きくなる。体積分布における最頻値が高いと、溶接性が特に低下しやすい。ここで、溶接性とは、連続打点性の低下と、溶接部の金属板に割れが発生しやすいことを指している。それは、以下のような理由によると推定される。体積分布における最頻値が大きくなると、被覆層の凹凸がより多くなり、被覆層の凸部のみが溶接用の電極に接触しやすく、通電が不安定になるため、チリ発生が多くなり、電極が汚れやすい。また、局部的な発熱によりナゲットの形状が悪くなり、溶接強度が不安定となる。凸部には、硬質な導電性粒子が存在するため、電極間の圧力で被覆層が圧縮されることはなく、通電はその導電性粒子一個のみで確保されることになる。このような通電形態の場合には、電流が一点に集中しやすく、従って、発熱もその部分に集中しやすくなる。この熱の影響で、溶接部及びその近傍で金属板自身の割れが発生しやすくなる。一方、粒径分布と膜厚との関係を本発明の範囲内とすることで、大きな粒径の粒子の数が減り、被覆層面がより平滑になるため、電極がより広い面積の被覆層に接触可能で、通電が安定となり、ナゲットも正常に形成しやすい。また、大きな粒子がないことで、電極間の圧力によって被覆層が若干圧縮された状態となり、これによって導電性粒子間の通電がより確保されやすくなり、導電性が向上する。さらに、電流が一点に集中することもないため、溶接部や溶接部近傍の金属板が割れる現象も防止できる。
【0018】
また、成形性も本発明の範囲では従来よりも向上する。この理由は、過剰に大きな粒子がないことにより、成形時の粒子の脱落が少なくなり、また、成形時の塗膜割れは、粒子とバインダー成分の界面付近で起こることが多いが、過剰に大きな粒子がないことによって、この割れが軽減されるからである。また、塗膜表面の凹凸が過剰にならないことで、塗膜表面の摺動性もよくなり、ドロービード試験等を行った後の外観、耐食性も良好となる。絞り成形についても同様である。
【0019】
耐食性についても、成形性が良好になって、皮膜の一部の脱落や損傷がなくなることによって向上する。特に、フェロシリコンのように防錆効果のある導電性粒子を使用する場合には、粒子の表面積が大きくなることで耐食性が向上する効果もある。
【0020】
Mnが0.05〜1.5μm、Mvが2〜30μmである場合に、特に効果が高く、溶接性、成形性、耐食性が良好となる。同時に、膜厚が2〜20μmとなると、さらに効果が顕著である。また、最大粒径が35μm以下の条件を満たす場合も、効果が顕著となる。
【0021】
なお、本発明において、導電性粒子の粒径分布は、機械的な粉砕、分級による方法等の公知の方法で変化させることができる。被覆層を形成するためのバインダー中に、粒度分布を特定の範囲にしてから導電性粒子を混入して、粒度分布が変わらないような方法、例えば、シェアがほとんどかからない攪拌等でバインダー層中に分散してもよいし、バインダー中に混合してから粒子が粉砕されるような条件で分散してもよい。これらの方法を組み合わせても良いし、その順序も特定されない。
【0022】
体積分布の最頻値は、市販の粒度分布計で測定してもよいし、前述の粒径分布を被覆層の断面の観察から求める方法において、粒子を球と仮定してその粒径から求めてもよい。
【0023】
本発明においては、導電性粒子の被覆層中の含有量は15〜60容量%であることが必須である。含有量が15容量%より小さい場合には、導電性が不十分となる。一方、60容量%より大きい場合には、成形性が低下する。より望ましくは、20〜35容量%である。
【0024】
本発明において、膜厚は、本質的には限定されないが、膜厚が2〜20μmの範囲にある場合に、特に、導電性、耐食性、成形性が良好となり、望ましい。2μm以下では、耐食性が低下し、20μmを越えると、経済性に劣るようになり、また、成形性やアース性が低下する恐れがある。被覆層は、1層によってではなく、複数層によって形成しても良い。本発明による被覆層の上下に、必要であれば、他の層が形成されていても良い。例えば、下層に下地処理層を形成することが考えられ、また、上層に耐傷付き防止用の層や他の機能を付与するための層を形成しても良い。
【0025】
導電性粒子の最大粒径が35μm以下のときに、特に成形性が向上し、望ましい。膜厚によらず、最大粒径がこれより大きい場合には、成形加工を受けた場合に、被覆層に亀裂を生じやすくなる。特に、膜厚が2〜20μmの範囲にある場合に、導電性粒子の最大粒径が35μm以下であると、導電性、耐食性、成形性が最もよくなる。
【0026】
本発明において、導電性粒子としては、公知の物質を用いることができる。例えば、Zn、Ni、Fe、Al、Ag、Au、Cu、Mg、Cr、Sn、ステンレス鋼、Si等の金属、合金や半導体の粒子、リン化鉄、フェロシリコン、フェロマンガン等の鉄系化合物、NiO、ZnO等の酸化物系の粒子、カーボンブラック、グラファイト、カーボンナノチューブ等のカーボン系粒子、等を例示することができる。粒子の形状は、特に限定されるものではなく、塊状、フレーク状、球状、不定形、繊維状、ウィスカー状、鎖状等である。
【0027】
これらの導電性粒子の中でも、特に、フェロシリコンが好ましい。フェロシリコンは導電性を持ち、また、それ自体に耐食性向上効果がある。耐食性を向上する機構は十分に解明されていないが、塗膜下が腐食によってアルカリ環境となったときに溶解し、強固なシリカ被膜を形成して腐食を抑制するためと推定される。そのため、耐食性を向上するための別の防錆顔料を入れなくても、十分な耐食性を示し、導電性を阻害する要因を減らせる。粒径分布と含有量とが本発明の範囲にある場合、また、粒径分布が本発明の範囲にあり、膜厚範囲が本発明の範囲にある場合には、成形性も非常に良好である。フェロシリコンにも、Siの含有量の異なる種類があるが、特にSi含有量が70質量%以上のフェロシリコンが、耐食性と成形性とに優れ、好ましい。
【0028】
もちろん、溶接性や導電性を向上するために、複数の導電性粒子を使用してよい。全ての導電性粒子が、上述した本発明の粒径分布の範囲内にある場合には特に問題はなく、導電性粒子全体の被覆層中における含有量が15〜60容量%の範囲内で適宜混合して使用することができる。ただし、新たに添加する導電性粒子が大粒径の粒子である場合には、それらの含有量は被覆層中に5容量%以下であることが望ましい。5容量%を超えると、粒径分布の不均一性が大きくなり、成形性や溶接性の低下を招きやすくなる。
【0029】
また、耐食性を向上するために、1種以上の防錆顔料及び/又はシリカを加えることも差し支えない。それらの含有量は、被覆層中に20容量%以下であることが望ましい。好ましくは15容量%以下である。20容量%を超えると、導電性と成形性が低下しやすくなる。
【0030】
防錆顔料としては、例えば、ストロンチウムクロメート、カルシウムクロメートのような6価Cr酸塩等、防錆顔料として6価Cr化合物の使用を回避したい場合は、例えば、ケイ酸カルシウム、ケイ酸アルミニウム、リン酸マグネシウム、リン酸アルミニウム、バナジン酸リン、バナジン酸アルミニウム等の、ケイ酸イオン、リン酸イオン、バナジン酸イオンのうち一種類以上を放出する化合物等を用いることができる。これに、さらに微粒シリカを添加すると、耐擦り傷性、皮膜密着性、耐食性が向上する。微粒シリカとしては、例えば、ヒュームドシリカ、コロイダルシリカ、凝集シリカ等が挙げられる。また、カルシウム沈着シリカを用いることもできる。
【0031】
本発明においては、導電性粒子は、被覆層中にあるいは被覆層表面にその一部を埋没させる形で含有される。被覆層中には、導電性粒子の他に被覆層を保持するためのバインダー成分が含まれ、そのバインダー成分は公知の技術を使用することができる。例えば、バインダー成分が有機樹脂の場合、その樹脂の種類としては、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、フッ素樹脂、シリコン樹脂、ポリオレフィン樹脂、ブチラール樹脂、エーテル樹脂、スルフォン樹脂、ポリアミド樹脂、ポリイミド樹脂、アミノ樹脂、フェノール樹脂、塩化ビニル樹脂、ポリビニルアルコール樹脂、イソシアネート樹脂等の樹脂、これらの共重合樹脂、これらの混合物、複合物等が例示できる。また、ゾル−ゲル法等によって形成される無機あるいは有機無機複合皮膜であってもよい。常温で硬化乾燥するもの、熱で硬化乾燥するもの、紫外線や電子線等のエネルギー線で硬化乾燥するもの、等の公知の技術から選択すれば良い。また、これらの樹脂を主成分とするフィルムをラミネートして、被覆金属板を製造することもできる。
【0032】
これらの樹脂の他に、潤滑性を付与するためのワックス、消泡剤やレベリング剤、分散剤等の各種添加剤を被覆層中に含むことができる。
【0033】
これらの中でも、特に、被覆層中にウレタン結合を含む樹脂が使用される場合に、耐食性、成形性、導電性が高いレベルで並立できる。これは、ウレタン結合を持つ樹脂が柔軟性に優れ、溶接用の電極によって圧力をかけられた場合に容易に変形して、導電性顔料同士の接触を特に確実にすること、柔軟性によって成形加工時の塗膜の割れや亀裂を防止しやすいこと、化学的に強固な結合であるため劣化に強いこと等の理由によると考えられる。
【0034】
また、被覆層が熱可塑性樹脂を主成分とする場合には、特に溶接性に優れた被覆金属板が得られる。これは、溶接用の電極によって圧力がかかった時に、可塑性が発揮されて被覆層が圧縮され、これによって、導電性粒子間の接触がより強固で確実なものとなり、溶接電流が安定して流れるためと推定される。また、熱可塑性樹脂の柔軟性によって、成形時の被覆層の割れや剥離も少なくすることができ、結果として耐食性も向上する。
【0035】
金属板としては、公知のものを使用することができ、例えば、鋼板、銅板、チタン板、アルミ板等が例示できる。さらに、鋼板としては、各種めっき鋼板、ステンレス鋼板、冷延鋼板、熱延鋼板等が例示できる。さらに、めっき鋼板としては、亜鉛めっき鋼板、亜鉛合金めっき鋼板、合金化亜鉛めっき鋼板、錫めっき鋼板、錫合金めっき鋼板、クロムめっき鋼板、クロム合金めっき鋼板、アルミめっき鋼板、アルミ合金めっき鋼板、ニッケルめっき鋼板、ニッケル合金めっき鋼板、銅めっき鋼板、銅合金めっき鋼板、鉄めっき鋼板、鉄合金めっき鋼板、鉄リン複合めっき鋼板、マンガン系めっき鋼板、鉛系めっき鋼板、また、めっきを構成する金属あるいは合金中にシリカ等の微粒子を含有させた複合めっき鋼板、等が例示できる。
【0036】
特に、亜鉛系めっき鋼板、亜鉛系合金めっき鋼板(例えば、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、亜鉛−ニッケル合金めっき鋼板、亜鉛−アルミ合金めっき鋼板、亜鉛−アルミ−マグネシウム合金めっき鋼板等)を使用すると、経済性と耐食性に優れた自動車用プライマー鋼板や、家電やOA機器用のアース性が必要な塗装鋼板用に、アルミ系めっき鋼板、アルミ系合金メッキ鋼板(例えば、アルミ−シリコンめっき鋼板、アルミ−亜鉛−シリコン合金めっき鋼板)、等を使用すると建材用の高耐食性塗装鋼板に、亜鉛合金めっき鋼板(例えば、亜鉛−ニッケル合金めっき鋼板)や錫系合金めっき鋼板(例えば、錫−亜鉛合金めっき鋼板)を使用すると燃料タンク用の塗装鋼板として、好適に使用できる。また、溶接性の悪いアルミ板を原板として使用することで、溶接性に優れた自動車用プライマー鋼板として、好適に使用することもできる。
【0037】
これらの金属板表面には、被覆層と金属板との密着性を向上したり、耐食性を向上したりする目的で、あるいは導電性を向上する目的で、下地処理層を形成しても良い。下地処理層としては、公知の技術を使用することができ、例えば、リン酸塩系処理、3価クロム酸処理、クロメート処理、Zr系処理、Ti系処理、Mn系処理、Ni系処理、Co系処理、V系処理、カップリング剤(Si系、Ti系等)処理、有機物による処理等が例示できる。下地処理層は1層である必要はなく、例えば、燐酸亜鉛処理層を形成して、その上にシーリング処理をする、酸性Ni含有液による前調整後にクロメート処理を施す、等の複数の処理を組み合わせても良い。
【0038】
下地処理層を形成する前に、あるいは下地処理層を形成しない場合には被覆層を形成する前に、金属板表面を公知の方法で処理することができる。例えば、水や湯、脱脂液による脱脂、酸やアルカリによるエッチング、ぶらし等による機械的な研削、等の処理をすることができる。
【0039】
本発明の被覆金属板を製造する方法は、公知の方法によることができる。導電性粒子を含有する被覆鋼板は、例えば、バインダー成分に導電性粒子を混合した塗料を製造し、この塗料を塗布することによって製造できる。バインダー成分や含有成分によって、必要に応じて熱で溶剤などを揮発させたり、硬化させたり、あるいはエネルギー線で硬化する等、公知の方法で成膜することができる。塗布の方法は、公知の方法によることができ、例えば、ロールコーター、ローラー塗装、はけ塗り、カーテンコーター、ダイコーター、スライドコーター、静電塗布、スプレー塗布、浸漬塗布、エアナイフ塗布等が例示できる。塗料の形態も、粉体、固体、溶剤系、水系等、特に限定されるものではない。固体塗料に熱をかけて溶融して、ダイで押し出しながら被覆することも可能である。
【0040】
あるいは、導電性粒子を予めフィルム層中に練り混み、このフィルムをラミネートすることによっても、被覆金属板を製造することができる。ラミネートには、接着剤を使用してもよいし、フィルムを熱溶融して直接金属板にラミネートしても良い。
【0041】
本発明における被覆層は、金属の少なくとも片面に形成されればよいが、両面に形成してもよい。片面に形成した場合、もう片面には、何らかの処理層や被覆層を形成してもよいし、金属面のままでも良い。
【0042】
【実施例】
本発明について、実施例で説明する。
【0043】
(実施例1)
各種導電性粒子を準備し、条件に応じて粉砕機で粉砕し、また、分級してさまざまな粒度分布の粒子を作製した。この導電性粒子をウレタン−エポキシ系樹脂に所定量混合し、金属板上に塗布後、焼付け乾燥した。一部は、金属板上に下地処理皮膜を施した後、有機皮膜を塗装した。その条件を表1に示す。このときの乾燥条件は、到達板温度で210℃である。このようにして得られた塗装金属板について、以下に示す条件で、溶接性、成形性、耐食性の評価を実施した。
【0044】
(1) スポット溶接性評価
先端径5mm−R40のCr−Cu電極を用い、溶接電流8kA、加圧力1.96kN、溶接時間12サイクルでスポット溶接を行い、ナゲット径が3√tを切る直前の打点数で連続打点数を評価した。
【0045】
(2) アース性
ロレスター4探針法により、被覆層の層間抵抗値を測定した。
【0046】
(3) 成形性
(a) 円筒深絞り成形試験
油圧成型試験機により、直径50mmの円筒ポンチを用いて、絞り比2.0で成形試験を行った。防錆油を塗布後に1時間〜1時間30分静置してから、試験を行った。このときのしわ抑え圧は9.8kNで行った。成形性の評価は、次の指標によった。
【0047】
◎:成形可能で塗膜の欠陥なし。加工部にツヤひけ等見られず全く正常。
【0048】
○:成形可能で塗膜にわずかに疵発生。皮膜加工部に色調変化見られるものの亀裂や剥離は見られない。
【0049】
△:成形可能で塗膜に大きな疵発生、皮膜に割れが認められるもの。
【0050】
×:成形不可。
【0051】
(b) ビード引き抜き試験
凸R4mm−肩R2mmの丸型ビード金型を使用し、防錆油を塗布後に1時間〜1時間30分立てかけて静置した後、抑え荷重9.8kNにて、ビード引き抜き試験を行い、耐傷つき性を評価した。耐傷つき性の評価は、次の指標によった。
【0052】
◎:塗膜の欠陥なし。皮膜状態は加工部にツヤひけ等見られず全く正常。
【0053】
○:塗膜にわずかに疵発生。皮膜加工部に色調変化見られるものの亀裂や剥離は見られない。
【0054】
△:塗膜に大きな疵発生、割れが認められるもの。
【0055】
×:成形不可。
【0056】
(4) 耐食性評価
塗装後の鋼板を、塗装面が外側になるように、円筒深絞り成形した後に、サイクル腐食試験を行った。円筒深絞り成形条件は、(3)と同様とした。
【0057】
また、塗膜面が、凸部張り出し側になるように、ビード引き抜き後に、サイクル腐食試験を行った。ビード引き抜き条件は、(3)と同様とした。
【0058】
また、平板の切断端面を露出したまま、サイクル腐食試験を行った。
【0059】
サイクル腐食試験は、塩水噴霧2時間、乾燥4時間、湿潤2時間の合計8時間を1サイクルとして実施した。塩水噴霧の条件は、JIS−K5400にしたがった。乾燥条件は、温度50℃、湿度30%RH以下、湿潤条件は、温度35℃、湿度95%RH以上である。
【0060】
耐食性の評価は、以下の指標によった。
【0061】
(a) 円筒深絞り材:赤錆発生が生じるまでのサイクル数
(b) ビード引き抜き材:赤錆発生が生じるまでのサイクル数。
【0062】
(c) 平板端面:サイクル試験100サイクル後の端面の状態を評価
◎:赤錆が発生せず、めっき層の腐食を示す白錆がサンプルを覆う面積率が全体の5%未満の場合
○:赤錆が発生せず、めっき層の腐食を示す白錆がサンプルを覆う面積率が全体の5%以上50%未満の場合
△:わずかに赤錆発生が見られる、白錆発生が50%以上の場合
×:赤錆発生が20%以上見られる場合
【0063】
【表1】

Figure 2004183082
【0064】
※1 EG:電気Znめっき鋼板(めっき付着量40g/m
ZL:電気Zn−12%Niめっき鋼板(めっき付着量40g/m
GA:合金化溶融亜鉛めっき鋼板(めっき付着量45g/m
※2 3価Cr:3価Cr処理皮膜(皮膜付着量50mg/m[Cr換算])
Ti系処理1:Ti化合物−樹脂−シリカ系(皮膜付着量100mg/m
Zr系処理:Zr化合物−シランカップリング剤−シリカ系(皮膜付着量200mg/m
※3 粒子1:76%Si含有フェロシリコン粒子
粒子2:76%Si含有フェロシリコン粒子
粒子3:76%Si含有フェロシリコン粒子
粒子4:76%Si含有フェロシリコン粒子
粒子5:76%Si含有フェロシリコン粒子
粒子6:76%Si含有フェロシリコン粒子
粒子7:76%Si含有フェロシリコン粒子
粒子8:76%Si含有フェロシリコン粒子
粒子9:76%Si含有フェロシリコン粒子
粒子10:76%Si含有フェロシリコン粒子
粒子11:76%Si含有フェロシリコン粒子
粒子12:76%Si含有フェロシリコン粒子
粒子13:76%Si含有フェロシリコン粒子
粒子14:45%Si含有フェロシリコン粒子
粒子15:リン化鉄(Fe)粒子
粒子16:Zn粉末
結果を表2に示す。本発明の実施例に示される如く、導電性粒子の粒度分布として、導電性粒子の粒径毎の個数分布における最頻値Mn、導電性粒子の粒径毎の体積分布における最頻値Mv、及び、被覆層の厚みHとの関係を、所定の相関式を満たす範囲内に制御することで、かつ、導電性粒子の被覆層中の含有量を15〜60容量%とすることで、良好な溶接性と成形性、耐食性が確保できる。また、膜厚を適正な値に制御することで、同様に良好な溶接性と成形性、耐食性が確保できる。
【0065】
No.1、10、11、12、19、20、28の比較例は、本発明例から外れた被覆金属板の例を示した。No.1は、導電性粒子量が少なく、導電性が得られない。No.10は、導電性粒子量が多すぎ、成形性が低下する。No.12は、Mv/Mnが12より小さく、溶接性が低下する。No.19は、Mv/Mnが50より大きく、耐食性、成形性が低下する。No.11は、被覆層厚みHが200Mnより大きく、溶接性が低下する。No.20は、被覆層厚みHが5Mnより小さく、耐食性、成形性が低下する。No.28は、Mvが10Hより大きく、耐食性、成形性が低下する。
【0066】
【表2】
Figure 2004183082
【0067】
(実施例2)
各種の導電性粒子あるいは防錆顔料が混合されている場合、及び樹脂系を変えた場合の条件を表3に示す。導電性粒子、防錆顔料を、ウレタン−エポキシ系樹脂、ポリエステル−メラミン系樹脂、ポリエステル−ウレタン系樹脂、アクリル−ポリエステル系樹脂、ポリエチレンテレフタレート樹脂、ポリオレフィン樹脂に所定量混合し、金属板上に塗布後、焼付・乾燥した。その他の被覆金属板製造方法は、実施例1と同様である。得られた被覆金属板について、実施例1と同様の条件で、溶接性、成形性、耐食性の評価を実施した。
【0068】
【表3】
Figure 2004183082
【0069】
※4 EG: 電気Znめっき鋼板(めっき付着量40g/m
ZL:電気Zn−12%Niめっき鋼板(めっき付着量40g/m
※5 3価Cr:3価Cr処理皮膜(皮膜付着量50mg/m[Cr換算])
※6 樹脂A:ウレタン−エポキシ樹脂
樹脂B:ポリエステル−メラミン樹脂
樹脂C:ポリエステル−ウレタン樹脂
樹脂D:アクリル−ポリエステル樹脂
樹脂E:ポリエチレンテレフタレート樹脂
樹脂F:ポリオレフィン樹脂
※7 粒子1:76%Si含有フェロシリコン粒子
粒子17:粒子1(99vol%)+ステンレス鋼粒子(1vol%)
粒子18:粒子10(99vol%)+ステンレス鋼粒子(1vol%)
粒子19:粒子1(97vol%)+ステンレス鋼粒子(3vol%)
粒子20:粒子1(95vol%)+ステンレス鋼粒子(5vol%)
粒子21:粒子1(90vol%)+ステンレス鋼粒子(10vol%)
粒子22:粒子1(80vol%)+ステンレス鋼粒子(20vol%)
但し、ここで用いたステンレス鋼粒子単独の粒径分布は、個数分布最頻値:2.5μm、個数:10%、体積分布最頻値:7μm、最大粒径:10μm、であった。
※8 顔料1:第2リン酸マグネシウム(50質量部)+Mn・V焼成物(50質量部)
顔料2:Ca(POとVのモル比1/1混合物
顔料3: Ca(POとVのモル比1/1混合物(50質量部)+ヒュームドシリカ(50質量部)
その結果を表4に示す。大きな粒径のステンレス鋼粒子を添加した場合、そのステンレス鋼粒子の含有量が5容量%以下であると、成形性を低下させず、バランスの良い溶接性、成形性、耐食性が得られる。10容量%以上の添加では、加工性がやや低下するようになる。また、防錆顔料が20容量%以下であると、溶接性、成形性を低下させずに、良好な耐食性を得ることができる。また、熱可塑性樹脂を用いることで、良好な溶接性を得ることができる。
【0070】
No.38、39、43の比較例は、本発明の範囲を外れた被覆金属板の例を示した。No.38は、導電性粒子量が少なすぎて導電性がない。No.39は、Hが5Mnより小さく、成形性、耐食性が低下する。No.43は、導電性粒子量が60容量%を越え、成形性が悪い。
【0071】
【表4】
Figure 2004183082
【0072】
(実施例3)
粒径分布を制御した導電性粒子あるいはその他の粒子を含有するウレタン−エポキシ系樹脂皮膜を塗布した金属板について、燃料タンク材料としての適性評価を実施した例を表5に示す。端面耐食性を除く実施例1の性能評価項目に加え、下記に示すシーム溶接性、及びタンク内面側を模擬した耐食性試験を実施した。
【0073】
(5) シーム溶接性
先端R6mm−φ250mmの電極輪を用い、溶接電流11kA、加圧力4.9kN、通電2on−1offで10mのシーム溶接を行った後、JIS−Z−3141に示す試験片を作製し、漏れ試験を実施した。
【0074】
◎:漏れ無し
○:漏れ無いが、溶接部表面がやや荒れているもの
△:漏れ無いが、溶接部表面に割れ等の欠陥が発生しているもの
×:漏れ発生
(6) 内面耐食性
ガソリンに対する耐食性を評価した。方法は、油圧成型試験機によりフランジ幅20mm、直径50mm、深さ25mmの平底円筒深絞りした試料に、試験液を入れて、シリコンゴム製リングを介してガラスで蓋をした。この試験後の腐食状況を目視観察した。
【0075】
(試験条件)
試験液:ガソリン+蒸留水10%+ギ酸200ppm
試験期間:40℃で3ヶ月放置
(評価基準)
◎:変化無し
○:白錆発生1%以下
△:赤錆発生5%以下,又は白錆発生1%〜50%
×:赤錆発生5%超又は白錆顕著
【0076】
【表5】
Figure 2004183082
【0077】
※9 ZL:電気Zn−12%Niめっき鋼板(めっき付着量40g/m
Sn−Zn:溶融Sn−8%Znめっき鋼板(めっき付着量40g/m
※10 3価Cr:3価Cr処理皮膜(皮膜付着量50mg/m[Cr換算])
Ti系処理2:Ti化合物−樹脂−リン酸(皮膜付着量300mg/m
Zr系処理:Zr化合物−シランカップリング剤−シリカ系(皮膜付着量200mg/m
※11 粒子1:76%Si含有フェロシリコン粒子
粒子15:リン化鉄(Fe)粒子
粒子16:Zn粉末
粒子23:粒子1(99vol%)+ステンレス鋼粒子(1vol%)
粒子24:粒子5(99vol%)+ステンレス鋼粒子(1vol%)
粒子25:粒子7(99vol%)+ステンレス鋼粒子(1vol%)
粒子26:粒子10(99vol%)+ステンレス鋼粒子(1vol%)
粒子27:粒子9(99vol%)+ステンレス鋼粒子(1vol%)
※12 顔料1:第2リン酸マグネシウム(50質量部)+Mn・V焼成物(50質量部)
顔料2:Ca(POとVのモル比1/1混合物
顔料3: Ca(POとVのモル比1/1混合物(50質量部)+ヒュームドシリカ(50質量部)
その結果を表6に示す。導電性粒子の粒度分布として、導電性粒子の粒径毎の個数分布における最頻値Mn、導電性粒子の粒径毎の体積分布における最頻値Mv、及び、被覆層の厚みHを、所定の相関式を満たす範囲内に制御することで、良好な溶接性と成形性、耐食性が得られ、燃料タンク素材としても適することが分かった。
【0078】
No.55、60、66、70、74の比較例は、本発明を外れる被覆金属板を示した。No.55、66は、導電性粒子量が少なく、溶接性が不良である。No.60、74は、導電性粒子の個数分布最頻値Mnが大きく、Hが5Mn未満となり、成形性、耐食性が悪い。No.70は、導電性粒子量が多すぎ、成形性が低下する。
【0079】
【表6】
Figure 2004183082
【0080】
【発明の効果】
以上の結果から、本発明の粒度分布を制御した導電性粒子を含有する被覆金属板は、家電、OA機器、土木・建材、自動車用等、溶接を行う部品、アース性を必要とする部品に幅広くかつ容易に用いることができ、さらに、良好な成形性、耐食性をも確保できるため、さまざまな用途での適用が期待され各種産業分野への寄与が大きい。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a metal plate on which a coating layer containing conductive particles used for home appliances, OA equipment, civil engineering / building materials, automobiles and the like is formed.
[0002]
[Prior art]
Since the coating layer formed on the metal plate uses a non-conductive resin or the like as a binder, the coating layer has no conductivity, cannot be welded, and is difficult to be grounded. Thus, a technique has been proposed in which a coating layer containing conductive particles is formed on a metal plate to provide conductivity, thereby enabling welding and a technique for providing conductivity for grounding. .
[0003]
For example, Japanese Patent Application Laid-Open No. 9-234820 discloses a technique for imparting weldability by applying a resin coating using iron phosphide as conductive particles to a metal plate. Here, the amount of the conductive particles is specified to be 20 to 45% by mass, and control of this amount ensures the weldability. It is stated that the average particle diameter of the particles is preferably 20 μm or less.
[0004]
Japanese Patent Application Laid-Open No. 7-314601 exemplifies a technique for imparting a grounding property by using Ni-based particles as conductive particles. Here, the average value and the maximum value are defined for the particle size of the conductive particles. In the case of a flaky shape, the longest diameter is 100 μm, the average size of 15 μm is 11 to 200 parts, and when the chain shape is added, It is described that adding 10 parts or less having a maximum of 44 μm and an average of 2.5 μm is important for securing conductivity.
[0005]
Japanese Patent Application Laid-Open No. 1-60668 discloses that the ratio between the average particle size of metal-based particles for imparting conductivity and the thickness of a coating film is defined, and the average particle size is 0.5 to 3 times the film thickness. Describes that conductivity can be ensured in the case of. Although there is no detailed description of the particle size, the examples describe an example in which the average particle size is 7.5 to 25 μm.
[0006]
Even recently, JP-A-2002-172363 discloses that a zinc-based plated steel sheet is coated with an organic resin film containing 10 to 70% by mass of ferrosilicon having a particle size of 0.5 to 10 μm to a thickness of 2.5 to 8 μm. Thus, a technique for obtaining a surface-treated steel sheet having excellent weldability has been proposed.
[0007]
Each of the above-mentioned inventions presents a sufficient technique in terms of imparting conductivity to the coating layer, thereby securing the weldability and the grounding property of the coated metal plate. However, it is not sufficient in that stable weldability and grounding property are obtained, and at the same time, formability and corrosion resistance are compatible. This is partly due to the fact that only the concept of the average particle size or the maximum particle size is used for the particle size, and the particle size distribution is not considered.
[0008]
From the viewpoint of improving corrosion resistance, it is described in JP-A-9-234820 and JP-A-2002-172363 that the addition of a rust preventive pigment is described. As a result, the conductivity and the moldability are reduced. Therefore, it is necessary to minimize the addition of a rust preventive pigment if possible. Japanese Patent Application Laid-Open No. 2002-172363 describes that a coated steel sheet having excellent corrosion resistance can be obtained by using a zinc alloy-plated steel sheet as a base steel sheet. Therefore, it is desired that high corrosion resistance and formability can be obtained irrespective of the type of the steel sheet used as the base.
[0009]
[Patent Document 1]
JP-A-9-234820 [Patent Document 2]
JP-A-7-314601 [Patent Document 3]
Japanese Patent Application Laid-Open No. 1-60668 [Patent Document 4]
Japanese Patent Application Laid-Open No. 2002-172363
[Problems to be solved by the invention]
An object of the present invention is to provide a coated metal sheet having excellent conductivity (for example, weldability and grounding property), corrosion resistance, and moldability in order to solve the above-described problems.
[0011]
[Means for Solving the Problems]
One of the technical points of the present invention is that the average particle size of conductive particles formed on a metal plate is proposed in Japanese Patent Application Laid-Open Nos. 7-314601 and 2000-319790. It has been found that conductivity, corrosion resistance, and moldability can be achieved by taking into account not only the “diameter” but also the particle size distribution. Another point is that conventionally, the average particle size is relatively large, for example, as described in JP-A-1-60668, the addition of conductive particles having a certain size or more with respect to the coating film thickness. Has been found to secure conductivity, but using conductive particles with a small particle size stabilizes conductivity and has a better effect on corrosion resistance and moldability. That is.
[0012]
In particular,
(1) In a metal plate on which a coating layer containing conductive particles is formed on at least one surface, the mode in the number distribution of the conductive particles for each particle size is Mn, and the mode value in the volume distribution for each particle size of the conductive particles is Mn. When the mode is Mv and the thickness of the coating layer is H,
H / 10 ≦ Mv ≦ 10H
5Mn ≦ H ≦ 200Mn
12 ≦ Mv / Mn ≦ 50
And a coated metal plate having excellent conductivity, corrosion resistance, and moldability, wherein the content of the conductive particles in the coating layer is 15 to 60% by volume.
(2) The coated metal plate according to (1), wherein Mn is 0.05 to 1.5 μm and Mv is 2 to 30 μm.
(3) The coated metal plate according to (1) or (2), wherein the thickness H of the coating layer is 2 to 20 μm.
(4) The coated metal plate according to any one of (1) to (3), wherein a maximum particle size of the conductive particles is 35 μm or less.
(5) The coated metal plate according to any one of (1) to (4), wherein the conductive particles are ferrosilicon.
(6) The coated metal plate according to any one of (1) to (5), wherein the binder component in the coating layer is mainly composed of a resin containing a urethane bond.
(7) The coated metal plate according to any one of (1) to (6), wherein the binder component in the coating layer is mainly composed of a thermoplastic resin.
(8) The coated metal sheet according to any one of (1) to (7), wherein the coating layer contains a total of 20% by volume or less of a rust preventive pigment and / or silica.
It is.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, it is essential that a coating layer containing particles having conductivity is formed on at least one surface of a metal plate. Regarding the particle size distribution of the conductive particles, when the mode of the number distribution for each particle size is Mn and the mode in the volume distribution for each particle size is Mv, the relationship of 12 ≦ Mv / Mn ≦ 50 is obtained. When it is satisfied, it has been found that the conductivity (weldability, grounding property), moldability, and corrosion resistance are particularly high. This number defines the particle size distribution. In particular, this value becomes large when there are many large particles with respect to the mode particle size of the number distribution for each particle size. This index is different from the maximum particle size, and even if the maximum particle size is the same, the mode in the volume distribution may be different. As described above, one feature of the present invention lies in defining the distribution. When Mv / Mn is less than 12, in order to adjust the particle size distribution in this way, it is necessary to remove particles having a large particle size, which is not only uneconomical, but also reduces weldability. On the other hand, when Mv / Mn exceeds 50, moldability and corrosion resistance are reduced.
[0014]
When the thickness of the coating layer is H, a relationship of H / 10 ≦ Mv ≦ 10H and 5Mn ≦ H ≦ 200Mn is defined between them. This states that the performance is good when the relationship between the index of the particle size and the index of the film thickness is in a certain range, as proposed in Japanese Patent Application Laid-Open No. 1-60668. As described below, by using the mode of the number distribution and the mode of the volume distribution, the particle size is smaller than conventionally known (for example, described in JP-A-1-60668). It differs from the prior art in that it shows that there is an appropriate region even in a region smaller than the film thickness. When Mv is less than H / 10, the weldability decreases, and when it exceeds 10H, the formability and the corrosion resistance decrease. Further, when H is less than 5 Mn, corrosion resistance and formability decrease, and when H is more than 200 Mn, weldability decreases.
[0015]
Although the particle size has a distribution, the concept of “average particle size” was simply used in the prior art. This is obtained by simply arithmetically calculating the particle size of each particle. However, the present inventors have found that the particle size distribution is important, not the simple average of the particle size. In particular, which particle size is large depends on the conductivity (weldability and grounding property) of the entire coated metal plate, It has been found that it has a great influence on corrosion resistance and moldability. The particle size of the particles is measured, the number of particles having the particle size is counted, the distribution of the number of each particle size is examined, and the particle size (mode) at which the number is the largest is determined. When examining the number distribution, it is desirable to set the range of the particle size to 0.05 μm (the range of 0.025 μm before and after the indicated particle size) and to collect data. When the particle size that is the mode of the particle size distribution exceeds 1 μm, the data may be collected with the particle size range of 0.1 μm. The particle size distribution can be easily checked with a particle size distribution meter if it is in the state of a paint (liquid). In the case of the coating film, a secondary electron image of the cross section of the coating film is taken, and the particle diameter of the particles is measured. If the particles are not spherical, the longer diameter is used as the particle diameter of the particles. If the particle size distribution is a normal distribution, the average particle size and the mode described in the present invention match, but in fact, if the powder is kept ground or dispersed in the state of the paint, The larger particles remain, leaving a tail on the larger side, and the values do not match.
[0016]
One of the features of the present invention is that the particle size of the conductive particles is smaller than that of the conventional invention. Conventionally, by increasing the particle size to a certain degree or more with respect to the thickness of the coating film, the coating film is partially broken by the penetration of the particles in the coating film or by the pressure of the electrode during welding, and the conductive particles are broken. The general idea was to ensure conductivity by contacting the electrodes. In this case, as the film thickness increases, it is necessary to increase the particle size of the particles for securing conductivity, and this has been an effective technique only with a substantially low coating thickness. The present invention is based on the idea that the energization path is ensured by incorporating a relatively large amount of particles having a small particle diameter into the coating layer. We use the measure of mode to ensure that This makes it possible to ensure conductivity even when the film thickness is large and the particle size is small.
[0017]
The inventors have further found that the mode in the volume distribution of each particle size of the conductive particles is also important. This value is obtained by calculating the volume of each particle of each particle size and determining the ratio of the total volume of the particles of the particle size to the volume of the whole particle. Here, the particle size at which this value is the largest is set as the mode value in the volume distribution for each particle size. This is an index in which the influence of particles having a large particle size is stronger. When the number of large particles is large, the value is more remarkably increased. Even if the mode value of the number distribution is the same, this value increases when there are many distributions on the larger particle size side. If the mode in the volume distribution is high, the weldability is particularly likely to decrease. Here, the weldability indicates that the continuous hitting property is reduced and that the metal plate at the welded portion is easily cracked. This is presumed to be due to the following reasons. When the mode value in the volume distribution increases, the unevenness of the coating layer increases, and only the protrusions of the coating layer easily come into contact with the welding electrode. But easy to get dirty. In addition, the shape of the nugget deteriorates due to local heat generation, and the welding strength becomes unstable. Since the hard conductive particles are present in the convex portions, the coating layer is not compressed by the pressure between the electrodes, and the conduction is ensured by only one of the conductive particles. In the case of such an energization mode, the current tends to concentrate on one point, and therefore, the heat also tends to concentrate on that part. Under the influence of this heat, cracks in the metal plate itself are likely to occur in the welded portion and in the vicinity thereof. On the other hand, by setting the relationship between the particle size distribution and the film thickness within the range of the present invention, the number of particles having a large particle size is reduced, and the coating layer surface becomes smoother. The contact is possible, the current is stable, and the nugget is easily formed normally. In addition, since there are no large particles, the coating layer is slightly compressed by the pressure between the electrodes, which makes it easier to secure conduction between the conductive particles and improves the conductivity. Further, since the current does not concentrate on one point, the phenomenon that the welded portion or the metal plate near the welded portion is broken can be prevented.
[0018]
Also, the moldability is improved within the scope of the present invention as compared with the related art. The reason for this is that the absence of excessively large particles reduces the dropout of particles during molding, and the cracking of the coating film during molding often occurs near the interface between the particles and the binder component, but is excessively large. This is because such cracks are reduced by the absence of particles. In addition, since the unevenness of the coating film surface is not excessive, the slidability of the coating film surface is improved, and the appearance and corrosion resistance after performing a draw bead test or the like are also improved. The same applies to drawing.
[0019]
Corrosion resistance is also improved by improving moldability and eliminating part of the film from falling off or damage. In particular, when conductive particles having a rust-preventing effect, such as ferrosilicon, are used, there is also an effect that the corrosion resistance is improved by increasing the surface area of the particles.
[0020]
When Mn is 0.05 to 1.5 μm and Mv is 2 to 30 μm, the effect is particularly high, and the weldability, formability, and corrosion resistance are good. At the same time, when the film thickness is 2 to 20 μm, the effect is more remarkable. The effect is also remarkable when the maximum particle size satisfies the condition of 35 μm or less.
[0021]
In the present invention, the particle size distribution of the conductive particles can be changed by a known method such as mechanical pulverization and classification. In the binder for forming the coating layer, by mixing the conductive particles after the particle size distribution in a specific range, a method such that the particle size distribution does not change, for example, in the binder layer by stirring that hardly takes a share, etc. The particles may be dispersed or may be mixed under a condition that the particles are pulverized after being mixed in the binder. These methods may be combined, and the order is not specified.
[0022]
The mode value of the volume distribution may be measured with a commercially available particle size distribution meter, or in the above-described method of obtaining the particle size distribution by observing the cross section of the coating layer, assuming that the particles are spherical, and obtaining the mode from the particle size. You may.
[0023]
In the present invention, it is essential that the content of the conductive particles in the coating layer is 15 to 60% by volume. If the content is less than 15% by volume, the conductivity will be insufficient. On the other hand, when it is more than 60% by volume, the moldability is reduced. More preferably, it is 20 to 35% by volume.
[0024]
In the present invention, the film thickness is not essentially limited. However, when the film thickness is in the range of 2 to 20 μm, the conductivity, corrosion resistance, and moldability are particularly good, which is desirable. If it is less than 2 μm, the corrosion resistance will be reduced, and if it exceeds 20 μm, the economy will be poor, and the moldability and the earthing property may be reduced. The coating layer may be formed not by one layer but by a plurality of layers. If necessary, other layers may be formed above and below the coating layer according to the present invention. For example, a base treatment layer may be formed as a lower layer, and a layer for preventing scratching or a layer for imparting another function may be formed as an upper layer.
[0025]
When the maximum particle size of the conductive particles is 35 μm or less, moldability is particularly improved, which is desirable. Regardless of the film thickness, if the maximum particle size is larger than this, the coating layer is likely to crack when subjected to molding. In particular, when the film thickness is in the range of 2 to 20 μm, if the maximum particle size of the conductive particles is 35 μm or less, the conductivity, corrosion resistance, and moldability are best.
[0026]
In the present invention, a known substance can be used as the conductive particles. For example, particles such as metals such as Zn, Ni, Fe, Al, Ag, Au, Cu, Mg, Cr, Sn, stainless steel and Si, alloys and semiconductors, iron phosphide, ferrosilicon, and ferromanganese such as ferromanganese , NiO, ZnO and other oxide-based particles, carbon black, graphite, carbon nanotubes and other carbon-based particles, and the like. The shape of the particles is not particularly limited, and may be lump, flake, sphere, amorphous, fibrous, whisker, chain, or the like.
[0027]
Among these conductive particles, ferrosilicon is particularly preferred. Ferrosilicon has conductivity, and itself has an effect of improving corrosion resistance. Although the mechanism for improving the corrosion resistance has not been sufficiently elucidated, it is presumed that it dissolves when the undercoat film becomes an alkaline environment due to corrosion and forms a strong silica film to suppress the corrosion. Therefore, even if another rust-preventive pigment for improving corrosion resistance is not added, sufficient corrosion resistance is exhibited, and the factor that hinders conductivity can be reduced. When the particle size distribution and the content are within the range of the present invention, and when the particle size distribution is within the range of the present invention and the film thickness range is within the range of the present invention, the moldability is also very good. is there. There are also different types of ferrosilicon having different Si contents, but ferrosilicon having a Si content of 70% by mass or more is particularly preferable because of its excellent corrosion resistance and moldability.
[0028]
Of course, a plurality of conductive particles may be used to improve weldability and conductivity. There is no particular problem when all the conductive particles are within the above-described range of the particle size distribution of the present invention, and the content of the whole conductive particles in the coating layer is appropriately set within the range of 15 to 60% by volume. They can be mixed and used. However, when the newly added conductive particles are particles having a large particle size, the content thereof is desirably 5% by volume or less in the coating layer. When the content exceeds 5% by volume, the non-uniformity of the particle size distribution becomes large, and the moldability and the weldability tend to be lowered.
[0029]
Further, in order to improve the corrosion resistance, one or more rust preventive pigments and / or silica may be added. Their content is desirably 20% by volume or less in the coating layer. Preferably it is 15% by volume or less. If it exceeds 20% by volume, conductivity and moldability are likely to be reduced.
[0030]
As rust preventive pigments, for example, hexavalent Cr salts such as strontium chromate and calcium chromate. When it is desired to avoid using hexavalent Cr compounds as rust preventive pigments, for example, calcium silicate, aluminum silicate, phosphorus Compounds that release one or more of silicate ions, phosphate ions, and vanadate ions, such as magnesium acid, aluminum phosphate, phosphorus vanadate, and aluminum vanadate, can be used. When fine silica is further added to this, scratch resistance, film adhesion, and corrosion resistance are improved. Examples of the fine silica include fumed silica, colloidal silica, and aggregated silica. Calcium-deposited silica can also be used.
[0031]
In the present invention, the conductive particles are contained in the coating layer or in a form in which a part thereof is buried in the surface of the coating layer. The coating layer contains, in addition to the conductive particles, a binder component for holding the coating layer, and the binder component can use a known technique. For example, when the binder component is an organic resin, the type of the resin includes a urethane resin, an epoxy resin, an acrylic resin, a polyester resin, a fluororesin, a silicone resin, a polyolefin resin, a butyral resin, an ether resin, a sulfone resin, and a polyamide resin. Examples thereof include resins such as polyimide resins, amino resins, phenol resins, vinyl chloride resins, polyvinyl alcohol resins, and isocyanate resins, copolymer resins thereof, mixtures thereof, and composites. Further, an inorganic or organic-inorganic composite film formed by a sol-gel method or the like may be used. What is necessary is just to select from well-known techniques, such as what is hardened and dried at normal temperature, what is hardened and dried by heat, and what is hardened and dried by energy rays such as ultraviolet rays and electron beams. A coated metal plate can also be produced by laminating a film containing these resins as main components.
[0032]
In addition to these resins, various additives such as wax for imparting lubricity, an antifoaming agent, a leveling agent, and a dispersant can be included in the coating layer.
[0033]
Among these, particularly when a resin containing a urethane bond is used in the coating layer, the corrosion resistance, the moldability, and the conductivity can be made high at the same time. This is because the resin with urethane bond has excellent flexibility and easily deforms when pressure is applied by the welding electrode, and ensures the contact between the conductive pigments in particular. This is considered to be due to the fact that it is easy to prevent cracking and cracking of the coating film at the time, and that it is chemically strong and resistant to deterioration due to the bonding.
[0034]
When the coating layer contains a thermoplastic resin as a main component, a coated metal plate having particularly excellent weldability can be obtained. This is because, when pressure is applied by the welding electrode, plasticity is exerted and the coating layer is compressed, whereby the contact between the conductive particles becomes stronger and more reliable, and the welding current flows stably. It is estimated to be. In addition, due to the flexibility of the thermoplastic resin, cracking and peeling of the coating layer during molding can be reduced, and as a result, corrosion resistance is improved.
[0035]
Known metal plates can be used, and examples thereof include a steel plate, a copper plate, a titanium plate, and an aluminum plate. Furthermore, examples of the steel sheet include various plated steel sheets, stainless steel sheets, cold-rolled steel sheets, hot-rolled steel sheets, and the like. In addition, galvanized steel sheets, galvanized steel sheets, galvanized steel sheets, alloyed galvanized steel sheets, tin-coated steel sheets, tin alloy-coated steel sheets, chromium-coated steel sheets, chrome alloy-coated steel sheets, aluminum-coated steel sheets, aluminum alloy-coated steel sheets, nickel Plated steel sheet, nickel alloy plated steel sheet, copper plated steel sheet, copper alloy plated steel sheet, iron plated steel sheet, iron alloy plated steel sheet, iron-phosphorus composite plated steel sheet, manganese-based plated steel sheet, lead-based plated steel sheet, Examples thereof include a composite plated steel sheet in which fine particles such as silica are contained in an alloy.
[0036]
In particular, galvanized steel sheets, zinc-based alloy coated steel sheets (for example, electro-galvanized steel sheets, galvanized steel sheets, galvannealed steel sheets, zinc-nickel alloy-coated steel sheets, zinc-aluminum alloy-coated steel sheets, zinc-aluminum- The use of magnesium alloy-plated steel sheets) makes it possible to use aluminum-plated steel sheets, aluminum-alloy-plated steel sheets (e.g., for automotive primer steel sheets with excellent economy and corrosion resistance, and for painted steel sheets that require grounding for home appliances and OA equipment). For example, when aluminum-silicon plated steel sheet, aluminum-zinc-silicon alloy plated steel sheet), etc. are used, a zinc alloy plated steel sheet (for example, zinc-nickel alloy plated steel sheet) or tin-based alloy plating is applied to a high corrosion resistant painted steel sheet for building materials. When a steel sheet (for example, a tin-zinc alloy-plated steel sheet) is used, it can be suitably used as a coated steel sheet for a fuel tank. In addition, by using an aluminum plate having poor weldability as a base plate, it can be suitably used as an automotive primer steel plate having excellent weldability.
[0037]
A base treatment layer may be formed on the surface of the metal plate for the purpose of improving the adhesion between the coating layer and the metal plate, improving the corrosion resistance, or improving the conductivity. As the base treatment layer, known techniques can be used. For example, phosphate-based treatment, trivalent chromic acid treatment, chromate treatment, Zr-based treatment, Ti-based treatment, Mn-based treatment, Ni-based treatment, Co-based treatment Examples include system treatment, V system treatment, coupling agent (Si-based, Ti-based, etc.) treatment, and treatment with an organic substance. The underlayer treatment layer does not need to be a single layer. For example, a plurality of treatments such as forming a zinc phosphate treatment layer and performing a sealing treatment thereon, and performing a chromate treatment after pre-adjustment with an acidic Ni-containing liquid, and the like are performed. They may be combined.
[0038]
The surface of the metal plate can be treated by a known method before forming the base treatment layer or before forming the coating layer when the base treatment layer is not formed. For example, treatments such as degreasing with water, hot water, a degreasing solution, etching with an acid or alkali, mechanical grinding with a brush, and the like can be performed.
[0039]
The method for producing the coated metal sheet of the present invention can be based on a known method. The coated steel sheet containing the conductive particles can be manufactured, for example, by manufacturing a paint in which the conductive particles are mixed with a binder component, and applying the paint. Depending on the binder component and the contained components, a film can be formed by a known method such as volatilization of a solvent or the like by heat, curing, or curing with energy rays as needed. The application method can be a known method, and examples thereof include a roll coater, roller coating, brush coating, curtain coater, die coater, slide coater, electrostatic coating, spray coating, dip coating, air knife coating, and the like. . The form of the paint is not particularly limited, such as powder, solid, solvent-based, and water-based. It is also possible to apply heat to melt the solid paint and coat it while extruding it with a die.
[0040]
Alternatively, a coated metal plate can be produced by kneading conductive particles in a film layer in advance and laminating the film. For lamination, an adhesive may be used, or the film may be hot-melted and directly laminated to a metal plate.
[0041]
The coating layer in the present invention may be formed on at least one surface of the metal, but may be formed on both surfaces. When it is formed on one side, a treatment layer or coating layer may be formed on the other side, or it may be a metal surface.
[0042]
【Example】
The present invention will be described with reference to examples.
[0043]
(Example 1)
Various conductive particles were prepared, pulverized by a pulverizer according to conditions, and classified to prepare particles having various particle size distributions. A predetermined amount of the conductive particles was mixed with a urethane-epoxy resin, applied on a metal plate, and baked and dried. In some cases, an organic coating was applied after applying a base coat on a metal plate. Table 1 shows the conditions. The drying condition at this time is 210 ° C. at the reached plate temperature. The thus-obtained coated metal plate was evaluated for weldability, formability, and corrosion resistance under the following conditions.
[0044]
(1) Evaluation of spot weldability Using a Cr-Cu electrode with a tip diameter of 5 mm-R40, spot welding was performed at a welding current of 8 kA, a pressure of 1.96 kN, and a welding time of 12 cycles, and immediately before the nugget diameter fell below 3 at. The number of continuous points was evaluated by the number of points.
[0045]
(2) Earth resistance The interlayer resistance value of the coating layer was measured by a four point probe method.
[0046]
(3) Formability (a) Cylindrical deep drawing test Using a hydraulic forming tester, a forming test was performed at a drawing ratio of 2.0 using a cylindrical punch having a diameter of 50 mm. After applying the rust-preventive oil, it was allowed to stand for 1 hour to 1 hour 30 minutes, and then the test was performed. The wrinkle suppressing pressure at this time was 9.8 kN. The evaluation of formability was based on the following index.
[0047]
:: Moldable and no coating film defect. The processing part is completely normal with no shiny sink.
[0048]
:: Moldable and slightly flawed in coating film. Although a change in color tone is observed in the film-processed portion, no crack or peeling is observed.
[0049]
Δ: Formable, large flaws are generated in the coating film, and cracks are recognized in the coating film.
[0050]
×: Not moldable.
[0051]
(B) Bead pull-out test Using a round bead mold with a convex R4mm-shoulder R2mm, apply the rust-preventive oil, stand for 1 hour to 1 hour and 30 minutes, and then set the bead under a holding load of 9.8 kN. A pull-out test was performed to evaluate the scratch resistance. The evaluation of scratch resistance was based on the following index.
[0052]
◎: No coating film defect. The film condition is completely normal with no shiny marks seen in the processed part.
[0053]
:: Slight scratch on the coating film. Although a change in color tone is observed in the film-processed portion, no crack or peeling is observed.
[0054]
Δ: Large flaws and cracks are observed in the coating film.
[0055]
×: Not moldable.
[0056]
(4) Corrosion resistance evaluation The steel plate after painting was subjected to a cyclic corrosion test after being subjected to cylindrical deep drawing so that the painted surface was on the outside. The cylindrical deep drawing conditions were the same as in (3).
[0057]
Further, a cycle corrosion test was performed after pulling out the beads so that the coating film surface was on the side of the protruding portion. Bead extraction conditions were the same as in (3).
[0058]
A cycle corrosion test was performed with the cut end face of the flat plate exposed.
[0059]
The cycle corrosion test was performed with a total of 8 hours of salt spray 2 hours, dry 4 hours, and wet 2 hours as one cycle. The salt spray condition was in accordance with JIS-K5400. The drying condition is a temperature of 50 ° C. and a humidity of 30% RH or less, and the wet condition is a temperature of 35 ° C. and a humidity of 95% RH or more.
[0060]
The evaluation of corrosion resistance was based on the following indices.
[0061]
(A) Cylindrical deep drawing material: number of cycles until red rust occurs (b) Bead drawn material: number of cycles until red rust occurs.
[0062]
(C) Flat plate end face: Evaluate the state of the end face after 100 cycles of the cycle test. :: When red rust does not occur and the area ratio of white rust indicating corrosion of the plating layer covering the sample is less than 5% of the whole. No white rust indicating the corrosion of the plating layer covers the sample when the area ratio is 5% or more and less than 50%. Δ: Slight red rust generation is observed, and white rust generation is 50% or more. : When red rust occurrence is observed at 20% or more.
[Table 1]
Figure 2004183082
[0064]
* 1 EG: Electro-galvanized steel sheet (coating weight 40 g / m 2 )
ZL: Electric Zn-12% Ni-plated steel sheet (plating adhesion amount 40 g / m 2 )
GA: Alloyed hot-dip galvanized steel sheet (coating weight: 45 g / m 2 )
* 2 Trivalent Cr: Trivalent Cr-treated film (film adhesion amount 50 mg / m 2 [Cr equivalent])
Ti-based treatment 1: Ti-compound-resin-silica-based (coating amount 100 mg / m 2 )
Zr-based treatment: Zr compound-silane coupling agent-silica-based (coating amount 200 mg / m 2 )
* 3 Particle 1: 76% Si-containing ferrosilicon particle particle 2: 76% Si-containing ferrosilicon particle particle 3: 76% Si-containing ferrosilicon particle particle 4: 76% Si-containing ferrosilicon particle particle 5: 76% Si-containing ferro silicon Silicon particle particles 6: 76% Si-containing ferrosilicon particles 7: 76% Si-containing ferrosilicon particles 8: 76% Si-containing ferrosilicon particles 9: 76% Si-containing ferrosilicon particles 10: 76% Si-containing ferros Silicon particle particles 11: 76% Si-containing ferrosilicon particle particles 12: 76% Si-containing ferrosilicon particle particles 13: 76% Si-containing ferrosilicon particle particles 14: 45% Si-containing ferrosilicon particle particles 15: iron phosphide (Fe 2 P 5 ) Particles Particle 16: Zn powder The results are shown in Table 2. As shown in the examples of the present invention, as the particle size distribution of the conductive particles, the mode Mn in the number distribution for each particle size of the conductive particles, the mode Mv in the volume distribution for each particle size of the conductive particles, And, by controlling the relationship with the thickness H of the coating layer within a range satisfying a predetermined correlation formula, and by setting the content of the conductive particles in the coating layer to 15 to 60% by volume, High weldability, formability and corrosion resistance. Also, by controlling the film thickness to an appropriate value, similarly good weldability, formability, and corrosion resistance can be ensured.
[0065]
No. The comparative examples of 1, 10, 11, 12, 19, 20, and 28 show examples of coated metal plates deviating from the examples of the present invention. No. In No. 1, the amount of conductive particles is small and conductivity cannot be obtained. No. In No. 10, the amount of the conductive particles is too large, and the moldability decreases. No. In No. 12, Mv / Mn is smaller than 12, and the weldability decreases. No. In No. 19, Mv / Mn is larger than 50, and the corrosion resistance and the moldability are reduced. No. In No. 11, the coating layer thickness H is larger than 200 Mn, and the weldability decreases. No. In No. 20, the coating layer thickness H is smaller than 5 Mn, and the corrosion resistance and the moldability are reduced. No. In No. 28, Mv is larger than 10H, and corrosion resistance and moldability are reduced.
[0066]
[Table 2]
Figure 2004183082
[0067]
(Example 2)
Table 3 shows conditions when various conductive particles or rust preventive pigments are mixed and when the resin system is changed. A predetermined amount of conductive particles and rust preventive pigment are mixed with urethane-epoxy resin, polyester-melamine resin, polyester-urethane resin, acryl-polyester resin, polyethylene terephthalate resin, and polyolefin resin, and coated on a metal plate. Then, it was baked and dried. Other manufacturing methods of the coated metal plate are the same as those in the first embodiment. The obtained coated metal plate was evaluated under the same conditions as in Example 1 for weldability, formability, and corrosion resistance.
[0068]
[Table 3]
Figure 2004183082
[0069]
* 4 EG: Electro-galvanized steel sheet (coating weight 40 g / m 2 )
ZL: Electric Zn-12% Ni-plated steel sheet (plating adhesion amount 40 g / m 2 )
* 5 Trivalent Cr: Trivalent Cr-treated film (film adhesion amount 50 mg / m 2 [Cr equivalent])
* 6 Resin A: Urethane-epoxy resin B: Polyester-melamine resin C: Polyester-urethane resin D: Acrylic-polyester resin E: Polyethylene terephthalate resin F: Polyolefin resin * 7 Particle 1: 76% Si content Ferrosilicon particle 17: Particle 1 (99 vol%) + stainless steel particle (1 vol%)
Particle 18: Particle 10 (99 vol%) + Stainless steel particle (1 vol%)
Particle 19: Particle 1 (97 vol%) + Stainless steel particles (3 vol%)
Particle 20: Particle 1 (95 vol%) + Stainless steel particle (5 vol%)
Particle 21: Particle 1 (90 vol%) + Stainless steel particle (10 vol%)
Particle 22: Particle 1 (80 vol%) + stainless steel particle (20 vol%)
However, the particle size distribution of the stainless steel particles used alone was as follows: mode of number distribution: 2.5 μm, number: 10%, mode of volume distribution: 7 μm, maximum particle size: 10 μm.
* 8 Pigment 1: 2nd magnesium phosphate (50 parts by mass) + Mn 2 O 3 · V 2 O 5 calcined product (50 parts by mass)
Pigment 2: Ca 3 (PO 4) 2 and V 2 O 5 molar ratio of 1/1 mixture Pigment 3: Ca 3 (PO 4) molar ratio of 1/1 mixture of 2 and V 2 O 5 (50 parts by weight) + Fumed silica (50 parts by mass)
Table 4 shows the results. When stainless steel particles having a large particle size are added, if the content of the stainless steel particles is 5% by volume or less, well-balanced weldability, formability, and corrosion resistance can be obtained without lowering the formability. Addition of 10% by volume or more slightly lowers workability. When the content of the rust-preventive pigment is 20% by volume or less, good corrosion resistance can be obtained without lowering weldability and moldability. Further, by using a thermoplastic resin, good weldability can be obtained.
[0070]
No. Comparative Examples 38, 39, and 43 show examples of coated metal plates outside the scope of the present invention. No. No. 38 has too little conductive particles and is not conductive. No. In No. 39, H is smaller than 5 Mn, and the moldability and the corrosion resistance are reduced. No. In No. 43, the amount of conductive particles exceeded 60% by volume, and the moldability was poor.
[0071]
[Table 4]
Figure 2004183082
[0072]
(Example 3)
Table 5 shows an example in which a metal plate coated with a urethane-epoxy resin film containing conductive particles or other particles having a controlled particle size distribution was evaluated for suitability as a fuel tank material. In addition to the performance evaluation items of Example 1 except for the end face corrosion resistance, the following seam weldability and corrosion resistance test simulating the tank inner surface side were performed.
[0073]
(5) Seam weldability Using an electrode wheel with a tip R of 6 mm-φ250 mm, after performing seam welding of 10 m with a welding current of 11 kA, a pressing force of 4.9 kN, and a current of 2 on-1off, a test piece shown in JIS-Z-3141 was obtained. It was fabricated and subjected to a leak test.
[0074]
◎: No leakage ○: No leakage, but the surface of the weld is slightly rough △: No leakage, but defects such as cracks are generated on the surface of the weld ×: Leakage (6) Corrosion resistant gasoline for inner surface The corrosion resistance was evaluated. The method was as follows. A test solution was poured into a flat-bottomed cylinder having a flange width of 20 mm, a diameter of 50 mm, and a depth of 25 mm which was deep drawn by a hydraulic molding tester, and the sample was covered with a glass via a silicon rubber ring. The state of corrosion after this test was visually observed.
[0075]
(Test condition)
Test liquid: gasoline + distilled water 10% + formic acid 200ppm
Test period: Leave at 40 ° C for 3 months (Evaluation criteria)
:: No change ○: White rust generation 1% or less △: Red rust generation 5% or less, or white rust generation 1% to 50%
×: Red rust generation is more than 5% or white rust is remarkable.
[Table 5]
Figure 2004183082
[0077]
* 9 ZL: Electric Zn-12% Ni-plated steel sheet (plating adhesion amount 40 g / m 2 )
Sn-Zn: Hot-dip Sn-8% Zn-plated steel sheet (plating adhesion amount 40 g / m 2 )
* 10 Trivalent Cr: Trivalent Cr-treated film (film adhesion amount 50 mg / m 2 [Cr equivalent])
Ti-based treatment 2: Ti compound-resin-phosphoric acid (coating amount 300 mg / m 2 )
Zr-based treatment: Zr compound-silane coupling agent-silica-based (coating amount 200 mg / m 2 )
* 11 Particle 1: 76% Si-containing ferrosilicon particle particle 15: Iron phosphide (Fe 2 P 5 ) particle particle 16: Zn powder particle 23: Particle 1 (99 vol%) + stainless steel particle (1 vol%)
Particle 24: Particle 5 (99 vol%) + Stainless steel particle (1 vol%)
Particle 25: Particle 7 (99 vol%) + Stainless steel particle (1 vol%)
Particle 26: Particle 10 (99 vol%) + Stainless steel particle (1 vol%)
Particle 27: Particle 9 (99 vol%) + Stainless steel particle (1 vol%)
* 12 Pigment 1: Magnesium diphosphate (50 parts by mass) + Mn 2 O 3 · V 2 O 5 calcined product (50 parts by mass)
Pigment 2: Ca 3 (PO 4) 2 and V 2 O 5 molar ratio of 1/1 mixture Pigment 3: Ca 3 (PO 4) molar ratio of 1/1 mixture of 2 and V 2 O 5 (50 parts by weight) + Fumed silica (50 parts by mass)
Table 6 shows the results. As the particle size distribution of the conductive particles, a mode Mn in a number distribution of each particle size of the conductive particles, a mode Mv in a volume distribution of each particle size of the conductive particles, and a thickness H of the coating layer are determined by predetermined values. It was found that by controlling to within the range satisfying the correlation equation, good weldability, formability, and corrosion resistance were obtained, and it was also suitable as a fuel tank material.
[0078]
No. Comparative examples 55, 60, 66, 70, and 74 showed coated metal plates outside the present invention. No. Nos. 55 and 66 have a small amount of conductive particles and poor weldability. No. In Nos. 60 and 74, the number distribution mode Mn of the conductive particles is large, H is less than 5 Mn, and the moldability and corrosion resistance are poor. No. In No. 70, the amount of the conductive particles is too large, and the moldability decreases.
[0079]
[Table 6]
Figure 2004183082
[0080]
【The invention's effect】
From the above results, the coated metal sheet containing the conductive particles with controlled particle size distribution of the present invention can be used for parts to be welded and parts that need to be grounded, such as home appliances, OA equipment, civil engineering / building materials, and automobiles. Since it can be used widely and easily, and also has good moldability and corrosion resistance, it is expected to be used in various applications and greatly contributes to various industrial fields.

Claims (8)

導電性粒子を含有する被覆層が少なくとも片面に形成された金属板において、導電性粒子の粒径毎の個数分布における最頻値をMn、導電性粒子の粒径毎の体積分布における最頻値をMv、被覆層の厚みをHとしたときに、
H/10≦Mv≦10H
5Mn≦H≦200Mn
12≦Mv/Mn≦50
であり、かつ導電性粒子の被覆層中の含有量が15〜60容量%であることを特徴とする導電性、耐食性、成形性に優れる被覆金属板。
In a metal plate on which a coating layer containing conductive particles is formed on at least one surface, the mode in the number distribution for each particle size of the conductive particles is Mn, and the mode in the volume distribution for each particle size of the conductive particles is Mn. Is Mv, and the thickness of the coating layer is H,
H / 10 ≦ Mv ≦ 10H
5Mn ≦ H ≦ 200Mn
12 ≦ Mv / Mn ≦ 50
And a content of the conductive particles in the coating layer of 15 to 60% by volume is excellent in conductivity, corrosion resistance, and moldability.
Mnが0.05〜1.5μm、Mvが2〜30μmであることを特徴とする請求項1に記載の被覆金属板。The coated metal sheet according to claim 1, wherein Mn is 0.05 to 1.5 m and Mv is 2 to 30 m. 被覆層の厚みHが2〜20μmであることを特徴とする請求項1又は2に記載の被覆金属板。3. The coated metal sheet according to claim 1, wherein the thickness H of the coating layer is 2 to 20 [mu] m. 前記導電性粒子の最大粒径が35μm以下であることを特徴とする請求項1〜3のいずれかに記載の被覆金属板。The coated metal plate according to any one of claims 1 to 3, wherein a maximum particle size of the conductive particles is 35 µm or less. 前記導電性粒子がフェロシリコンであることを特徴とする請求項1〜4のいずれかに記載の被覆金属板。The coated metal plate according to any one of claims 1 to 4, wherein the conductive particles are ferrosilicon. 被覆層中のバインダー成分がウレタン結合を含む樹脂を主成分とすることを特徴とする請求項1〜5のいずれかに記載の被覆金属板。The coated metal sheet according to any one of claims 1 to 5, wherein the binder component in the coating layer contains a resin containing a urethane bond as a main component. 被覆層中のバインダー成分が熱可塑性樹脂を主成分とすることを特徴とする請求項1〜6のいずれかに記載の被覆金属板。The coated metal sheet according to any one of claims 1 to 6, wherein the binder component in the coating layer contains a thermoplastic resin as a main component. 被覆層中に防錆顔料及び/又はシリカを併せて20容量%以下含有することを特徴とする請求項1〜7のいずれかに記載の被覆金属板。The coated metal sheet according to any one of claims 1 to 7, wherein the coating layer contains a total of 20% by volume or less of a rust preventive pigment and / or silica.
JP2002354867A 2002-05-14 2002-12-06 Coated metal plate with excellent conductivity, corrosion resistance and formability Expired - Fee Related JP3959021B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002354867A JP3959021B2 (en) 2002-12-06 2002-12-06 Coated metal plate with excellent conductivity, corrosion resistance and formability
CN038166933A CN1668460B (en) 2002-05-14 2003-05-14 Weldable coated metal material with superior corrosion resistance for formed part
KR1020047018310A KR100619638B1 (en) 2002-05-14 2003-05-14 Coated metal material capable of being welded which is excellent in corrosion resistance of worked zone
AU2003234918A AU2003234918A1 (en) 2002-05-14 2003-05-14 Coated metal material capable of being welded which is excellent in corrosion resistance of worked zone
US10/514,369 US7390564B2 (en) 2002-05-14 2003-05-14 Coated metal material capable of being welded which is excellent in corrosion resistance of worked zone
PCT/JP2003/006027 WO2003095195A1 (en) 2002-05-14 2003-05-14 Coated metal material capable of being welded which is excellent in corrosion resistance of worked zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354867A JP3959021B2 (en) 2002-12-06 2002-12-06 Coated metal plate with excellent conductivity, corrosion resistance and formability

Publications (2)

Publication Number Publication Date
JP2004183082A true JP2004183082A (en) 2004-07-02
JP3959021B2 JP3959021B2 (en) 2007-08-15

Family

ID=32755721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354867A Expired - Fee Related JP3959021B2 (en) 2002-05-14 2002-12-06 Coated metal plate with excellent conductivity, corrosion resistance and formability

Country Status (1)

Country Link
JP (1) JP3959021B2 (en)

Also Published As

Publication number Publication date
JP3959021B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
EP1051539B1 (en) Surface-treated steel sheet for fuel tanks and method of fabricating same
JP6515298B2 (en) Surface-treated metal plate, coated member and method for producing coated member
JPWO2018092244A1 (en) Surface-treated steel sheet and painted member
JPS6383172A (en) Weldable rust-inhibiting lubricating film-forming composition and production of surface-treated steel sheet using the same
JP2003518558A (en) Resin-coated steel sheet for automobile fuel tank and method of manufacturing the same
WO2016125741A1 (en) Steel plate for use in fuel tank
JP6710924B2 (en) Surface-treated steel sheet and coated parts
JP5720090B2 (en) Rust-proof steel plate and manufacturing method thereof
JP3993815B2 (en) Coated metal plate with excellent conductivity, corrosion resistance and formability
JP3959021B2 (en) Coated metal plate with excellent conductivity, corrosion resistance and formability
JP2511497B2 (en) Lubricant resin treated steel sheet with excellent formability
JPH0243040A (en) Lubricating resin treated steel plate excellent in corrosion resistance
JPH08323914A (en) Organic composite coated steel panel excellent in chromium elution resistance and post-processing corrosion resistance
JP5293050B2 (en) Automotive parts
JP3847926B2 (en) Steel plate for high corrosion resistant fuel tank
JPH11129387A (en) Steel sheet for highly corrosion resistant fuel tank
JP2000319790A (en) Surface treated steel sheet for fuel vessel and coating material composition therefor
JP2001271177A (en) Surface treated steel sheet for fuel vessel excellent in resistance to corrosion by degrade gasoline
JP3934762B2 (en) Steel plate for high corrosion resistant fuel tank
JPH03270932A (en) Lubricating resin-treated steel plate excellent in electric conductivity
JP3305565B2 (en) Weldable organic composite plated steel sheet with excellent corrosion resistance and press workability
WO2023190979A1 (en) Surface-treated steel plate and method for manufacturing component
JPH09234820A (en) Resin-coated metal plate
JP3260904B2 (en) Organic composite coated steel sheet with excellent cationic electrodeposition paintability and corrosion resistance
JPH11151777A (en) Steel panel for highly corrosion resistant fuel tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R151 Written notification of patent or utility model registration

Ref document number: 3959021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees