JP2004182919A - Method for manufacturing porous film - Google Patents

Method for manufacturing porous film Download PDF

Info

Publication number
JP2004182919A
JP2004182919A JP2002353458A JP2002353458A JP2004182919A JP 2004182919 A JP2004182919 A JP 2004182919A JP 2002353458 A JP2002353458 A JP 2002353458A JP 2002353458 A JP2002353458 A JP 2002353458A JP 2004182919 A JP2004182919 A JP 2004182919A
Authority
JP
Japan
Prior art keywords
porous membrane
membrane
polyvinylidene fluoride
solvent
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002353458A
Other languages
Japanese (ja)
Inventor
Hirobumi Morikawa
博文 森川
Masahiro Henmi
昌弘 辺見
Hideto Matsuyama
秀人 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002353458A priority Critical patent/JP2004182919A/en
Publication of JP2004182919A publication Critical patent/JP2004182919A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous film having high strength, high water-permeating performances and high preventive performances using a polyvinylidene fluoride resin having high chemical resistance. <P>SOLUTION: The method for manufacturing the porous film comprises discharging a polyvinylidene fluoride resin solution obtained by dissolving the polyvinylidene fluoride resin in a solvent through a nozzle and subsequently making the resin solution pass through a cooling liquid to be cooled and solidified, where a solvent having a three-dimensional solubility parameter satisfying the relation represented by equation (1) is used as the solvent for the polyvinylidene fluoride resin solution. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、飲料水製造、浄水処理、排水処理などの水処理や血液浄化等の医療分野、さらには、燃料電池分野、電池用セパレーター、荷電膜にも好適に用いられる多孔質膜の製造方法に関し、特に限外ろ過膜を製造するのに好適な多孔質膜の製造方法に関する。
【0001】
【従来の技術】
近年、多孔質膜は、飲料水製造、浄水処理、排水処理などの水処理分野、血液浄化などの医療分野、食品工業分野、電池用セパレーター、荷電膜、燃料電池等様々な方面で利用されている。飲料水製造、浄水処理、排水処理などの水処理分野においては、多孔質膜が従来の砂濾過、凝集沈殿過程の代替として水中の不純物を除去するために用いられ、医療分野においては、血液浄化、特に腎機能を代用するための血液透析、血液濾過および血液濾過透析等、体外循環による血中老廃物の除去を目的として、多孔質膜が用いられるようになってきている。また、食品工業分野においては、発酵に用いた酵母の分離除去や、液体の濃縮を目的として、多孔質膜が用いられている。さらに、電池分野においては、電解液は透過するが電池反応で生じる生成物は透過しないようにするための電池用セパレーターとして、また、燃料電池分野においては高分子固体電解質の基材として、多孔質膜が用いられてきている。さらにまた、超純水製造分野においても、よりイオン排除性を高め、得られる純水の純度を高めるために、荷電性多孔質膜が用いられることがある。
【0002】
上述のように多様に用いられる多孔質膜は、たとえば浄水処理(水道水製造)や排水処理などの水処理分野においては処理水量が大きいため、多孔質膜にも透水性能の向上が求められる。透水性能が優れていれば、膜面積を減らすことが可能となり、装置がコンパクトになるため設備費を節約でき、膜交換費や設置面積の点からも有利である。また、浄水処理では透過水の殺菌や膜のバイオファウリング防止の目的で、次亜塩素酸ナトリウムなどの殺菌剤を膜モジュール部分に添加したり、酸、アルカリ、塩素、界面活性剤などで膜そのものを洗浄するため、多孔質膜には耐薬品性能が求められる。さらに、水道水製造では、家畜の糞尿などに由来するクリプトスポリジウムなどの塩素に対して耐性のある病原性微生物が浄水場で処理しきれず、処理水に混入する事故が1990年代から顕在化していることから、このような事故を防ぐため、分離膜には、原水が処理水に混入しないような十分な分離特性と高い物理的強度が要求されている。
【0003】
このように、多孔質膜には、優れた分離特性、化学的強度(耐薬品性)、物理的強度および透過性能が求められる。
【0004】
そこで、化学的強度(耐薬品性)を高めるために、ポリフッ化ビニリデン系樹脂を用いて製膜することが考えられ、たとえば特許文献1には、、ポリフッ化ビニリデン系樹脂を良溶媒に溶解したポリマー溶液を、ポリフッ化ビニリデン系樹脂の融点よりかなり低い温度で、口金から押出したり、ガラス板上にキャストしたりして成形した後、ポリフッ化ビニリデン系樹脂の非溶媒を含む液体に接触させて非溶媒誘起相分離により非対称多孔構造を形成させる湿式溶液法が開示されている。また、特許文献2には、ポリフッ化ビニリデン系樹脂に無機微粒子と有機液状体を溶融混練し、ポリフッ化ビニリデン系樹脂の融点以上の温度で口金から押し出したり、プレス機でプレスしたりして成形した後、冷却固化し、その後有機液状体と無機微粒子を抽出することにより多孔構造を形成する溶融抽出法が開示されている。
【0005】
しかしながら、特許文献1に記載の湿式溶液法では、膜厚方向に均一に相分離を起こすことが困難であり、マクロボイド等を含む非対称膜となるため機械的強度が十分でないという問題がある。また、膜構造や膜性能に与える製膜条件因子が多く、製膜工程の制御が難しく、再現性も乏しいといった欠点がある。一方、特許文献2に記載の溶融抽出法の場合は、空孔性の制御が容易で、マクロボイドは形成せず比較的均質で高強度の膜が得られるものの、無機微粒子の分散性が悪いとピンホールのような欠陥を生じやすく、分離特性がおびやかされる。さらに、溶融抽出法は、製造コストが極めて高くなるという欠点を有している。このように、分離特性、化学的強度(耐薬品性)、物理的強度および透過性能をバランス良く満足する多孔質膜を製造することは難しい。
【0006】
【特許文献1】特公平1−22003号公報
【0007】
【特許文献2】特許第2899903号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、従来の技術の上述した問題点を解決し、耐薬品性が高いポリフッ化ビニリデン系樹脂を用いて、高強度、高透水性能、高阻止性能を有する多孔質膜を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を達成するための本発明は、ポリフッ化ビニリデン系樹脂を溶媒で溶解したポリフッ化ビニリデン系樹脂溶液を、口金から吐出した後、冷却液体中を通過させて冷却固化せしめる多孔質膜の製造方法であって、ポリフッ化ビニリデン系樹脂溶液の溶媒として、三次元溶解性パラメーターが次式の関係を満足する溶媒を用いる多孔質膜の製造方法を特徴とするものである。
【0010】
【数2】

Figure 2004182919
【0011】
本発明においては、上記製造方法により製造された多孔質膜も好ましい態様であって、その多孔質膜が限外濾過膜であることがさらに好ましい。また、原液流入口および透過液流出口を備えたケーシングと、そのケーシングに収容された、上記記載の製造方法により製造された多孔質膜とを有する多孔質膜モジュールも好ましい態様である。さらに、この多孔質膜モジュールと、多孔質膜モジュールの上流側に設けられた原液加圧手段またはこの多孔質膜モジュールの下流側に設けられた透過液吸引手段とを有する液体分離装置も好ましく、この液体分離装置を用いて原水から透過水を得る透過水の製造方法も好ましい。
【0012】
また、上記製造方法により製造された多孔質膜を血液浄化用膜とすることや、上記記載の多孔質膜を用いた燃料電池も好ましい態様である。
【0013】
【発明の実施の形態】
本発明において、多孔質膜は、ポリフッ化ビニリデン系樹脂を特定溶媒に溶解してポリフッ化ビニリデン系樹脂溶液を製造し、そのポリフッ化ビニリデン系樹脂溶液を口金から吐出した後、冷却液体中を通過させて冷却固化せしめることで製造される。たとえば、中空糸状の多孔質膜を製造する場合には、調整した樹脂溶液を二重管式口金の外側の管から吐出し、冷却浴中で冷却固化し中空糸膜とする。このとき、二重管式口金の内側の管からは中空部形成液体を吐出する。また、平膜の多孔質膜を形成する場合には、調整した樹脂溶液をスリット口金から吐出し、冷却浴中で冷却固化して平膜とする。
【0014】
ここで、ポリフッ化ビニリデン系樹脂を溶解する溶媒は、三次元溶解性パラメーターが次式の関係を満足するものである。
【0015】
【数3】
Figure 2004182919
【0016】
三次元溶解性パラメーターについて詳述する。溶解性パラメーターδは、Hildebrandら(J. H. Hildebrand and R. L. Scott著、“The Solubility of Nonelectrolytes”、Reinhold Publishing Corp.出版、1950年発行)が提唱したもので、次式のように表される。
【0017】
【数4】
Figure 2004182919
【0018】
すなわち、溶解性パラメーターは凝集エネルギー密度の平方根に相当する。溶解性パラメーターの値が近いものほど凝集エネルギー密度が小さく、親和性が高いといえる。しかし初期の溶解性パラメーターは、分子間力の分散力が主体で、双極子間力や水素結合力については、あまり考慮されていなかった。のちに、Hansenら(C. M. Hansen著、J. Paint Technol.39巻505号104〜117ページ1967年発行や、C. M. Hansen著、J. Paint Technol.39巻511号505〜510ページ1967年発行やC. M. Hansen and K.Skaarup著、J. Paint Technol.39巻511号511〜514ページ、1967年発行)やHoy(K. L. Hoy著、J. Paint Technol.42巻541号76〜118ページ1970年発行)によって、これらを定量化したいわゆる三次元溶解性パラメーターが提唱された。三次元溶解性パラメーターδは、次式のように表される。
【0019】
【数5】
Figure 2004182919
【0020】
三次元溶解性パラメーターは、基本的には(Allan F. M. Barton著、“CRC Handbook of solubility parameters andothercohesion parameters”、CRC Corp.出版、1991年発行)に記載のHoyのパラメーターを用いることができるが、Hoyのパラメーターに記載されていない溶媒については、同書籍に記載のHansenのパラメーターを使用することができる。
【0021】
また、ポリマーの溶解性を高め製膜性を高めるためには、式(1)の左辺は5以下、さらには、4以下、さらに好ましくは3以下であることが好ましい。
【0022】
なお、混合溶媒の三次元溶解性パラメーターについては、重量比に基づいて加成則により計算したパラメーターを用いることができる。
【0023】
上述のポリフッ化ビニリデン系樹脂を溶解する溶媒としては、特に限定されるものではないが、たとえば、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、フラン、フルフリルアルコール、フルフラール、無水コハク酸、無水マレイン酸、ピラン、ピロン、グルタル酸無水物などのヘテロ単環化合物やその誘導体、オクタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどのアルコールやグリコール類とその誘導体と、それらの混合溶媒が挙げられる。
【0024】
次に、本発明において、ポリフッ化ビニリデン系樹脂とは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂のことである。複数種類のフッ化ビニリデン共重合体を含有していても構わない。フッ化ビニリデン共重合体としては、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。またポリフッ化ビニリデン系樹脂の重量平均分子量は、要求される中空糸膜の強度と透水性能によって適宜選択すれば良いが、多孔質膜への加工性を考慮すると、5万〜100万、さらには10万〜45万の範囲内であることが好ましい。重量平均分子量がこの範囲よりも大きくなると、樹脂溶液の粘度が高くなりすぎ、またこの範囲よりも小さくなると、樹脂溶液の粘度が低くなりすぎ、いずれも多孔質膜を成形することが困難になる。
【0025】
ポリフッ化ビニリデン系樹脂は、上記の溶媒に比較的高濃度で、かつ、比較的高温で溶解して、熱可塑性のポリフッ化ビニリデン樹脂溶液を調整する。樹脂濃度は、強伸度特性の高い多孔質膜を得るためには高いほうが好ましいが、高すぎると得られた多孔質膜の空孔率が小さくなり、透水性能が低下するので、20〜60重量%の範囲内であることが好ましい。また、調整した樹脂溶液の粘度は、10〜1,000Pa・sであることが好ましい。粘度がこの範囲よりも高くなると、口金から吐出することができず、多孔質膜に成形することが難しくなる。一方粘度がこの範囲よりも低くなると、口金から吐出した樹脂溶液が形態を保つことが難しくなり、樹脂を巻き取ること、さらには多孔質膜に成型することが困難になる。
【0026】
樹脂を溶解する温度は、高いほうが樹脂の溶解性が高くなり好ましいが、溶媒の沸点に近づくと、溶解過程で溶媒が蒸発しやすくなり、樹脂溶液の濃度が変化しやすくなって好ましくない。したがって、樹脂を溶解する温度Tは、(溶媒の沸点−100℃)≦T<(溶媒の沸点)の範囲内であることが好ましく、さらに(溶媒の沸点−70℃)≦T≦(溶媒の沸点−10℃)の範囲内であることが好ましい。
【0027】
また、本発明においては、上述のポリフッ化ビニリデン系樹脂溶液を、冷却液体中を通過させることにより冷却固化せしめて、多孔質膜を形成する。すなわち、従来の、ポリフッ化ビニリデン系樹脂を用いた湿式溶液法では、十分な透水性能を発現するために樹脂濃度を高めることができず、得られる膜は強伸度が低いマクロボイドを有する網目構造膜となっていたが、本発明においては、式(1)を満たす溶媒を用いることによって、ポリフッ化ビニリデン系樹脂溶液が液−液型相分離をなし、耐薬品性が高いポリフッ化ビニリデン系であるにもかかわらず樹脂濃度を高めることができるので、緻密な三次元網目状構造で強伸度が大きい多孔質膜を得ることができる。なお、液−液型相分離とは、冷却過程で相分離を誘起する熱誘起相分離の中で、冷却時に高分子濃厚相と高分子希薄相に相分離するものをいう(松山秀人著、“熱誘起相分離法(TIPS法)による高分子系多孔膜の作製”、ケミカル・エンジニヤリング、1998年6月号45〜56ページ)。
【0028】
樹脂溶液を冷却固化するにあたっては、口金温度および冷却浴温度をそれぞれ所望の温度に保つため、樹脂溶液を口金から一旦空気中(乾式部)に吐出した後冷却浴に導き冷却固化することが好ましい。
【0029】
上述したような本発明は、高性能な多孔質膜、たとえば、50kPa、25℃における透水性能が、0.05m〜1.5m/m・h、さらには0.07〜1m/m・hの多孔質膜、また、破断伸度が15%以上、さらには20%以上の多孔質膜、そして、破断強度が4MPa以上の多孔質膜を製膜するのに適している。さらに、上述したような本発明は限外濾過膜、特に0.020μm径粒子の阻止率が95%以上、さらには98%以上の限外濾過膜を製膜するのに適している。
【0030】
透水性能と阻止性能は、次のように評価する。すなわち、中空糸膜形状のものでは、中空糸膜4本からなる長さ200mmのミニチュアモジュールを作製し、温度25℃、ろ過差圧16kPaの条件下に、平均粒径0.020μmのポリスチレンラテックス粒子を分散させた水の外圧全ろ過を30分間行い、その透過量(m)を単位時間(h)および有効膜面積(m)あたりの値に圧力(50kPa)換算することで透水性能を、原水中と透過水中のラテックス粒子の濃度を波長237nmの紫外吸収係数を測定して求め、その濃度比から阻止性能を求める。一方、平膜形状のものでは、直径50mmの円形に切り出し、円筒型のろ過ホルダーにセットし、その他は中空糸膜と同様の操作をすることで求める。なお、透水性能は、ポンプ等で加圧や吸引して得た値を換算して求めても良い。水温についても、評価液体の粘性で換算しても良い。透水性能が0.1m/m・h未満の場合には、透水性能が低すぎ、多孔質膜として好ましくない。また逆に透水性能が3m/m・hを越えるような場合には、多孔質膜の孔径が大きすぎ、不純物の阻止性能が低くなり好ましくない。そして、0.020μm径粒子の阻止率が95%に満たない場合にも、やはり多孔質膜の孔径が大きすぎ、不純物の阻止性能が低くなり好ましくない。
【0031】
また、破断強度および破断伸度の測定方法は、特に限定されるものではないが、例えば、引張り試験機を用い、測定長さ50mmの試料を引張り速度50mm/分で引張る試験を試料を変えて5回以上行い、破断強度の平均値と、破断伸度の平均値を求めることで測定することができる。破断強度が4MPa未満、または破断伸度が15%未満の場合には、多孔質膜を扱う際のハンドリング性が悪くなり、かつろ過時における膜の破断や圧壊が起こりやすくなって好ましくない。
【0032】
本発明が特に0.020μm径粒子の阻止率が高い限外濾過膜を製膜するのに適している理由の一つとしては、式(1)を満たす溶媒を用いることによって、ポリフッ化ビニリデン系樹脂溶液が液−液型相分離をなし、得られた多孔質膜が緻密な三次元網目状構造を有することが挙げられる。
【0033】
以上までの製造方法で、透水性を発現する高強伸度特性の多孔質膜を得ることができるが、透水性能が十分でない場合には、該多孔質膜をさらに1.1倍以上5.0倍以下の延伸倍率で延伸することも、多孔質膜の透水性能が向上するため、好ましい。
【0034】
上述の製造方法により作成した多孔質膜は、原液流入口や透過液流出口などを備えたケーシングに収容され多孔質膜モジュールとして使用される。多孔質膜モジュールは、多孔質膜が中空糸膜である場合には、中空糸膜を複数本束ねて円筒状の容器に納め、両端または片端をポリウレタンやエポキシ樹脂等で固定し、透過液を回収できるようにしたり、平板状に中空糸膜の両端を固定して透過液を回収できるようにする。多孔質膜が平膜である場合には、平膜を集液管の周りに封筒状に折り畳みながらスパイラル状に巻き取り、円筒状の容器に納め、透過液をできるようにしたり、集液板の両面に平膜の配置して周囲を水密に固定し、透過液を回収できるようにする。
【0035】
そして、多孔質膜モジュールは、少なくとも原液側に加圧手段もしくは透過液側に吸引手段を設け、水などを処理する液体分離装置として用いられる。加圧手段としてはポンプを用いてもよいし、また水位差による圧力を利用してもよい。また、吸引手段としては、ポンプやサイフォンを利用すればよい。
【0036】
この液体分離装置は、水処理分野であれば浄水処理、上水処理、排水処理、工業用水製造などで利用でき、河川水、湖沼水、地下水、海水、下水、排水などを被処理水とする。
【0037】
また、上記の製造方法により作成した多孔質膜は、電池の内部で正極と負極とを分離する電池用セパレーターに用いることもでき、この場合、イオンの透過性が高いことによる電池性能の向上や、破断強度が高いことによる電池の耐久性向上などの効果が期待できる。
【0038】
さらに、上記の製造方法により作成した多孔質膜は、荷電基(イオン交換基)を導入して荷電膜とすると、イオンの認識性向上や、破断強度が高いことによる荷電膜の耐久性向上などの効果が期待できる。
【0039】
さらにまた、上記の製造方法により作成した多孔質膜にイオン交換樹脂を含浸し、イオン交換膜として燃料電池に用いると、特に燃料にメタノールを用いる場合、イオン交換膜のメタノールによる膨潤が抑えられ、アノード側からカソード側へのイオン交換膜を通じたメタノールの漏洩いわゆるクロスオーバーが抑えられるので、燃料電池性能の向上が期待でき、さらに、破断強度が高いことによる燃料電池の耐久性向上なども期待できる。
【0040】
そして、上記の製造方法により作成した多孔質膜を血液浄化用膜として用いると、血中老廃物の除去性向上や、破断強度が高いことによる血液浄化用膜の耐久性向上などが期待できる。
【0041】
【実施例】
実施例に使用した溶媒の3次元溶解性パラメーターを、出典とともに表1に示す。
【0042】
【表1】
Figure 2004182919
【0043】
実施例における多孔質膜の透水性能と阻止性能は、多孔質膜が中空糸膜の場合には、中空糸膜4本からなる長さ200mmのミニチュアモジュールを作製し、温度25℃、ろ過差圧16kPaの条件下に、平均粒径0.020μmのポリスチレンラテックス粒子を分散させた水の外圧全ろ過を30分間行い、その透過量(m)を単位時間(h)および有効膜面積(m)あたりの値に圧力(50kPa)換算することで透水性能を、原水中と透過水中のラテックス粒子の濃度を波長237nmの紫外吸収係数を測定して求め、その濃度比から阻止性能を求めた。多孔質膜が平膜の場合には、直径50mmの円形に切り出し、円筒型のろ過ホルダーにセットし、その他は中空糸膜と同様の操作をすることで求めた。波長237nmの紫外吸収係数の測定は、分光光度計(U−3200)(日立製作所製)を用いた。
【0044】
破断強度および破断伸度は、引張り試験機(TENSILON/RTM−100)(東洋ボールドウィン製)を用いて、測定長さ50mmの試料を速度50mm/分で引張る試験を試料を変えて5回行い、破断強度の平均値と、破断伸度の平均値を求めることで測定した。
<実施例1>
γ−ブチロラクトンとジエチレングリコールを重量比1:1の割合で混合した。この混合溶媒の3次元溶解性パラメーターおよび式(1)の左辺の値を表2に示す。この混合溶媒は、式(1)を満たす。
【0045】
【表2】
Figure 2004182919
【0046】
重量平均分子量41.7万のフッ化ビニリデンホモポリマーを、38重量%となるように上記混合溶媒に200℃の温度で溶解した。この樹脂溶液を、中空部形成液体として上記混合溶媒を随伴させながら180℃の口金からに吐出し、約2cmの乾式部と通過させた後、上記混合溶媒からなる温度13℃の冷却浴に導入して冷却固化した。得られた中空糸膜は、外径1.39mm、内径0.79mmであった。50kPa、25℃における透水性能は0.15m/m・h、0.020μm径粒子の阻止率は98%、破断強度が10.2MPa、破断伸度が39%であり、透水性能、阻止性能、強度、伸度共に優れた中空糸膜であった。
【0047】
なお、条件および結果を表3にまとめた。
【0048】
【表3】
Figure 2004182919
【0049】
<実施例2>
γ−ブチロラクトンとジエチレングリコールを重量比で2:1の割合で混合した。この混合溶媒の3次元溶解性パラメーターおよび式(1)の左辺の値を表2に示す。この混合溶媒は、式(1)を満たす。
【0050】
重量平均分子量41.7万のフッ化ビニリデンホモポリマーを38重量%となるように、上記混合溶媒に200℃の温度で溶解した。この樹脂溶液を、中空部形成液体として上記混合溶媒を随伴させながら180℃の口金から吐出し、約2cmの乾式部と通過させた後、上記混合溶媒からなる温度9℃の冷却浴に導入して冷却固化した。得られた中空糸膜は、外径1.21mm、内径0.81mmであった。50kPa、25℃における透水性能は0.15m/m・h、0.020μm径粒子の阻止率は99%、破断強度が9.6MPa、破断伸度が30%であり、透水性能、阻止性能、強度、伸度共に優れた中空糸膜であった。
【0051】
なお、条件および結果を表3にまとめた。
<実施例3>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーを38重量%となるように、実施例1記載の混合溶媒に200℃の温度で溶解した。この樹脂溶液を180℃のスリットから吐出し、約2cmの乾式部と通過させた後、実施例1記載の混合溶媒からなる温度13℃の浴中で冷却固化した。得られた平膜は、厚さ0.175mmであった。50kPa、25℃における透水性能は0.12m/m・h、0.020μm径粒子の阻止率は98%、破断強度が9.9MPa、破断伸度が36%であり、透水性能、阻止性能、強度、伸度共に優れた平膜であった。
【0052】
なお、条件および結果を表3にまとめた。
<実施例4>
γ−ブチロラクトンとトリエチレングリコールを重量比で41:59の割合で混合した。この混合溶媒の3次元溶解性パラメーターおよび式(1)の左辺の値を表2に示す。この混合溶媒は、式(1)を満たす。
【0053】
重量平均分子量41.7万のフッ化ビニリデンホモポリマーを38重量%となるように、上記混合溶媒に200℃の温度で溶解した。この樹脂溶液を上記混合溶媒を中空部形成液体として随伴させながら180℃の口金から吐出し、約2cmの乾式部と通過させた後、上記混合溶媒からなる温度13℃の冷却浴中で固化した。得られた中空糸膜は、外径1.39mm、内径0.79mmであった。50kPa、25℃における透水性能は0.12m/m・h、0.020μm径粒子の阻止率は98%、破断強度が9.9MPa、破断伸度が36%であり、透水性能、阻止性能、強度、伸度共に優れた中空糸膜であった。
【0054】
なお、条件および結果を表3にまとめた。
<実施例5>
γ−ブチロラクトンとエチレングリコールを重量比で72:28の割合で混合した。この混合溶媒の3次元溶解性パラメーターおよび式(1)の左辺の値を表2に示す。この混合溶媒は、式(1)を満たす。
【0055】
重量平均分子量41.7万のフッ化ビニリデンホモポリマーを38重量%となるように、上記混合溶媒に180℃の温度で溶解した。この樹脂溶液を上記混合溶媒を中空部形成液体として随伴させながら160℃の口金から吐出し、約2cmの乾式部と通過させた後、上記混合溶媒からなる温度9℃の冷却浴中で固化した。得られた中空糸膜は、外径1.21mm、内径0.81mmであった。50kPa、25℃における透水性能は0.12m/m・h、0.020μm径粒子の阻止率は98%、破断強度が9.3MPa、破断伸度が27%であり、透水性能、阻止性能、強度、伸度共に優れた中空糸膜であった。
【0056】
なお、条件および結果を表3にまとめた。
<比較例1>
γ−ブチロラクトンとジエチレングリコールを重量比で1:2の割合で混合した。この混合溶媒の3次元溶解性パラメーターおよび式(1)の左辺の値を表2に示す。この混合溶媒は、式(1)を満たさない。
【0057】
重量平均分子量41.7万のフッ化ビニリデンホモポリマーを38重量%となるように上記混合溶媒に200℃の温度で溶解しようとしたが、2相に分離し、均一に溶解することができなかった。
【0058】
なお、条件および結果を表3にまとめた。
<実施例6>
Nafion(登録商標)溶液(Aldrich社より購入)に触媒担持カーボン(触媒:白金29.2重量%およびルテニウム15.8重量%、カーボン:Cabot社製Vulcan(登録商標) XC−72)を、白金とNafion(登録商標)の重量比が1:1になるように加え、よく撹拌して触媒−ポリマ組成物を調整した。この触媒−ポリマ組成物を、東レ製カーボンペーパーTGP−H−060の片面に塗布して、白金担持量3mg/cmの電極触媒層付き電極基材を作成した。
【0059】
一方、実施例3で得られた平膜に、Nafion(登録商標)溶液(Aldrich社より購入)を含浸、乾燥させ、イオン交換膜を作成した。上記電極触媒層付き電極基材をイオン交換膜の両面から、電極触媒層側がイオン交換膜側になるように挟み、130℃、5MPaの条件でホットプレスし、膜−電極接合体とした。
【0060】
得られた膜−電極接合体を燃料電池セルに組み込み、64重量%のメタノール水溶液をアノード側に、空気をカソード側に供給した。最高出力は0.5mW/cmであり、優れた高出力特性を示した。これは、イオン交換膜のメタノールによる膨潤が抑えられ、アノード側からカソード側へのイオン交換膜を通じたメタノールの漏洩いわゆるクロスオーバーが抑えられたためであると考えられる。
<比較例2>
Du Pont社製イオン交換膜Nafion(登録商標)117(厚さ0.175mm)の両面から、実施例6と同一条件で作成した電極触媒層付き電極基材を、電極触媒層側がイオン交換膜側になるように挟み、実施例6と同一条件でホットプレスし、膜−電極接合体とした。
【0061】
得られた膜−電極接合体を実施例6と同一条件で評価したところ、最高出力は0.1mW/cmと低いものであった。これは、イオン交換膜Nafion(登録商標)117がメタノールによって膨潤し、メタノールのクロスオーバーが生じたためであると考えられる。
【0062】
【発明の効果】
本発明では、耐薬品性が高い熱可塑性樹脂を用いて、高強度、高透水性能、高阻止性能を有する多孔質膜の製造方法が提供される。The present invention relates to a method for producing a porous membrane which is suitably used for drinking water production, water treatment such as water purification treatment and wastewater treatment, and medical treatment such as blood purification, and furthermore, a fuel cell field, a battery separator, and a charged membrane. In particular, the present invention relates to a method for producing a porous membrane suitable for producing an ultrafiltration membrane.
[0001]
[Prior art]
In recent years, porous membranes have been used in various fields such as water treatment fields such as drinking water production, water purification treatment and wastewater treatment, medical fields such as blood purification, food industry fields, battery separators, charged membranes, and fuel cells. I have. In water treatment fields such as drinking water production, water purification and wastewater treatment, porous membranes are used to remove impurities in water as an alternative to conventional sand filtration and coagulation sedimentation processes, and in the medical field, blood purification In particular, porous membranes have been used for the purpose of removing blood wastes by extracorporeal circulation, such as hemodialysis, hemofiltration, and hemofiltration dialysis for substituting renal function. In the food industry, a porous membrane is used for the purpose of separating and removing yeast used for fermentation and concentrating a liquid. Further, in the field of batteries, as a separator for batteries to prevent the permeation of an electrolytic solution but a product generated in a battery reaction, and as a base material of a solid polymer electrolyte in the field of fuel cells, Membranes have been used. Furthermore, in the field of ultrapure water production, a charged porous membrane may be used in order to further enhance ion exclusion and increase the purity of the resulting pure water.
[0002]
As described above, porous membranes used in a variety of ways have a large amount of treated water in the field of water treatment such as water purification treatment (tap water production) and wastewater treatment. Therefore, porous membranes are also required to have improved water permeability. If the water permeability is excellent, the membrane area can be reduced, and the apparatus can be made compact, so that equipment costs can be saved, and it is advantageous in terms of membrane replacement costs and installation area. Also, in the water purification treatment, a disinfectant such as sodium hypochlorite is added to the membrane module for the purpose of sterilizing permeated water and preventing biofouling of the membrane, or the membrane is treated with acid, alkali, chlorine, surfactant, etc. In order to clean itself, the porous membrane is required to have chemical resistance. Furthermore, in tap water production, pathogenic microorganisms that are resistant to chlorine, such as cryptosporidium derived from livestock manure, cannot be completely treated at water purification plants, and accidents that become mixed with treated water have become apparent since the 1990s. Therefore, in order to prevent such an accident, the separation membrane is required to have sufficient separation characteristics and high physical strength so that raw water is not mixed into the treated water.
[0003]
As described above, the porous membrane is required to have excellent separation characteristics, chemical strength (chemical resistance), physical strength, and permeability.
[0004]
Therefore, in order to increase the chemical strength (chemical resistance), it is conceivable to form a film using a polyvinylidene fluoride resin. For example, Patent Document 1 discloses that a polyvinylidene fluoride resin is dissolved in a good solvent. At a temperature considerably lower than the melting point of the polyvinylidene fluoride resin, the polymer solution is extruded from a die or cast on a glass plate and molded, and then brought into contact with a liquid containing a non-solvent of the polyvinylidene fluoride resin. A wet solution method for forming an asymmetric porous structure by non-solvent induced phase separation has been disclosed. In addition, Patent Document 2 discloses a method in which inorganic fine particles and an organic liquid material are melt-kneaded with a polyvinylidene fluoride resin, extruded from a die at a temperature equal to or higher than the melting point of the polyvinylidene fluoride resin, or pressed by a press machine. After that, a melt extraction method for forming a porous structure by cooling and solidifying and then extracting an organic liquid and inorganic fine particles is disclosed.
[0005]
However, in the wet solution method described in Patent Literature 1, it is difficult to cause phase separation uniformly in the film thickness direction, and there is a problem that the mechanical strength is not sufficient because the film becomes an asymmetric film containing macrovoids and the like. In addition, there are many film forming condition factors affecting the film structure and film performance, and it is difficult to control the film forming process, and the reproducibility is poor. On the other hand, in the case of the melt extraction method described in Patent Document 2, porosity can be easily controlled, and a relatively homogeneous and high-strength film can be obtained without forming macrovoids, but the dispersibility of inorganic fine particles is poor. In addition, defects such as pinholes are easily generated, and the isolation characteristics are threatened. Furthermore, the melt extraction method has the disadvantage that the production costs are very high. As described above, it is difficult to produce a porous membrane that satisfies the separation characteristics, chemical strength (chemical resistance), physical strength, and permeability in a well-balanced manner.
[0006]
[Patent Document 1] Japanese Patent Publication No. 1-2003
[0007]
[Patent Document 2] Japanese Patent No. 2899903
[0008]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a porous membrane having high strength, high water permeability, and high blocking performance by using a polyvinylidene fluoride resin having high chemical resistance. It is in.
[0009]
[Means for Solving the Problems]
The present invention for achieving the above object is to produce a porous membrane in which a polyvinylidene fluoride resin solution obtained by dissolving a polyvinylidene fluoride resin in a solvent is discharged from a die, passed through a cooling liquid, and cooled and solidified. The method is characterized by a method for producing a porous membrane using a solvent having a three-dimensional solubility parameter satisfying the following equation as a solvent of a polyvinylidene fluoride resin solution.
[0010]
(Equation 2)
Figure 2004182919
[0011]
In the present invention, the porous membrane produced by the above production method is also a preferred embodiment, and it is more preferable that the porous membrane is an ultrafiltration membrane. Also, a preferred embodiment is a porous membrane module having a casing provided with a stock solution inlet and a permeate outlet, and a porous membrane housed in the casing and manufactured by the above-described manufacturing method. Further, a liquid separation device having this porous membrane module and a raw liquid pressurizing means provided on the upstream side of the porous membrane module or a permeated liquid suction means provided on the downstream side of the porous membrane module is also preferable. A method for producing permeated water by using this liquid separator to obtain permeated water from raw water is also preferable.
[0012]
Further, a porous membrane produced by the above production method is used as a blood purification membrane, and a fuel cell using the porous membrane described above is also a preferred embodiment.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the porous film is prepared by dissolving a polyvinylidene fluoride resin in a specific solvent to produce a polyvinylidene fluoride resin solution, discharging the polyvinylidene fluoride resin solution from a die, and passing through a cooling liquid. It is manufactured by cooling and solidifying. For example, when manufacturing a hollow fiber-shaped porous membrane, the adjusted resin solution is discharged from the outer tube of the double-tube type die, cooled and solidified in a cooling bath to form a hollow fiber membrane. At this time, the hollow part forming liquid is discharged from the inner tube of the double tube type die. When a flat porous film is formed, the adjusted resin solution is discharged from a slit die and cooled and solidified in a cooling bath to form a flat film.
[0014]
Here, the solvent in which the polyvinylidene fluoride resin is dissolved has a three-dimensional solubility parameter satisfying the following relationship.
[0015]
[Equation 3]
Figure 2004182919
[0016]
The three-dimensional solubility parameter will be described in detail. The solubility parameter δ was proposed by Hildebrand et al. (JH Hildebrand and RL Scott, "The Solubility of Nonelectories", published by Reinhold Publishing Corp., published in 1950, as published in 1950). expressed.
[0017]
(Equation 4)
Figure 2004182919
[0018]
That is, the solubility parameter corresponds to the square root of the cohesive energy density. It can be said that the closer the solubility parameter value is, the smaller the cohesive energy density is and the higher the affinity is. However, the initial solubility parameters mainly consisted of dispersive forces of intermolecular forces, and little consideration was given to dipole forces and hydrogen bonding forces. Later, Hansen et al. (CM Hansen, J. Paint Technology. 39, 505, pp. 104-117, published in 1967, and CM Hansen, J. Paint Technology, 39, 511, 505-510. Page 1967, published by CM Hansen and K. Skaarup, J. Paint Technology, Vol. 39, No. 511, pages 511-514, published in 1967, and Hoy (written by KL Hoy, J. Paint Technology. 42). Volume 541, pages 76-118, published in 1970) proposed so-called three-dimensional solubility parameters which quantified these. The three-dimensional solubility parameter δ is represented by the following equation.
[0019]
(Equation 5)
Figure 2004182919
[0020]
Basically, Hoy's parameters described in (CRC Handbook of solubility parameters and other cohesion parameters, by Allan FM Barton, published in CRC Corp., 1991) can be used as the three-dimensional solubility parameter. However, for solvents not described in the Hoy parameters, Hansen parameters described in the same book can be used.
[0021]
In order to increase the solubility of the polymer and improve the film forming property, the left side of the formula (1) is preferably 5 or less, more preferably 4 or less, and further preferably 3 or less.
[0022]
As the three-dimensional solubility parameter of the mixed solvent, a parameter calculated by the addition rule based on the weight ratio can be used.
[0023]
The solvent for dissolving the above polyvinylidene fluoride resin is not particularly limited. For example, γ-butyrolactone, γ-valerolactone, δ-valerolactone, furan, furfuryl alcohol, furfural, succinic anhydride Heteromonocyclic compounds such as maleic anhydride, pyran, pyrone, glutaric anhydride and derivatives thereof, alcohols and glycols such as octanol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol and derivatives thereof, and their derivatives. A mixed solvent is mentioned.
[0024]
Next, in the present invention, a polyvinylidene fluoride resin is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. Examples of the vinylidene fluoride copolymer include a copolymer of at least one selected from vinyl fluoride, ethylene tetrafluoride, propylene hexafluoride, and ethylene trifluoride chloride with vinylidene fluoride. The weight average molecular weight of the polyvinylidene fluoride resin may be appropriately selected depending on the required strength of the hollow fiber membrane and the water permeability, but in consideration of the processability into a porous membrane, 50,000 to 1,000,000, and furthermore, It is preferable to be within the range of 100,000 to 450,000. When the weight average molecular weight is larger than this range, the viscosity of the resin solution becomes too high, and when it is smaller than this range, the viscosity of the resin solution becomes too low, and it becomes difficult to form a porous membrane in any case. .
[0025]
The polyvinylidene fluoride resin is dissolved in the above solvent at a relatively high concentration and at a relatively high temperature to prepare a thermoplastic polyvinylidene fluoride resin solution. The resin concentration is preferably higher in order to obtain a porous film having a high elongation property, but if it is too high, the porosity of the obtained porous film becomes small, and the water permeability is reduced. Preferably it is in the range of weight%. Further, the viscosity of the adjusted resin solution is preferably 10 to 1,000 Pa · s. If the viscosity is higher than this range, it will not be possible to discharge from the die, and it will be difficult to form a porous film. On the other hand, if the viscosity is lower than this range, it becomes difficult to maintain the form of the resin solution discharged from the mouthpiece, and it becomes difficult to wind up the resin and further form the resin into a porous film.
[0026]
The higher the temperature at which the resin is dissolved, the higher the solubility of the resin is, which is preferable. However, when the temperature approaches the boiling point of the solvent, the solvent is liable to evaporate during the dissolution process, and the concentration of the resin solution is easily changed, which is not preferable. Therefore, the temperature T at which the resin is dissolved is preferably in the range of (the boiling point of the solvent −100 ° C.) ≦ T <(the boiling point of the solvent), and more preferably (the boiling point of the solvent −70 ° C.) ≦ T ≦ (the boiling point of the solvent). (Boiling point −10 ° C.).
[0027]
In the present invention, the above-mentioned polyvinylidene fluoride resin solution is cooled and solidified by passing through a cooling liquid to form a porous film. That is, in the conventional wet solution method using a polyvinylidene fluoride resin, the resin concentration cannot be increased in order to exhibit sufficient water permeability, and the resulting film has a network having macrovoids with low strong elongation. Although it was a structural film, in the present invention, by using a solvent that satisfies the formula (1), the polyvinylidene fluoride-based resin solution performs liquid-liquid type phase separation and has high chemical resistance. However, since the resin concentration can be increased, a porous film having a dense three-dimensional network structure and high strength and elongation can be obtained. The liquid-liquid phase separation refers to a phase separation in a cooling process in which phase separation is induced into a polymer rich phase and a polymer dilute phase during cooling (Hideto Matsuyama) , "Preparation of Polymeric Porous Membrane by Thermally Induced Phase Separation Method (TIPS Method)", Chemical Engineering, June 1998, pages 45 to 56).
[0028]
In cooling and solidifying the resin solution, in order to keep the die temperature and the cooling bath temperature at desired temperatures, it is preferable to once discharge the resin solution from the die into the air (dry part), and then guide the resin solution to the cooling bath to cool and solidify. .
[0029]
The present invention as described above has a high performance porous membrane, for example, having a water permeability at 50 kPa and 25 ° C. of 0.05 m 3 ~ 1.5m 3 / M 2 ・ H, and 0.07-1 m 3 / M 2 H is suitable for forming a porous film having a breaking elongation of 15% or more, further 20% or more, and a porous film having a breaking strength of 4 MPa or more. Further, the present invention as described above is suitable for forming an ultrafiltration membrane, in particular, an ultrafiltration membrane having a rejection of 0.020 μm diameter particles of 95% or more, and more preferably 98% or more.
[0030]
The water permeability and the blocking performance are evaluated as follows. That is, in the case of the hollow fiber membrane shape, a 200 mm long miniature module composed of four hollow fiber membranes was prepared, and polystyrene latex particles having an average particle size of 0.020 μm were obtained under the conditions of a temperature of 25 ° C. and a filtration pressure difference of 16 kPa. Was subjected to total external filtration for 30 minutes, and the amount of permeation (m 3 ) In unit time (h) and effective membrane area (m 2 ) Is converted to a pressure (50 kPa) to determine the water permeability, the concentration of latex particles in the raw water and the permeated water is determined by measuring the ultraviolet absorption coefficient at a wavelength of 237 nm, and the blocking performance is determined from the concentration ratio. On the other hand, in the case of a flat membrane, it is cut out into a circle having a diameter of 50 mm, set in a cylindrical filtration holder, and otherwise obtained by performing the same operation as the hollow fiber membrane. Note that the water permeability may be obtained by converting a value obtained by pressurizing or suctioning with a pump or the like. The water temperature may be converted based on the viscosity of the evaluation liquid. 0.1m water permeability 3 / M 2 -If it is less than h, the water permeability is too low, which is not preferable as a porous membrane. Conversely, the water permeability is 3m 3 / M 2 When the value exceeds h, the pore diameter of the porous membrane is too large, and the ability to prevent impurities is lowered, which is not preferable. Even when the rejection of particles having a diameter of 0.020 μm is less than 95%, the pore diameter of the porous film is too large, and the rejection of impurities is undesirably low.
[0031]
The method for measuring the breaking strength and the breaking elongation is not particularly limited. For example, using a tensile tester, a test in which a sample having a measurement length of 50 mm is pulled at a pulling speed of 50 mm / min by changing the sample is performed. It can be measured by performing the measurement five times or more and obtaining the average value of the breaking strength and the average value of the breaking elongation. If the rupture strength is less than 4 MPa or the rupture elongation is less than 15%, the handling properties when handling the porous membrane are deteriorated, and the membrane is easily broken or crushed during filtration, which is not preferable.
[0032]
One of the reasons why the present invention is particularly suitable for forming an ultrafiltration membrane having a high rejection of 0.020 μm diameter particles is to use a polyvinylidene fluoride-based solvent by using a solvent satisfying the formula (1). The resin solution performs liquid-liquid type phase separation, and the obtained porous membrane has a dense three-dimensional network structure.
[0033]
With the above-described production method, a porous membrane having high strength and elongation characteristic exhibiting water permeability can be obtained. However, if the water permeability is not sufficient, the porous membrane is further increased by 1.1 times or more to 5.0 times. Stretching at a draw ratio of not more than 2 times is also preferable because the water permeability of the porous membrane is improved.
[0034]
The porous membrane produced by the above-described production method is housed in a casing having a stock solution inlet, a permeate outlet, and the like, and is used as a porous membrane module. When the porous membrane is a hollow fiber membrane, the porous membrane module bundles a plurality of hollow fiber membranes and puts them in a cylindrical container, fixes both ends or one end with polyurethane or epoxy resin, and discharges the permeated liquid. The permeated liquid can be recovered by fixing the both ends of the hollow fiber membrane in a flat shape. When the porous membrane is a flat membrane, the flat membrane is wound in a spiral shape while being folded into an envelope around the collection tube, and placed in a cylindrical container so that the permeate can be formed, or the collection plate can be used. A flat membrane is arranged on both sides of the device to fix the periphery watertight so that the permeate can be collected.
[0035]
The porous membrane module is provided with a pressurizing means at least on the undiluted solution side or a suction means on the permeated liquid side, and is used as a liquid separation device for treating water or the like. As the pressurizing means, a pump may be used, or pressure due to a difference in water level may be used. Further, a pump or a siphon may be used as the suction means.
[0036]
This liquid separation device can be used for water purification, water purification, wastewater treatment, industrial water production, etc. in the field of water treatment, and uses river water, lake water, groundwater, seawater, sewage, wastewater, etc. as treated water. .
[0037]
Further, the porous membrane prepared by the above-described manufacturing method can also be used for a battery separator for separating a positive electrode and a negative electrode inside a battery, and in this case, improvement in battery performance due to high ion permeability and The effect of improving the durability of the battery due to the high breaking strength can be expected.
[0038]
Furthermore, when the porous membrane produced by the above-described production method is a charged membrane by introducing a charged group (ion exchange group), the ion membrane can be improved in its recognizability, and the durability of the charged membrane can be improved due to its high breaking strength. The effect can be expected.
[0039]
Furthermore, the porous membrane created by the above manufacturing method is impregnated with an ion exchange resin, and when used in a fuel cell as the ion exchange membrane, particularly when methanol is used as the fuel, swelling of the ion exchange membrane with methanol is suppressed, Methanol leakage from the anode side to the cathode side through the ion-exchange membrane, so-called crossover, is suppressed, so that improvement in fuel cell performance can be expected, and further, improvement in fuel cell durability due to high breaking strength can be expected. .
[0040]
When the porous membrane prepared by the above-described production method is used as a blood purification membrane, it is expected to improve the removability of blood wastes and to improve the durability of the blood purification membrane due to its high breaking strength.
[0041]
【Example】
The three-dimensional solubility parameters of the solvents used in the examples are shown in Table 1 together with the sources.
[0042]
[Table 1]
Figure 2004182919
[0043]
When the porous membrane is a hollow fiber membrane, a 200 mm long miniature module composed of four hollow fiber membranes is manufactured at a temperature of 25 ° C. and a filtration pressure difference of 25 ° C. Under the conditions of 16 kPa, total pressure filtration of water in which polystyrene latex particles having an average particle size of 0.020 μm were dispersed was performed for 30 minutes, and the permeation amount (m 3 ) In unit time (h) and effective membrane area (m 2 ) Was converted to a pressure (50 kPa) to determine the water permeability, the concentration of latex particles in the raw water and the permeated water was determined by measuring the ultraviolet absorption coefficient at a wavelength of 237 nm, and the blocking performance was determined from the concentration ratio. When the porous membrane was a flat membrane, the membrane was cut out into a circle having a diameter of 50 mm, set in a cylindrical filtration holder, and otherwise obtained by performing the same operation as the hollow fiber membrane. The ultraviolet absorption coefficient at a wavelength of 237 nm was measured using a spectrophotometer (U-3200) (manufactured by Hitachi, Ltd.).
[0044]
Using a tensile tester (TENSILON / RTM-100) (manufactured by Toyo Baldwin), the breaking strength and the breaking elongation were measured five times by changing the sample at a speed of 50 mm / min. It was measured by determining the average value of the breaking strength and the average value of the breaking elongation.
<Example 1>
γ-butyrolactone and diethylene glycol were mixed at a weight ratio of 1: 1. Table 2 shows the three-dimensional solubility parameters of this mixed solvent and the values on the left side of the formula (1). This mixed solvent satisfies the formula (1).
[0045]
[Table 2]
Figure 2004182919
[0046]
A vinylidene fluoride homopolymer having a weight average molecular weight of 417,000 was dissolved in the above-mentioned mixed solvent at a temperature of 200 ° C so as to be 38% by weight. This resin solution is discharged from a die at 180 ° C. with the above mixed solvent as a liquid for forming a hollow portion, passed through a dry portion of about 2 cm, and then introduced into a cooling bath made of the above mixed solvent at a temperature of 13 ° C. And cooled and solidified. The obtained hollow fiber membrane had an outer diameter of 1.39 mm and an inner diameter of 0.79 mm. Water permeability at 50 kPa and 25 ° C. is 0.15 m 3 / M 2 H, the rejection of 0.020 μm diameter particles was 98%, the breaking strength was 10.2 MPa, the breaking elongation was 39%, and the hollow fiber membrane was excellent in water permeability, blocking performance, strength and elongation. .
[0047]
Table 3 summarizes the conditions and results.
[0048]
[Table 3]
Figure 2004182919
[0049]
<Example 2>
γ-butyrolactone and diethylene glycol were mixed at a weight ratio of 2: 1. Table 2 shows the three-dimensional solubility parameters of this mixed solvent and the values on the left side of the formula (1). This mixed solvent satisfies the formula (1).
[0050]
A vinylidene fluoride homopolymer having a weight-average molecular weight of 417,000 was dissolved in the above-mentioned mixed solvent at a temperature of 200 ° C so as to be 38% by weight. This resin solution was discharged from a die at 180 ° C. with the above mixed solvent as a liquid for forming a hollow portion, passed through a dry portion of about 2 cm, and then introduced into a cooling bath made of the above mixed solvent at a temperature of 9 ° C. And cooled and solidified. The obtained hollow fiber membrane had an outer diameter of 1.21 mm and an inner diameter of 0.81 mm. Water permeability at 50 kPa and 25 ° C. is 0.15 m 3 / M 2 H, the rejection of 0.020 μm diameter particles was 99%, the breaking strength was 9.6 MPa, the breaking elongation was 30%, and the hollow fiber membrane was excellent in water permeability, blocking performance, strength and elongation. .
[0051]
Table 3 summarizes the conditions and results.
<Example 3>
A vinylidene fluoride homopolymer having a weight average molecular weight of 417,000 was dissolved in the mixed solvent described in Example 1 at a temperature of 200 ° C so as to be 38% by weight. This resin solution was discharged from a slit at 180 ° C., passed through a dry section of about 2 cm, and then cooled and solidified in a bath containing the mixed solvent described in Example 1 at a temperature of 13 ° C. The obtained flat film had a thickness of 0.175 mm. Water permeability at 50 kPa and 25 ° C. is 0.12 m 3 / M 2 H, the rejection of 0.020 μm-diameter particles was 98%, the breaking strength was 9.9 MPa, the breaking elongation was 36%, and the flat membrane was excellent in water permeability, blocking performance, strength and elongation.
[0052]
Table 3 summarizes the conditions and results.
<Example 4>
γ-butyrolactone and triethylene glycol were mixed at a weight ratio of 41:59. Table 2 shows the three-dimensional solubility parameters of this mixed solvent and the values on the left side of the formula (1). This mixed solvent satisfies the formula (1).
[0053]
A vinylidene fluoride homopolymer having a weight-average molecular weight of 417,000 was dissolved in the above-mentioned mixed solvent at a temperature of 200 ° C so as to be 38% by weight. The resin solution was discharged from a die at 180 ° C. while entraining the mixed solvent as a liquid for forming a hollow portion, passed through a dry portion of about 2 cm, and then solidified in a cooling bath made of the mixed solvent at a temperature of 13 ° C. . The obtained hollow fiber membrane had an outer diameter of 1.39 mm and an inner diameter of 0.79 mm. Water permeability at 50 kPa and 25 ° C. is 0.12 m 3 / M 2 H, the rejection of 0.020 μm diameter particles was 98%, the breaking strength was 9.9 MPa, the breaking elongation was 36%, and the hollow fiber membrane was excellent in water permeability, blocking performance, strength and elongation. .
[0054]
Table 3 summarizes the conditions and results.
<Example 5>
γ-butyrolactone and ethylene glycol were mixed at a weight ratio of 72:28. Table 2 shows the three-dimensional solubility parameters of this mixed solvent and the values on the left side of the formula (1). This mixed solvent satisfies the formula (1).
[0055]
A vinylidene fluoride homopolymer having a weight average molecular weight of 417,000 was dissolved in the above-mentioned mixed solvent at a temperature of 180 ° C so as to be 38% by weight. This resin solution was discharged from a die at 160 ° C. while entraining the mixed solvent as a liquid for forming a hollow portion, passed through a dry portion of about 2 cm, and then solidified in a cooling bath made of the mixed solvent at a temperature of 9 ° C. . The obtained hollow fiber membrane had an outer diameter of 1.21 mm and an inner diameter of 0.81 mm. Water permeability at 50 kPa and 25 ° C. is 0.12 m 3 / M 2 H, the rejection of 0.020 μm diameter particles was 98%, the breaking strength was 9.3 MPa, the breaking elongation was 27%, and the hollow fiber membrane was excellent in water permeability, blocking performance, strength and elongation. .
[0056]
Table 3 summarizes the conditions and results.
<Comparative Example 1>
γ-butyrolactone and diethylene glycol were mixed at a weight ratio of 1: 2. Table 2 shows the three-dimensional solubility parameters of this mixed solvent and the values on the left side of the formula (1). This mixed solvent does not satisfy the formula (1).
[0057]
An attempt was made to dissolve the vinylidene fluoride homopolymer having a weight average molecular weight of 417,000 in the above-mentioned mixed solvent at a temperature of 200 ° C. so as to be 38% by weight, but it was separated into two phases and could not be uniformly dissolved. Was.
[0058]
Table 3 summarizes the conditions and results.
<Example 6>
A Nafion (registered trademark) solution (purchased from Aldrich) was charged with a catalyst-supporting carbon (catalyst: 29.2% by weight of platinum and 15.8% by weight of ruthenium, carbon: Vulcan (registered trademark) XC-72 manufactured by Cabot). And Nafion (registered trademark) in a weight ratio of 1: 1 and stirred well to prepare a catalyst-polymer composition. This catalyst-polymer composition was applied to one surface of a carbon paper TGP-H-060 manufactured by Toray, and the amount of platinum carried was 3 mg / cm. 2 An electrode substrate with an electrode catalyst layer was prepared.
[0059]
On the other hand, the flat membrane obtained in Example 3 was impregnated with a Nafion (registered trademark) solution (purchased from Aldrich) and dried to prepare an ion exchange membrane. The electrode substrate with an electrode catalyst layer was sandwiched from both sides of the ion exchange membrane so that the electrode catalyst layer side was the ion exchange membrane side, and hot-pressed at 130 ° C. and 5 MPa to obtain a membrane-electrode assembly.
[0060]
The obtained membrane-electrode assembly was assembled in a fuel cell, and a 64% by weight aqueous methanol solution was supplied to the anode side, and air was supplied to the cathode side. Maximum output is 0.5mW / cm 2 And exhibited excellent high-output characteristics. This is considered to be because the swelling of the ion exchange membrane by methanol was suppressed, and leakage of methanol from the anode side to the cathode side through the ion exchange membrane, so-called crossover, was suppressed.
<Comparative Example 2>
From both surfaces of an ion exchange membrane Nafion (registered trademark) 117 (0.175 mm thick) manufactured by Du Pont, an electrode substrate with an electrode catalyst layer prepared under the same conditions as in Example 6 was used. And hot-pressed under the same conditions as in Example 6 to obtain a membrane-electrode assembly.
[0061]
When the obtained membrane-electrode assembly was evaluated under the same conditions as in Example 6, the maximum output was 0.1 mW / cm. 2 Was low. This is considered to be because the ion exchange membrane Nafion (registered trademark) 117 was swollen by methanol and crossover of methanol occurred.
[0062]
【The invention's effect】
The present invention provides a method for producing a porous membrane having high strength, high water permeability, and high rejection using a thermoplastic resin having high chemical resistance.

Claims (8)

ポリフッ化ビニリデン系樹脂を溶媒で溶解したポリフッ化ビニリデン系樹脂溶液を、口金から吐出した後、冷却液体中を通過させて冷却固化せしめる多孔質膜の製造方法であって、ポリフッ化ビニリデン系樹脂溶液の溶媒として、三次元溶解性パラメーターが次式の関係を満足する溶媒を用いることを特徴とする多孔質膜の製造方法。
Figure 2004182919
A method for producing a porous film, comprising: discharging a polyvinylidene fluoride resin solution obtained by dissolving a polyvinylidene fluoride resin in a solvent from a die, passing through a cooling liquid, and cooling and solidifying the solution; A solvent having a three-dimensional solubility parameter satisfying the following relationship:
Figure 2004182919
請求項1の製造方法により製造された多孔質膜。A porous membrane produced by the production method according to claim 1. 限外濾過膜である、請求項2に記載の多孔質膜。The porous membrane according to claim 2, which is an ultrafiltration membrane. 原液流入口および透過液流出口を備えたケーシングと、そのケーシングに収容された、請求項1に記載の製造方法により製造された多孔質膜または請求項2もしくは請求項3の多孔質膜とを有する多孔質膜モジュール。A casing having a stock solution inlet and a permeate outlet, and a porous membrane produced by the production method according to claim 1 or the porous membrane according to claim 2 or 3 housed in the casing. Having a porous membrane module. 請求項4に記載の多孔質膜モジュールと、この多孔質膜モジュールの上流側に設けられた原液加圧手段またはこの多孔質膜モジュールの下流側に設けられた透過液吸引手段とを有する液体分離装置。A liquid separation comprising: the porous membrane module according to claim 4; and a stock solution pressurizing unit provided on the upstream side of the porous membrane module or a permeated liquid suction unit provided on the downstream side of the porous membrane module. apparatus. 請求項5に記載の液体分離装置を用いて原水から透過水を得る透過水の製造方法。A method for producing permeated water, wherein permeated water is obtained from raw water using the liquid separation device according to claim 5. 血液浄化用膜である、請求項2または3に記載の多孔質膜。The porous membrane according to claim 2, which is a blood purification membrane. 請求項2または3に記載の多孔質膜を用いた燃料電池。A fuel cell using the porous membrane according to claim 2.
JP2002353458A 2002-12-05 2002-12-05 Method for manufacturing porous film Pending JP2004182919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353458A JP2004182919A (en) 2002-12-05 2002-12-05 Method for manufacturing porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353458A JP2004182919A (en) 2002-12-05 2002-12-05 Method for manufacturing porous film

Publications (1)

Publication Number Publication Date
JP2004182919A true JP2004182919A (en) 2004-07-02

Family

ID=32754744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353458A Pending JP2004182919A (en) 2002-12-05 2002-12-05 Method for manufacturing porous film

Country Status (1)

Country Link
JP (1) JP2004182919A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263721A (en) * 2005-02-28 2006-10-05 Toray Ind Inc Fluororesin-based polymer separation membrane, its manufacturing method, membrane module using the membrane, and separation device
WO2009004962A1 (en) 2007-07-03 2009-01-08 Sumitomo Electric Fine Polymer, Inc. Flat-membrane element for filtration and flat-membrane filtration module
WO2009054448A1 (en) 2007-10-24 2009-04-30 Sumitomo Electric Fine Polymer, Inc. Separation membrane element for filtration and membrane module for filtration
WO2011089785A1 (en) * 2010-01-25 2011-07-28 東レ株式会社 Aromatic polyamide porous film and separator for capacitor or battery using the same
US8205754B2 (en) 2006-07-25 2012-06-26 Toray Industries, Inc. Fluororesin polymer separation membrane and process for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263721A (en) * 2005-02-28 2006-10-05 Toray Ind Inc Fluororesin-based polymer separation membrane, its manufacturing method, membrane module using the membrane, and separation device
TWI403355B (en) * 2005-02-28 2013-08-01 Toray Industries A fluororesin-based polymer separation membrane and a method for producing the same
US8205754B2 (en) 2006-07-25 2012-06-26 Toray Industries, Inc. Fluororesin polymer separation membrane and process for producing the same
WO2009004962A1 (en) 2007-07-03 2009-01-08 Sumitomo Electric Fine Polymer, Inc. Flat-membrane element for filtration and flat-membrane filtration module
CN101541406B (en) * 2007-07-03 2012-10-10 住友电工超效能高分子股份有限公司 Flat-membrane element for filtration and flat-membrane filtration module
WO2009054448A1 (en) 2007-10-24 2009-04-30 Sumitomo Electric Fine Polymer, Inc. Separation membrane element for filtration and membrane module for filtration
WO2011089785A1 (en) * 2010-01-25 2011-07-28 東レ株式会社 Aromatic polyamide porous film and separator for capacitor or battery using the same
JPWO2011089785A1 (en) * 2010-01-25 2013-05-20 東レ株式会社 Aromatic polyamide porous membrane, and capacitor and battery separator using the same
US8815384B2 (en) 2010-01-25 2014-08-26 Toray Industries, Inc. Aromatic polyamide porous film and separator for capacitor or battery using the same
JP5644506B2 (en) * 2010-01-25 2014-12-24 東レ株式会社 Aromatic polyamide porous membrane, and capacitor and battery separator using the same

Similar Documents

Publication Publication Date Title
US7851024B2 (en) Porous membrane and method for manufacturing the same
Guo et al. Thermally stable and green cellulose-based composites strengthened by styrene-co-acrylate latex for lithium-ion battery separators
KR101306406B1 (en) Polymer separation membrane and process for producing the same
WO2008018181A1 (en) Porous membrane of vinylidene fluoride resin and process for producing the same
JP5066810B2 (en) Polymer separation membrane and production method thereof
JP5318385B2 (en) Porous membrane made of vinylidene fluoride resin and method for producing the same
JP2011222499A (en) Composite polymer electrolyte membrane, manufacturing method of the same, and manufacturing method of membrane electrode assembly
Dai et al. Crosslinked PVA-based hybrid membranes containing di-sulfonic acid groups for alkali recovery
JP2004182919A (en) Method for manufacturing porous film
RU2440181C2 (en) Porous membrane from vinylidene fluoride resin and method of its production
JP2005194461A (en) Fluorinated vinylidene resin porous film and method for producing the same
JP2008036559A (en) Method of oxidization processing fluororesin-based polymer separation membrane
JP2004202438A (en) Porous membrane
CN114618312A (en) Dual porous ion selective permeable membrane and preparation method thereof
JP2004267833A (en) Polyketone porous material
WO2023074670A1 (en) Porous membrane and method for manufacturing porous membrane
CN110201559A (en) A kind of big flux Enhanced type hollow fiber film and preparation method thereof
JP2010110693A (en) Method of manufacturing composite porous separation membrane
Long et al. F-free etching and ingenious construction of hydrogel layer-prepared MXene membranes for oily wastewater separation
CN117822048B (en) Temperature-resistant alkaline water electrolysis hydrogen production diaphragm and preparation method thereof
CN117512692B (en) Coating type alkaline water electrolysis hydrogen production diaphragm
JP2004009012A (en) Microporous membrane and method for manufacturing the same
CN114934385B (en) Cellulose acetate based composite aerogel and preparation method and application thereof
Millare et al. Fabrication of Polysulfone-Zeolite Nanocomposite Membrane for Water and Wastewater Treatment Applications
Murugaya et al. Preparation and Characterizations of Triptycene Integrated Poly (Arylene Ether Sulfone) Based Block and Random Copolymers