JP2004182763A - Method for producing polyethylene microporous film - Google Patents

Method for producing polyethylene microporous film Download PDF

Info

Publication number
JP2004182763A
JP2004182763A JP2002348019A JP2002348019A JP2004182763A JP 2004182763 A JP2004182763 A JP 2004182763A JP 2002348019 A JP2002348019 A JP 2002348019A JP 2002348019 A JP2002348019 A JP 2002348019A JP 2004182763 A JP2004182763 A JP 2004182763A
Authority
JP
Japan
Prior art keywords
polyethylene
film
pore
microporous
forming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002348019A
Other languages
Japanese (ja)
Other versions
JP2004182763A5 (en
JP4098607B2 (en
Inventor
Hisashi Takeda
久 武田
Takuya Hasegawa
卓也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002348019A priority Critical patent/JP4098607B2/en
Publication of JP2004182763A publication Critical patent/JP2004182763A/en
Publication of JP2004182763A5 publication Critical patent/JP2004182763A5/ja
Application granted granted Critical
Publication of JP4098607B2 publication Critical patent/JP4098607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polyethylene microporous film having excellent high-speed productivity at a low cost by a porosifying treatment with easy maintenance. <P>SOLUTION: The method for producing the polyethylene microporous film has a film-preparing step and a porosifying treatment step. In the method, the porosifying treatment step composed of (1) a step of coating at least one surface of a polyethylene film with a hole-opening agent, (2) a step of permeating the hole-opening agent into the polyethylene film and (3) a step of removing the hole-opening agent permeated through the polyethylene film is carried out. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電池用セパレータに適したポリエチレン微多孔膜の製造方法に関するものである。
【0002】
【従来の技術】
ポリエチレン微多孔膜は精密濾過膜、電池用セパレータ、コンデンサー用セパレータ、等に使用されている。これらのうち電池用セパレータ、特にリチウムイオン電池用セパレータとして好適に使用されている。この理由として、電気絶縁性を有する、電解液を保持した状態でイオン透過性を有する、耐電解液性・耐酸化性に優れる、孔閉塞効果を有することなどを挙げることができる。
ポリエチレン微多孔膜の製造方法としては、例えば原料ポリエチレンと可塑剤を押出機等で溶融混練したものをシート化し、延伸等の工程を経た後に可塑剤を抽出する方法、或いは原料ポリエチレン単体からなるフィルムを、一旦高温の開孔剤で膨潤させて多孔化処理を行ってから開孔剤を除去する方法、等が従来から知られている。
【0003】
後者に関して、特許文献1では超高分子量ポリオレフィンのインフレーションフィルムを形成した後に、開孔剤に浸漬して多孔化処理し、ついで開孔剤を抽出することによって得られるポリエチレン微多孔膜が開示されている。しかし、特許文献1における多孔化処理方法は、金枠を使用したバッチ式のものであり、多孔化処理を連続で行う方法については開示されていない。
さらに、同一出願人による特許文献2では、前記文献と同じフィルムを、高温の流動パラフィン槽の中でフィルム両端を拘束したままジグザグに屈曲して通すことで連続的な多孔化処理を行うフィルムの支持方法および熱処理装置について開示されている。また、特許文献3において、該熱処理装置を使用したポリオレフィン微多孔膜の製造方法が開示されている。
【0004】
かかる方法を用いると、連続的な微多孔膜の生産が可能であるが、液中のフィルム搬送となるためフィルムの膜面抵抗が大であり、例えば高速生産時に膜のばたつき等が発生し、場合によっては破断するという問題があるばかりでなく、膜を浸漬するために大量の流動パラフィンを必要とするという問題もあった。さらに、液中ベアリングの使用が必須となるため、ゴミ等の付着に対する頻繁なメンテナンスが要求されるという問題があった。このように、ポリエチレンフィルムを開孔剤で連続的に膨潤させる製造方法として、高速生産性に優れ、低コストで、かつメンテナンスの容易な多孔化処理方法が望まれていた。
【0005】
【特許文献1】
特開平11−302436号公報、
【特許文献2】
特開平10−278108号公報、
【特許文献3】
特開平10−306168号公報
【発明が解決しようとする課題】
本発明の課題は、高速生産性に優れ、低コストで、かつメンテナンスの容易な多孔化処理によるポリエチレン微多孔膜の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するため鋭意検討を重ねた結果、従来技術のようにフィルムを開孔剤に浸漬させて浸透させるのではなく、開孔剤を塗布して浸透させることにより前記課題を達成できることを見出し、本発明をなすに至った。
すなわち、本発明は、
[1] ポリエチレンフィルム作成工程および多孔化処理工程を有するポリエチレン微多孔膜の製造方法であって、該多孔化処理工程が、(1)ポリエチレンフィルムの少なくとも一方の表面に開孔剤を塗布する工程、(2)ポリエチレンフィルム中に開孔剤を浸透させる工程、(3)ポリエチレンフィルムに浸透した開孔剤を除去する工程を有することを特徴とするポリエチレン微多孔膜の製造方法、
【0007】
[2] ポリエチレンフィルムが配向ポリエチレンフィルムであることを特徴とする[1]に記載のポリエチレン微多孔膜の製造方法、
[3](2)の浸透方法が加熱処理であることを特徴とする[1]又は[2]何れかに記載のポリエチレン微多孔膜の製造方法、
[4] (1)および(2)の工程を、ポリエチレンフィルムを拘束した状態で行うことを特徴とする[1]〜[3]の何れかに記載のポリエチレン微多孔膜の製造方法、
【0008】
[5] (1)および(2)の工程を横1軸延伸機もしくは同時2軸延伸機を用いて行うことを特徴とする[1]〜[4]の何れかに記載のポリエチレン微多孔膜の製造方法、
[6] [1]〜[5]の何れかに記載のポリエチレン微多孔膜の製造方法によって得られたポリエチレン微多孔膜、
[7] [6]に記載のポリエチレン微多孔膜を用いた電池用セパレータ、
[8] [7]に記載の電池用セパレータを用いた電池、
である。
【0009】
【発明の実施の形態】
本発明のポリエチレン微多孔膜の製造方法は、大きく分けて、ポリエチレンフィルム作成工程と、多孔化処理工程よりなる。更に多孔化処理工程は、(1)ポリエチレンフィルムの少なくとも一方の表面に開孔剤を塗布する工程(以下、開孔剤塗布工程と称す。)、(2)ポリエチレンフィルム中に開孔剤を浸透させる工程(以下、開孔剤浸透工程と称す。)、(3)ポリエチレンフィルムに浸透した開孔剤を除去する工程(以下、開孔剤除去工程と称す。)、からなる。
以下、各工程を順次説明する。
【0010】
<ポリエチレンフィルム作成工程>
本発明で使用するポリエチレンとしてはエチレンを主体とした結晶性の重合体である高密度ポリエチレンもしくはエチレンとα−オレフィンとの共重合体が好ましく、さらにこれらにポリプロピレン、中密度ポリエチレン、線状低密度ポリエチレン、低密度ポリエチレン、エチレンプロピレンラバー(EPR)等のポリオレフィンを30wt%以下の割合でブレンドしたものも使用できる。
該ポリエチレンの重量平均分子量は、好ましくは10万以上、より好ましくは20万以上1000万以下の範囲である。ブレンドや多段重合等の手段によって使用するポリマーの重量平均分子量を好ましい範囲に調節しても差し支えない。
【0011】
ポリエチレンフィルムの作成方法は特に限定されないが、例えば、押出機にポリエチレンを供給して溶融混練してフィルムを作成する方法、ポリエチレン粉末を圧縮成形してフィルムを作成する方法などが挙げられる。また、該ポリエチレンフィルムは配向ポリエチレンフィルムであることが好ましい。配向ポリエチレンフィルムとは、分子鎖が少なくとも1軸方向に配向していることを示す。これらのうち、2軸配向ポリエチレンフィルムが好ましい。配向ポリエチレンフィルムの作成方法としては特に限定されないが、1軸配向ポリエチレンフィルムの場合は、ロールによる1軸延伸による方法が利用でき、2軸配向ポリエチレンフィルムの場合は、フラット式同時2軸延伸やフラット式逐次2軸延伸、チューブラ式同時2軸延伸による方法が利用できる。
【0012】
延伸温度は、ポリエチレンの延伸性の観点から100℃以上が好ましく、フィルム強度の観点から250℃以下が好ましい。より好ましくは110℃以上200℃以下、さらに好ましくは120℃以上180℃以下、特に好ましくは130℃以上170℃以下である。ポリエチレンが可塑剤を含む場合も延伸可能であるが、135℃以下で延伸することが好ましい。可塑剤とは、ポリエチレンの融点以上の温度において均一溶液を形成することができる有機化合物のことである。また、本発明においては可塑剤等を含まないことが好ましい。
【0013】
延伸倍率は、フィルム強度の観点から4倍以上が好ましく、延伸における膜破断の観点から400倍以下が好ましい。より好ましくは10倍以上200倍以下、さらに好ましくは10倍以上100倍以下である。
延伸温度と延伸倍率は、原料ポリエチレンの分子量、架橋構造の有無を考慮して最適な条件を決定しておくことが好ましい。
フィルムの厚みは、機械強度の観点から1μm以上が好ましく、フィルムの用途から200μm以下が好ましい。より好ましくは3μm以上100μm以下、さらに好ましくは5μm以上50μm以下である。
【0014】
<多孔化処理工程>
(1)開孔剤塗布工程
多孔化処理工程に使用される開孔剤は、ポリエチレンフィルムに対して浸透性のある液体、または該液体と、該液体の粘度やポリエチレンフィルムへの浸透性を調製する目的で添加することができる塗工性改良剤、から成る混合物を示す。該塗工性改良剤は該液体に対して1種または2種以上添加することができる。ここで言う「浸透」とは結果的にポリエチレンフィルムを膨潤させることも含まれる。
【0015】
ポリエチレンフィルムに対して浸透性のある液体としては、例えば流動パラフィンなどの炭化水素、低級脂肪族アルコール、低級脂肪族ケトン、窒素含有機化合物、エーテル、グリコール、低級脂肪族エステル、シリコンオイルなどであり、これらを単独あるいは組み合わせて使用することができる。これらのうち、引火点の観点から流動パラフィンが好ましい。
塗工性改良剤としては、特に限定されないが、ポリブテンなどの油溶性液状ポリマー、ガソリンオイルなどの鉱油、シリカやアルミナなどの無機粉粒体、デンプン等の有機粉粒体、界面活性剤等で乳化させて油分散化した水溶性ポリマー、各種界面活性剤などが利用できる。またこれらを混合して使用することもできる。これらのうち油溶性液状ポリマー、鉱油が、多孔化処理工程の後述する(3)の開孔剤除去工程で、開孔剤と一緒に除去できることから好ましい。
【0016】
塗工性改良剤の含有量は特に限定されないが、塗工性改良剤効果発現の観点から0.001wt%以上50wt%以下が好ましい。より好ましくは0.01wt%以上20wt%以下、さらに好ましくは0.05wt%以上10wt%以下、特に好ましくは0.1wt%以上5wt%以下である。
ポリエチレンフィルムに塗布する開孔剤の粘度は、特に限定されないが、均一塗布の観点から20mPa・s以上が好ましく、塗布時の流動性の観点から9000mPa・s以下が好ましい。より好ましくは100mPa・s以上6000mPa・s以下、さらに好ましくは200mPa・s以上4000mPa・s以下、特に好ましくは300mPa・s以上2000mPa・s以下である。これらの粘度は、例えば塗工性改良剤の添加によって好適に制御することができる。
【0017】
開孔剤のポリエチレンフィルムに対する接触角は、特に限定されないが、25℃において液適法で測定し、θ/2法で解析される値が、フィルムに対する浸透性の観点から100°以下が好ましい。より好ましくは80°以下、さらに好ましくは60°以下である。これらの接触角は、例えば塗工性改良剤の添加によって好適に制御することができる。
開孔剤のポリエチレンフィルムへの塗布方法としては特に限定されないが、公知の塗布技術を使用することができる。バッチ処理する場合には、市販のペンキ塗布用の刷毛、ドクターブレードなどが使用可能であり、連続処理する場合には、リバースコータ、ダイレクトロールコータ、ナイフコータ、ダイコータ等が挙げられる。
【0018】
開孔剤を塗布する際にはポリエチレンフィルムを少なくとも1軸方向に拘束することが好ましい。膜の拘束方法には、バッチ処理する場合には、例えば金枠で拘束する方法、バッチ式2軸延伸機で拘束する方法があり、連続処理する場合には、例えばロールで1軸方向に拘束する方法、横1軸延伸機や同時2軸延伸機など、フィルムのフラット式延伸による連続生産において通常使用されている装置を用いることができる。横1軸延伸機や同時2軸延伸機とは、例えばフィルム把持装置を備えた1組の無端リンク装置を、フィルムを延伸する通路の両側に備えることによって連続的なフィルム延伸ができるもの等が挙げられる。これらのうち、多孔化処理を連続して行うことができ、さらに後述する熱収縮を、横方向についても抑えることができるため、横1軸延伸機または同時2軸延伸機で拘束する方法が好ましい。
【0019】
開孔剤の塗布は片面でも、両面でもよいが、ポリエチレン微多孔膜の透気性の観点から両面に塗布することが好ましい。
開孔剤の塗布量は特に限定されないが、好ましくは1g/m以上9000g/m以下、より好ましくは10g/m以上1000g/m、さらに好ましくは50g/m以上500g/m以下である。開孔剤浸透後の膜質量を開孔剤浸透前の膜質量で除することで得られる開孔剤浸透倍率が、1.1倍以上〜10倍以下となるように塗布量を調節することが好ましい。
【0020】
塗布する際の開孔剤の温度は特に限定されないが、開孔剤の流動性の観点から25℃以上が好ましく、開孔剤の引火点等の観点から200℃以下が好ましい。より好ましくは50℃以上180℃以下、さらに好ましくは80℃以上160℃以下、特に好ましくは100℃以上140℃以下である。
開孔剤を塗布したときに、熱収縮が余儀なくされる場合の熱収縮率は、ポリエチレン微多孔膜の気孔率確保の観点から30%以下が好ましい。より好ましくは20%以下、さらに好ましくは10%以下である。
【0021】
(2)開孔剤浸透工程
開孔剤浸透工程は、塗布した開孔剤をポリエチレンフィルムに浸透させる工程である。浸透させる方法は開孔剤のポリエチレンに対する浸透性によって異なるが、例えば、浸透性の低い開孔剤については膜を加熱することによって好適に浸透させることができる。膜の加熱方法としては特に限定されないが、熱風加熱、プレートヒーターなどの公知の技術が使用できる。このとき、加熱による膜の熱収縮を防止するために少なくとも1軸方向に拘束することが好ましい。また、拘束するタイミングは、加熱前、加熱中の何れでもよく、特に限定されない。膜の拘束方法は上記(1)と同様の方法をとることが可能であり、多孔化処理を連続して行うことができ、さらに熱収縮を横方向についても抑えることができるため、横1軸延伸機または同時2軸延伸機等で2軸方向に拘束する方法が好ましい。
【0022】
加熱によって熱収縮が余儀なくされる場合の熱収縮率は、ポリエチレン微多孔膜の気孔率確保の観点から30%以下が好ましい。より好ましくは20%以下、さらに好ましくは10%以下である。
加熱温度は特に限定されないが、浸透性を向上させるために30℃以上が好ましく、開孔剤の引火点等の観点から200℃以下が好ましい。より好ましくは50℃以上180℃以下、さらに好ましくは100℃以上160℃以下、特に好ましくは120℃以上140℃以下である。
加熱時間は特に限定されないが、加熱効果発現の観点から1秒以上が好ましく、膜強度保持の観点から10分以下が好ましい。より好ましくは5秒以上5分以下、さらに好ましくは10秒以上3分以下である。
【0023】
(3)開孔剤除去工程
開孔剤の除去方法としては特に限定されないが、開孔剤としてパラフィン油やジオクチルフタレートを使用する場合には塩化メチレンやメチルエチルケトン(MEK)等の有機溶媒で洗浄したあと、得られた微多孔膜のヒューズ温度以下で加熱乾燥することによって除去することができる。また、開孔剤にデカリン等の低沸点化合物を使用する場合は微多孔膜を加熱乾燥するだけで除去することが可能である。いずれの場合も膜の収縮による物性低下を防ぐため、少なくとも1軸方向に膜を拘束することが好ましい。
【0024】
以上の製法によって得られたポリエチレン微多孔膜は、寸法安定性を高めるため必要に応じて熱処理(ヒートセット)に供してもよい。
また、フィルム作成工程、多孔化処理工程、の何れかにおいて少なくとも1回以上、微多孔膜の耐熱性を向上させるために架橋構造を形成させることも可能である。架橋構造形成のタイミングとしては、前記いずれの工程の前後および工程中でも可能であるが、ポリエチレン微多孔膜の熱収縮防止の観点から、フィルム作成工程以降に架橋構造を形成させることが好ましい。
【0025】
架橋構造を形成させる方法としては、特に限定されないが、電離放射線による方法、架橋剤を添加する方法などがある。これらのうち電離放射線による方法が好ましい。
電離放射線の種類としては、電子線、γ線、紫外線などがあるが、このうち電子線が好ましい。電子線照射線量は、十分な架橋密度を得るために1Mrad以上が好ましく、過度の照射による機械強度の低下を防ぐために200Mrad以下が好ましい。より好ましくは2Mrad以上100Mrad以下、さらに好ましくは5Mrad以上50Mrad以下である。
【0026】
電離放射線による方法の場合、残存ラジカルによって経時劣化が起きることが知られている。しかし、多孔化処理工程における(3)開孔剤除去工程よりも前に電離放射線によって架橋構造を形成させ、さらに開孔剤浸透工程中または後に、110℃以上の温度で加熱処理することによってポリエチレン微多孔膜の透過性、機械強度を損なうことなく、残存ラジカルを失活させ、経時劣化のないポリエチレン微多孔膜の製造も可能である。
以上のような工程によって作成できるポリエチレン微多孔膜は、気孔率が20%以上〜80%以下、25μm換算透気度が3000秒/0.1dm/25μm以下、25μm換算突刺強度が2N/25μm以上というような物性をもち、電池用セパレータとして好適に使用できる。
【0027】
【実施例】
以下、本発明を実施の形態に基づいてさらに詳細に説明する。実施例において示す試験方法は次の通りである。
(1)粘度(mPa・s)
(株)トキメック社製E型粘度計(VISCONIC ED形)を使用し、20℃にて、ロータとして標準コーン(1°34′)を用い、ロータの回転速度10rpmにて測定した。
【0028】
(2)開孔剤浸透倍率
開孔剤を浸透させた膜を10cm角の大きさに切り取った後に質量を測定し、浸透前の10cm角の膜質量で除した値を開孔剤浸透倍率とした。
(3)膜厚(μm)
デジタル定圧厚さ測定器((株)東洋精機製作所製:形式B−1、測定子径φ5mm、測定圧62.4kPa)にて測定した。
【0029】
(4)気孔率(%)
10cm角に微多孔膜を切り取り、その体積と質量から膜の平均密度ρ(g/cm)を算出した。得られた数値から次式を用いて計算した。
気孔率(%)=100×(1−ρ/0.95)
(5)25μm換算透気度(秒/0.1dm/25μm)
JIS P―8117準拠のガーレー式透気度計((株)東洋精機製作所製:型式G−B2C)で得た値に25(μm)/膜厚(μm)を乗じて25μm換算透気度をとした。
【0030】
(6)25μm換算突き刺し強度(N/25μm)
測定温度25℃において、カトーテック製KES−G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突き刺し速度2mm/secの条件で突き刺し試験を行い、最大突き刺し荷重を突き刺し強度(N)とした。突き刺し強度に25(μm)/膜厚(μm)を乗じることによって25μ換算常温突き刺し強度とした。
【0031】
【実施例1】
高密度ポリエチレン(密度0.95、粘度平均分子量25万)を100質量部と、該ポリエチレン100質量部に対して0.1質量部のトリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネートを、口径40mm、L/D=30の二軸押出機に投入して220℃、20rpmにて混練し、ハンガーコートダイから30℃のロール上にキャストして膜厚600μのシートを作成した。該膜を連続式の電子線照射装置(ELECTRONSHOWER:電気興業株式会社製)を用いて、加速電圧600keV、照射線量300kGyにて架橋処理を施した後、該架橋処理シートを同時二軸延伸機にて、温度145℃、延伸倍率7×7倍に延伸してポリエチレンフィルムを得た。次に該フィルムを外枠15cm四方、内枠12cm四方のステンレス製金枠に拘束し、フィルムの12cm四方に対して、市販のペンキ用刷毛で片面の塗布量100g/mとなるように、開孔剤として流動パラフィンを両面塗布した。用いた流動パラフィンは、粘度791mPa・sの流動パラフィン((株)松村石油研究所製)50重量部、粘度151mPa・sの流動パラフィン(松村石油(株)製)50重量部をスリーワンモーターにて撹拌して調製し、粘度403mPa・sであった。次に130℃に温度調節した熱風オーブン内に該塗布膜を投入し、表面温度(接触式の熱電対で測定)が雰囲気温度に達してから2分間放置し、取り出して室温まで冷却した。次に流動パラフィンを塩化メチレンで除去して乾燥させた後、110℃に温度調節したオーブンで1分間ヒートセットして、ポリエチレン微多孔膜を得た。
【0032】
【比較例1】
ポリエチレンフィルムに流動パラフィンを塗布する代わりに、ポリエチレンフィルムを12cm角の金枠で拘束し、オイルバス内で127℃に温調された、粘度151mPa・sの流動パラフィン中へ2分間浸漬した以外は、実施例1と同様に行った。
【0033】
【実施例2】
開孔剤として、粘度173mPa・sのポリブテン添加流動パラフィン((株)松村石油研究所製)を使用し、熱風オーブンの設定温度を128℃とした以外は、実施例1と同様に行った。
【0034】
【比較例2】
ポリエチレンフィルムに流動パラフィンを塗布する代わりに、ポリエチレンフィルムを金枠で拘束し、オイルバス内で128℃に温調された粘度173mPa・sのポリブテン添加流動パラフィン((株)松村石油研究所製)へ2分間浸漬する方法とした以外は、実施例1と同様に行った。
【0035】
【実施例3】
超高分子量ポリエチレン粉体(UH850:旭化成(株)製、密度0.94、粘度平均分子量200万)を温度240℃、油圧200kg/cmの条件で5分間圧縮成形し、12cm四方、膜厚600μmのシートを得た。次に該膜をバッチ式二軸延伸機((株)東洋精機製作所製)を用いて、延伸温度146℃にて8×8倍に同時二軸延伸を行い、膜厚10μmのポリエチレンフィルムを得た。次に該ポリエチレンフィルムを外枠15cm四方、内枠12cm四方のステンレス製金枠に拘束し、フィルムの12cm四方に対して、市販のペンキ用刷毛で片面の塗布量100g/mとなるように、開孔剤として151mPa・s(松村石油(株)製)の流動パラフィンを両面塗布した。次に132℃に温度調節した熱風オーブン内に該塗布膜を投入し、表面温度(接触式の熱電対で測定)が雰囲気温度に達してから2分間放置し、取り出して室温まで冷却した。次に流動パラフィンを塩化メチレンで除去して乾燥させた後、120℃に温度調節したオーブンで1分間ヒートセットして、ポリエチレン微多孔膜を得た。
【0036】
【比較例3】
ポリエチレンフィルムに流動パラフィンを塗布する代わりに、ポリエチレンフィルムを金枠で拘束し、オイルバス内で130℃に温調された粘度151mPa・sの流動パラフィンへ2分間浸漬する方法とした以外は、実施例3と同様に行った。
実施例における多孔化処理条件、得られたポリエチレン微多孔膜の物性を表1に示す。
【0037】
【表1】

Figure 2004182763
【0038】
【発明の効果】
本発明に係るポリエチレン微多孔膜の製造方法により、従来製法と同等な物性をもつポリエチレン微多孔膜が、従来よりも生産性に優れる方法で製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a microporous polyethylene membrane suitable for a battery separator.
[0002]
[Prior art]
Polyethylene microporous membranes are used for microfiltration membranes, battery separators, condenser separators, and the like. Among them, they are suitably used as battery separators, especially as separators for lithium ion batteries. The reasons for this include electrical insulation, ion permeability while holding the electrolytic solution, excellent electrolytic solution resistance and oxidation resistance, and a pore blocking effect.
As a method for producing a polyethylene microporous membrane, for example, a method in which a raw material polyethylene and a plasticizer are melt-kneaded in an extruder or the like to form a sheet, and a plasticizer is extracted after a process such as stretching, or a film made of raw material polyethylene alone There is conventionally known a method of once swelling with a high-temperature pore-forming agent to perform a porous treatment and then removing the pore-forming agent.
[0003]
Regarding the latter, Patent Document 1 discloses a microporous polyethylene membrane obtained by forming an inflation film of an ultrahigh molecular weight polyolefin, immersing the film in a pore-forming agent, performing a porous treatment, and then extracting the pore-forming agent. I have. However, the porosity treatment method in Patent Document 1 is of a batch type using a metal frame, and does not disclose a method of continuously performing the porosity treatment.
Further, in Patent Document 2 by the same applicant, in the high-temperature liquid paraffin bath, the same film as in the above-mentioned document is bent in a zigzag manner while restraining both ends of the film, and the film is subjected to a continuous porous treatment. A supporting method and a heat treatment apparatus are disclosed. Patent Document 3 discloses a method for producing a microporous polyolefin membrane using the heat treatment apparatus.
[0004]
By using such a method, continuous production of a microporous membrane is possible, but the film surface resistance of the film is large because the film is transported in a liquid, and for example, fluttering of the membrane occurs during high-speed production, In some cases, not only was there a problem of breakage, but also a problem that a large amount of liquid paraffin was required to immerse the membrane. Furthermore, since the use of a submerged bearing is indispensable, there is a problem that frequent maintenance is required for the adhesion of dust and the like. As described above, as a production method for continuously swelling a polyethylene film with a pore-forming agent, a porous treatment method that is excellent in high-speed productivity, low in cost, and easy to maintain has been desired.
[0005]
[Patent Document 1]
JP-A-11-302436,
[Patent Document 2]
JP-A-10-278108,
[Patent Document 3]
JP, 10-306168, A [Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a microporous polyethylene membrane by a porosity treatment that is excellent in high-speed productivity, low in cost, and easy to maintain.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, it has been found that the above-mentioned problems can be achieved by applying and penetrating a pore-forming agent, instead of immersing the film in a pore-forming agent and permeating the film as in the prior art. This led to the present invention.
That is, the present invention
[1] A method for producing a polyethylene microporous membrane having a polyethylene film preparation step and a porous treatment step, wherein the porous treatment step comprises: (1) a step of applying a pore-forming agent to at least one surface of the polyethylene film (2) a method for producing a microporous polyethylene membrane, comprising: a step of permeating a pore-forming agent into a polyethylene film; and (3) a step of removing the pore-forming agent permeated into the polyethylene film.
[0007]
[2] The method for producing a microporous polyethylene membrane according to [1], wherein the polyethylene film is an oriented polyethylene film,
[3] The method for producing a microporous polyethylene membrane according to any one of [1] or [2], wherein the infiltration method of (2) is heat treatment.
[4] The method for producing a polyethylene microporous membrane according to any one of [1] to [3], wherein the steps (1) and (2) are performed with the polyethylene film restrained.
[0008]
[5] The microporous polyethylene membrane according to any one of [1] to [4], wherein the steps (1) and (2) are performed using a horizontal uniaxial stretching machine or a simultaneous biaxial stretching machine. Manufacturing method,
[6] A microporous polyethylene membrane obtained by the method for producing a microporous polyethylene membrane according to any one of [1] to [5],
[7] A battery separator using the polyethylene microporous membrane according to [6],
[8] A battery using the battery separator according to [7],
It is.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing a microporous polyethylene membrane of the present invention is roughly divided into a polyethylene film preparation step and a porous treatment step. Furthermore, the porous treatment step includes (1) a step of applying a pore-forming agent to at least one surface of the polyethylene film (hereinafter, referred to as a pore-forming agent application step), and (2) penetration of the pore-forming agent into the polyethylene film. (Hereinafter referred to as a pore-permeant permeating step), and (3) a step of removing the pore-permeant permeated into the polyethylene film (hereinafter referred to as a pore-permeant removing step).
Hereinafter, each step will be described sequentially.
[0010]
<Polyethylene film making process>
The polyethylene used in the present invention is preferably a high-density polyethylene or a copolymer of ethylene and an α-olefin, which is a crystalline polymer mainly composed of ethylene, and further includes polypropylene, medium-density polyethylene, and linear low-density polyethylene. Polyolefins such as polyethylene, low-density polyethylene, and ethylene propylene rubber (EPR) may be blended at a ratio of 30 wt% or less.
The weight average molecular weight of the polyethylene is preferably 100,000 or more, more preferably 200,000 to 10,000,000. The weight average molecular weight of the polymer used may be adjusted to a preferred range by means such as blending or multi-stage polymerization.
[0011]
The method for producing the polyethylene film is not particularly limited, and examples thereof include a method in which polyethylene is supplied to an extruder and melt-kneaded to produce a film, and a method in which polyethylene powder is compression-molded to produce a film. Further, the polyethylene film is preferably an oriented polyethylene film. An oriented polyethylene film indicates that the molecular chains are oriented in at least one axial direction. Of these, biaxially oriented polyethylene films are preferred. The method for preparing the oriented polyethylene film is not particularly limited. In the case of a uniaxially oriented polyethylene film, a method of uniaxial stretching using a roll can be used. In the case of a biaxially oriented polyethylene film, a flat simultaneous biaxial stretching or flat A method using a sequential biaxial stretching method and a tubular simultaneous biaxial stretching method can be used.
[0012]
The stretching temperature is preferably 100 ° C. or higher from the viewpoint of the stretchability of polyethylene, and is preferably 250 ° C. or lower from the viewpoint of the film strength. The temperature is more preferably from 110 ° C to 200 ° C, further preferably from 120 ° C to 180 ° C, particularly preferably from 130 ° C to 170 ° C. Stretching is possible when the polyethylene contains a plasticizer, but it is preferable to stretch at 135 ° C. or lower. A plasticizer is an organic compound capable of forming a homogeneous solution at a temperature equal to or higher than the melting point of polyethylene. Further, in the present invention, it is preferable not to contain a plasticizer or the like.
[0013]
The stretching ratio is preferably at least 4 times from the viewpoint of film strength, and is preferably at most 400 times from the viewpoint of film breakage during stretching. It is more preferably 10 times or more and 200 times or less, and further preferably 10 times or more and 100 times or less.
It is preferable to determine optimal conditions for the stretching temperature and the stretching ratio in consideration of the molecular weight of the raw material polyethylene and the presence or absence of a crosslinked structure.
The thickness of the film is preferably 1 μm or more from the viewpoint of mechanical strength, and is preferably 200 μm or less from the application of the film. More preferably, it is 3 μm or more and 100 μm or less, and still more preferably 5 μm or more and 50 μm or less.
[0014]
<Porosification process>
(1) Pore opening agent application step The pore opening agent used in the porous treatment step is a liquid that is permeable to the polyethylene film, or the liquid and the viscosity of the liquid or the permeability of the liquid or the polyethylene film is adjusted. A coatability improver which can be added for the purpose of carrying out the process. One or more of the coating property improvers can be added to the liquid. The term “penetration” as used herein also includes swelling of the resulting polyethylene film.
[0015]
Examples of the liquid permeable to the polyethylene film include hydrocarbons such as liquid paraffin, lower aliphatic alcohols, lower aliphatic ketones, nitrogen-containing organic compounds, ethers, glycols, lower aliphatic esters, and silicone oils. These can be used alone or in combination. Of these, liquid paraffin is preferred from the viewpoint of flash point.
The coatability improver is not particularly limited, but may be an oil-soluble liquid polymer such as polybutene, a mineral oil such as gasoline oil, an inorganic powder such as silica or alumina, an organic powder such as starch, a surfactant, or the like. Water-soluble polymers emulsified and oil-dispersed, various surfactants, and the like can be used. These can be used in combination. Among these, the oil-soluble liquid polymer and mineral oil are preferable because they can be removed together with the pore-forming agent in the pore-forming agent removing step (3) described later in the porous treatment step.
[0016]
The content of the coating property improving agent is not particularly limited, but is preferably 0.001 wt% or more and 50 wt% or less from the viewpoint of the effect of the coating property improving agent. More preferably, it is 0.01 wt% or more and 20 wt% or less, further preferably 0.05 wt% or more and 10 wt% or less, and particularly preferably 0.1 wt% or more and 5 wt% or less.
The viscosity of the pore-forming agent applied to the polyethylene film is not particularly limited, but is preferably 20 mPa · s or more from the viewpoint of uniform application, and is preferably 9000 mPa · s or less from the viewpoint of fluidity during application. It is more preferably 100 mPa · s or more and 6000 mPa · s or less, further preferably 200 mPa · s or more and 4000 mPa · s or less, particularly preferably 300 mPa · s or more and 2000 mPa · s or less. These viscosities can be suitably controlled, for example, by adding a coatability improver.
[0017]
The contact angle of the pore-forming agent to the polyethylene film is not particularly limited, but the value measured by the liquid method at 25 ° C. and analyzed by the θ / 2 method is preferably 100 ° or less from the viewpoint of permeability to the film. It is more preferably at most 80 °, further preferably at most 60 °. These contact angles can be suitably controlled, for example, by adding a coating improver.
The method for applying the pore-forming agent to the polyethylene film is not particularly limited, but a known coating technique can be used. In the case of batch processing, a commercially available brush or doctor blade for paint application can be used, and in the case of continuous processing, a reverse coater, a direct roll coater, a knife coater, a die coater or the like can be used.
[0018]
When applying the pore-forming agent, it is preferable to restrain the polyethylene film in at least one axial direction. In the case of batch processing, for example, there is a method of restricting with a metal frame, and in the case of batch processing, there is a method of restricting with a batch-type biaxial stretching machine. For example, an apparatus generally used in continuous production by flat stretching of a film, such as a horizontal uniaxial stretching machine or a simultaneous biaxial stretching machine, can be used. The horizontal uniaxial stretching machine and the simultaneous biaxial stretching machine include, for example, those capable of continuous film stretching by providing a pair of endless link devices equipped with a film gripping device on both sides of a film stretching path. No. Of these, a method of confining with a horizontal uniaxial stretching machine or a simultaneous biaxial stretching machine is preferable because the porous treatment can be performed continuously and the heat shrinkage described later can be suppressed in the horizontal direction. .
[0019]
The pore-forming agent may be applied on one side or both sides, but is preferably applied on both sides from the viewpoint of air permeability of the polyethylene microporous membrane.
The coating amount of the pore-forming agent is not particularly limited, but is preferably 1 g / m 2 or more and 9000 g / m 2 or less, more preferably 10 g / m 2 or more and 1000 g / m 2 , further preferably 50 g / m 2 or more and 500 g / m 2. It is as follows. The coating amount is adjusted so that the permeation ratio of the pore-forming agent obtained by dividing the mass of the membrane after the penetration of the pore-forming agent by the mass of the membrane before the penetration of the pore-forming agent is 1.1 times or more and 10 times or less. Is preferred.
[0020]
The temperature of the pore-forming agent at the time of application is not particularly limited, but is preferably 25 ° C. or more from the viewpoint of fluidity of the pore-forming agent, and is preferably 200 ° C. or less from the viewpoint of the flash point of the pore-forming agent. The temperature is more preferably from 50 ° C to 180 ° C, further preferably from 80 ° C to 160 ° C, particularly preferably from 100 ° C to 140 ° C.
When heat shrinkage is inevitable when the pore-forming agent is applied, the heat shrinkage is preferably 30% or less from the viewpoint of securing the porosity of the microporous polyethylene membrane. It is more preferably at most 20%, further preferably at most 10%.
[0021]
(2) Pore opening agent permeation step The pore opening agent permeation step is a step of permeating the applied pore opening agent into the polyethylene film. The method of infiltration depends on the permeability of the pore-forming agent to polyethylene. For example, a pore-forming agent having low permeability can be favorably penetrated by heating the membrane. The method for heating the film is not particularly limited, but known techniques such as hot air heating and a plate heater can be used. At this time, it is preferable that the film be restrained in at least one axial direction in order to prevent thermal contraction of the film due to heating. In addition, the timing of restraint may be either before heating or during heating, and is not particularly limited. The film can be restrained by the same method as in the above (1), and the porous treatment can be performed continuously and the heat shrinkage can be suppressed in the horizontal direction. A method of constraining in a biaxial direction with a stretching machine or a simultaneous biaxial stretching machine is preferred.
[0022]
When heat shrinkage is inevitable by heating, the heat shrinkage rate is preferably 30% or less from the viewpoint of ensuring the porosity of the polyethylene microporous membrane. It is more preferably at most 20%, further preferably at most 10%.
The heating temperature is not particularly limited, but is preferably 30 ° C. or higher to improve the permeability, and is preferably 200 ° C. or lower from the viewpoint of the flash point of the pore-forming agent. The temperature is more preferably from 50 ° C to 180 ° C, further preferably from 100 ° C to 160 ° C, and particularly preferably from 120 ° C to 140 ° C.
The heating time is not particularly limited, but is preferably 1 second or more from the viewpoint of exhibiting the heating effect, and is preferably 10 minutes or less from the viewpoint of maintaining the film strength. The time is more preferably 5 seconds or more and 5 minutes or less, and further preferably 10 seconds or more and 3 minutes or less.
[0023]
(3) Step of removing the pore-forming agent The method of removing the pore-forming agent is not particularly limited. When paraffin oil or dioctyl phthalate is used as the pore-forming agent, it is washed with an organic solvent such as methylene chloride or methyl ethyl ketone (MEK). Thereafter, the resultant microporous film can be removed by heating and drying at a temperature not higher than the fuse temperature. When a low-boiling compound such as decalin is used as the pore-forming agent, it can be removed only by heating and drying the microporous membrane. In any case, in order to prevent a decrease in physical properties due to contraction of the film, it is preferable to restrict the film in at least one axial direction.
[0024]
The microporous polyethylene membrane obtained by the above manufacturing method may be subjected to a heat treatment (heat set) as necessary to enhance dimensional stability.
In addition, it is also possible to form a crosslinked structure at least once in any of the film forming step and the porous treatment step in order to improve the heat resistance of the microporous film. The timing of the formation of the crosslinked structure can be before, after, or during any of the above steps, but from the viewpoint of preventing heat shrinkage of the microporous polyethylene membrane, it is preferable to form the crosslinked structure after the film forming step.
[0025]
The method for forming the crosslinked structure is not particularly limited, and examples thereof include a method using ionizing radiation and a method of adding a crosslinking agent. Of these, the method using ionizing radiation is preferred.
Examples of the type of ionizing radiation include electron beams, γ-rays, and ultraviolet rays. Of these, electron beams are preferable. The electron beam irradiation dose is preferably 1 Mrad or more in order to obtain a sufficient crosslinking density, and is preferably 200 Mrad or less in order to prevent a decrease in mechanical strength due to excessive irradiation. More preferably, it is 2 Mrad or more and 100 Mrad or less, and still more preferably 5 Mrad or more and 50 Mrad or less.
[0026]
In the case of the method using ionizing radiation, it is known that deterioration over time is caused by residual radicals. However, polyethylene is obtained by forming a crosslinked structure by ionizing radiation before (3) the pore-forming agent removing step in the pore-forming treatment step, and further performing a heat treatment at a temperature of 110 ° C. or more during or after the pore-forming agent infiltration step. It is possible to deactivate the remaining radicals without impairing the permeability and mechanical strength of the microporous membrane, and to produce a microporous polyethylene membrane without deterioration over time.
Polyethylene microporous membrane that can be created by the process described above had a porosity of 20% or more to 80% or less, 25 [mu] m in terms of air permeability 3000 sec /0.1dm 3 / 25μm or less, 25 [mu] m in terms of puncture strength is 2N / 25 [mu] m It has the above physical properties and can be suitably used as a battery separator.
[0027]
【Example】
Hereinafter, the present invention will be described in more detail based on embodiments. The test method shown in the examples is as follows.
(1) Viscosity (mPa · s)
Using an E-type viscometer (VISCONIC ED type) manufactured by Tokimec Co., Ltd., the viscosity was measured at 20 ° C. using a standard cone (1 ° 34 ′) as a rotor at a rotation speed of the rotor of 10 rpm.
[0028]
(2) Pore agent penetration ratio The membrane in which the pore agent was infiltrated was cut into a 10 cm square size, the mass was measured, and the value obtained by dividing by the 10 cm square membrane mass before penetration was taken as the pore agent penetration ratio. did.
(3) Film thickness (μm)
It was measured with a digital constant pressure thickness measuring instrument (manufactured by Toyo Seiki Seisaku-sho, Ltd .: type B-1, measuring element diameter φ5 mm, measuring pressure 62.4 kPa).
[0029]
(4) Porosity (%)
The microporous membrane was cut into a 10 cm square, and the average density ρ (g / cm 3 ) of the membrane was calculated from the volume and mass. It calculated from the obtained numerical value using the following formula.
Porosity (%) = 100 × (1-ρ / 0.95)
(5) 25μm in terms of air permeability (sec /0.1dm 3 / 25μm)
Multiply the value obtained with a Gurley-type air permeability meter (manufactured by Toyo Seiki Seisaku-sho, Ltd .: Model G-B2C) based on JIS P-8117 by 25 (μm) / film thickness (μm) to obtain a 25 μm reduced air permeability. And
[0030]
(6) 25 μm equivalent piercing strength (N / 25 μm)
At a measurement temperature of 25 ° C., a piercing test was performed using a KES-G5 handy compression tester manufactured by Kato Tech under the conditions of a radius of curvature of the needle tip of 0.5 mm and a piercing speed of 2 mm / sec, and the maximum piercing load was punctured (N ). The piercing strength was multiplied by 25 (μm) / film thickness (μm) to obtain a 25 μ converted room temperature piercing strength.
[0031]
Embodiment 1
100 parts by mass of high-density polyethylene (density 0.95, viscosity average molecular weight 250,000) and 0.1 parts by mass of triethylene glycol-bis [3- (3-t-butyl- 5-Methyl-4-hydroxyphenyl) propionate was charged into a twin-screw extruder having a diameter of 40 mm and L / D = 30, kneaded at 220 ° C. and 20 rpm, and cast from a hanger coat die onto a roll at 30 ° C. Thus, a sheet having a thickness of 600 μm was prepared. The film is subjected to a crosslinking treatment using an electron beam irradiation apparatus of a continuous type (ELECTRONSHOWER: manufactured by Denki Kogyo Co., Ltd.) at an acceleration voltage of 600 keV and an irradiation dose of 300 kGy. Then, the film was drawn at a temperature of 145 ° C. and a draw ratio of 7 × 7 to obtain a polyethylene film. Next, the film is constrained to a stainless steel frame with an outer frame of 15 cm square and an inner frame of 12 cm square, and a commercially available paint brush is applied to a 12 cm square of the film so that the coating amount on one side is 100 g / m 2 . Liquid paraffin was applied on both sides as a pore opening agent. The liquid paraffin used was 50 parts by weight of liquid paraffin having a viscosity of 791 mPa · s (manufactured by Matsumura Oil Research Institute Co., Ltd.) and 50 parts by weight of liquid paraffin having a viscosity of 151 mPa · s (manufactured by Matsumura Oil Co., Ltd.) by a three-one motor. It was prepared by stirring and had a viscosity of 403 mPa · s. Next, the coating film was put into a hot-air oven adjusted to 130 ° C., left for 2 minutes after the surface temperature (measured with a contact-type thermocouple) reached the ambient temperature, taken out, and cooled to room temperature. Next, the liquid paraffin was removed with methylene chloride and dried, and then heat-set for 1 minute in an oven adjusted to 110 ° C. to obtain a microporous polyethylene membrane.
[0032]
[Comparative Example 1]
Instead of applying liquid paraffin to the polyethylene film, the polyethylene film was restrained with a 12 cm square metal frame, and immersed in liquid paraffin having a viscosity of 151 mPa · s for 2 minutes at 127 ° C. in an oil bath. , And in the same manner as in Example 1.
[0033]
Embodiment 2
The procedure was performed in the same manner as in Example 1 except that a liquid paraffin added with polybutene having a viscosity of 173 mPa · s (manufactured by Matsumura Petroleum Institute, Ltd.) was used as the pore opening agent, and the set temperature of the hot air oven was set at 128 ° C.
[0034]
[Comparative Example 2]
Instead of applying liquid paraffin to the polyethylene film, the polyethylene film is constrained by a metal frame, and a polybutene-added liquid paraffin having a viscosity of 173 mPa · s adjusted to 128 ° C. in an oil bath (manufactured by Matsumura Oil Research Institute) The procedure was performed in the same manner as in Example 1 except that the immersion was performed for 2 minutes.
[0035]
Embodiment 3
Ultra-high molecular weight polyethylene powder (UH850: manufactured by Asahi Kasei Corporation, density 0.94, viscosity average molecular weight 2,000,000) is compression molded at a temperature of 240 ° C and a hydraulic pressure of 200 kg / cm 2 for 5 minutes, 12 cm square, film thickness A 600 μm sheet was obtained. Next, the film was simultaneously biaxially stretched 8 × 8 times at a stretching temperature of 146 ° C. using a batch type biaxial stretching machine (manufactured by Toyo Seiki Seisaku-sho, Ltd.) to obtain a polyethylene film having a film thickness of 10 μm. Was. Next, the polyethylene film is constrained to a stainless steel frame having an outer frame of 15 cm square and an inner frame of 12 cm square, and a commercially available paint brush is applied to a 12 cm square of the film so that the coating amount on one side is 100 g / m 2. Liquid paraffin of 151 mPa · s (manufactured by Matsumura Oil Co., Ltd.) was applied on both sides as a pore opening agent. Next, the coating film was put into a hot-air oven adjusted to 132 ° C., left for 2 minutes after the surface temperature (measured with a contact-type thermocouple) reached the ambient temperature, taken out, and cooled to room temperature. Next, the liquid paraffin was removed with methylene chloride and dried, and then heat-set for 1 minute in an oven adjusted to 120 ° C. to obtain a microporous polyethylene membrane.
[0036]
[Comparative Example 3]
Instead of applying liquid paraffin to the polyethylene film, the method was carried out except that the polyethylene film was restrained by a metal frame and immersed in liquid paraffin having a viscosity of 151 mPa · s and controlled at 130 ° C. for 2 minutes in an oil bath. Performed as in Example 3.
Table 1 shows the conditions for the porous treatment and the physical properties of the resulting microporous polyethylene membrane in the examples.
[0037]
[Table 1]
Figure 2004182763
[0038]
【The invention's effect】
According to the method for producing a microporous polyethylene membrane of the present invention, a microporous polyethylene membrane having physical properties equivalent to those of a conventional production method can be produced by a method having higher productivity than before.

Claims (8)

ポリエチレンフィルム作成工程および多孔化処理工程を有するポリエチレン微多孔膜の製造方法であって、該多孔化処理工程が、(1)ポリエチレンフィルムの少なくとも一方の表面に開孔剤を塗布する工程、(2)ポリエチレンフィルム中に開孔剤を浸透させる工程、(3)ポリエチレンフィルムに浸透した開孔剤を除去する工程を有することを特徴とするポリエチレン微多孔膜の製造方法。A method for producing a microporous polyethylene membrane having a polyethylene film forming step and a porous treatment step, wherein the porous treatment step comprises: (1) a step of applying a pore-forming agent to at least one surface of the polyethylene film; A method for producing a microporous polyethylene membrane, comprising: (a) a step of permeating a pore-forming agent into a polyethylene film; and (3) a step of removing the pore-forming agent permeated into the polyethylene film. ポリエチレンフィルムが配向ポリエチレンフィルムであることを特徴とする請求項1に記載のポリエチレン微多孔膜の製造方法。The method for producing a microporous polyethylene membrane according to claim 1, wherein the polyethylene film is an oriented polyethylene film. (2)の浸透方法が加熱処理であることを特徴とする請求項1又は2に記載のポリエチレン微多孔膜の製造方法。The method for producing a microporous polyethylene membrane according to claim 1 or 2, wherein the infiltration method (2) is heat treatment. (1)および(2)の工程を、ポリエチレンフィルムを拘束した状態で行うことを特徴とする請求項1〜3の何れかに記載のポリエチレン微多孔膜の製造方法。The method for producing a microporous polyethylene membrane according to any one of claims 1 to 3, wherein the steps (1) and (2) are performed with the polyethylene film restrained. (1)および(2)の工程を、ポリエチレンフィルムを横1軸延伸機もしくは同時2軸延伸機を用いて行うことを特徴とする請求項1〜4の何れかに記載のポリエチレン微多孔膜の製造方法。The polyethylene microporous membrane according to any one of claims 1 to 4, wherein the steps (1) and (2) are performed using a transverse uniaxial stretching machine or a simultaneous biaxial stretching machine for the polyethylene film. Production method. 請求項1〜5の何れかに記載のポリエチレン微多孔膜の製造方法によって得られたポリエチレン微多孔膜。A microporous polyethylene membrane obtained by the method for producing a microporous polyethylene membrane according to claim 1. 請求項6に記載のポリエチレン微多孔膜を用いた電池用セパレータ。A battery separator using the microporous polyethylene membrane according to claim 6. 請求項7に記載の電池用セパレータを用いた電池。A battery using the battery separator according to claim 7.
JP2002348019A 2002-11-29 2002-11-29 Method for producing polyethylene microporous membrane Expired - Fee Related JP4098607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348019A JP4098607B2 (en) 2002-11-29 2002-11-29 Method for producing polyethylene microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348019A JP4098607B2 (en) 2002-11-29 2002-11-29 Method for producing polyethylene microporous membrane

Publications (3)

Publication Number Publication Date
JP2004182763A true JP2004182763A (en) 2004-07-02
JP2004182763A5 JP2004182763A5 (en) 2005-12-02
JP4098607B2 JP4098607B2 (en) 2008-06-11

Family

ID=32751047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348019A Expired - Fee Related JP4098607B2 (en) 2002-11-29 2002-11-29 Method for producing polyethylene microporous membrane

Country Status (1)

Country Link
JP (1) JP4098607B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121228A1 (en) * 2004-06-11 2005-12-22 Sk Corporation Microporous high density polyethylene film and method of producing the same
WO2006004314A1 (en) * 2004-07-06 2006-01-12 Sk Corporation Microporous polyethylene film and method of producing the same
WO2010101214A1 (en) 2009-03-06 2010-09-10 国立大学法人 群馬大学 Method for producing super high molecular weight polyethylene film
US8057718B2 (en) 2005-04-06 2011-11-15 Sk Innovation Co., Ltd. Microporous polyethylene film having excellent physical properties, productivity, and quality consistency, and method of producing same
WO2012029881A1 (en) 2010-08-31 2012-03-08 国立大学法人群馬大学 Method for producing ultra-high-molecular-weight polyethylene porous membrane, method for producing ultra-high-molecular-weight polyethylene film, and porous membrane and film produced by said methods
WO2014034448A1 (en) 2012-08-29 2014-03-06 国立大学法人群馬大学 Method for manufacturing polyethylene porous film and polyethylene porous film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121228A1 (en) * 2004-06-11 2005-12-22 Sk Corporation Microporous high density polyethylene film and method of producing the same
US7332531B2 (en) 2004-06-11 2008-02-19 Sk Corporation Microporous high density polyethylene film
US7947752B2 (en) 2004-06-11 2011-05-24 Sk Energy Co., Ltd. Method of producing microporous high density polyethylene film
WO2006004314A1 (en) * 2004-07-06 2006-01-12 Sk Corporation Microporous polyethylene film and method of producing the same
US7435761B2 (en) 2004-07-06 2008-10-14 Sk Energy Co., Ltd. Microporous polyethylene film and method of producing the same
US8057718B2 (en) 2005-04-06 2011-11-15 Sk Innovation Co., Ltd. Microporous polyethylene film having excellent physical properties, productivity, and quality consistency, and method of producing same
WO2010101214A1 (en) 2009-03-06 2010-09-10 国立大学法人 群馬大学 Method for producing super high molecular weight polyethylene film
WO2012029881A1 (en) 2010-08-31 2012-03-08 国立大学法人群馬大学 Method for producing ultra-high-molecular-weight polyethylene porous membrane, method for producing ultra-high-molecular-weight polyethylene film, and porous membrane and film produced by said methods
US8951456B2 (en) 2010-08-31 2015-02-10 National University Corporation Gunma University Method for producing ultra-high-molecular-weight polyethylene porous membrane, method for producing ultra-high-molecular-weight polytheylene film, and porous membrane and film obtained by these methods
WO2014034448A1 (en) 2012-08-29 2014-03-06 国立大学法人群馬大学 Method for manufacturing polyethylene porous film and polyethylene porous film
US10099419B2 (en) 2012-08-29 2018-10-16 National University Corporation Gunma University Process for producing polyethylene porous film and polyethylene porous film

Also Published As

Publication number Publication date
JP4098607B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP5536872B2 (en) Microporous membranes, methods for producing such membranes, and use of such membranes as battery separator films
JP4195810B2 (en) Polyolefin microporous membrane and production method and use thereof
RU2422191C2 (en) Microporous polyolefin membranes and method of their production
JP5630827B2 (en) POLYOLEFIN POROUS MEMBRANE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE
JP4121846B2 (en) Polyolefin microporous membrane and production method and use thereof
JP2010540691A (en) Microporous membranes and methods of making and using such membranes
WO1997023554A1 (en) Short circuit-resistant polyethylene microporous film
JP3917721B2 (en) Method for producing microporous membrane
JP6747289B2 (en) Polyolefin microporous film, method for producing the same, and battery separator
JPWO2012150618A1 (en) Polyolefin microporous membrane manufacturing apparatus and manufacturing method
JP2002284918A (en) Polyolefin microporous film, method for producing the same and use thereof
KR102507588B1 (en) Polyolefin microporous membrane, multi-layer polyolefin microporous membrane, laminated polyolefin microporous membrane, and separator
CN112592510B (en) Preparation method of polyolefin microporous membrane
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP5684951B1 (en) Liquid filter substrate
JP2011241361A (en) Polyethylene microporous film
JP4098607B2 (en) Method for producing polyethylene microporous membrane
KR20140051181A (en) Method of manufacturing a microporous polyethylene film
JP2013522378A (en) Microporous membrane, method for producing the membrane, and use of the membrane as a battery separator film
JP2002105235A (en) Polyolefin microporous film and its manufacturing method
JP3747963B2 (en) High heat-resistant polyethylene microporous membrane
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP5057414B2 (en) Method for producing microporous membrane and use of microporous membrane obtained by the production method
JP5684953B1 (en) Liquid filter substrate
JP2013108045A (en) Method for producing polyolefin microporous membrane

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees