【0001】
【発明の属する技術分野】
本発明は、イソロイシン誘導体及び増粘ゲル化剤、特にシリコーン油に対するゲル化能に優れる増粘ゲル化剤に関する。
【0002】
【従来の技術】
増粘ゲル化剤は、流動性の媒体の粘度を高めたり、ゲル状にすることができるものであり、組成物の性状、使用性、安定性等の改善などに広く使用されている。
しかしながら、水溶性増粘ゲル化剤は自然界にも多く存在し、また、各種合成品も開発され、様々な分野で実用化されているのに対し、油性成分、特にシリコーン油を増粘ゲル化できる油性増粘ゲル化剤は少ない。シリコーン油に対して増粘ゲル可能を示す物質として、ある種のイソロイシン誘導体が報告されている(特許文献1)。
【0003】
【特許文献1】
特開平10−226614号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記特許文献1のイソロイシン誘導体を用いても、実際にはシリコーン油をゲル化できないことがあった。
また、通常、増粘ゲル化剤を用いたゲル化方法は、ゲル化しようとする媒体中に増粘ゲル化剤を添加して加熱溶解後、これを冷却することでゲル化させるが、上記特許文献1のゲル化剤はそれ自体の融点が高く、また、媒体中での溶解温度も高いため、通常の工業生産設備での取り扱いが非常に難しい。また、化粧品や医薬品等、製品の外観や使用感が重要視されるような分野おいては、得られたゲルの外観や感触も重要である。
また、特許文献1のゲル化剤は、多くの有機溶剤に対してゲル化能を有する点で優れているものの、それがかえってゲル化剤の合成、特に精製を非常に困難にする場合があった。すなわち、合成中あるいは、抽出、洗浄、再結晶、カラム精製などの精製過程で溶媒をゲル化して抱え込んでしまい、溶媒のろ過に膨大な時間とエネルギーを必要とし、これが研究の妨げや、工業的なコスト引き上げの原因となっていた。
本発明は前記従来技術の課題に鑑みなされたものであり、その目的は、シリコーン油に対するゲル化能に優れ、比較的低温でゲル化が可能であり、ゲルの外観や感触も良好で、精製等も容易な増粘ゲル化剤を提供することにある。
【0005】
【課題を解決するための手段】
前記目的を達成するために本発明者等が鋭意検討を行った結果、下記一般式(I)で示されるイソロイシン誘導体により上記課題が解決されることを見出し、本発明を完成するに至った。
すなわち、本発明にかかるイソロイシン誘導体は、下記一般式(I)で示されることを特徴とする。
【0006】
【化2】
(式中、Rはそれぞれ炭素数6〜22のアルキレン基又はアルケニレン基を示す。nはそれぞれジメチルシロキシ基の平均重合度を示し、0〜5の数である。)
【0007】
本発明において、Rがアルキレン基であることが好適である。
また、Rが炭素数8のアルキレン基であり、nが1又は2であることが好適である。
また、本発明にかかる増粘ゲル化剤は、前記何れかに記載のイソロイシン誘導体を有効成分とすることを特徴とする。
【0008】
【発明の実施の形態】
一般式(I)において、Rは2価のアルキレン基又はアルケニレン基であり、炭素数6〜22の直鎖状又は分岐鎖状であることができる。また、Rは環状構造を有していてもよい。Rとして好ましくはアルキレン基であり、より好ましくは炭素数8〜18のアルキレン基、特に好ましくは炭素数8のアルキレン基である。
本発明においてアルキレン基とは、対応する1価アルキル基、例えば、ヘキシル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ヘプタデシル基、イコシル基、ヘニコシル基、ドコシル基等から一つの水素原子を除いた2価の飽和炭化水素基を意味する。
また、アルケニレン基とは、対応するアルキレン基の任意の炭素炭素結合の少なくとも一つが2重結合である2価の脂肪族不飽和炭化水素基を意味する。
nはジメチルシロキシ基の平均重合度であり、0〜5の数であるが、好ましくは1又は2である。
【0009】
イソロイシンには、2つの不斉炭素の存在により、絶対配置が(2R、3R)、(2S,3S)、(2R,3R)、(2S,3S)の立体異性体が存在し、それぞれ、L−イソロイシン、D−イソロイシン、L−アロイソロイシン、D−アロイソロイシンと呼ばれる。従って、一般式(I)のイソロイシン誘導体にもこれらに対応した異性体が存在するが、ゲル化能の点ではL−イソロイシン又はD−イソロイシンが好ましい。また、Rによってはその他の異性体が存在する場合もある。本発明のイソロイシン誘導体としては、これら存在する異性体を包含するものであり、本発明のゲル化能が発揮される範囲においてはこれら異性体の混合物を増粘ゲル化剤として用いることができるが、D,L−当量混合物であるラセミ体にはシリコーン油に対するゲル可能は認められない。
本発明のイソロイシン誘導体の好ましい例として、下記化合物1及び化合物2が挙げられる。
【0010】
化合物1:
【化3】
【0011】
化合物2:
【化4】
【0012】
本発明にかかるイソロイシン誘導体は、公知の反応を用いることにより合成することが可能である。例えば、下記スキーム1に示すように、ハロゲン化アルケン化合物(i)とフタルイミドカリウムとを反応させて得られた化合物(ii)に、Si−H基を有するジメチルシロキサン化合物(iii)を白金触媒下で反応させて化合物(iv)とし、これをヒドラジンで処理してアミン(v)を得る。アミン(v)と、対応する立体構造のイソロイシンのN−ベンジルオキシカルボニル化物(vi)とを、公知のアミド形成反応、例えば、カルボジイミド類等の縮合剤を用いて反応を行うことにより、所望のイソロイシン誘導体(I)を得ることができる。なお、スキーム1は代表的な製法を示すものであり、これに限定されるものではなく、必要に応じてその他の公知の反応を組み合わせてもよい。スキーム1中、R,nは前記定義の通りであり、R’は「R’−CH2−CH2」が基Rに相当するような2価のアルキレン基を意味する。また、Xはハロゲン原子を表す。
【0013】
スキーム1
【化5】
【0014】
本発明のイソロイシン誘導体は、シリコーン油のゲル化能に優れ、透明でクリームのようなゲルを形成することができる。シリコーン油としては特に限定されず、ジメチルポリシロキサン、メチルフェニルポリシロキサン等の鎖状シリコーン;オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等の環状シリコーン;ポリエーテル変性シリコーン等の変性シリコーン等が挙げられる。また、本発明のイソロイシン誘導体は、ヘキサン等もゲル化可能である。
【0015】
本発明のイソロイシン誘導体は、化粧品、医薬品、塗料、あるいはその他様々な分野において、増粘ゲル化剤として好適に用いることができ、組成物の安定化、使用性等の改善に有用であると考えられる。また、廃棄物中の溶剤の処理剤としても利用が期待できる。
本発明のイソロイシン誘導体のゲル化のメカニズムについては明らかでないが、次のように推察できる。すなわち、イソロイシン誘導体の加熱溶液を冷却した場合、アミド基の存在により、イソロイシン誘導体分子間に水素結合力等の分子間力が働き、イソロイシン誘導体が連続して連なった巨大な繊維状の会合体を形成する。さらにこの会合体が3次元網目状に絡まり、その中にシリコーン油を抱き込むことによりゲル化が起こるものと考えられる。
【0016】
以下、具体例を挙げてさらに説明するが、本発明はこれらに限定されるものではない。まず、本発明で用いた試験方法を説明する。
(ゲルの調製ならびに最小ゲル化濃度)
サンプルを対象溶媒に添加後、加熱攪拌して溶解させ、これを25℃まで放冷し、目視にてゲル化しているか否かを判定した。なお、最小ゲル化濃度は、対象溶媒に対してゲル化し得るサンプルの最小濃度(g/l)で示した。
【0017】
(溶解温度)
サンプルを最小ゲル化濃度となるように対象溶媒に添加後、加熱攪拌して均一溶解させ、これを一旦室温まで冷却して均一なゲルとした。このゲルを再度加温していき、目視にてゲルの溶解を確認したときの温度を溶解温度とした。溶解温度は、ゲル調製に必要な加熱温度の目安とすることができる。
(ゲルの外観・性状)
最小ゲル化濃度で調製したゲルに対し、外観を目視で判定した。また、手で少量を皮膚に塗布し、性状(使用感)を調べた。
【0018】
【表1】
【化6】
【0019】
表1は、本発明化合物1及び2のシリコーン油(デカメチルシクロペンタシロキサン)に対する最小ゲル化濃度、ゲルの外観、性状を示す。
本発明化合物1、2は何れもほぼ透明〜透明のゲルを形成し、その性状はクリーム状で、使用感が柔らかく非常に良好なものであった。これに対して比較化合物aはシリコーン油中で結晶化してしまい、ゲル化しなかった。
【0020】
表2は、各化合物の融点、ならびに各化合物のシリコーン油(デカメチルシクロペンタシロキサン)に対する溶解温度を示している。表2のように、本発明化合物は比較化合物に比べて融点が低く、また、溶解温度も100℃以下と低かった。そして、ジメチルシロキサン部分の重合度nの増加に伴い、融点や溶解温度が低下する傾向が認められた。従って、本発明化合物は、ゲル化剤やゲル組成物の製造において取り扱いが容易であることが理解される。
【0021】
【表2】
【0022】
また、表3に示すように、比較化合物aは多くの有機溶剤に対してゲル化能を有するが、本発明にかかるイソロイシン誘導体は、シリコーン油以外ではヘキサンなど限られた溶剤に対してのみゲル化能を発揮する。このように、ポリシロキサン部分を構造中に導入することによって、ゲル化における溶媒選択性を付与できることは、本発明者等によって新規に見出されたことである。このような構造により、本発明のイソロイシン誘導体は選択的ゲル化剤として機能することができ、また、ゲル化しない溶媒を用いることで合成や精製も容易となる。例えば、ゲル化剤の溶解度が低く、且つゲル化もしない溶媒(例えばアセトニトリル、DMF等)を貧溶媒として用いれば、洗浄や再結晶等の精製操作を容易に行うことができる。また、ゲル化剤が溶解し、且つゲル化しない溶媒は、抽出溶媒やカラム溶媒として好適に使用できる。
【0023】
【表3】
【0024】
【実施例】
合成例1 化合物1の合成
(1)N−(7−オクテニル)フタルイミドの合成
4.85 ml(0.0262モル)のフタルイミドカリウムを30 mlのジメチルホルムアミド(DMF)に溶かし、4.85 g(0.0254モル)の8−ブロモ−1−オクテンを加えて90℃で1.5時間加熱還流した。反応物にジエチルエーテルを加え、分液漏斗により有機層を抽出した。有機層を硫酸マグネシウムで乾燥・ろ過し、溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィー(溶媒:ヘキサン/酢酸エチル=5/1)で分取し、目的物であるN−(7−オクテニル)フタルイミドを得た。収量は5.88 g(0.0229モル、収率90%)であった。
【0025】
(2)N−[8−(1,1,3,3,3−ペンタメチルジシロキシル)オクチル]フタルイミドの合成
3.87 g(0.0150モル)のN−(7−オクテニル)フタルイミド、3.28 g(0.0221モル)の1,1,1,3,3−ペンタメチルジシロキサンを10 mlの無水テトラヒドロフラン(THF)に溶かし、触媒量の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン白金錯体を加え、45℃で6時間加熱還流した。テトラヒドロフランを減圧留去したのち、生成物をシリカゲルカラムクロマトグラフィー(溶媒:ヘキサン/酢酸エチル=7/1)で分取し、目的物であるN−[8−(1,1,3,3,3−ペンタメチルジシロキシル)オクチル]フタルイミドを得た。収量は4.95 g(0.0122モル、収率81%)であった。
【0026】
(3)8−(1,1,3,3,3−ペンタメチルジシロキシル)オクチルアミンの合成
3.9 g(0.00961モル)のN−[8−(1,1,3,3,3−ペンタメチルジシロキシル)オクチル]フタルイミドを25 mlのエタノールに溶かし、0.56 ml(0.0115モル)のヒドラジン一水和物を加えたのち、85℃で2.5時間加熱還流した。不溶物をろ別したのち、ヘキサンを加え、分液漏斗により有機層を抽出した。有機層を硫酸マグネシウムで乾燥・ろ過し、溶媒を減圧留去することで目的物である8−(1,1,3,3,3−ペンタメチルジシロキシル)オクチルアミンを得た。収量は2.65 g(0.00961モル、収率100%)であった。
【0027】
(4)化合物1の合成
1.44 g(0.00543モル)のN−ベンジルオキシカルボニル−L−イソロイシンを20 mlの無水ジクロロメタンに溶かし、1.50 g(0.00544モル)の8−(1,1,3,3,3−ペンタメチルジシロキシル)オクチルアミンを加えて攪拌した。続いて、66 mg(0.00054モル)の4−ジメチルアミノピリジン(DMAP)、1.25 g(0.00653モル)の1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)を加え、室温で6時間攪拌した。反応物にクロロホルムを加え、分液漏斗により有機層を抽出した。有機層を硫酸マグネシウムで乾燥・ろ過し、溶媒を減圧留去したのち、生成物をシリカゲルカラムクロマトグラフィー(溶媒:クロロホルム/メタノール=50/1)で精製し、さらに再結晶(溶媒:アセトン−水)して、目的化合物1を得た。収量は1.57 g(0.00300モル、収率55%)であった。1H−NMRにより、目的化合物1であることを確認した。
融点:109 ℃
凝固点:94 ℃
1H−NMR(270 MHz,CDCl3):δ(ppm) 7.30(5H), 5.75(m, 1H), 5.27(d, J=7.26 Hz, 1H), 5.06(s, 2H), 3.88(dd, J=6.60, 6.60 Hz, 1H), 3.18(m, 2H), 1.84−0.83(m, 21H), 0.45(t, J=6.79 Hz, 2H), 0.01(s, 18H), −0.02(s, 12H).
【0028】
合成例2 化合物2
(1)N−[8−(1,1,3,3,5,5,5−ヘプタメチルトリシロキシル)オクチル]フタルイミドの合成
2.0 g(0.00777モル)のN−(7−オクテニル)フタルイミド、1.86 g(0.00837モル)の1,1,1,3,3,5,5−ヘプタメチルトリシロキサンを20 mlの無水テトラヒドロフラン(THF)に溶かし、触媒量の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン白金錯体を加え、45℃で5時間加熱還流した。テトラヒドロフランを減圧留去したのち、生成物をシリカゲルカラムクロマトグラフィー(溶媒:ヘキサン/酢酸エチル=7/1)で分取し、目的物であるN−[8−(1,1,3,3,5,5,5−ヘプタメチルトリシロキシル)オクチル]フタルイミドを得た。収量は3.39 g(0.00706モル、収率91%)であった。
【0029】
(2)8−(1,1,3,3,5,5,5−ヘプタメチルトリシロキシル)オクチルアミンの合成
3.39 g(0.00706モル)のN−[8−(1,1,3,3,5,5,5−ヘプタメチルトリシロキシル)オクチル]フタルイミドを20 mlのエタノールに溶かし、0.41 ml(0.00848モル)のヒドラジン一水和物を加えたのち、85℃で2時間加熱還流した。不溶物をろ別したのち、ヘキサンを加え、分液漏斗により有機層を抽出した。有機層を硫酸マグネシウムで乾燥・ろ過し、溶媒を減圧留去することで目的物である8−(1,1,3,3,5,5,5−ヘプタメチルトリシロキシル)オクチルアミンを得た。収量は2.09 g(0.00596モル、収率84%)であった。
【0030】
(3)化合物2の合成
0.76 g(0.00286モル)のN−ベンジルオキシカルボニル−L−イソロイシンを20 mlの無水ジクロロメタンに溶かし、1.0 g(0.00286モル)の8−(1,1,3,3,5,5,5−ヘプタメチルトリシロキシル)オクチルアミンを加えて攪拌した。続いて、35 mg(0.00029モル)の4−ジメチルアミノピリジン(DMAP)、0.66 g(0.00343モル)の1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)を加え、室温で4時間攪拌した。反応物にクロロホルムを加え、分液漏斗により有機層を抽出した。有機層を硫酸マグネシウムで乾燥・ろ過し、溶媒を減圧留去したのち、生成物をシリカゲルカラムクロマトグラフィー(溶媒:クロロホルム/メタノール=50/1)で精製し、さらに再結晶(溶媒:アセトン−水)して、目的化合物2を得た。収量は1.22 g(0.00204モル、収率71%)であった。1H−NMRにより、目的化合物2であることを確認した。
融点:92 ℃
凝固点:71 ℃
1H−NMR(270 MHz,CDCl3):δ(ppm) 7.35(5H), 5.79(m, 1H), 5.30(d, J=7.57Hz, 1H), 5.10(s, 2H), 3.92(dd, J=6.59, 6.60 Hz, 1H), 3.22(m, 2H), 1.88−0.87(m, 21H), 0.52(t, J=6.78 Hz, 2H), 0.08(s, 18H), 0.06(s, 12H), 0.02(s, 12H).
【0031】
【発明の効果】
本発明のイソロイシン誘導体は、シリコーン油に対して優れたゲル化能を有し、外観、性状も良好なゲルを形成する。また、融点や溶媒への溶解温度が低いため、取り扱いが容易である。さらに、ゲル化能に溶媒選択性があるため、精製等も容易である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an isoleucine derivative and a thickening gelling agent, particularly to a thickening gelling agent excellent in gelling ability for silicone oil.
[0002]
[Prior art]
The thickening gelling agent can increase the viscosity of a fluid medium or make it into a gel, and is widely used for improving the properties, usability, stability, etc. of the composition.
However, there are many water-soluble thickening gelling agents in nature, and various synthetic products have been developed and put to practical use in various fields. There are few oily thickening gelling agents that can be formed. Certain isoleucine derivatives have been reported as substances capable of thickening gels with silicone oil (Patent Document 1).
[0003]
[Patent Document 1]
JP 10-226614 A [0004]
[Problems to be solved by the invention]
However, even with the use of the isoleucine derivative of Patent Document 1, the silicone oil may not actually be gelled in some cases.
Further, usually, a gelling method using a thickening gelling agent is to add a thickening gelling agent to a medium to be gelled, dissolve by heating, and then gel by cooling this. Since the gelling agent of Patent Document 1 has a high melting point itself and a high dissolution temperature in a medium, it is very difficult to handle it with ordinary industrial production equipment. In addition, in fields such as cosmetics and pharmaceuticals where the appearance and feeling of use of the product are important, the appearance and feel of the obtained gel are also important.
Further, although the gelling agent of Patent Document 1 is excellent in that it has a gelling ability with respect to many organic solvents, it may make synthesis of the gelling agent, particularly, purification extremely difficult. Was. That is, during synthesis or during the purification process such as extraction, washing, recrystallization, and column purification, the solvent gels and is caught, which requires enormous amount of time and energy to filter the solvent, which hinders research and industrial Cost increase.
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object an excellent gelling ability for silicone oil, capable of gelling at a relatively low temperature, good gel appearance and feel, and purification. Another object of the present invention is to provide an easy thickening gelling agent.
[0005]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors to achieve the above object, the present inventors have found that the above-mentioned problems can be solved by an isoleucine derivative represented by the following general formula (I), and have completed the present invention.
That is, the isoleucine derivative according to the present invention is characterized by being represented by the following general formula (I).
[0006]
Embedded image
(In the formula, R represents an alkylene group or alkenylene group having 6 to 22 carbon atoms. N represents an average degree of polymerization of the dimethylsiloxy group, and is a number of 0 to 5.)
[0007]
In the present invention, R is preferably an alkylene group.
Further, it is preferable that R is an alkylene group having 8 carbon atoms and n is 1 or 2.
Further, a thickening gelling agent according to the present invention is characterized in that any of the above isoleucine derivatives is used as an active ingredient.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the general formula (I), R is a divalent alkylene group or alkenylene group, and may be linear or branched having 6 to 22 carbon atoms. R may have a cyclic structure. R is preferably an alkylene group, more preferably an alkylene group having 8 to 18 carbon atoms, and particularly preferably an alkylene group having 8 carbon atoms.
In the present invention, the alkylene group is a corresponding monovalent alkyl group, for example, hexyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, heptadecyl group, icosyl A divalent saturated hydrocarbon group obtained by removing one hydrogen atom from a group, a henicosyl group, a docosyl group, or the like.
Further, the alkenylene group means a divalent aliphatic unsaturated hydrocarbon group in which at least one of the carbon atoms of the corresponding alkylene group is a double bond.
n is the average degree of polymerization of the dimethylsiloxy group, and is a number of 0 to 5, preferably 1 or 2.
[0009]
Isoleucine has stereoisomers whose absolute configurations are (2R, 3R), (2S, 3S), (2R, 3R), and (2S, 3S) due to the presence of two asymmetric carbons. -Called isoleucine, D-isoleucine, L-alloisoleucine, D-alloisoleucine. Therefore, isomers corresponding to these are present in the isoleucine derivative of the general formula (I), but L-isoleucine or D-isoleucine is preferable in terms of gelling ability. Further, depending on R, other isomers may exist. The isoleucine derivative of the present invention includes these existing isomers, and a mixture of these isomers can be used as a thickening gelling agent as long as the gelling ability of the present invention is exhibited. , D, L-equivalent mixture does not show any gelability to silicone oil.
Preferred examples of the isoleucine derivative of the present invention include the following compounds 1 and 2.
[0010]
Compound 1:
Embedded image
[0011]
Compound 2:
Embedded image
[0012]
The isoleucine derivative according to the present invention can be synthesized by using a known reaction. For example, as shown in the following Scheme 1, a dimethylsiloxane compound (iii) having a Si-H group is added to a compound (ii) obtained by reacting a halogenated alkene compound (i) with potassium phthalimide under a platinum catalyst. To give compound (iv), which is treated with hydrazine to give amine (v). The desired amide formation reaction, for example, a reaction using an amine (v) and an N-benzyloxycarbonyl compound (vi) of isoleucine having a corresponding steric structure using a condensing agent such as carbodiimides is carried out to obtain a desired compound. The isoleucine derivative (I) can be obtained. It should be noted that Scheme 1 shows a typical production method, and the present invention is not limited thereto, and other known reactions may be combined as necessary. In Scheme 1, R and n are as defined above, and R ′ represents a divalent alkylene group such that “R′—CH 2 —CH 2 ” corresponds to the group R. X represents a halogen atom.
[0013]
Scheme 1
Embedded image
[0014]
The isoleucine derivative of the present invention is excellent in gelling ability of silicone oil and can form a transparent cream-like gel. The silicone oil is not particularly limited, and chain silicones such as dimethylpolysiloxane and methylphenylpolysiloxane; cyclic silicones such as octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane and dodecamethylcyclohexasiloxane; polyether-modified silicones and the like And the like. The isoleucine derivative of the present invention can also gel hexane and the like.
[0015]
The isoleucine derivative of the present invention can be suitably used as a thickening gelling agent in cosmetics, pharmaceuticals, paints, and various other fields, and is considered to be useful for stabilizing the composition and improving usability and the like. Can be It can also be expected to be used as a treatment agent for solvents in waste.
Although the mechanism of gelation of the isoleucine derivative of the present invention is not clear, it can be inferred as follows. That is, when the heated solution of the isoleucine derivative is cooled, an intermolecular force such as a hydrogen bonding force acts between the isoleucine derivative molecules due to the presence of the amide group, thereby forming a huge fibrous aggregate in which the isoleucine derivative is continuously connected. Form. Further, it is considered that the aggregates are entangled in a three-dimensional network, and gelation occurs when the silicone oil is held in the aggregates.
[0016]
Hereinafter, the present invention is further described with reference to specific examples, but the present invention is not limited thereto. First, the test method used in the present invention will be described.
(Preparation of gel and minimum gelation concentration)
After the sample was added to the target solvent, the sample was heated and stirred to dissolve, and the mixture was allowed to cool to 25 ° C., and it was visually determined whether or not the gel was formed. Note that the minimum gelling concentration was represented by the minimum concentration (g / l) of a sample that could gel with the target solvent.
[0017]
(Dissolution temperature)
After the sample was added to the target solvent so as to have a minimum gelling concentration, the mixture was heated and stirred to dissolve uniformly, and this was once cooled to room temperature to obtain a uniform gel. The gel was heated again, and the temperature at which the dissolution of the gel was visually confirmed was taken as the dissolution temperature. The dissolution temperature can be a measure of the heating temperature required for gel preparation.
(Appearance and properties of gel)
The appearance of the gel prepared at the minimum gelling concentration was visually judged. In addition, a small amount was applied to the skin by hand, and the properties (feel of use) were examined.
[0018]
[Table 1]
Embedded image
[0019]
Table 1 shows the minimum gelling concentration of the compounds 1 and 2 of the present invention with respect to silicone oil (decamethylcyclopentasiloxane), and the appearance and properties of the gel.
Each of the compounds of the present invention 1 and 2 formed an almost transparent to transparent gel, and the properties were creamy, the feeling of use was soft and very good. In contrast, Comparative Compound a crystallized in silicone oil and did not gel.
[0020]
Table 2 shows the melting point of each compound and the dissolution temperature of each compound in silicone oil (decamethylcyclopentasiloxane). As shown in Table 2, the compound of the present invention had a lower melting point and a lower melting temperature of 100 ° C. or lower than the comparative compound. Then, it was recognized that the melting point and the dissolution temperature tended to decrease as the degree of polymerization n of the dimethylsiloxane portion increased. Therefore, it is understood that the compound of the present invention is easy to handle in the production of a gelling agent and a gel composition.
[0021]
[Table 2]
[0022]
Further, as shown in Table 3, the comparative compound a has a gelling ability with respect to many organic solvents, but the isoleucine derivative according to the present invention is gelled only with a limited solvent such as hexane other than silicone oil. Demonstrate chemical ability. Thus, it has been newly discovered by the present inventors that the solvent selectivity in gelation can be imparted by introducing a polysiloxane moiety into the structure. With such a structure, the isoleucine derivative of the present invention can function as a selective gelling agent, and the use of a non-gelling solvent facilitates synthesis and purification. For example, if a solvent (eg, acetonitrile, DMF, etc.) having low solubility of the gelling agent and not gelling is used as the poor solvent, purification operations such as washing and recrystallization can be easily performed. In addition, a solvent in which the gelling agent dissolves and does not gel can be suitably used as an extraction solvent or a column solvent.
[0023]
[Table 3]
[0024]
【Example】
Synthesis Example 1 Synthesis of Compound 1 (1) Synthesis of N- (7-octenyl) phthalimide 4.85 ml (0.0262 mol) of potassium phthalimide was dissolved in 30 ml of dimethylformamide (DMF), and 4.85 g ( 0.0254 mol) of 8-bromo-1-octene was added and the mixture was heated under reflux at 90 ° C. for 1.5 hours. Diethyl ether was added to the reaction product, and the organic layer was extracted with a separating funnel. The organic layer was dried and filtered with magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was separated by silica gel column chromatography (solvent: hexane / ethyl acetate = 5/1) to obtain N- (7-octenyl) as the target compound. ) The phthalimide was obtained. The yield was 5.88 g (0.0229 mol, 90% yield).
[0025]
(2) Synthesis of N- [8- (1,1,3,3,3-pentamethyldisiloxyl) octyl] phthalimide 3.87 g (0.0150 mol) of N- (7-octenyl) phthalimide 3.28 g (0.0221 mol) of 1,1,1,3,3-pentamethyldisiloxane are dissolved in 10 ml of anhydrous tetrahydrofuran (THF) and a catalytic amount of 1,3-divinyl-1,1,1 is dissolved. A 3,3-tetramethyldisiloxane platinum complex was added, and the mixture was heated and refluxed at 45 ° C. for 6 hours. After distilling off tetrahydrofuran under reduced pressure, the product was separated by silica gel column chromatography (solvent: hexane / ethyl acetate = 7/1), and N- [8- (1,1,3,3, 3-pentamethyldisiloxyl) octyl] phthalimide was obtained. The yield was 4.95 g (0.0122 mol, 81% yield).
[0026]
(3) Synthesis of 8- (1,1,3,3,3-pentamethyldisiloxyl) octylamine 3.9 g (0.00961 mol) of N- [8- (1,1,3,3 , 3-Pentamethyldisiloxyl) octyl] phthalimide was dissolved in 25 ml of ethanol, 0.56 ml (0.0115 mol) of hydrazine monohydrate was added, and the mixture was heated under reflux at 85 ° C. for 2.5 hours. did. After filtering off the insoluble matter, hexane was added, and the organic layer was extracted with a separating funnel. The organic layer was dried and filtered with magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 8- (1,1,3,3,3-pentamethyldisiloxyl) octylamine, which was a target substance. The yield was 2.65 g (0.00961 mol, 100% yield).
[0027]
(4) Synthesis of Compound 1 1.44 g (0.00543 mol) of N-benzyloxycarbonyl-L-isoleucine was dissolved in 20 ml of anhydrous dichloromethane, and 1.50 g (0.00544 mol) of 8- ( (1,1,3,3,3-Pentamethyldisiloxyl) octylamine was added and stirred. Subsequently, 66 mg (0.00054 mol) of 4-dimethylaminopyridine (DMAP) and 1.25 g (0.00653 mol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) ) And stirred at room temperature for 6 hours. Chloroform was added to the reaction product, and the organic layer was extracted with a separating funnel. The organic layer was dried and filtered with magnesium sulfate, and the solvent was distilled off under reduced pressure. The product was purified by silica gel column chromatography (solvent: chloroform / methanol = 50/1), and further recrystallized (solvent: acetone-water) ) To obtain the target compound 1. The yield was 1.57 g (0.00300 mol, 55% yield). By 1 H-NMR, it was confirmed that the compound was the target compound 1.
Melting point: 109 ° C
Freezing point: 94 ° C
1 H-NMR (270 MHz, CDCl 3 ): δ (ppm) 7.30 (5H), 5.75 (m, 1H), 5.27 (d, J = 7.26 Hz, 1H), 5. 06 (s, 2H), 3.88 (dd, J = 6.60, 6.60 Hz, 1H), 3.18 (m, 2H), 1.84-0.83 (m, 21H), 0 .45 (t, J = 6.79 Hz, 2H), 0.01 (s, 18H), -0.02 (s, 12H).
[0028]
Synthesis Example 2 Compound 2
(1) Synthesis of N- [8- (1,1,3,3,5,5,5-heptamethyltrisiloxyl) octyl] phthalimide 2.0 g (0.00777 mol) of N- (7- Octenyl) phthalimide, 1.86 g (0.00837 mol) of 1,1,1,3,3,5,5-heptamethyltrisiloxane were dissolved in 20 ml of anhydrous tetrahydrofuran (THF), and a catalytic amount of 1, 3-Divinyl-1,1,3,3-tetramethyldisiloxane platinum complex was added, and the mixture was heated under reflux at 45 ° C. for 5 hours. After distilling off tetrahydrofuran under reduced pressure, the product was separated by silica gel column chromatography (solvent: hexane / ethyl acetate = 7/1), and N- [8- (1,1,3,3, 5,5,5-Heptamethyltrisiloxyl) octyl] phthalimide was obtained. The yield was 3.39 g (0.00706 mol, 91% yield).
[0029]
(2) Synthesis of 8- (1,1,3,3,5,5,5-heptamethyltrisiloxyl) octylamine 3.39 g (0.00706 mol) of N- [8- (1,1 , 3,3,5,5,5-Heptamethyltrisiloxy) octyl] phthalimide was dissolved in 20 ml of ethanol, and 0.41 ml (0.00848 mol) of hydrazine monohydrate was added. The mixture was heated at reflux for 2 hours. After filtering off the insoluble matter, hexane was added, and the organic layer was extracted with a separating funnel. The organic layer is dried and filtered with magnesium sulfate, and the solvent is distilled off under reduced pressure to obtain 8- (1,1,3,3,5,5,5-heptamethyltrisiloxyl) octylamine as a target substance. Was. The yield was 2.09 g (0.00596 mol, 84% yield).
[0030]
(3) Synthesis of Compound 2 0.76 g (0.00286 mol) of N-benzyloxycarbonyl-L-isoleucine was dissolved in 20 ml of anhydrous dichloromethane, and 1.0 g (0.00286 mol) of 8- ( (1,1,3,3,5,5,5-heptamethyltrisiloxyl) octylamine was added and stirred. Subsequently, 35 mg (0.00029 mol) of 4-dimethylaminopyridine (DMAP) and 0.66 g (0.00343 mol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) ) Was added and stirred at room temperature for 4 hours. Chloroform was added to the reaction product, and the organic layer was extracted with a separating funnel. The organic layer was dried and filtered with magnesium sulfate, and the solvent was distilled off under reduced pressure. The product was purified by silica gel column chromatography (solvent: chloroform / methanol = 50/1), and further recrystallized (solvent: acetone-water) ) To obtain the target compound 2. The yield was 1.22 g (0.00204 mol, 71% yield). By 1 H-NMR, it was confirmed that it was the target compound 2.
Melting point: 92 ° C
Freezing point: 71 ° C
1 H-NMR (270 MHz, CDCl 3 ): δ (ppm) 7.35 (5H), 5.79 (m, 1H), 5.30 (d, J = 7.57 Hz, 1H), 5.10 (S, 2H), 3.92 (dd, J = 6.59, 6.60 Hz, 1H), 3.22 (m, 2H), 1.88-0.87 (m, 21H), 0. 52 (t, J = 6.78 Hz, 2H), 0.08 (s, 18H), 0.06 (s, 12H), 0.02 (s, 12H).
[0031]
【The invention's effect】
The isoleucine derivative of the present invention has an excellent gelling ability with respect to silicone oil, and forms a gel having good appearance and properties. Further, since the melting point and the dissolution temperature in a solvent are low, handling is easy. Further, since the gelling ability has solvent selectivity, purification and the like are easy.