JP2004182575A - Apparatus for steam reforming methanol - Google Patents

Apparatus for steam reforming methanol Download PDF

Info

Publication number
JP2004182575A
JP2004182575A JP2002354742A JP2002354742A JP2004182575A JP 2004182575 A JP2004182575 A JP 2004182575A JP 2002354742 A JP2002354742 A JP 2002354742A JP 2002354742 A JP2002354742 A JP 2002354742A JP 2004182575 A JP2004182575 A JP 2004182575A
Authority
JP
Japan
Prior art keywords
honeycomb
methanol
catalyst
reaction
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002354742A
Other languages
Japanese (ja)
Other versions
JP4310618B2 (en
JP2004182575A5 (en
Inventor
Shigeyuki Hirose
重之 廣瀬
Yasushi Hiramatsu
靖史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002354742A priority Critical patent/JP4310618B2/en
Publication of JP2004182575A publication Critical patent/JP2004182575A/en
Publication of JP2004182575A5 publication Critical patent/JP2004182575A5/ja
Application granted granted Critical
Publication of JP4310618B2 publication Critical patent/JP4310618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for steam-reforming methanol in which the reforming reaction of methanol to hydrogen is smoothly performed and which has a simplified structure and excellent efficiency to decrease the quantity of by-produced carbon monoxide. <P>SOLUTION: A structure part in which at least ≥2 kinds of honeycomb type catalyst bodies coated with a methanol reforming catalyst are arranged in a reactor of the methanol steam reforming apparatus in order that the surface area per unit volume is not decreased. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、メタノールより、水素を主成分とする改質ガスを製造するメタノールの水蒸気改質装置に関する。
【0002】
【従来の技術】
水蒸気を用いてメタノールより水素を製造するメタノールの水蒸気改質装置では、主反応として(1)式で示される水蒸気改質反応が利用される。
CH3OH+H2O→CO2+3H2 (1)
しかし、この水蒸気改質反応は吸熱反応であるため、反応を円滑に進めるためには外部より改質反応に必要な熱量を供給する熱供給設備が必要となり、装置が煩雑になる欠点を有する。
【0003】
近年、このような燃料改質装置を、車載型燃料電池として駆動システムへ適用する検討がなされているが、燃料改質装置の起動性、応答性、コンパクト化が大きな課題となっている。この課題を解決する手段として、吸熱反応である式(1)と発熱反応である式(2)の部分酸化反応を同時に行わせるオートサーマル改質装置が提案されている(例えば、特許文献1参照。)。
CH3OH+1/2O2→CO2+2H2 (2)
【0004】
ところが、メタノールの水蒸気改質触媒にメタノール、水蒸気、および空気または酸素を供給して上記のオートサーマル改質を行なわせる場合、発熱反応である式(2)の部分酸化反応の反応速度が、吸熱反応である式(1)の水蒸気改質反応の反応速度よりも速いため、供給酸素量が多い反応器の燃料ガス導入側では式(2)の反応が式(1)の反応に比し優先的に起こるのに対して、酸素量が少なくなる改質ガス排出側では、反応に酸素を要さない式(1)の反応の占める割合が増す。このため反応器の燃料ガス導入側の温度が上昇する一方、出口側では熱供給が十分に行われないため、原料メタノール当たりの水素発生モル数が相対的に多く改質反応にとってより重要な式(1)の反応が阻害されることになる。特に、改質用触媒がガスの流れ方向に長尺に構成されると、この改質用触媒のガス流れ方向の温度差が大きくなり、出口側での反応速度が著しく低下してしまうため所望の改質反応を実現することができないという問題がある(例えば、特許文献1参照。)。
また、反応器入口付近の高温領域では、式(3)の分解反応や、式(4)の逆シフト反応が起きることにより、原料のメタノールや発生した水素が浪費されるうえ一酸化炭素濃度の上昇を来すことになる。このため、排出一酸化炭素濃度を数十ppm以下に抑える必要のある固体高分子型燃料電池などの燃料製造装置として適用しようとした場合、一酸化炭素除去装置を大型にする必要があるという問題がある(例えば、特許文献2参照。)。
CH3OH →CO+H2 (3)
CO2+H2→CO+H2O (4)
また、上記オートサーマル反応の問題点への対策として、反応に要する空気または酸素を、反応器の途中に少なくとも2箇所以上設けられた酸素供給口より分割供給する方法が提案されている(例えば、特許文献3参照。)。この方法は、触媒層の温度分布を反応器内のガス流れ方向で平滑化・均一化することができ、メタノールの水蒸気改質反応を反応器の触媒層全域で行わせることが可能であるが、酸素供給口を少なくとも2箇所以上設けるためそのスペースが必要となり、また、空気または酸素を段階的に分割供給するためのガス流量制御装置が必要となるため、改質装置全体の構造が大型化または複雑化してしまうという問題がある。
【0005】
【特許文献1】
特開平9−315801号公報
【特許文献2】
特開2001−348203号公報
【特許文献3】
特開2001−097701号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、メタノールの水蒸気改質装置において、ハニカムまたはハニカム類似の構造体にメタノール改質触媒をコーティングして得られるハニカム型触媒体を適宜配置させることによって、メタノールの水素への改質反応を円滑に行なうとともに、構造的に簡略で、副生する一酸化炭素の生成量が少ない効率的に優れたメタノールの水蒸気改質装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題について鋭意検討した結果、ハニカムまたはハニカム類似の構造体にメタノール改質触媒をコーティングして得られるハニカム型触媒体を使用したメタノールの水蒸気改質装置において、燃料ガスを導入する側から改質ガスを排出する側へ、ハニカム型触媒体の単位容積当たりの表面積が小さくならないような順に、少なくとも2種類以上配置した構造部分を設けることによって、水素濃度が高く一酸化炭素濃度が低い高品質の改質ガスを効率的に製造できることを見出し、本発明に到達した。
【0008】
即ち、本発明は、メタノール、水蒸気、および空気または酸素と反応させて水素含有ガスを得るメタノールの水蒸気改質装置において、該改質装置の反応器が、ハニカムまたはハニカム類似の構造体にメタノール改質触媒をコーティングして得られるハニカム型触媒体を、燃料ガスを導入する側から改質ガスを排出する側へ、そのハニカム型触媒体の単位容積当たりの表面積が小さくならないような順に少なくとも2種類以上配置した構造部分を有する(1)に記載したメタノールの水蒸気改質装置に関するものである。20以下20以下
(1)メタノールと水蒸気からなる燃料ガスを空気または酸素と反応させ
て水素含有ガスを得るメタノールの水蒸気改質装置において、該改質装置
の反応器が、ハニカムまたはハニカム類似の構造体にメタノール改質触媒
をコーティングして得られるハニカム型触媒体を、燃料ガスを導入する側
から改質ガスを排出する側へ、そのハニカム型触媒体の単位容積当たりの
表面積が小さくならないような順に少なくとも2種類以上配置した構造部
分を有しており、該構造部分の燃料ガス導入側のハニカム型触媒体のD値
((ハニカム型構造体の貫通孔面積)1/2)が1mmを超え、かつL/D比(ハニカ
ム型構造体の貫通孔長(L)と前記D値の比率)が3以上であり、かつ各ハニ
カム型触媒体のL/D比の総計が30以上になるように配置することを特徴
とするメタノールの水蒸気改質装置。
【0009】
【発明の実施の形態】
以下、本発明に係わるメタノールの水蒸気改質装置について詳しく説明する(図1参照)。該メタノール水蒸気改質装置は、メタノールと水とを混合して気化させた混合蒸気が供給される燃料供給路1、メタノール酸化用の空気または酸素が供給される空気供給路2、そして白金系触媒が担持された触媒層を有する燃料改質反応器3から構成されている。燃料供給路1から注入されたメタノールと水蒸気からなる燃料ガスは、空気供給路2から注入された空気と混合されて原料ガスとされ、燃料改質反応器3における水蒸気改質反応と部分酸化反応とに供される。燃料改質反応器3は、外壁中に隔壁で囲まれた無数の貫通孔を有したハニカムあるいはハニカム類似の構造体にメタノール改質触媒をコーティングして得られるハニカム型触媒体を、燃料ガスを導入する側から改質ガスを排出する側へ少なくとも2種類以上配置した構造部分を有するように構成されている。
【0010】
上記構造部分には、燃料ガスを導入する側から改質ガスを排出する側へ、ハニカム型触媒体がその単位容積当たりの表面積が小さくならないような順に少なくとも2種類以上配置されている。このとき、燃料ガス導入側のハニカム型触媒体のD値は1mmを超え、かつL/D比が3以上であり、かつ各ハニカム型触媒体のL/D比の総計が30以上になるように配置されていることが好ましい。
20以下20以下
【0011】
ハニカム型触媒体のD値は小さいほど単位容積当たりの表面積は大きくなるため、触媒と改質燃料ガスの接触面積が大きくなり、高いメタノール反応率が得られる。しかし、従来の反応器では、燃料ガス導入側の入口付近の触媒のみで燃料ガスの大部分が反応に消費されてしまい、反応器の触媒層全域が均一に使用されてはいなかった。また、燃料ガスの導入側では、前述したように、酸化反応により高温領域が生じてしまうため、分解反応や逆シフト反応が起きることにより一酸化炭素濃度が高くなってしまっていた。
【0012】
これに対し、燃料ガス導入側に配置するハニカム型触媒体のD値が1mmを超えるようにすることで燃料ガスと触媒の接触面積が小さくなり、燃料ガス導入側の入口付近の触媒の負荷が低減できる。この結果、燃料ガスが該ハニカム型触媒体の入口部分のみならず中央部から出口まで行き渡り、反応器の全領域で反応するようになるため、触媒層全域を効率良く使用できるようになる。
つまり、燃料ガス導入側でもっぱら行われていた部分酸化反応を反応器に設置したハニカム型触媒体の全域で行うようにすることで、触媒層入口の局部的な高温領域が無くなり、この領域で起こっていた分解反応やシフト反応による一酸化炭素の生成を抑制できるとともに、下流側ハニカム型触媒体での供給熱量が増大するため、オートサーマル方式によるメタノール水蒸気改質反応を円滑に進めることができるようになる。
また、燃料ガス導入側のハニカム型触媒体のL/D比を3以上20以下にすることで、コーティングされた触媒を有効に使用することが出来る。L/D比が3未満であると、D値に対する貫通孔長Lが短くなりすぎてしまい、該ハニカム型触媒体にて十分な反応を行うことが出来ない。
【0013】
ガス流れ方向に少なくとも2種類以上配置されたハニカム型触媒体のうち下流側に配置されたものは、より燃料ガス導入側に配置されたハニカム型触媒体で反応しきれなかった未反応の残存メタノールを燃料ガス改質するために配置される。ハニカム触媒体を
反応器全体の各ハニカム型触媒体のL/D比の総計を30以上にすることで、未反応の残存メタノールを確実に改質反応に供することが可能となり、高いメタノール転化率を維持することができる。一方、L/D比の総計が30未満にな
ると、高メタノール転化率を得るために燃焼空気を多く導入しなければならず、副生するCO濃度が高くなってしまう。
【0014】
ハニカム型触媒体を得るために、ハニカム型構造体にメタノール改質触媒をコーティングする方法としては、粉砕し、水に懸濁させ、必要に応じてアルミナゾルのようなバインダーを添加して得たスラリー状の改質触媒中にハニカム型構造体を浸漬させる方法、またはそのスラリー状の改質触媒をハニカム型構造体に噴霧する方法等が用いられ、触媒をコーティングした後は、乾燥してそのまま、あるいは焼成後使用することが出来る。
このとき使用されるハニカム型構造体の貫通孔の上面から見た形状は、正方形状、長方形状、円状など形状に制限はない。また、ハニカムの材質としては、特に制限はなく、コージェライトなどのセラミック製のものや、ステンレス、銅製などが使用できる。ハニカム型構造体の貫通孔数は、25〜800個/平方インチであることが望ましい。
【0015】
ハニカム型触媒体に担持されるメタノール改質触媒は、銅を主成分とした、クロム、亜鉛およびアルミニウムなどの卑金属元素およびその酸化物などを担持させた触媒、パラジウム金属と酸化亜鉛からなるパラジウム-亜鉛系触媒、白金金属と酸化亜鉛からなる白金-亜鉛系触媒等の貴金属系の触媒が使用できるが、銅系触媒は高温(250℃程度以上)に対する耐熱性に乏しく、長時間の使用によって触媒成分である銅、亜鉛のシンタリングが起こり短時間で活性劣化が起こるなどの欠点を有しているため、耐熱性に優れている貴金属系の改質触媒を用いることが望ましい。
【0016】
改質反応の反応条件としては、水蒸気/メタノール比(S/C比)は1.0〜2.0、空気/メタノール比(A/M比)は0.3〜3.0、メタノール液空間速度(LHSV)は0.5〜60/hrであり、燃焼反応による発熱とメタノール改質反応による吸熱がバランスするような条件が選定される。反応温度は200〜500℃で、反応圧力は常圧〜0.5MPaの範囲で選定される。
【0017】
【実施例】
次に実施例、比較例により本発明をさらに詳しく説明するが、本発明はこれらの例により制限されるものではない。
なお、以下の実施例および比較例において、次式のメタノール反応率、一酸化炭素モル濃度(CO濃度)および酸素モル濃度(酸素濃度)により触媒活性の評価を行った。
メタノール反応率(%)=([CO]+[CO2])/([CO]+[CO2]+[CH3OH])×100
式中、[CO]、[CO2]および[CH3OH]は、それぞれ反応器出口ガス中のCO、CO2およびCH3OHのモル濃度である。
【0018】
ハニカム型触媒体の調製
ハニカム型触媒体の製造は、白金、酸化亜鉛、酸化クロムからなる白金-亜鉛系メタノール改質触媒337.5gを純水1000gに加えてボールミル機器を用いて湿式粉砕し、アルミナゾルをアルミナとして4%混合してスラリーとした後、直径1インチのコージェライト製のハニカム(400セル/平方インチ、または100セル/平方インチ)に、浸漬、過剰分の吹き飛ばし、および乾燥の工程を繰り返すことで行ない、乾燥後の触媒担持量がハニカム構造体の容積に対して200g/Lになるように担持した。
【0019】
メタノール改質装置反応器内のハニカム型触媒体の配置
実施例1
ハニカム型構造体2種を反応器に配置した。このとき燃料ガス導入側にはD値2.0mm、L/D比10のハニカム型触媒体を配置し、改質ガス排出側には、D値2.0mm、L/D比20のハニカム型触媒体を配置し、燃料ガスを導入する側から改質ガスを排出する側へ、ハニカム型触媒体の単位容積あたりの表面積が小さくならないような順に配置した。
【0020】
実施例2
ハニカム型構造体2種を反応器に配置した。このとき燃料ガス導入側にはD値2.0mm、L/D比10のハニカム型触媒体を配置し、改質ガス排出側には、D値1.0mm、L/D比40のハニカム型触媒体を配置し、燃料ガスを導入する側から改質ガスを排出する側へ、ハニカム型触媒体の単位容積あたりの表面積が小さくならないような順に配置した。
【0021】
実施例3
実施例1と同様の構成でハニカム型触媒体を配置した。
【0022】
実施例4
実施例2と同様の構成でハニカム型触媒体を配置した。
【0023】
比較例1
D値2.0mm、L/D比10のハニカム型触媒体を1種のみを反応器に配置した。
【0024】
比較例2
ハニカム型構造体2種を反応器に配置した。このとき燃料ガス導入側にD値1.0mm、L/D比20のハニカム型触媒体を配置し、改質ガス排出側には、D値1.0mm、L/D比40のハニカム型触媒体を配置した。
【0025】
比較例3
比較例1と同様の構成でハニカム型触媒体を配置した。
【0026】
比較例4
比較例2と同様の構成でハニカム型触媒体を配置した。
【0027】
メタノール改質反応
実施例1〜2および比較例1〜2
水/メタノール比1.5のメタノール水溶液をメタノール線速92cm/minで蒸発器に導入し、蒸発器出口後に空気を混合し、メタノール改質装置の入り口部分の温度が200℃となるように調節しながら前記実施例1〜2および比較例1〜2に示したハニカム型触媒体を配置した反応器に導入した。反応はメタノールLHSV=10/hr、メタノール反応率が約99%になるようにA/M比を調整して反応を行なった。反応後のガス組成はガスクロマトグラフィにより分析した。ハニカム型触媒体のD値、L/D比、メタノール反応率、CO濃度、およびA/M比の評価結果を表1に示す。

Figure 2004182575
【0028】
実施例3〜4および比較例3〜4
メタノール改質反応を行う際のメタノール供給速度をLHSV=20/hrとした以外は実施例1〜2および比較例1〜2と同様の条件で実施した。ハニカム型触媒体のD値、L/D比、メタノール反応率、CO濃度、およびA/M比の評価結果を表2に示す。
Figure 2004182575
【0029】
比較例1および3は、ハニカム型触媒体全体のL/D比が小さいために十分なメタノール反応率を得るためのA/M比が大きくなり、また、CO濃度が高くなった(各々1.47%、2.15%)。また比較例2および4は燃料ガス導入側のハニカム型触媒体のD値が小さいために、一酸化炭素濃度が高かった(各々1.46%、1.79%)。一方、本発明に係るハニカム触媒体の組み合わせを用いた実施例1、2、3、4では、一酸化炭素濃度の生成が低減した(各々1.13%、1.35%、1.70%、1.65%)。
【0030】
【発明の効果】
本発明の方法によれば、メタノールと水と空気または酸素を供給して水素含有ガスを製造するオートサーマル反応において、改質反応を円滑に行なうとともに副生する一酸化炭素濃度を低く抑えることができるため、水素を主成分とする改質ガスを工業的に有利に製造することができ、また、燃料電池システムの構成のコンパクト化が可能となる。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態に係わるメタノール水蒸気改質装置の
概略構成を示すものである。
【符号の説明】
1.燃料供給路
2.空気供給路
3.燃料改質反応器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steam reformer for methanol that produces a reformed gas containing hydrogen as a main component from methanol.
[0002]
[Prior art]
In a methanol steam reforming apparatus that produces hydrogen from methanol using steam, a steam reforming reaction represented by the formula (1) is used as a main reaction.
CH 3 OH + H 2 O → CO 2 + 3H 2 (1)
However, since this steam reforming reaction is an endothermic reaction, a heat supply facility for supplying heat required for the reforming reaction from the outside is required in order to smoothly carry out the reaction, and there is a disadvantage that the apparatus becomes complicated.
[0003]
In recent years, studies have been made to apply such a fuel reformer to a drive system as an on-vehicle fuel cell. However, the startability, responsiveness, and downsizing of the fuel reformer have become major issues. As a means for solving this problem, there has been proposed an autothermal reformer that simultaneously performs a partial oxidation reaction of the formula (1) which is an endothermic reaction and a formula (2) which is an exothermic reaction (for example, see Patent Document 1). .).
CH 3 OH + OO 2 → CO 2 + 2H 2 (2)
[0004]
However, when the above-mentioned autothermal reforming is carried out by supplying methanol, steam, air or oxygen to the steam reforming catalyst for methanol, the reaction rate of the partial oxidation reaction of the formula (2), which is an exothermic reaction, increases due to an endothermic reaction. Since the reaction rate of the steam reforming reaction of the formula (1), which is the reaction, is faster than that of the formula (1), the reaction of the formula (2) has priority over the reaction of the formula (1) on the fuel gas introduction side of the reactor having a large supply of oxygen. On the other hand, on the reformed gas discharge side where the amount of oxygen decreases, the proportion of the reaction of the formula (1) that does not require oxygen increases. As a result, while the temperature on the fuel gas introduction side of the reactor rises, heat supply is not sufficiently performed on the outlet side, and the number of moles of hydrogen generated per raw material methanol is relatively large, which is more important for the reforming reaction. The reaction of (1) will be inhibited. In particular, when the reforming catalyst is configured to be long in the gas flow direction, the temperature difference in the gas flow direction of the reforming catalyst becomes large, and the reaction speed at the outlet side is significantly reduced. There is a problem that the reforming reaction cannot be realized (for example, see Patent Document 1).
In the high-temperature region near the reactor inlet, the decomposition reaction of the formula (3) and the reverse shift reaction of the formula (4) occur, so that the raw material methanol and the generated hydrogen are wasted and the carbon monoxide concentration is reduced. Will rise. For this reason, when it is going to be applied as a fuel production device such as a polymer electrolyte fuel cell which needs to keep the emission carbon monoxide concentration to several tens ppm or less, there is a problem that the carbon monoxide removal device needs to be large. (For example, see Patent Document 2).
CH 3 OH → CO + H 2 (3)
CO 2 + H 2 → CO + H 2 O (4)
As a countermeasure against the above-mentioned problem of the autothermal reaction, a method has been proposed in which air or oxygen required for the reaction is dividedly supplied from oxygen supply ports provided at least at two or more places in the reactor (for example, See Patent Document 3.). According to this method, the temperature distribution of the catalyst layer can be smoothed and uniformized in the gas flow direction in the reactor, and the steam reforming reaction of methanol can be performed over the entire catalyst layer of the reactor. In order to provide at least two or more oxygen supply ports, a space is required, and a gas flow control device for stepwise supply of air or oxygen is required. Or there is a problem that it becomes complicated.
[0005]
[Patent Document 1]
JP 9-315801 A [Patent Document 2]
JP 2001-348203 A [Patent Document 3]
JP 2001-097701 A
[Problems to be solved by the invention]
An object of the present invention is to reform methanol to hydrogen by appropriately disposing a honeycomb-type catalyst obtained by coating a honeycomb or a honeycomb-like structure with a methanol reforming catalyst in a methanol steam reforming apparatus. It is an object of the present invention to provide a methanol steam reforming apparatus which performs a reaction smoothly, is structurally simple, has a small amount of by-produced carbon monoxide, and is excellent in efficiency.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the above problems, and as a result, in a methanol steam reforming apparatus using a honeycomb-type catalyst obtained by coating a honeycomb or a honeycomb-like structure with a methanol-reforming catalyst, a fuel gas was produced. By providing at least two types of structural parts in the order from the introduction side to the discharge side of the reformed gas so that the surface area per unit volume of the honeycomb-type catalyst body does not decrease, the carbon concentration of the carbon monoxide increases with the concentration of hydrogen. The present inventors have found that a high-quality reformed gas having a low concentration can be efficiently produced, and have reached the present invention.
[0008]
That is, the present invention relates to a methanol steam reformer for obtaining a hydrogen-containing gas by reacting with methanol, steam, and air or oxygen, wherein the reactor of the reformer is converted into a honeycomb or a honeycomb-like structure. At least two types of honeycomb catalyst bodies obtained by coating the porous catalyst from the side where the fuel gas is introduced to the side where the reformed gas is discharged such that the surface area per unit volume of the honeycomb catalyst bodies does not decrease. The present invention relates to the methanol steam reforming apparatus described in (1) having the structural portion arranged as described above. 20 or less 20 or less (1) In a methanol steam reforming apparatus for obtaining a hydrogen-containing gas by reacting a fuel gas comprising methanol and steam with air or oxygen, a reactor of the reforming apparatus has a honeycomb or a honeycomb-like structure. The honeycomb-type catalyst body obtained by coating the body with a methanol reforming catalyst, the surface area per unit volume of the honeycomb-type catalyst body is not reduced from the side for introducing the fuel gas to the side for discharging the reformed gas. It has at least two types of structural parts arranged in this order, and the D value of the honeycomb catalyst body on the fuel gas introduction side of the structural part
((The through-hole area of the honeycomb-type structure) 1/2 ) exceeds 1 mm, and the L / D ratio (the ratio of the through-hole length (L) of the honeycomb-type structure and the D value) is 3 or more; A steam reforming apparatus for methanol, wherein the honeycomb catalyst bodies are arranged so that the total L / D ratio of the honeycomb catalyst bodies is 30 or more.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the steam reforming apparatus for methanol according to the present invention will be described in detail (see FIG. 1). The methanol steam reformer includes a fuel supply path 1 for supplying a mixed vapor obtained by mixing and vaporizing methanol and water, an air supply path 2 for supplying air or oxygen for oxidizing methanol, and a platinum-based catalyst. Is constituted by a fuel reforming reactor 3 having a catalyst layer on which a catalyst is carried. The fuel gas composed of methanol and steam injected from the fuel supply passage 1 is mixed with air injected from the air supply passage 2 to be a raw material gas, and is subjected to a steam reforming reaction and a partial oxidation reaction in the fuel reforming reactor 3. To be served. The fuel reforming reactor 3 is provided with a honeycomb-type catalyst obtained by coating a honeycomb or a honeycomb-like structure having an innumerable through-hole surrounded by partition walls in the outer wall thereof with a methanol-reforming catalyst. It is configured to have at least two types of structural parts arranged from the introduction side to the reformed gas discharge side.
[0010]
In the above structure, at least two or more types of honeycomb catalysts are arranged in order from the side where the fuel gas is introduced to the side where the reformed gas is discharged so that the surface area per unit volume does not decrease. At this time, the D value of the honeycomb catalyst on the fuel gas introduction side exceeds 1 mm, the L / D ratio is 3 or more, and the total L / D ratio of each honeycomb catalyst is 30 or more. Are preferably arranged.
20 or less 20 or less [0011]
Since the smaller the D value of the honeycomb catalyst body, the larger the surface area per unit volume, the contact area between the catalyst and the reformed fuel gas increases, and a high methanol conversion rate can be obtained. However, in the conventional reactor, most of the fuel gas is consumed for the reaction only by the catalyst near the inlet on the fuel gas introduction side, and the entire catalyst layer of the reactor is not used uniformly. On the fuel gas introduction side, as described above, since a high-temperature region is generated by the oxidation reaction, the decomposition reaction and the reverse shift reaction occur to increase the concentration of carbon monoxide.
[0012]
On the other hand, by setting the D value of the honeycomb catalyst body disposed on the fuel gas introduction side to exceed 1 mm, the contact area between the fuel gas and the catalyst is reduced, and the load of the catalyst near the inlet on the fuel gas introduction side is reduced. Can be reduced. As a result, the fuel gas spreads not only from the inlet portion of the honeycomb catalyst body but also from the central portion to the outlet, and reacts in the entire region of the reactor, so that the entire catalyst layer can be used efficiently.
In other words, by performing the partial oxidation reaction, which was performed exclusively on the fuel gas introduction side, over the entire area of the honeycomb-type catalyst body installed in the reactor, the local high-temperature area at the catalyst layer inlet is eliminated, and in this area, The generation of carbon monoxide due to the decomposition reaction or shift reaction that has occurred can be suppressed, and the amount of heat supplied to the downstream honeycomb catalyst body increases, so that the methanol steam reforming reaction by the autothermal method can proceed smoothly. Become like
Further, by setting the L / D ratio of the honeycomb catalyst body on the fuel gas introduction side to be 3 or more and 20 or less, the coated catalyst can be used effectively. If the L / D ratio is less than 3, the through-hole length L with respect to the D value becomes too short, and a sufficient reaction cannot be performed with the honeycomb catalyst.
[0013]
Among the honeycomb catalysts arranged at least two or more in the gas flow direction, those arranged downstream are unreacted residual methanol which could not be completely reacted by the honeycomb catalyst arranged further on the fuel gas introduction side. For reforming the fuel gas. By making the total of the L / D ratio of each honeycomb type catalyst body of the whole honeycomb reactor 30 or more, the unreacted residual methanol can be reliably supplied to the reforming reaction, and a high methanol conversion rate can be obtained. Can be maintained. On the other hand, if the total L / D ratio is less than 30, a large amount of combustion air must be introduced in order to obtain a high methanol conversion, and the concentration of by-product CO will increase.
[0014]
In order to obtain a honeycomb-type catalyst body, a method of coating a honeycomb-type structure with a methanol-reforming catalyst includes pulverizing, suspending in water, and adding a binder such as alumina sol as needed to obtain a slurry. A method of immersing a honeycomb-type structure in a reforming catalyst in the form of, or a method of spraying the slurry-type reforming catalyst on the honeycomb-type structure is used. Alternatively, it can be used after firing.
The shape as viewed from the top surface of the through hole of the honeycomb structure used at this time is not limited to a square shape, a rectangular shape, a circular shape, or the like. The material of the honeycomb is not particularly limited, and ceramic materials such as cordierite, stainless steel, and copper can be used. The number of through holes in the honeycomb structure is desirably 25 to 800 per square inch.
[0015]
The methanol reforming catalyst supported on the honeycomb-type catalyst body is a catalyst containing copper as a main component, a chromium, a base metal element such as zinc and aluminum and an oxide thereof, and a palladium comprising palladium metal and zinc oxide. Noble metal-based catalysts such as zinc-based catalysts and platinum-zinc-based catalysts consisting of platinum metal and zinc oxide can be used, but copper-based catalysts have poor heat resistance to high temperatures (about 250 ° C or higher), and can be used after prolonged use. Since it has disadvantages such as sintering of components copper and zinc and degradation of activity in a short time, it is desirable to use a noble metal-based reforming catalyst having excellent heat resistance.
[0016]
As the reaction conditions for the reforming reaction, the steam / methanol ratio (S / C ratio) is 1.0 to 2.0, the air / methanol ratio (A / M ratio) is 0.3 to 3.0, and the methanol liquid space velocity (LHSV) is 0.5 to 60. / Hr, and conditions are selected such that the heat generated by the combustion reaction and the heat absorption by the methanol reforming reaction are balanced. The reaction temperature is 200 to 500 ° C, and the reaction pressure is selected from the range of normal pressure to 0.5 MPa.
[0017]
【Example】
Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
In the following Examples and Comparative Examples, the catalytic activity was evaluated based on the methanol conversion, the molar concentration of carbon monoxide (CO concentration), and the molar concentration of oxygen (oxygen concentration) in the following formulas.
Methanol reaction rate (%) = ([CO] + [CO 2 ]) / ([CO] + [CO 2 ] + [CH 3 OH]) × 100
Where [CO], [CO 2 ] and [CH 3 OH] are the molar concentrations of CO, CO 2 and CH 3 OH, respectively, in the reactor outlet gas.
[0018]
Preparation Preparation <br/> honeycomb catalyst body of the honeycomb catalyst body, platinum, zinc oxide, chromium oxide platinum - using a ball mill device by adding zinc based methanol reforming catalyst 337.5g of pure water 1000g wet After pulverizing and mixing 4% of alumina sol as alumina to form a slurry, it is immersed in a 1-inch diameter cordierite honeycomb (400 cells / square inch or 100 cells / square inch), blown out of excess, and The drying was repeated to carry the catalyst so that the amount of the catalyst after drying was 200 g / L with respect to the volume of the honeycomb structure.
[0019]
Arrangement of honeycomb type catalyst body in methanol reformer reactor Example 1
Two honeycomb-type structures were placed in the reactor. At this time, a honeycomb catalyst having a D value of 2.0 mm and an L / D ratio of 10 was disposed on the fuel gas introduction side, and a honeycomb catalyst having a D value of 2.0 mm and an L / D ratio of 20 was disposed on the reformed gas discharge side. Were arranged from the side where the fuel gas was introduced to the side where the reformed gas was discharged so that the surface area per unit volume of the honeycomb catalyst body was not reduced.
[0020]
Example 2
Two honeycomb-type structures were placed in the reactor. At this time, a honeycomb catalyst having a D value of 2.0 mm and an L / D ratio of 10 was disposed on the fuel gas introduction side, and a honeycomb catalyst having a D value of 1.0 mm and an L / D ratio of 40 was disposed on the reformed gas discharge side. Were arranged from the side where the fuel gas was introduced to the side where the reformed gas was discharged so that the surface area per unit volume of the honeycomb catalyst body was not reduced.
[0021]
Example 3
A honeycomb catalyst body was arranged in the same configuration as in Example 1.
[0022]
Example 4
A honeycomb catalyst body was disposed in the same configuration as in Example 2.
[0023]
Comparative Example 1
Only one type of honeycomb catalyst having a D value of 2.0 mm and an L / D ratio of 10 was placed in the reactor.
[0024]
Comparative Example 2
Two honeycomb-type structures were placed in the reactor. At this time, a honeycomb catalyst having a D value of 1.0 mm and an L / D ratio of 20 was disposed on the fuel gas introduction side, and a honeycomb catalyst having a D value of 1.0 mm and an L / D ratio of 40 was disposed on the reformed gas discharge side. Placed.
[0025]
Comparative Example 3
A honeycomb catalyst body was disposed in the same configuration as in Comparative Example 1.
[0026]
Comparative Example 4
A honeycomb catalyst body was disposed in the same configuration as in Comparative Example 2.
[0027]
Methanol reforming reaction Examples 1-2 and Comparative Examples 1-2
A methanol aqueous solution having a water / methanol ratio of 1.5 was introduced into the evaporator at a methanol linear velocity of 92 cm / min, and air was mixed after the evaporator exit, while adjusting the temperature at the inlet of the methanol reformer to 200 ° C. The honeycomb-type catalyst bodies shown in Examples 1 and 2 and Comparative Examples 1 and 2 were introduced into a reactor. The reaction was carried out by adjusting the A / M ratio so that methanol LHSV = 10 / hr and the methanol conversion was about 99%. The gas composition after the reaction was analyzed by gas chromatography. Table 1 shows the evaluation results of the D value, the L / D ratio, the methanol conversion, the CO concentration, and the A / M ratio of the honeycomb catalyst.
Figure 2004182575
[0028]
Examples 3 and 4 and Comparative Examples 3 and 4
The reaction was performed under the same conditions as in Examples 1 and 2 and Comparative Examples 1 and 2, except that the methanol supply rate during the methanol reforming reaction was set to LHSV = 20 / hr. Table 2 shows the evaluation results of the D value, the L / D ratio, the methanol conversion, the CO concentration, and the A / M ratio of the honeycomb catalyst.
Figure 2004182575
[0029]
In Comparative Examples 1 and 3, since the L / D ratio of the entire honeycomb catalyst body was small, the A / M ratio for obtaining a sufficient methanol conversion was increased, and the CO concentration was increased (1.47% each). , 2.15%). In Comparative Examples 2 and 4, since the D value of the honeycomb catalyst on the fuel gas introduction side was small, the carbon monoxide concentration was high (1.46% and 1.79%, respectively). On the other hand, in Examples 1, 2, 3, and 4 using the combination of the honeycomb catalyst bodies according to the present invention, the generation of the carbon monoxide concentration was reduced (1.13%, 1.35%, 1.70%, 1.65%, respectively).
[0030]
【The invention's effect】
According to the method of the present invention, in an autothermal reaction for producing a hydrogen-containing gas by supplying methanol, water, and air or oxygen, it is possible to smoothly carry out a reforming reaction and keep the concentration of by-produced carbon monoxide low. Therefore, reformed gas containing hydrogen as a main component can be industrially advantageously produced, and the configuration of the fuel cell system can be made compact.
[Brief description of the drawings]
FIG. 1 shows a schematic configuration of a methanol steam reforming apparatus according to an embodiment of the present invention.
[Explanation of symbols]
1. 1. Fuel supply path 2. Air supply path Fuel reforming reactor

Claims (1)

メタノールと水蒸気からなる燃料ガスを空気または酸素と反応させて水素含有ガスを得るメタノールの水蒸気改質装置において、該改質装置の反応器が、ハニカムまたはハニカム類似の構造体にメタノール改質触媒をコーティングして得られるハニカム型触媒体を、燃料ガスを導入する側から改質ガスを排出する側へ、そのハニカム型触媒体の単位容積当たりの表面積が小さくならないような順に少なくとも2種類以上配置した構造部分を有しており、該構造部分の燃料ガス導入側のハニカム型触媒体のD値((ハニカム型構造体の貫通孔面積)1/2)が1mmを超え、かつL/D比(ハニカム型構造体の貫通孔長(L)と前記D値の比率)が3以上であり、かつ各ハニカム型触媒体のL/D比の総計が30以上になるように配置することを特徴とするメタノールの水蒸気改質装置。20以下In a methanol steam reforming apparatus for obtaining a hydrogen-containing gas by reacting a fuel gas consisting of methanol and steam with air or oxygen, a reactor of the reforming apparatus includes a honeycomb or a honeycomb-like structure formed by adding a methanol reforming catalyst to a honeycomb or a honeycomb-like structure. At least two or more types of the honeycomb-type catalyst bodies obtained by coating are arranged in such a manner that the surface area per unit volume of the honeycomb-type catalyst bodies does not decrease from the side where the fuel gas is introduced to the side where the reformed gas is discharged. The honeycomb catalyst body on the fuel gas introduction side of the structural part has a D value ((through-hole area of the honeycomb structure) 1/2 ) of more than 1 mm and an L / D ratio ( The honeycomb structure is disposed so that the through-hole length (L) of the honeycomb structure and the D value) are 3 or more, and the total L / D ratio of each honeycomb catalyst is 30 or more. Methanol Steam reformer. 20 or less
JP2002354742A 2002-12-06 2002-12-06 Methanol steam reformer Expired - Fee Related JP4310618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354742A JP4310618B2 (en) 2002-12-06 2002-12-06 Methanol steam reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354742A JP4310618B2 (en) 2002-12-06 2002-12-06 Methanol steam reformer

Publications (3)

Publication Number Publication Date
JP2004182575A true JP2004182575A (en) 2004-07-02
JP2004182575A5 JP2004182575A5 (en) 2006-01-19
JP4310618B2 JP4310618B2 (en) 2009-08-12

Family

ID=32755640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354742A Expired - Fee Related JP4310618B2 (en) 2002-12-06 2002-12-06 Methanol steam reformer

Country Status (1)

Country Link
JP (1) JP4310618B2 (en)

Also Published As

Publication number Publication date
JP4310618B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP3759406B2 (en) Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method
US6972119B2 (en) Apparatus for forming hydrogen
US6849573B2 (en) Methanol reforming catalyst
KR100981517B1 (en) Article for carbon monoxide removal
US7867299B2 (en) Methods, apparatus, and systems for producing hydrogen from a fuel
JP2007091513A (en) Hydrogen generator and fuel cell system
JP2003183002A (en) Process for catalytic, self-heat steam reforming or alcohol
US6692707B1 (en) Hydrocarbon fuel reformer
WO2002016260A1 (en) Hydrogen purification apparatus
JP3733753B2 (en) Hydrogen purification equipment
JP2003340280A (en) Co selective oxidation catalyst, manufacturing method therefor, heat exchange type reactor using co selective oxidation catalyst and usage thereof
JP2002293510A (en) Carbon monoxide converter
JP4310618B2 (en) Methanol steam reformer
US20020131925A1 (en) Ruthenium oxidation catalyst
CN101157444B (en) Use of metal supported copper catalysts for reforming alcohols
JP2005067917A (en) Co removal catalyst system and method for selective removal of co
JP2003334448A (en) Hydrogen generating catalyst and hydrogen generating using it
WO2003035255A2 (en) Thin layer catalyst to adhere to a metallic substrate and method of forming the same
JP4663095B2 (en) Hydrogen purification equipment
JP2006036567A (en) Steam reforming method and mixed catalyst
US7156887B1 (en) Methods, apparatus, and systems for producing hydrogen from a fuel
JP2000254482A (en) Fixed bed catalytic reactor
JP5086599B2 (en) Method for producing hydrogen-containing gas
US7459224B1 (en) Methods, apparatus, and systems for producing hydrogen from a fuel
JP3747744B2 (en) Fuel reformer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4310618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees