JP2004182529A - Method of shaping glass - Google Patents

Method of shaping glass Download PDF

Info

Publication number
JP2004182529A
JP2004182529A JP2002351297A JP2002351297A JP2004182529A JP 2004182529 A JP2004182529 A JP 2004182529A JP 2002351297 A JP2002351297 A JP 2002351297A JP 2002351297 A JP2002351297 A JP 2002351297A JP 2004182529 A JP2004182529 A JP 2004182529A
Authority
JP
Japan
Prior art keywords
glass
mold member
carbon
shape
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351297A
Other languages
Japanese (ja)
Inventor
Hiroshi Murakoshi
洋 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2002351297A priority Critical patent/JP2004182529A/en
Publication of JP2004182529A publication Critical patent/JP2004182529A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/203Uniting glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shaping method by which a glass member having a fine or complicated form can be shaped at a low cost. <P>SOLUTION: A mold member 14 made of carbon is set between two sheets of shaping workpieces 13a, 13b made of quartz glass. After heating the shaping workpieces 13a, 13b to a prescribed temperature, the shaping workpieces are compressed between a bed 1 and a press plate 2 so as to be formed. Thereby, the mold member 14 is embedded into the inside of the glass, and the shape of the mold member 14 is transferred to the inside of the glass (half finished product 3c). After the temperature of the half finished product 13c has been lowered, the half finished product 13c is recovered by retreating the press plate 2 from the bed 1. After boring a hole 16 which reaches the mold member 14 in the half finished product 13c, the mold member 14 is oxidized and removed from the inside of the half finished product 13c. By this process, the shaped article 13d to whose inside the shape of the mold member 14 is transferred can be obtained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガラスの成形方法に係り、特に、微細な形状や複雑な形状を備えたガラス製の部品を成形するための方法に係る。
【0002】
【従来の技術】
近年、ガラス製部品は、光学レンズ等の光学機器に限らず、その耐久性や化学的安定性等の利点を生かし、光通信用や医療用の精密部品に広く用いられている。
【0003】
通常、ガラス製部品の製造プロセスとしては、研削やエッチングのような除去工程、若しくはCVDのような付加工程から成り立つものが殆どである。医療用のマイクロチップや光通信用のV溝基板等は、主に上記方法により製造されている。
【0004】
しかし、研削による場合、加工時間が多くかかることや、複雑形状を加工することが難しいなどの問題がある。エッチングによる場合には、加工時間がエッチングレートに依存するために時間がかかり、更に、三次元的な加工を行うことが困難であるという問題がある。また、CVDについては、堆積レートが低いこともあり、せいぜい数μm程度の形状しか形成できないという問題がある。
【0005】
近年、これらの製造プロセスに代わって、プレス成形によりガラス製部品を製造するプロセスが、特に光学ガラスレンズの製造の際に多く採用されるようになって来ている。このプロセスでは、型及びガラスの成形素材を加熱し、ガラスを軟化させた後、型の形状をガラスに転写することによってガラス製部品を製造している。
【0006】
プレス成形による製造プロセスは、成形用の型をある程度のコストで製作することができれば、上記の他の製造プロセスと比べて大量かつ安価にガラス部品を製造することが可能である。
【0007】
しかし、石英ガラス等の高融点ガラスを成形する場合には、型の素材がカーボン、セラミックスまたは高融点金属等に限定され、それらの材料を複雑な形状に加工することは難しい。また、成形用の型の寿命も問題となる。
【0008】
【発明が解決しようとする課題】
本発明は、以上のような従来のガラス製部品を成形する際の問題点に鑑み成されたもので、本発明の目的は、微細な形状や複雑な形状のガラス製部品を低いコストで製造することができる成形方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明のガラスの成形方法は、炭素製の型部材を用いてガラスをプレス成形し、この型部材の形状をガラスに転写した後、成形されたガラスの表面に残った炭素を酸化させてガラスの表面から炭素を取り除くことを特徴とする。
【0010】
また、前記型部材から成形品を分離することが困難な場合には、上記方法の代わりに、ガラスを成形した後、前記型部材がガラスに密着したままの状態で前記型部材を酸化させることによって、ガラスの表面から前記型部材を取り除くこともできる。
【0011】
更に、上記方法の変形として、二枚のガラスの間に炭素製の型部材を挟んでガラスをプレス成形することにより、型部材の形状をガラスの内側に転写することができる。その場合、ガラスをプレス成形した後、ガラスに前記型部材に到達する孔を加工し、その状態で前記型部材を酸化させることによって、ガラスの内側から前記型部材を取り除く。
【0012】
なお、上記において、「炭素」とは、等方性カーボン、ガラス状カーボン、または、フォトレジストを焼成したもの、を意味する。
【0013】
また、前記炭素製の型部材は、(a)研削・研磨、(b)エッチング、(c)CVD、(d)炭素ペーストの焼成、など種々の方法により製作することがきる。これらの方法の中で、(d)の方法は、炭素ペースト(等方性カーボンの粉末に水または有機溶剤を加えて混練したもの)を所定のパターンを与えてガラスなどの基板上に塗布し、これを焼成したものである。この方法は、(b)や(c)の方法と比較して簡易かつ安価に型面を加工することが可能であり、形状に関するフレキシビリティも高い。
【0014】
なお、上記の炭素ペーストの代わりに、ポリマーを基板上に塗布し、これを焼成することによっても、ガラス状カーボンからなる型部材を製作することができる。
【0015】
また、パターニングされたフォトレジストを焼成することによって、カーボンからなる型部材を製作することができる。
【0016】
なお、いずれの方法の場合にも、ガラスの成形温度では、ガラスと炭素の間で熱膨張量に差があるので、炭素製の型部材の寸法は、熱膨張量の差を考慮して補正しておく必要がある。
【0017】
【発明の実施の形態】
本発明のガラスの成形方法は、概略、以下の工程からなる:
(a)成形品の形状と逆形状の炭素製の型部材を製作する;
(b)この炭素製の型部材及びガラスの成形素材を非酸化雰囲気(不活性ガス雰囲気、真空雰囲気または還元雰囲気)中で加熱した後、型部材を用いてガラスをプレス成形することにより、型部材の形状をガラスに転写する;
(c)型部材から成形品を引き離し、型部材を回収する;
(d)成形品の表面に残った炭素を酸化させて、成形品の表面から炭素を取り除く。
【0018】
なお、成形が終ったガラスから型部材を剥離させることが困難な場合には、ガラスに型部材が密着したままの状態で型部材を酸化させることにより、ガラスの表面から型部材を取り除く。
【0019】
図1に、本発明に基づく成形方法の一例を示す。図中、3aはガラスの成形素材、3bはガラスの成形品、4は炭素製の型部材を表す。
【0020】
ベッド1の上にガラスの成形素材3aを置き、その上に炭素製の型部材4をセットする。成形素材3a及び型部材4をガラス転移温度以上の所定の温度に加熱した後、これらをベッド1と加圧盤2の間で圧縮し、成形素材3aをプレス成形する。これによって、型部材4が成形素材3aの表面に押し込まれ、成形素材3aの表面に型部材4の形状が転写される。成形品3bの温度が所定の温度まで低下した後、ベッド1から加圧盤2を後退させて型開きを行う。次いで、成形品3bから型部材4を引き離した後、成形品3bの表面に付着している炭素を酸化させて取り除く。このようにして、型部材4の形状が転写されたガラスの成形品3bが得られる。
【0021】
図2に、本発明に基づく成形方法の他の例を示す。
【0022】
この例では、成形素材3aと型部材4の上下の位置関係が、先に示した例(図1)と反対になっている。即ち、ベッド1の上に炭素製の型部材4が置かれ、そのガラスの成形素材3aがセットされる。その他の手順については、先に示した例と同じである。
【0023】
図3に、本発明に基づく成形方法の他の例を示す。図中、13a及び13bはガラスの成形素材、13cは半製品、13dはガラスの成形品、4は型部材を表す。
【0024】
この例では、二枚のガラス13a、13bの間に炭素製の型部材14を挟んでガラスをプレス成形することによって、型部材14の形状をガラスの内側に転写している。
【0025】
即ち、ベッド1の上にガラスの成形素材13aを置き、その上に炭素製の型部材14をセットし、更にその上にガラスの成形素材13bをセットする。成形素材13a及び13bと、型部材14をガラス転移温度以上の所定の温度に加熱した後、これらをベッド1と加圧盤2の間で圧縮し、成形素材13a及び13bをプレス成形する。これによって、型部材14がガラス(半製品13c)の内側に包み込まれ、ガラスの内側に型部材14の形状が転写される。半製品13cの温度が所定の温度まで低下した後、ベッド1から加圧盤2を後退させ、半製品13cを回収する。半製品13cに型部材14に到達する孔16を加工した後、型部材14を酸化させ、これによって半製品13cの内側から型部材14を取り除く。このようにして、内側に型部材4の形状が転写されたガラスの成形品13dが得られる。
【0026】
図4に、本発明に基づく成形方法の他の例を示す。
【0027】
この例では、炭素製の型部材17の中に、予め異種部品18が埋め込まれている。このような型部材17を用いて、先の例(図3)と同様な方法で、二枚のガラスの成形素材13a及び13bをプレス成形した後、型部材17を酸化させて取り除く。これによって、内側に型部材4の形状が転写され、且つ内部に異種部品18が封入されたガラスの成形品13dを製造することができる。
【0028】
なお、上記の異種部品18の材質としては、高融点金属や、成形されるガラスと比べて成形温度の高いガラス等が挙げられる。
【0029】
次に、図4に示した方法に従い、石英ガラスの内部に白金(Pt)製の球が封入されたマイクロマシン用部品を製造する場合の具体的な条件の一例について説明する。
【0030】
成形素材13a、13bには、石英ガラス板(東ソークオーツ製“ES”:形状φ20×t3mm)を用いた。ベッド1及び加圧盤2には、ガラス状カーボン製の部材を使用した。炭素製の型部材17には、炭素ペースト中に白金製の球(φ1mm)を封入した上で焼成を行い、所定の形状としたものを使用した。
【0031】
二枚の石英ガラス板13a、13bの間に炭素製の型部材17を配置し、石英ガラス板13a、13b及び型部材17を1450℃まで加熱し、プレス成形を行った。なお、プレス荷重は1kN、プレス時間は60secであった。
【0032】
成形された半製品13cを冷却した後、半製品13cに型部材17まで到達する孔16を研削加工により形成した。次いで、半製品13cの内部にある炭素を酸素プラズマアッシングにより酸化して、昇華させた。その結果、石英ガラスの内部に白金製の球が封入されたマイクロマシン用部品を製作することができた。
【0033】
【発明の効果】
本発明のガラスの成形方法によれば、微細な形状や複雑な形状を備えたガラス製の部品を低いコストで製造することが可能になる。特に、本発明の方法によれば、内部に設けられた空洞の内面に微細な形状が形成された石英ガラス製の部品を低いコストで製造することができる。
【図面の簡単な説明】
【図1】本発明に基づく成形方法の一例を示す図。
【図2】本発明に基づく成形方法の他の例を示す図。
【図3】本発明に基づく成形方法の他の例を示す図。
【図4】本発明に基づく成形方法の他の例を示す図。
【符号の説明】
1・・・ベッド、
2・・・加圧盤、
3a、13a、13b・・・ガラスの成形素材
3b、13d・・・ガラスの成形品、
4、14、17・・・炭素製の型部材、
13c・・・半製品(ガラス)、
16・・・孔、
18・・・異種部品(白金製の球)。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming glass, and more particularly to a method for forming a glass part having a fine shape or a complicated shape.
[0002]
[Prior art]
In recent years, glass parts are widely used not only for optical devices such as optical lenses, but also for precision parts for optical communication and medical use, taking advantage of their durability and chemical stability.
[0003]
Usually, most of the manufacturing processes of glass parts are formed by removing steps such as grinding and etching or additional steps such as CVD. A microchip for medical use, a V-groove substrate for optical communication, and the like are mainly manufactured by the above method.
[0004]
However, in the case of grinding, there are problems such as a long processing time and difficulty in processing a complicated shape. In the case of etching, there is a problem in that the processing time depends on the etching rate and thus takes a long time, and further, it is difficult to perform three-dimensional processing. In addition, the CVD has a problem that the deposition rate is low, and the shape can be formed only at most about several μm.
[0005]
In recent years, instead of these manufacturing processes, a process of manufacturing a glass part by press molding has been increasingly adopted, particularly in the manufacture of optical glass lenses. In this process, a glass part is manufactured by heating a mold and a molding material of glass to soften the glass, and then transferring the shape of the mold to the glass.
[0006]
In a manufacturing process by press molding, if a mold for molding can be manufactured at a certain cost, it is possible to manufacture glass parts in a large amount and at low cost as compared with the other manufacturing processes described above.
[0007]
However, when molding high melting point glass such as quartz glass, the material of the mold is limited to carbon, ceramics, high melting point metal and the like, and it is difficult to process those materials into complicated shapes. Another problem is the life of the mold.
[0008]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems in forming a conventional glass part, and an object of the present invention is to produce a glass part having a fine or complicated shape at low cost. It is an object of the present invention to provide a molding method that can perform the molding.
[0009]
[Means for Solving the Problems]
The method for molding glass of the present invention comprises press-molding glass using a carbon mold member, transferring the shape of the mold member to glass, and oxidizing carbon remaining on the surface of the molded glass to form a glass. Characterized in that carbon is removed from the surface.
[0010]
When it is difficult to separate the molded article from the mold member, instead of the above method, after molding the glass, the mold member may be oxidized while the mold member remains in close contact with the glass. Thereby, the mold member can be removed from the surface of the glass.
[0011]
Further, as a modification of the above method, the shape of the mold member can be transferred to the inside of the glass by pressing the glass with a carbon mold member between two pieces of glass. In that case, after press-molding the glass, a hole reaching the mold member is formed in the glass, and the mold member is oxidized in this state, thereby removing the mold member from the inside of the glass.
[0012]
In the above description, “carbon” means isotropic carbon, glassy carbon, or baked photoresist.
[0013]
Further, the carbon mold member can be manufactured by various methods such as (a) grinding and polishing, (b) etching, (c) CVD, and (d) baking of carbon paste. Among these methods, in the method (d), a carbon paste (a mixture of isotropic carbon powder to which water or an organic solvent is added and kneaded) is applied in a predetermined pattern to a substrate such as glass. This is fired. This method can easily and inexpensively process the mold surface as compared with the methods (b) and (c), and has high flexibility regarding the shape.
[0014]
Instead of the carbon paste described above, a mold member made of glassy carbon can also be manufactured by applying a polymer on a substrate and firing the polymer.
[0015]
Further, by firing the patterned photoresist, a mold member made of carbon can be manufactured.
[0016]
In any case, at the molding temperature of the glass, there is a difference in the amount of thermal expansion between the glass and the carbon. Therefore, the dimensions of the carbon mold member are corrected in consideration of the difference in the amount of thermal expansion. It is necessary to keep.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The glass forming method of the present invention generally comprises the following steps:
(A) Producing a carbon mold member having a shape opposite to the shape of the molded product;
(B) The carbon mold member and the glass molding material are heated in a non-oxidizing atmosphere (inert gas atmosphere, vacuum atmosphere or reducing atmosphere), and then the glass is press-molded using the mold member. Transfer the shape of the part to glass;
(C) separating the molded article from the mold member and collecting the mold member;
(D) The carbon remaining on the surface of the molded article is oxidized to remove carbon from the surface of the molded article.
[0018]
If it is difficult to remove the mold member from the molded glass, the mold member is removed from the surface of the glass by oxidizing the mold member while the mold member remains in close contact with the glass.
[0019]
FIG. 1 shows an example of a molding method according to the present invention. In the figure, 3a is a glass molding material, 3b is a glass molding, and 4 is a carbon mold member.
[0020]
A glass molding material 3a is placed on the bed 1, and a carbon mold member 4 is set thereon. After the molding material 3a and the mold member 4 are heated to a predetermined temperature equal to or higher than the glass transition temperature, they are compressed between the bed 1 and the pressure plate 2 to press-mold the molding material 3a. Thereby, the mold member 4 is pushed into the surface of the molding material 3a, and the shape of the mold member 4 is transferred to the surface of the molding material 3a. After the temperature of the molded product 3b has dropped to a predetermined temperature, the pressure platen 2 is retracted from the bed 1 to open the mold. Next, after separating the mold member 4 from the molded product 3b, the carbon adhering to the surface of the molded product 3b is oxidized and removed. In this manner, a glass molded product 3b to which the shape of the mold member 4 has been transferred is obtained.
[0021]
FIG. 2 shows another example of the molding method according to the present invention.
[0022]
In this example, the vertical positional relationship between the molding material 3a and the mold member 4 is opposite to that in the example (FIG. 1) shown earlier. That is, the carbon mold member 4 is placed on the bed 1, and the glass molding material 3a is set. Other procedures are the same as those in the above-described example.
[0023]
FIG. 3 shows another example of the molding method according to the present invention. In the drawings, 13a and 13b denote glass molding materials, 13c denotes a semi-finished product, 13d denotes a glass molding, and 4 denotes a mold member.
[0024]
In this example, the shape of the mold member 14 is transferred to the inside of the glass by pressing the glass with the carbon mold member 14 interposed between the two glasses 13a and 13b.
[0025]
That is, the glass molding material 13a is placed on the bed 1, the carbon mold member 14 is set thereon, and the glass molding material 13b is set thereon. After the molding materials 13a and 13b and the mold member 14 are heated to a predetermined temperature equal to or higher than the glass transition temperature, they are compressed between the bed 1 and the pressure plate 2, and the molding materials 13a and 13b are press-molded. Thereby, the mold member 14 is wrapped inside the glass (semi-finished product 13c), and the shape of the mold member 14 is transferred to the inside of the glass. After the temperature of the semi-finished product 13c has dropped to a predetermined temperature, the pressure plate 2 is retracted from the bed 1 and the semi-finished product 13c is collected. After machining the hole 16 reaching the mold member 14 in the semi-finished product 13c, the mold member 14 is oxidized, thereby removing the mold member 14 from the inside of the semi-finished product 13c. In this way, a glass molded product 13d in which the shape of the mold member 4 is transferred to the inside is obtained.
[0026]
FIG. 4 shows another example of the molding method according to the present invention.
[0027]
In this example, a heterogeneous component 18 is embedded in a mold member 17 made of carbon in advance. By using such a mold member 17 and pressing the two glass forming materials 13a and 13b in the same manner as in the previous example (FIG. 3), the mold member 17 is oxidized and removed. As a result, it is possible to manufacture a glass molded product 13d in which the shape of the mold member 4 is transferred to the inside and a heterogeneous part 18 is encapsulated.
[0028]
In addition, as a material of the above-mentioned heterogeneous component 18, a high melting point metal, glass having a higher forming temperature than glass to be formed, and the like can be given.
[0029]
Next, according to the method shown in FIG. 4, an example of specific conditions for manufacturing a micromachine component in which platinum (Pt) spheres are sealed in quartz glass will be described.
[0030]
Quartz glass plates (“ES” manufactured by Tosoh Quartz: shape φ20 × t3 mm) were used as the molding materials 13a and 13b. For the bed 1 and the pressure plate 2, members made of glassy carbon were used. The carbon mold member 17 used was one in which platinum balls (φ1 mm) were sealed in a carbon paste and then fired to obtain a predetermined shape.
[0031]
A mold member 17 made of carbon was disposed between the two quartz glass plates 13a and 13b, and the quartz glass plates 13a and 13b and the mold member 17 were heated to 1450 ° C. to perform press molding. The press load was 1 kN and the press time was 60 seconds.
[0032]
After cooling the formed semi-finished product 13c, a hole 16 reaching the mold member 17 was formed in the semi-finished product 13c by grinding. Next, the carbon inside the semi-finished product 13c was oxidized by oxygen plasma ashing to be sublimated. As a result, it was possible to manufacture a micromachine component in which platinum balls were sealed in quartz glass.
[0033]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the glass shaping | molding method of this invention, it becomes possible to manufacture glass parts with a fine shape or a complicated shape at low cost. In particular, according to the method of the present invention, a quartz glass component having a fine shape formed on the inner surface of a cavity provided therein can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a molding method according to the present invention.
FIG. 2 is a view showing another example of the molding method according to the present invention.
FIG. 3 is a diagram showing another example of the molding method according to the present invention.
FIG. 4 is a diagram showing another example of the molding method according to the present invention.
[Explanation of symbols]
1 ... bed,
2 ... Pressing plate,
3a, 13a, 13b: Glass molding material 3b, 13d: Glass molding,
4, 14, 17 ... carbon mold member,
13c: Semi-finished product (glass),
16 ... holes,
18 ... heterogeneous parts (spheres made of platinum).

Claims (8)

炭素製の型部材を用いてガラスをプレス成形し、この型部材の形状をガラスに転写した後、成形されたガラスの表面に残った炭素を酸化させてガラスの表面から炭素を取り除くことを特徴とするガラスの成形方法。Press molding glass using a carbon mold member, transferring the shape of this mold member to glass, and then oxidizing carbon remaining on the surface of the molded glass to remove carbon from the glass surface. Glass forming method. 炭素製の型部材を用いてガラスをプレス成形し、この型部材の形状をガラスに転写した後、型部材がガラスに密着したままの状態で型部材を酸化させてガラスの表面から型部材を取り除くことを特徴とするガラスの成形方法。The glass is press-formed using a carbon mold member, and after transferring the shape of the mold member to the glass, the mold member is oxidized while the mold member remains in close contact with the glass to remove the mold member from the surface of the glass. A glass forming method characterized by removing. 二枚のガラスの間に炭素製の型部材を挟んでガラスをプレス成形し、この型部材の形状をガラスの内側に転写し、次いで、ガラスに型部材に到達する孔を加工した後、型部材を酸化させてガラスの内側から型部材を取り除くことを特徴とするガラスの成形方法。The glass is press-formed with a carbon mold member sandwiched between two pieces of glass, the shape of this mold member is transferred to the inside of the glass, and then a hole is formed in the glass to reach the mold member. A method for forming glass, comprising removing a mold member from the inside of glass by oxidizing the member. 前記炭素製の型部材は、炭素ペーストを焼成したものであることを特徴とする請求項1から3のいずれかに記載のガラスの成形方法。The method according to any one of claims 1 to 3, wherein the carbon mold member is obtained by firing a carbon paste. 前記炭素製の型部材は、炭素ペーストを所定のパターンを与えて基板上に塗布し、これを焼成したものであることを特徴とする請求項4に記載のガラスの成形方法。The method of forming glass according to claim 4, wherein the carbon mold member is obtained by applying a carbon paste on a substrate in a predetermined pattern and baking the carbon paste. 前記炭素製の型部材は、ガラス状カーボンであることを特徴とする請求項1から3のいずれかに記載のガラスの成形方法。The method according to any one of claims 1 to 3, wherein the carbon mold member is glassy carbon. 前記炭素製の型部材は、ポリマーを所定のパターンを与えて基板上に塗布し、これを焼成してガラス状ガ−ボンとしたものであることを特徴とする請求項6に記載のガラスの成形方法。7. The glass according to claim 6, wherein the carbon mold member is formed by applying a predetermined pattern of a polymer onto a substrate and firing the polymer to form a glassy carbon. Molding method. 前記炭素製の型部材は、パターニングされたフォトレジストを焼成したものであることを特徴とする請求項1から3のいずれかに記載のガラスの成形方法。The method according to any one of claims 1 to 3, wherein the carbon mold member is obtained by firing a patterned photoresist.
JP2002351297A 2002-12-03 2002-12-03 Method of shaping glass Pending JP2004182529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351297A JP2004182529A (en) 2002-12-03 2002-12-03 Method of shaping glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351297A JP2004182529A (en) 2002-12-03 2002-12-03 Method of shaping glass

Publications (1)

Publication Number Publication Date
JP2004182529A true JP2004182529A (en) 2004-07-02

Family

ID=32753253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351297A Pending JP2004182529A (en) 2002-12-03 2002-12-03 Method of shaping glass

Country Status (1)

Country Link
JP (1) JP2004182529A (en)

Similar Documents

Publication Publication Date Title
JP5665215B2 (en) Method for forming glass-containing composition
JP2010527293A (en) Method for making a microfluidic device
JP2004359481A (en) Method for manufacturing replica pattern for lens molding
JP2577055B2 (en) Glass mold
JP2004182529A (en) Method of shaping glass
JP3273921B2 (en) Mold for glass optical element, method for manufacturing glass optical element, and method for reproducing mold
JP2000095532A (en) Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element
JP3681782B2 (en) Method and apparatus for manufacturing glass molded article
JP4718097B2 (en) Method for producing molded product having fine pattern on surface
JP2746454B2 (en) Optical element molding method
JP4942131B2 (en) Stamper and nanostructure transfer method using the same
JP2004338999A (en) Molding die for silica glass
JP4054609B2 (en) Glass mold and molding method
JP3203402B2 (en) Optical element molding die, method of manufacturing the same, and optical element molding method
JP2003063832A (en) Mold for forming optical element
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JP2006111491A (en) Method for manufacturing glass micro lens array and glass micro lens array
JP2002154830A (en) Method for molding optical element and frame body to be used for molding
JP2007254234A (en) Method for producing molding die for optical element
JP2000302463A (en) Forming die for optical element and optical element formed using the same
JP2004026607A (en) Glass mold and method for manufacturing the same
JPS6374926A (en) Forming of optical glass part
JPH08165123A (en) Member for forming outer shape of glass material
JP2002234747A (en) Method and device for manufacturing quartz glass product of semispherical dome shape
JP2001354434A (en) Formed die made of glass