JP2004181486A - Method for rebonding molding sand and method for making mold using rebonded sand - Google Patents
Method for rebonding molding sand and method for making mold using rebonded sand Download PDFInfo
- Publication number
- JP2004181486A JP2004181486A JP2002351016A JP2002351016A JP2004181486A JP 2004181486 A JP2004181486 A JP 2004181486A JP 2002351016 A JP2002351016 A JP 2002351016A JP 2002351016 A JP2002351016 A JP 2002351016A JP 2004181486 A JP2004181486 A JP 2004181486A
- Authority
- JP
- Japan
- Prior art keywords
- sand
- mold
- molding sand
- molding
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Mold Materials And Core Materials (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】本発明は、鋳物砂として合成ムライト砂、粘結剤に水溶性フェノール樹脂、硬化剤に有機エステル化合物を使用して得られた鋳型からの回収砂に、熱を加えて効率的に焙焼再生する方法に属するものである。また、この再生した鋳物砂を使用して鋳型を製造する方法に関するものである。
【0002】
【従来の技術】有機常温鋳型製造方法は、ガス硬化性鋳型製造方法(コールドボックス法)と自硬性鋳型製造方法(ノーベーク法)に大別される。自硬性鋳型製造方法においては、近年水溶性フェノール樹脂を粘結剤として使用し、有機エステルによって硬化させて鋳型を製造する方法が、鋳物の品質や作業環境に優れているとして、鋳造業界でも良好な実績を挙げている。水溶性フェノール樹脂を粘結剤として使用する鋳物の製造方法は、まず粘結剤である水溶性フェノール樹脂と硬化剤である有機エステル化合物と鋳物砂(粒状耐火性骨材)をミキサーで混合後、粘結剤と硬化剤で覆われた鋳物砂を、鋳型製造用の型枠内に充填し、常温で硬化させ最後に抜型して鋳造用の鋳型を製造するものである(例えば、特許文献1参照)。
【0003】また、鋳型の製造に使用する鋳物砂も、従来から多く使用されてきた珪砂、ジルコン砂、クロマト砂、オリビン砂等の欠点を補う目的で、人工的に調製された鋳物砂が工業的に使用されており、具体的には合成ムライト砂等が挙げられる。この合成ムライト砂には、熱膨張量が少ない、耐火度が高い、球状であるという特徴がある(例えば、特許文献2参照)。従って、水溶性フェノール樹脂を粘結剤に使用し、鋳物砂に合成ムライト砂を使用して鋳型を製造することにより、鋳物品質や作業環境に優れるのはもちろん、耐火物の硬度が高いことや熱衝撃に強いこと(例えば、特許文献2参照)が、鋳物砂の回収、再生に高い歩留まりを実現し、産業廃棄物の廃棄量を減少させることが可能となる。
【0004】一般に鋳型に使用された砂の再生方法としては、機械的、湿式、熱的方法がある。合成ムライト砂の再生方法としては、砂に熱的方法を行った後にさらに機械的方法を行う方法(例えば、特許文献3参照)が挙げられる。また、熱的方法のみでは、回収した砂の予備粉砕を行わず、砂の流動を行わないで加熱再生を行い、効率化および省力化を向上させた方法が挙げられる(例えば、特許文献4参照)。また、その他の方法として、砂の再生における再生度合いを管理する方法が挙げられ、消失した活性粘土分に相当する粘結剤量を演算する方法(例えば、特許文献5参照)、焙焼炉で砂を焙焼した後にリクレーマーで再生処理した砂の2因子以上(例えばAl2O3%、見掛け密度、強熱減量等)を計測し、得られた計測値に基づいて多変量解析法またはファジイ推論により混練砂の抗折強度を予測して再生条件を調節する方法(例えば、特許文献6参照)等が挙げられる。
【0005】
【特許文献1】特開昭58−154433号公報(第3〜6頁)
【特許文献2】特開平5−169184号公報(第3〜4頁)
【特許文献3】特開平6−154941号公報(第3頁)
【特許文献4】特開2000−61578号公報(第4〜5頁、図1〜図10)
【特許文献5】特開昭61−150740号公報(第2〜3頁、図1〜図3)
【特許文献6】特開平6−210394号公報(第2〜4頁、図1〜図5)
【0006】
【発明が解決しようとする課題】水溶性フェノール樹脂を使用した合成ムライト砂の再生には、機械的方法、熱的方法または両方を併用する方法等が取られている。しかし、摩擦や研磨という機械的方法では、砂に付着している残留有機物の付着力が強いことや、合成ムライト砂が球状であるため摩擦力が充分に作用しないことにより、充分に残留有機物を取り除くことができず、その再生砂を使用した鋳型の強度が低下する傾向にある。それを解消するためには、新砂を補給するか、あるいは粘着剤量を増加させる等の非効率な方法を取らざるを得なかった。また、熱的方法では、流動焙焼法や非流動的焙焼法が挙げられるが、どちらの方法も砂に付着している残留有機物を消失させるため、合成ムライト砂の再生では有効な方法である。ただし、熱的方法は大量のエネルギーを使用するので、エネルギーの使用量を低減させなければならないという課題を有しており、その課題解決には様々な工夫がなされてきた。その一つとして、熱的方法と機械方法を併用することが挙げられるが、再生方法が複雑になり、また工程も長くなるため、エネルギーの効率化の点で十分とはいえない。また、その他の有用な方法として、砂の再生度合いを管理することによって、エネルギーの使用量を必要最小限にとどめるという方法が挙げられ、その管理方法には、前述した方法が挙げられるが、設備の効率化、簡略化および省力化等の点から、より簡便な管理方法が求められている。
【0007】
【課題を解決するための手段】従って、本発明は、合成ムライト砂に粘結剤として水溶性フェノール樹脂、硬化剤に有機エステル化合物を使用して得られた鋳型から回収された鋳物砂を熱的に再生する際に、その再生度合いをより簡便な方法で管理する方法、および前記管理方法で再生した合成ムライト砂を使用した鋳造用鋳型の製造方法を提供することにより、前述した課題を解決することを可能にしたものである。
【0008】すなわち、本発明は、1.鋳物砂として合成ムライト砂を使用し、かつ水溶性フェノール樹脂を粘結剤に使用し、有機エステル化合物によって硬化させて得られた鋳型からの回収砂を加熱処理によって再生する際に、砂の再生度合いを管理する値として、JACT鋳物砂試験法S−3「鋳物砂のpH試験法」によるpH測定値を用い、その値を9.7〜10.6に管理することにより加熱処理1段階で再生処理することを特徴とする鋳物砂の再生方法である。
2.前記1記載の方法で再生された鋳物砂と水溶性フェノール樹脂を含有する粘結剤と有機エステル化合物よりなる硬化剤とを混練して所望の型に充填し、該粘結剤を硬化させることを特徴とする鋳型の製造方法である。本発明の方法で鋳物砂の再生を行うことにより、前述した課題を解決し、極めてエネルギー効率の優れた方法で再生された鋳物砂を用いた鋳型製造方法を確立することに至ったものである。
【0009】なお、JACTとは、社団法人日本鋳造技術協会のことであり、JACT鋳物砂試験法とは、社団法人日本鋳造技術協会の中で規格化された鋳物砂の試験方法である。また、JACT鋳物砂試験法S−3「鋳物砂のpH試験法」(以下JACTpH試験法と略記する)について説明すると、まず容量100mlの清浄したビーカーに、試料である鋳物砂20gをはかり取り、その中に純水50mlを添加し、マグネチックスターラーバーを入れ、軽く蓋(時計皿等)をして、マグネチックスターラーで30分間撹拌する。撹拌後放置し、上澄み液の温度を確認し、JIS Z 8802「pH測定方法」に基づいて、pHメーターによりpH値を測定するものである。
【0010】
【発明の実施の形態】本発明において使用する鋳物砂は、合成ムライト砂であり、平均粒径としては50〜600μm程度の砂が好ましい。合成ムライト砂は、アルミノ珪酸塩を主体とするセラミックスの一種であり、各種鉱物を相互に組合せ、混合粉砕し、泥漿状態にしたものをスプレードライヤーで造粒し、高温焼成して得られる。
【0011】本発明で粘結剤として使用する水溶性フェノール樹脂とは、フェノール類とアルデヒド類とを大量のアルカリ性物質の水溶液中で反応させることにより得られるアルカリ性レゾール型フェノール樹脂である。フェノール類としては、例えば、フェノール、クレゾール、レゾルシノール、キシレノール、ビスフェノールA、クミルフェノール、ノニルフェノール、ブチルフェノール、フェニルフェノール、エチルフェノール、オクチルフェノール、アミルフェノール、ナフトール、ビスフェノールF、ビスフェノールC、カテコール、ハイドロキノン、ピロガロール、フロログルシン、リグニン、ビスフェノールA残渣、クロロフェノール、ジクロロフェノール、その他置換フェノール等が挙げられるが、これらを単独もしくは2種類以上の混合物で使用しても良い。アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、フルフラール等が挙げられる。アルカリ性物質としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が挙げられる。これらから得られる水溶性フェノール樹脂類は、通常、重量平均分子量が500〜5000のものが好ましく用いられ、また、固形分は30〜70質量%のものが好ましく用いられる。
【0012】本発明で使用される硬化剤は、有機エステル化合物である。有機エステル化合物としては、公知の芳香族、脂肪族あるいは脂環式の有機エステル化合物が挙げられる。具体的には、例えばγ−ブチロラクトン、プロピレンカーボネート、ε−カプロラクトン、ギ酸メチル、エチレングリコールジアセテート、エチレングリコールモノアセテート、トリアセチン等が挙げられるが、これらを単独もしくは2種類以上の混合物で使用しても良い。
【0013】水溶性フェノール樹脂の鋳物砂に対する割合は、鋳型の硬化性の改善および強度の確保の点から、鋳物砂に対して、0.01〜10質量%の範囲が好ましく、特に0.1〜5質量%の範囲が好ましい。有機エステル化合物の鋳物砂に対する割合は、鋳型の硬化性の改善および強度の確保の点から、鋳物砂に対して、0.01〜10質量%の範囲が好ましく、特に0.1〜5質量%の範囲が好ましい。
【0014】合成ムライト砂と水溶性フェノール樹脂と有機エステル化合物とを使用して得られた鋳型中の合成ムライト砂は、熱的方法によって再生される。その方法は、まず、使用済みの鋳型に機械的な振動等を与えて、鋳型をばらばらにし、塊や凝集体を破壊して合成ムライト砂を回収する。この回収された合成ムライト砂(以下回収砂と略記する)の表面には、フェノール樹脂等の焼け残り成分が残存している。次に、この回収砂に加熱処理を施すが、その処理温度が600〜1000℃で行うのが好ましく、800〜1000℃で行うのが特に好ましい。処理温度が600℃未満では、再生に時間がかかり過ぎる傾向にあり、またダイオキシン等の発生も想定される。逆に処理温度が1000℃を越えると、温度が高すぎてエネルギーコストが高価になる傾向が生じる。
【0015】本発明における回収砂の再生に際して、鋳物砂の再生度合いを管理する方法として、JACTpH試験法によって鋳物砂のpH値を測定し、その値が9.7〜10.6の範囲であれば加熱処理を停止する。鋳物砂のpH値が10.6を越えると砂の再生が不十分であり、鋳型を製造したときに充分な強度が得られない。鋳物砂のpH値が9.7を下回ると、必要以上に加熱再生を行うことになり、エネルギーの無駄となってしまう。
【0016】実際の工業的な管理方法としては、予め実際に行う加熱処理温度における処理時間と、その処理条件で再生した鋳物砂のJACTpH試験法によるpH測定値との相関を取り、加熱再生条件を決定する。加熱再生条件決定後、実際にその条件で回収砂の再生を行い、再生度合いを確認するために、JACTpH試験法によってpH値を測定して、鋳型製造用の砂として問題のないことを確認し、鋳型製造用の鋳物砂として使用する。
【0017】以上のようにして得られた再生された合成ムライト砂(以下再生砂と略記する)は、再び鋳型製造用の鋳物砂として使用される。すなわち、再生砂のみまたは再生砂に所望量の未使用の合成ムライト砂(以下新砂と略記する)を添加した鋳物砂と、水溶性フェノール樹脂と、有機エステル化合物とを混練し、この粘結剤と硬化剤で被覆された鋳物砂を所望の型枠に充填し、水溶性フェノール樹脂を硬化させて鋳型を得るのである。
【0018】以下、実施例および比較例により本発明を詳細に説明するが、本発明は、これらの実施例に限定されるものではない。また、以後の説明において表される%あるいは部は、全て質量%あるいは質量部を示す。
【実施例】
[前処理例](再生砂の元砂の作成)
セラビーズ60 #500(伊藤忠セラテック株式会社製、合成ムライト砂)100部に対してChem Rez 6016(保土谷アシュランド株式会社製、水溶性フェノール樹脂用有機エステル系硬化剤)0.4部,Chem Rez 630 LV(保土谷アシュランド株式会社製、水溶性フェノール樹脂)2.0部を品川式ミキサーで混練した。本混練砂を用いて鋳型重量45kg,鋳込み重量10kgのステップコーン・ベーニング試験用鋳型を造型し、FC250普通鋳鉄を1350℃で鋳込んだ後、型ばらしを行い、合成ムライト砂を回収した。さらに、回収した塊状の鋳型砂をクラッシャーで粉砕し、10メッシュのふるいで塊状の砂を取り除いた。この鋳型の造型から鋳込み、型ばらし鋳型のクラッシャー粉砕までの操作を5回繰り返して得られた回収砂を、再生砂の元砂として以下の試験に供した。
【0019】
[実施例1]
得られた元砂を、プロパンガスバーナーを用いて、表1で示すように300℃から1000℃まで温度を変え、各温度でそれぞれ20分間加熱再生処理を行った。加熱再生処理後、各再生砂を20℃、60%RHの恒温恒湿の室内に24時間放置した。その後、この再生砂100部に対してChem Rez 6016(保土谷アシュランド株式会社製、水溶性フェノール樹脂用有機エステル系硬化剤)0.4部、Chem Rez 630 LV(保土谷アシュランド株式会社製、水溶性フェノール樹脂)2.0部を品川式ミキサーで混練して得られた混練物を、直径φ50mm,高さ50mmの鋳型強さ試験用模型に充填し、試験鋳型を得た。この鋳型を24時間放置した後、その圧縮強さを測定した。また、各温度で加熱再生処理して得られた再生砂の遊離水分を除去した試料(重量W0)を、JACT鋳物砂試験法S−2「鋳物砂の強熱減量試験法」に基づき、約1000℃で約1時間強熱し、デシケーター中で室温まで冷却した後の重量(W1)を測定して、強熱減量を算出して表1に示した。なお、強熱減量は、[(W0−W1)/W0]×100(%)なる式で算出した数値であり、その値が小さいほど再生効率が高いことを示している。更に、JACTpH試験法に基づき、再生砂20gをプラスチック製容器に計り取り、この砂中に精製水を50ml加えた後、30分間撹拌して砂から精製水に溶出した成分を砂のpH値として測定した。結果を表1に示す。
【0020】
[実施例2]
前処理例で得た元砂を、プロパンガスバーナーを用いて、表1で示すように500℃および600℃の各々の温度で、10分、20分および30分間加熱再生を行った。加熱再生処理後、各再生砂を20℃、60%RHの恒温恒湿の室内に24時間放置した。加熱再生処理した再生砂を使用して、実施例1と同様にして鋳型を製造し、鋳型の圧縮強さを測定した。更に、実施例1と同様の方法で再生砂の強熱減量とpH値を測定した。結果を表1に結果を示す。
【0021】
[比較例1]
実施例において、前処理例で得られた再生前の元砂を鋳型の製造に使用する以外は、実施例1と同様にして鋳型を製造し、鋳型の圧縮強さを測定した。更に、実施例1と同様の方法で再生砂の強熱減量とpH値を測定した。結果を表1に結果を示す。
【0022】
[比較例2]
実施例において、熱処理再生砂の替わりに新砂を鋳型の製造に使用する以外は、実施例1と同様にして鋳型を製造し、鋳型の圧縮強さを測定した。また、実施例1と同様の方法で再生砂の強熱減量とpH値を測定した。結果を表1に結果を示す。
【0023】
【表1】
【0024】表1より、新砂と同等かまたはそれ以上の圧縮強さを得るためには、再生砂のpH値は10.6以下であることが確認された。また、再生砂のpH値が低くなるにつれて、圧縮強さが向上し、再生砂のpH値が10.5(再生条件800℃、20分)では、圧縮強さが新砂の場合の1.3倍、pH値が9.7(再生条件1000℃、20分)では1.5倍となっていた。また、低温で鋳物砂を再生するよりも高温で再生するほうが、圧縮強さの加熱時間に対する上昇の割合が大きく、短時間で鋳物砂を再生できていた。なお、比較例1および再生条件300℃、20分で再生した場合の鋳物砂のpH値が低い原因は、鋳物砂に付着している残留有機物が多いので、遊離アルカリ分が有機物中に包まれて水に溶出してこないためと考えられる。また、鋳物砂の再生が進んでいくと、一時的に鋳物砂のpH値が上昇するのは、熱により有機物の結合が切れて、遊離アルカリ分が水に溶出しやすくなるためと考えられ、さらに再生を進めると、遊離アルカリ分が残留有機物とともに大気中に飛散し水への溶出量が減少するため、鋳物砂のpH値が低下していくと考えられる。
【0025】
【発明の効果】以上説明したように、本発明の鋳物砂の再生方法は、鋳型から回収した鋳物砂を熱的に再生する際に、再生度合いの管理値として、JACTpH試験法によるpH測定値を用い、その値を9.7〜10.6に管理することにより、より簡便な再生管理方法を提供でき、必要最小限のエネルギーで鋳物砂を再生することができる。また、この再生方法により得られた再生砂を用いた鋳型は、新砂を用いた鋳型よりも、圧縮強さが高強度となるため、鋳型に使用する粘結剤の量を削減することが可能となり、省力化につながる。また、それによって、鋳物砂に付着する残留有機物が減少し、その鋳型から回収された鋳物砂の再生に必要とされるエネルギーが減少し、さらにエネルギーの効率化を達成できる。[0001]
The present invention relates to a method for applying heat to synthetic sand obtained from a mold obtained by using synthetic mullite sand as a molding sand, a water-soluble phenol resin as a binder, and an organic ester compound as a hardener. And a method for efficiently roasting and regenerating. The present invention also relates to a method for producing a mold using the recycled molding sand.
[0002]
2. Description of the Related Art Organic room temperature mold production methods are broadly classified into gas-curable mold production methods (cold box method) and self-hardening mold production methods (no-bake method). In the self-hardening mold manufacturing method, in recent years, a method of using a water-soluble phenol resin as a binder and curing it with an organic ester to manufacture a mold is excellent in casting quality and working environment, so it is also good in the casting industry. We have a good track record. The method of manufacturing a casting using a water-soluble phenol resin as a binder is as follows. First, a water-soluble phenol resin as a binder, an organic ester compound as a hardener, and molding sand (granular refractory aggregate) are mixed in a mixer. A casting sand covered with a binder and a hardening agent is filled in a mold for mold production, cured at room temperature, and finally removed from the mold to produce a casting mold (for example, see Patent Document 1). 1).
[0003] In addition, molding sands used in the production of molds are also manufactured by artificially prepared molding sands for the purpose of compensating for the disadvantages of silica sand, zircon sand, chromato sand, olivine sand and the like, which have been used in many cases. And specifically, synthetic mullite sand and the like. This synthetic mullite sand is characterized by a small amount of thermal expansion, a high fire resistance, and a spherical shape (for example, see Patent Document 2). Therefore, by using a water-soluble phenol resin as a binder and manufacturing a mold using synthetic mullite sand as the casting sand, not only the casting quality and working environment are excellent, but also the refractory hardness is high and The resistance to thermal shock (for example, refer to Patent Document 2) realizes a high yield in recovering and regenerating molding sand, and makes it possible to reduce the amount of industrial waste.
[0004] Generally, there are mechanical, wet and thermal methods for regenerating the sand used for the mold. As a method for regenerating synthetic mullite sand, there is a method of performing a thermal method on sand and then performing a mechanical method (for example, see Patent Document 3). In addition, only the thermal method is a method in which the recovered sand is not pre-ground and the heat is regenerated without flowing the sand to improve efficiency and labor saving (for example, see Patent Document 4). ). As another method, there is a method of managing the degree of regeneration in the regeneration of sand, a method of calculating the amount of a binder corresponding to the lost active clay (for example, see Patent Document 5), and a method using a roasting furnace. Two or more factors (for example, Al 2 O 3 %, apparent density, loss on ignition, etc.) of the sand regenerated by a reclaimer after roasting the sand are measured, and a multivariate analysis method or A method of predicting the bending strength of the kneading sand by fuzzy inference and adjusting the reproduction conditions (for example, see Patent Document 6) and the like.
[0005]
[Patent Document 1] JP-A-58-154433 (pages 3 to 6)
[Patent Document 2] JP-A-5-169184 (pages 3 and 4)
[Patent Document 3] JP-A-6-154941 (page 3)
[Patent Document 4] JP-A-2000-61578 (pages 4 to 5, FIGS. 1 to 10)
[Patent Document 5] JP-A-61-150740 (pages 2-3, FIGS. 1-3)
[Patent Document 6] JP-A-6-210394 (pages 2 to 4, FIGS. 1 to 5)
[0006]
In order to regenerate synthetic mullite sand using a water-soluble phenol resin, a mechanical method, a thermal method, a method using both methods and the like are employed. However, in the mechanical method of friction and polishing, the residual organic matter adhered to the sand is strong, and the synthetic mullite sand is spherical, so that the frictional force does not act sufficiently, so that the residual organic matter can be sufficiently removed. It cannot be removed, and the strength of the mold using the recycled sand tends to decrease. In order to solve this, inefficient methods such as replenishing fresh sand or increasing the amount of adhesive have to be taken. In the thermal method, fluidized roasting and non-fluidized roasting can be mentioned.Either method is an effective method for regenerating synthetic mullite sand in order to eliminate residual organic substances adhering to sand. is there. However, since the thermal method uses a large amount of energy, there is a problem that the amount of energy used must be reduced, and various measures have been taken to solve the problem. One of the methods is to use both a thermal method and a mechanical method. However, the method of regeneration is complicated and the number of steps is long, which is not sufficient in terms of energy efficiency. Another useful method is to control the degree of sand regeneration, thereby minimizing the amount of energy used. The management method includes the method described above. From the viewpoints of efficiency, simplification, labor saving, and the like, a simpler management method is required.
[0007]
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method for heat-treating molding sand recovered from a mold obtained by using a water-soluble phenol resin as a binder and an organic ester compound as a hardener in synthetic mullite sand. The above-mentioned problem is solved by providing a method for managing the degree of regeneration by a simpler method and a method for manufacturing a casting mold using the synthetic mullite sand regenerated by the management method when regenerating the steel in a regular manner. It is possible to do.
That is, the present invention provides: When synthetic mullite sand is used as casting sand, and water-soluble phenol resin is used as a binder, and the recovered sand from the mold obtained by curing with an organic ester compound is regenerated by heat treatment, the sand is regenerated. As a value for controlling the degree, a pH measurement value according to JACT molding sand test method S-3 “pH test method for molding sand” is used, and by controlling the value to 9.7 to 10.6, heat treatment is performed in one stage. This is a method for reclaiming foundry sand, which comprises performing a reclaim treatment.
2. Kneading a molding sand regenerated by the method according to the above 1, a binder containing a water-soluble phenol resin, and a curing agent composed of an organic ester compound, filling the mixture into a desired mold, and curing the binder. A method for producing a mold characterized by the following. By regenerating the molding sand by the method of the present invention, the above-described problem has been solved, and a method for producing a mold using the molding sand regenerated by an extremely energy-efficient method has been established. .
The JACT is the Japan Foundry Technology Association, and the JACT foundry sand test method is a method for testing foundry sand standardized by the Japan Foundry Technology Association. In addition, the JACT molding sand test method S-3, "pH test method for molding sand" (hereinafter abbreviated as JACT pH test method) will be described. First, 20 g of a molding sand as a sample is weighed into a clean beaker having a capacity of 100 ml. 50 ml of pure water is added therein, a magnetic stirrer bar is put in, a light lid (a watch glass or the like) is closed, and the mixture is stirred with a magnetic stirrer for 30 minutes. After stirring, the mixture is allowed to stand, the temperature of the supernatant is checked, and the pH value is measured with a pH meter based on JIS Z8802 “pH measurement method”.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION The molding sand used in the present invention is synthetic mullite sand, and preferably has a mean particle size of about 50 to 600 μm. Synthetic mullite sand is a type of ceramic mainly composed of aluminosilicate, and is obtained by combining various minerals with each other, mixing and pulverizing them, turning them into a slurry state, granulating them with a spray dryer, and firing them at a high temperature.
The water-soluble phenol resin used as a binder in the present invention is an alkaline resole type phenol resin obtained by reacting phenols and aldehydes in a large amount of an aqueous solution of an alkaline substance. Examples of phenols include phenol, cresol, resorcinol, xylenol, bisphenol A, cumylphenol, nonylphenol, butylphenol, phenylphenol, ethylphenol, octylphenol, amylphenol, naphthol, bisphenol F, bisphenol C, catechol, hydroquinone, pyrogallol , Phloroglucin, lignin, bisphenol A residue, chlorophenol, dichlorophenol, and other substituted phenols. These may be used alone or in a mixture of two or more. Aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, furfural and the like. Examples of the alkaline substance include sodium hydroxide, potassium hydroxide, lithium hydroxide and the like. As the water-soluble phenolic resins obtained therefrom, those having a weight average molecular weight of preferably 500 to 5000 are preferably used, and those having a solid content of 30 to 70% by mass are preferably used.
The curing agent used in the present invention is an organic ester compound. Examples of the organic ester compound include known aromatic, aliphatic and alicyclic organic ester compounds. Specifically, for example, γ-butyrolactone, propylene carbonate, ε-caprolactone, methyl formate, ethylene glycol diacetate, ethylene glycol monoacetate, triacetin and the like, and these may be used alone or in a mixture of two or more. Is also good.
The ratio of the water-soluble phenolic resin to the molding sand is preferably in the range of 0.01 to 10% by mass, more preferably 0.1 to 0.1% by mass, based on the molding sand in view of improving the curability of the mold and securing the strength. The range is preferably from 5 to 5% by mass. The ratio of the organic ester compound to the molding sand is preferably in the range of 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, based on the molding sand from the viewpoint of improving the curability of the mold and ensuring the strength. Is preferable.
The synthetic mullite sand in the mold obtained using the synthetic mullite sand, the water-soluble phenol resin and the organic ester compound is regenerated by a thermal method. In the method, first, mechanical vibrations or the like are applied to a used mold to separate the mold, break lumps and aggregates, and collect synthetic mullite sand. On the surface of the collected synthetic mullite sand (hereinafter abbreviated as collected sand), unburned components such as phenol resin remain. Next, the recovered sand is subjected to a heat treatment, preferably at a treatment temperature of 600 to 1000 ° C, particularly preferably at 800 to 1000 ° C. If the treatment temperature is lower than 600 ° C., the regeneration tends to take too much time, and the generation of dioxin and the like is also assumed. Conversely, if the processing temperature exceeds 1000 ° C., the temperature tends to be too high and the energy cost tends to be high.
As a method for controlling the degree of regeneration of the foundry sand during the regeneration of the recovered sand in the present invention, the pH value of the foundry sand is measured by the JACT pH test method, and if the value is in the range of 9.7 to 10.6. If so, the heat treatment is stopped. If the pH value of the casting sand exceeds 10.6, the regeneration of the sand is insufficient, and sufficient strength cannot be obtained when a mold is manufactured. If the pH value of the foundry sand is lower than 9.7, heating and regeneration will be performed more than necessary, and energy will be wasted.
As an actual industrial control method, a correlation between a processing time at a heat treatment temperature actually performed in advance and a pH value measured by a JACT pH test method of the molding sand regenerated under the processing conditions is obtained. To determine. After the heat regeneration conditions were determined, the recovered sand was actually regenerated under these conditions, and in order to confirm the degree of regeneration, the pH value was measured by the JACT pH test method to confirm that there was no problem as sand for mold production. Used as molding sand for mold production.
The regenerated synthetic mullite sand (hereinafter abbreviated as regenerated sand) obtained as described above is used again as molding sand for producing a mold. That is, molding sand obtained by adding only a desired amount of unused synthetic mullite sand (hereinafter, abbreviated as “new sand”) to recycled sand alone or recycled sand, a water-soluble phenol resin, and an organic ester compound are mixed. And a molding sand covered with a curing agent is filled into a desired mold, and the water-soluble phenol resin is cured to obtain a mold.
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Further, all percentages and parts in the following description indicate mass% or parts by mass.
【Example】
[Example of pretreatment] (Creation of original sand for recycled sand)
Chem Rez 6016 (manufactured by Hodogaya Ashland Co., Ltd., organic ester-based curing agent for water-soluble phenolic resin) 0.4 part per 100 parts of Cerabeads # 500 (manufactured by ITOCHU CERATECH CORPORATION, synthetic mullite sand), Chem Rez 630 LV (manufactured by Hodogaya Ashland Co., Ltd., water-soluble phenol resin) (2.0 parts) was kneaded with a Shinagawa mixer. Using the kneaded sand, a mold for a step cone vaning test having a mold weight of 45 kg and a casting weight of 10 kg was molded, FC250 ordinary cast iron was cast at 1350 ° C., the mold was separated, and synthetic mullite sand was recovered. Further, the collected massive mold sand was pulverized with a crusher, and the massive sand was removed with a 10-mesh sieve. The recovered sand obtained by repeating the operations from molding to casting of the mold, pulverization of the mold, crusher pulverization of the mold five times was used as the original sand of the reclaimed sand and subjected to the following tests.
[0019]
[Example 1]
Using a propane gas burner, the obtained raw sand was heated and regenerated at a temperature of 300 ° C. to 1000 ° C. for 20 minutes at each temperature as shown in Table 1. After the heat regeneration treatment, each regenerated sand was allowed to stand in a constant temperature and humidity room at 20 ° C. and 60% RH for 24 hours. Thereafter, 0.4 part of Chem Rez 6016 (manufactured by Hodogaya Ashland Co., Ltd., an organic ester-based curing agent for a water-soluble phenol resin) and 100 parts of Chem Rez 630 LV (manufactured by Hodogaya Ashland Co.) , A water-soluble phenol resin) was kneaded with a Shinagawa mixer, and the kneaded product was filled in a mold strength test model having a diameter of 50 mm and a height of 50 mm to obtain a test mold. After leaving the mold for 24 hours, its compressive strength was measured. Further, a sample (weight W 0 ) obtained by removing the free moisture of the regenerated sand obtained by heating and regenerating at each temperature was subjected to the JACT molding sand test method S-2 based on the “Ignition loss on ignition of molding sand” method. Ignition was performed at about 1000 ° C. for about 1 hour, and the weight (W 1 ) after cooling to room temperature in a desiccator was measured, and the ignition loss was calculated and shown in Table 1. The ignition loss is a numerical value calculated by the formula [(W 0 −W 1 ) / W 0 ] × 100 (%), and a smaller value indicates higher regeneration efficiency. Further, based on the JACT pH test method, 20 g of the reclaimed sand was weighed into a plastic container, and 50 ml of purified water was added to the sand, followed by stirring for 30 minutes, and the component eluted from the sand into the purified water was determined as the pH value of the sand. It was measured. Table 1 shows the results.
[0020]
[Example 2]
The raw sand obtained in the pretreatment example was heated and regenerated using propane gas burners at temperatures of 500 ° C. and 600 ° C. for 10 minutes, 20 minutes and 30 minutes as shown in Table 1. After the heat regeneration treatment, each regenerated sand was allowed to stand in a constant temperature and humidity room at 20 ° C. and 60% RH for 24 hours. Using the regenerated sand subjected to the heat regeneration treatment, a mold was manufactured in the same manner as in Example 1, and the compressive strength of the mold was measured. Further, the ignition loss and pH value of the recycled sand were measured in the same manner as in Example 1. The results are shown in Table 1.
[0021]
[Comparative Example 1]
In the examples, a mold was produced in the same manner as in the example 1 except that the raw sand before regeneration obtained in the pretreatment example was used for the production of the mold, and the compressive strength of the mold was measured. Further, the ignition loss and pH value of the recycled sand were measured in the same manner as in Example 1. The results are shown in Table 1.
[0022]
[Comparative Example 2]
In the example, a mold was produced in the same manner as in Example 1 except that fresh sand was used for producing the mold instead of the heat-treated regenerated sand, and the compressive strength of the mold was measured. Further, the ignition loss and the pH value of the recycled sand were measured in the same manner as in Example 1. The results are shown in Table 1.
[0023]
[Table 1]
From Table 1, it was confirmed that the pH value of the regenerated sand was 10.6 or less in order to obtain a compressive strength equal to or higher than that of the fresh sand. Further, as the pH value of the reclaimed sand decreases, the compressive strength increases, and when the pH value of the reclaimed sand is 10.5 (regeneration condition: 800 ° C., 20 minutes), the compressive strength is 1.3 in the case of the fresh sand. When the pH value was 9.7 (regeneration conditions: 1000 ° C., 20 minutes), the value was 1.5 times. In addition, when the molding sand is regenerated at a high temperature, the rate of increase in the compressive strength with respect to the heating time is greater than when the molding sand is regenerated at a low temperature, and the molding sand can be regenerated in a short time. The reason for the low pH value of the molding sand in the case of Comparative Example 1 and the regeneration under the regeneration conditions of 300 ° C. for 20 minutes is that the amount of the residual organic matter adhering to the molding sand is large, so that the free alkali is wrapped in the organic matter. Is not eluted in water. In addition, as the regeneration of molding sand progresses, the reason that the pH value of the molding sand temporarily rises is considered to be that the bond of the organic matter is cut by heat and the free alkali component is easily eluted into water, When the regeneration is further promoted, it is considered that the pH value of the foundry sand decreases because the free alkali is scattered into the air together with the residual organic matter and the amount of elution into water decreases.
[0025]
As described above, in the method for reclaiming molding sand of the present invention, when the molding sand recovered from the mold is thermally regenerated, the measured value of the pH measured by the JACT pH test method is used as the management value of the degree of regeneration. By controlling the value in the range of 9.7 to 10.6 using, a more simple regeneration management method can be provided, and the molding sand can be recycled with a minimum necessary energy. In addition, since the mold using recycled sand obtained by this recycling method has higher compressive strength than the mold using fresh sand, it is possible to reduce the amount of binder used in the mold. It leads to labor saving. This also reduces the amount of residual organic matter adhering to the foundry sand, reduces the energy required to regenerate the foundry sand recovered from the mold, and achieves more efficient energy.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002351016A JP4056865B2 (en) | 2002-12-03 | 2002-12-03 | Method for regenerating foundry sand and method for producing mold using the regenerated sand |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002351016A JP4056865B2 (en) | 2002-12-03 | 2002-12-03 | Method for regenerating foundry sand and method for producing mold using the regenerated sand |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004181486A true JP2004181486A (en) | 2004-07-02 |
JP4056865B2 JP4056865B2 (en) | 2008-03-05 |
Family
ID=32753042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002351016A Expired - Fee Related JP4056865B2 (en) | 2002-12-03 | 2002-12-03 | Method for regenerating foundry sand and method for producing mold using the regenerated sand |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4056865B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006247699A (en) * | 2005-03-10 | 2006-09-21 | Kao Corp | Method for making molding sand |
KR101643564B1 (en) * | 2016-01-29 | 2016-07-29 | (주)대동씨엠 | System for regenerating waste mold sand |
JP2021115614A (en) * | 2020-01-28 | 2021-08-10 | トヨタ自動車株式会社 | Method for producing core |
US20210301983A1 (en) * | 2020-03-31 | 2021-09-30 | Sintokogio, Ltd. | Loss-on-ignition estimation apparatus, loss-on-ignition estimation method, machine-learning apparatus, and machine-learning method |
-
2002
- 2002-12-03 JP JP2002351016A patent/JP4056865B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006247699A (en) * | 2005-03-10 | 2006-09-21 | Kao Corp | Method for making molding sand |
JP4679937B2 (en) * | 2005-03-10 | 2011-05-11 | 花王株式会社 | Manufacturing method of foundry sand |
KR101643564B1 (en) * | 2016-01-29 | 2016-07-29 | (주)대동씨엠 | System for regenerating waste mold sand |
JP2021115614A (en) * | 2020-01-28 | 2021-08-10 | トヨタ自動車株式会社 | Method for producing core |
JP7276178B2 (en) | 2020-01-28 | 2023-05-18 | トヨタ自動車株式会社 | Core manufacturing method |
US20210301983A1 (en) * | 2020-03-31 | 2021-09-30 | Sintokogio, Ltd. | Loss-on-ignition estimation apparatus, loss-on-ignition estimation method, machine-learning apparatus, and machine-learning method |
JP2021159941A (en) * | 2020-03-31 | 2021-10-11 | 新東工業株式会社 | Ignition loss estimation device, ignition loss estimation method, machine learning device, and machine learning method |
JP7238840B2 (en) | 2020-03-31 | 2023-03-14 | 新東工業株式会社 | Ignition loss estimation device, ignition loss estimation method, machine learning device, and machine learning method |
US11976790B2 (en) * | 2020-03-31 | 2024-05-07 | Sintokogio, Ltd. | Loss-on-ignition estimation apparatus, loss-on-ignition estimation method, machine-learning apparatus, and machine-learning method |
Also Published As
Publication number | Publication date |
---|---|
JP4056865B2 (en) | 2008-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1092209C (en) | Resin coated product containing bisphenol and its using method | |
EP1753560B1 (en) | Reclamation of ester-cured phenolic resin bonded foundry sands | |
JP5537067B2 (en) | Mold manufacturing method | |
JP2003251434A (en) | Sand for mold and production method thereof | |
EP2581148B1 (en) | Process for production of molds | |
JP4056865B2 (en) | Method for regenerating foundry sand and method for producing mold using the regenerated sand | |
JP3253579B2 (en) | Sand for mold | |
KR970010622B1 (en) | Modified benzylic ether resole resins and process for their preparation | |
WO2017086379A1 (en) | Binder composition for molding mold | |
JPH06154941A (en) | Reconditioning method for molding sand and production of casting mold | |
JP2001205388A (en) | Method for thermal regeneration of molding sand and method for manufacturing casting mold for casting | |
JP2019111577A (en) | Particle for molding mold | |
JP2004352950A (en) | Curable composition and casting sand composition and casting mold using the same | |
JP2001314939A (en) | Component of binding agent for gas hardening mold | |
JP4216104B2 (en) | Method for regenerating synthetic mullite sand and method for producing mold | |
ES2379449T3 (en) | Granulate and procedure for its preparation | |
JPH0669597B2 (en) | Low expansion mold material | |
JP2018140425A (en) | Method for producing reconditioned sand and method for producing casting sand | |
JP2898799B2 (en) | Method for treating casting sand and method for producing sand mold for casting | |
JP3025762B1 (en) | Mold manufacturing method | |
JPH08192244A (en) | Sprue and riser type products for casting | |
JPH0471620B2 (en) | ||
WO2000050186A1 (en) | No-bake ester cured molding mixes | |
JPS613630A (en) | Production of casting sand | |
JP2002219549A (en) | Aggregate for forming acid self-hardening mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051121 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070427 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4056865 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131221 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |