JP2004180564A - Method for dna chain binding, cloning vector and method for dna cloning - Google Patents

Method for dna chain binding, cloning vector and method for dna cloning Download PDF

Info

Publication number
JP2004180564A
JP2004180564A JP2002350380A JP2002350380A JP2004180564A JP 2004180564 A JP2004180564 A JP 2004180564A JP 2002350380 A JP2002350380 A JP 2002350380A JP 2002350380 A JP2002350380 A JP 2002350380A JP 2004180564 A JP2004180564 A JP 2004180564A
Authority
JP
Japan
Prior art keywords
enzyme
dna
site
restriction enzyme
recognition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002350380A
Other languages
Japanese (ja)
Other versions
JP4443822B2 (en
Inventor
Masaaki Onda
昌明 恩田
Hitoshi Nagahora
仁 長洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biodynamics Laboratory Inc
Original Assignee
Biodynamics Laboratory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biodynamics Laboratory Inc filed Critical Biodynamics Laboratory Inc
Priority to JP2002350380A priority Critical patent/JP4443822B2/en
Publication of JP2004180564A publication Critical patent/JP2004180564A/en
Application granted granted Critical
Publication of JP4443822B2 publication Critical patent/JP4443822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To synthesize an industrially useful DNA chain in which a DNA chain prepared by a DNA fragment, chemical synthesis, or the like, is efficiently bound, a gene is encoded, or the like. <P>SOLUTION: The DNA chain is cloned on a vector in which which restriction enzyme recognition sites having a cleavage site different from a recognition base sequence are arranged at both sides of a cloning site. The border between the cloned inserted DNA chain and the vector or the inside of the inserted DNA chain is cleft with a restriction enzyme having a cleavage site different from its recognition base sequence. Consequently, the cleft DNA fragment is provided with a preset specific adhesion terminal, and a plurality of DNA fragments having the specific adhesion terminal obtained by the operation are bonded to bind the DNA chain. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、DNA鎖の連結方法、及びクローニングベクター、及びDNAのクローニング方法に係るもので、DNA断片あるいはDNA鎖を効率よく連結させることで、新規なDNA鎖合成方法を得ようとするものである。
【0002】
【従来の技術】
DNA鎖はある蛋白質をコードする遺伝子となり、これを利用し、遺伝子工学的に蛋白質の生産等に応用できるため、従来より、化学合成DNAから遺伝子となるDNA鎖の人工的な合成が行われてきた。また、生物体より遺伝子を採取し、これを利用する技術も発展しているが、人工的に遺伝子を作製する方法は、その生物体からの遺伝子が入手できず、アミノ酸配列情報だけが得られる場合の他、大腸菌等の宿主に入れた場合に宿主に最適な翻訳コドンに基づきその塩基配列を作製し発現効率を高めることができる、耐熱性などの新たな性質を蛋白質に付与する等、天然にない遺伝子を合成する方法として有用である。人工的な遺伝子作製は、従来、その遺伝子の塩基配列について制限酵素地図を作成し、化学合成したDNA鎖のアニーリング、ライゲーションを行い、数鎖を連結した後、DNA鎖内部の塩基配列上存在する制限酵素部位を利用し、化学合成したDNA鎖の数鎖からなる連結したDNA鎖を、プラスミドベクター等にクローニングし、このとき塩基配列に誤りがあれば修正等をし、さらにクローニングした断片を連結し、目的の遺伝子を作製した。
【0003】
【発明が解決しようとする課題】
しかしながらこの方法は、繁雑で、数ヶ月から半年以上の期間を要する問題の他、次のような問題点があった。まず、問題点の一つは、最初に用いる化学合成DNAに誤りがしばしばある点である。実際、DNA合成機でオリゴヌクレオチドを合成する場合、塩基配列に誤りが生じることは少ないことではなく、長鎖になるほどその誤りは増加する。次に、問題点の2つめは、化学合成したDNAを連結したDNA鎖は、十分に純度が高くなければ、これらをさらに連結するのは、容易ではない点である。これは連結にともなって、副産物が生じるからである。
【0004】
上記2つの問題点は、作製途中のDNA鎖を、DNA鎖内部の塩基配列上存在する制限酵素部位を利用しプラスミドベクター等にクローニングし、純度を高め、この段階で塩基配列の誤りを修正等をすることはできる。しかしながら使用できる制限酵素切断部位が目的の遺伝子内部になければできない。
【0005】
また、約500塩基対からなる小麦のレクチンの遺伝子は塩基配列内部に存在する制限酵素部位を利用し作製された(ヨーロピアンジャーナルバイオケミストリー(Eur. J. Biochem, 210: 989−997, 1992))。この例では、オリゴヌクレオチドから約150塩基対程度のDNA鎖が作製され、これらが塩基配列内部に存在する制限酵素部位を利用し別々のプラスミドベクターにクローニングされ、このクローニングされたDNA鎖を結合し、小麦のレクチンの遺伝子を得ている。この方法は多種の制限酵素を用いる繁雑な方法であった。
【0006】
また、牛の膵臓のDNAアーゼIは膵臓にRNAアーゼが多く含まれるため、そこからメッセンジャーRNAを入手するのが難しく、アミノ酸配列をもとにDNAアーゼI遺伝子がオリゴヌクレオチドから合成された例がある(ザ ジャーナル オブ バイオロジカル ケミストリー、265巻、21889から21895頁、1990年(The Journal of Biological Chemistry, 265: 21889−21895, 1990))。この場合は塩基配列内部に存在する制限酵素部位を利用せず、約800塩基対が作製されるまで、プラスミドベクターにクローニングしていない、そのため作製途中では塩基配列の誤りを知ることができない。この方法ではオリゴヌクレオチドから50塩基対程度のDNA鎖を作製しこれらをT4リガーゼで結合させてから、ポリアクリルアミドゲル電気泳動にて分離精製し、純度の高いDNA鎖を用いているが、DNAアーゼI遺伝子を作製し終わってから、プラスミドベクターにクローニングをし、塩基配列の誤りが発見され、内部の制限酵素部位を利用し、約50塩基対の塩基配列を切り出し、これを正しいDNA鎖に置き換える方法で塩基配列の修正を余儀なくされている。
【0007】
更に、近年ではポリメラーゼ連鎖反応によって、DNA鎖を連結させる方法で遺伝子作製を行う例があり、従来法より繁雑さに関しては改善されている。しかしながら、塩基配列上に生じた誤りについては前記従来方法と同じ問題が残されている。また、リガーゼ連鎖反応といわれる方法でDNA鎖を連結させる手法も行われている(バイオケミストリーバイオフジックスリサーチコミュニケーション、248巻、200から203頁、1998年(Biochem Biophys Res Commun 248: 200−203, 1998))。この方法は、DNA鎖を連結する精度が上がり、副産物の精製は少ないが、最初に用いる化学合成DNA鎖の誤りについて、作製途中で誤りを検出し、修正する問題点は残る。
【0008】
また、遺伝子作製に用いる化学合成DNAにある誤りを回避し、化学合成したDNAを連結したDNA鎖の純度が高くするためには、プラスミドベクター等にクローニングすることが必要である。これには使用できる制限酵素切断部位が目的の遺伝子内部にあり、それと同じ制限酵素切断部位でクローニングできるベクターを用意することになる。しかしながら使用できる制限酵素切断部位が目的の遺伝子内部になければできない。
【0009】
本発明は上述の如き課題を解決しようとするものであって、遺伝子をコードする等、産業上有用なDNA鎖の連結方法に於いて、用いる化学合成DNA鎖の誤り、及び連結反応にしたがってDNA鎖の純度が低下することを回避し、DNA鎖の連結を容易に行うことを可能とするようなDNA鎖の連結方法、クローニングベクター、及びDNAのクローニング方法を提供するものである。
【0010】
【課題を解決するための手段】
本発明は、上述の如き課題を解決するため、第1発明は、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位をクローニング部位の両脇に配置したベクターにDNA鎖をクローニングし、クローニングされた挿入DNA鎖とベクターの境界または挿入されたDNA鎖内部を、その認識塩基配列とは異なる切断部位を持つ制限酵素で切断することにより、切断したDNA断片に予め設定した特異的な粘着末端を付与せしめ、この操作で得られた特異的な粘着末端を持つDNA断片を複数個結合する、DNA鎖の連結方法である。
【0011】
また、第2発明は、DNAをクローニングするクローニングベクターであり、このベクターのクローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに、対称に配置し、認識塩基配列とは異なる切断部位を持つ制限酵素で消化時に、挿入されたDNA鎖とベクターの境界または挿入されたDNA鎖内部の両端を切断することにより結合可能な粘着末端を持つDNA断片を生じせしめるものである。
【0012】
また、第3発明は、目的のDNA断片の末端部分の配列を両端部分に持つ2本鎖DNAを、クローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに対称に配置したベクターのクローニング部位に挿入し、認識塩基配列とは異なる切断部位を持つ制限酵素で切断することにより、該DNA断片の末端部分の配列に相補的となる粘着末端を持つベクターを調製し、このベクターにより該DNA断片をクローニングする、DNAのクローニング方法である。
【0013】
また、第4発明は、クローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに対称に配置することで、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位をクローニング部位の両脇に配置したベクターにDNA鎖をクローニングし、クローニングされた挿入DNA鎖とベクターの境界または挿入されたDNA鎖内部を、その認識塩基配列とは異なる切断部位を持つ制限酵素で切断することにより、切断したDNA断片に予め設定した特異的な粘着末端を付与せしめ、この操作で得られた特異的な粘着末端を持つDNA断片を複数個結合する、DNA鎖の連結方法である。
【0014】
また、第5発明は、クローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに対称に配置することで、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位をクローニング部位の両脇に配置したベクターにDNA鎖をクローニングし、クローニングされた挿入DNA鎖とベクターの境界または挿入されたDNA鎖内部を、その認識塩基配列とは異なる切断部位を持つ制限酵素で切断することにより、切断したDNA断片に予め設定した特異的な粘着末端を付与せしめ、この操作で得られた特異的な粘着末端を持つDNA断片を複数個結合してDNA鎖を作成し、上記操作で得られたクローニング目的のDNA断片の末端部分の配列を両端部分に持つ2本鎖DNAを、クローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに対称に配置したベクターのクローニング部位に挿入し、認識塩基配列とは異なる切断部位を持つ制限酵素で切断することにより、該DNA断片の末端部分の配列に相補的となる粘着末端を持つベクターを調製し、このベクターにより該DNA断片をクローニングする、DNAのクローニング方法である。
【0015】
また、ベクターは、クローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに、対称に配置した配列が、ggtctcgcgagacc(配列表の配列番号1)又はgaagacccgggtcttc(配列表の配列番号2)であっても良い。
【0016】
【発明の実施の形態】
第1、第4発明のDNA鎖の連結方法では、DNA鎖を認識塩基配列とは異なる切断部位を持つ制限酵素部位をクローニング部位の両脇に配置したベクターにクローニングする段階(図1−あ)、認識塩基配列とは異なる切断部位を持つ制限酵素にて、ベクターと挿入DNA鎖の境界または挿入DNA鎖内部を切断し、あらかじめ設定した特異的な粘着末端を生じせしめる段階(図1−い)、得られた特異的な粘着末端を持つDNA鎖を連結する段階(図1−う)によって目的の遺伝子作製を行う。
【0017】
また、第3、第5発明のDNAのクローニング方法では、DNA鎖を認識塩基配列とは異なる切断部位を持つ制限酵素部位をクローニング部位の両脇に配置したベクターにクローニングする段階(図1−あ)、認識塩基配列とは異なる切断部位を持つ制限酵素にて、ベクターと挿入DNA鎖の境界または挿入DNA鎖内部を切断し、あらかじめ設定した特異的な粘着末端を生じせしめる段階(図1−い)、得られた特異的な粘着末端を持つDNA鎖を連結する段階(図1−う)、連結したDNA鎖の両端の特異的な粘着末端に相補する粘着末端を持つベクターで再クローニングする段階(図1−え)によって目的の遺伝子作製を行う。
【0018】
また、第2発明においてあらかじめ設定した特異的な粘着末端を生じせしめるためのクローニングベクターは、クローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を対象に配置し、認識塩基配列とは異なる切断部位を持つ制限酵素で切断時に、挿入されたDNA鎖とベクターの境界または挿入されたDNA鎖内部の両端を切ることにより、結合可能な粘着末端を持つDNA断片を生じるものである(第3〜第5発明における結合粘着末端付与ベクターとする)。酵素Aと酵素Bの認識塩基配列は塩基配列上、図2に示す如く一部重複していても良いし、重複していなくても良い。このようなクローニングベクターを用いることにより、DNA鎖の連結やDNAのクローニングを効率的に行うことができる。
【0019】
前記酵素Bはクローニング部位となる制限酵素切断部位に挿入配列があった場合、ベクターと挿入DNA鎖の境界または挿入DNA鎖内部を切断するものである。このような制限酵素の例としては、Bbv I、BciV I、Bmr I、Bpm I、Bsa I、BseR I、Bsg I、BsmA I、BsnB I、BsnF I、BspM I、BsrD I、Bts I、Bbs I、Ear I、Eci I、Fok I、Hga I、Hph I I、MboII、Ple I、Sap I、SfaN I、BstF5 I、Fau I等があるが、認識塩基配列および粘着末端の一本鎖部分が長い、Bbs I、Bsa I、BspM Iが好ましい。両側に配置された酵素Bの切断部位がBsa Iのものである場合はクローニング部位となる制限酵素切断部位はNru Iが好ましく、Bbs Iの場合は、Sma Iが好ましい。
【0020】
例えば、Bsa IとNru Iを選んだ場合、クローニング部位の周辺の塩基配列は、ggtctcg cgagacc(配列表の配列番号1)が好ましい。この場合、Bsa Iの認識部位は、アンダーラインで示すggtctcとgagaccである。Nru Iの認識部位はtcg cgaであり、その切断部位を空欄で表している。
【0021】
また、Bbs IとSma Iを選んだ場合、クローニング部位の周辺の塩基配列は、gaagaccc gggtcttc(配列表の配列番号2)が好ましい。この場合、Bbs Iの認識部位は、アンダーラインで示すgaagacとgtcttcである。Sma Iの認識部位はccc gggであり、その切断部位を空欄で表している。
【0022】
次に、図1−うで示す第1、第4発明のDNA鎖の連結方法及び第5発明のDNAのクローニング方法におけるDNA鎖の連結工程について説明する。上述の如き粘着末端を生じるクローニングベクターに、作成目的の遺伝子Gを構成するDNA鎖、X、Z、Vをクローニングする。このとき、クローニングされたDNA鎖が切り出されたときに削られる塩基については重複させる。具体的には、Bsa IとNru Iの組み合わせのベクターを用いた場合(この場合、図1のRRRRRNはggtctcgとなる)、X、Z、VのDNA鎖がこの順で、結合する場合(X鎖側を上流、V鎖側を下流とする)、X鎖の下流とZ鎖の上流側のそれぞれ4塩基対が重複するように選ぶ。Gを、X、Z、Vの3つの連続するDNA鎖によって作製する場合、それぞれをあらかじめ酵素Aで切断した本発明における結合粘着末端付与ベクターにクローニングし、酵素Bにより切断するとX、Z、VのDNA鎖の両端はこの順で結合するための粘着末端をもって切り出され、特異的な粘着末端によって結合する。
【0023】
また、連結したDNA鎖を再クローニングする第3、第5発明では、第2発明における結合粘着末端付与ベクター(クローニングベクター)を用いている。このベクターの、クローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を対象に配置したベクターのクローニング部位に、連結したDNA鎖の末端部分の配列を両端部分に持つDNA鎖をクローニングし、認識塩基配列とは異なる切断部位を持つ制限酵素で切断時に、連結したDNA鎖の末端部分の配列に相補的となる粘着末端を生じるようにする(図3)。このベクターにより連結したDNAを効率良く再クローニングして、分子量の大きな遺伝子を作製することができる(図1−え)。
【0024】
また、上記第5発明の操作(図1−あ〜え)を繰り返すことにより、複数個のDNA断片を結合させたDNA鎖を、更に複数個結合させることができ、長鎖DNA合成を効率良く行うことができる。
【0025】
【実施例】
以下、本発明を実施例により詳細に説明する。第1、第2実施例はクローニングベクターで、その作製手順を示している。第3実施例は、第1実施例のクローニングベクターを用いたDNA鎖の連結方法及びDNAのクローニング方法である。第4実施例は、第2実施例のクローニングベクターを用いたDNA鎖の連結方法及びDNAのクローニング方法である。
【0026】
第1実施例(クローニングベクター:BBSプラスミドの作製)
プラスミドpUC19(5.0μg)を2つの制限酵素、HindIIIとEcoRIにより消化した後、この消化物を0.7%のアガロースゲル電気泳動に供与した。電気泳動後、アガロースゲルを10μg/mlのエチジュウムブロマイド水溶液に2時間浸したのち、アガロースゲルをDNA用紫外線照射機上に置き、紫外線を照射し、オレンジ色に光る約2.7 kbのDNAのバンドをカミソリで切り出し、Qiaquick Gel Extraction Kit(株式会社キアゲン製)にて精製し、50μlの10mMトリス塩酸(pH8.0)に溶解し、HindIIIおよびEcoRI切断pUC19として保存した。
【0027】
一方、以下に示した配列からなる2種類のDNA鎖をDNA合成機により作製し、それぞれのDNA鎖を100pmol取り、2μlの0.1M MgClを含む0.66M Tris−Cl(pH7.6)、10ユニットのT4ポリヌクレオチドキナーゼ、20nmolのATPを加えた、計20μlの反応液中で37℃、1時間反応させ、DNA鎖の5’側をリン酸化した。その後この反応液を5分間65℃にしたのち、室温に30分間放置した。
5’ agcttgaagacccgggtcttctcg 3’(配列表の配列番号3)
5’ aattcgagaagacccgggtcttca 3’(配列表の配列番号4)
【0028】
上記DNA鎖が混合された反応液9μlとHindIIIおよびEcoRI切断pUC19を1μl混合し、これに試薬Ligation High(東洋紡績株式会社製)10μlと混ぜ、16℃で15時間、反応させた。コンピテントセル、XL1−Blue大腸菌100μlを1.5ml容積のチューブに用意し、これに20倍希釈した2‐メルカプトエタノールを3.5μl加え、10分間、氷上で時々振り、前述の16℃で反応させたDNA溶液を2μl加え、30分間、氷上で放置後、42℃に保温した恒温漕に45秒漬け、直ぐに氷上へもどし、900μlのLB(1%bacto−tryptone、0.5%bacto−yeasr extract、1%塩化ナトリウム)を加え、37℃で1時間培養し、これを50μg/mlのアンピシリンを含むLB寒天プレートに接種し、37℃で18時間、保温した。生じた大腸菌コロニー数個を50μg/mlのアンピシリンを含む3mlのLB培地に接種し、37℃で18時間、培養し、この培養液を、9,000rpmで5分間遠心分離し、沈殿させ、菌体を回収した。この菌体からQiagen Plasmid Purification Kit(株式会社キアゲン製)によりプラスミドを調製した。
【0029】
上記で得られたプラスミドについてABI PRISM Genetic Analyzer(アプライドバイオシステムジャパン株式会社製)によりその塩基配列を調べ、pUC19ベクターのHindIIIおよびEcoRI切断部位に正しくDNA鎖が挿入された配列、つまり、pUC19ベクターのHindIII部位とEcoRI部位の塩基配列が以下のような配列を持つプラスミドを選んだ。この選択されたプラスミドを、BBSプラスミドとする。また、アンダーライン部分は、HindIII制限酵素の認識部位(aagctt)及びEcoRI制限酵素の認識部位(gaattc)を示している。
5’ aagcttgaagacccgggtcttctcgaattc 3’(配列表の配列番号5)
【0030】
次に、上記で選んだBBSプラスミド(5.0μg)を、制限酵素、Sma Iにより消化した後、前述のようにアガロースゲル電気泳動に供与し、精製し、最終的に50μlのTE緩衝液に溶解して保存した。
【0031】
第2実施例(クローニングベクター:BSAプラスミドの作製)
1.プラスミドpUC19のBsa I部位の改変
プラスミドpUC19(5.0μg)を2つの制限酵素、Bpm IとEam1105 Iにより消化した後、この消化物を0.7%のアガロースゲル電気泳動に供与し、約2.7kbのDNAをアガロースゲルから得、Qiaquick Gel Extraction Kitにて精製し、50μlの10mMトリス塩酸(pH8.0)に溶解し、Bpm IとEam1105 I切断pUC19として保存した。
【0032】
一方、以下の配列からなるDNA鎖をDNA合成機により作製した。このDNA鎖はプラスミドpUC19に内在するBsa I部位ggtccがggtccに変更されたものである(アンダーラインで示す如くtがgに変更)。それぞれの鎖を300pmolと、4μlの0.1M酢酸マグネシュウム、0.66M酢酸カリウム、5mMDDT、0.1%BSA(牛血清アルブミン)を含む0.33MTris−酢酸(pH7.9)緩衝液、4ユニットのT4ポリメラーゼ、それぞれ5nmolのdATP、dGTP、dTTP、dCTPを加えた、計40μlの反応液中で37℃、20分間反応させ、続いて、65℃で30分間処理した。また、以下の配列はアンダーライン部分が相補的な配列となっている。
5’ taaatctggagccggtgagcgtgggtcgcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcg 3’(5’側から28番目のtがgに変更)(配列表の配列番号6)
5’ tgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgc 3’(配列表の配列番号7)
【0033】
上記40μlのDNA溶液に4μlの3M酢酸ナトリウム(pH7.0)を加えた後、終濃度70%になるようにエチルアルコールを加え、マイナス80℃冷凍庫で凍らせた。20分後、冷凍庫から取り出し、15,000rpmで10分間遠心分離し、沈殿をロータリーエパポレターにて乾燥させた。乾燥した沈殿を30μlの10mMトリス塩酸(pH8.0)に溶解し、これをBpm IとEam1105 Iにより消化し、フェノール/クロロホルム抽出後、3M酢酸ナトリウム(pH7.0)を加え、前述のようにエタノール沈殿をし、30μlの10mMトリス塩酸(pH8.0)に溶解した(これをDNA鎖BPEAとする)。
【0034】
次に、Bpm IとEam1105 I切断pUC19を1μl、上記で作製したDNA鎖BPEAを4μl、を混合し、これに5μlの試薬Ligation Highを混ぜ、16℃で15時間、反応させ、これを用いてXL1−Blue大腸菌を形質転換させ、50μg/mlのアンピシリンを含むLB寒天プレートに接種した。生じた大腸菌コロニー数個をアンピシリンを含むLB培地にて培養し、この菌体からQiagen Plasmid Purification Kitによりプラスミドを調製した。得られたプラスミドについてABI PRISM Genetic Analyzerによりその塩基配列を調べ、Bsa I部位がggtccに改変されているプラスミドを選びこれをBPEAプラスミドとした。
【0035】
2.クローニング部位の付加
1.で作製したBPEAプラスミドを2つの制限酵素、HindIIIとEcoRIにより消化した後、この消化物を0.7%のアガロースゲル電気泳動に供与し、約2.7kbのDNAをアガロースゲルから得、Qiaquick Gel Extraction Kitにて精製し、50μlの10mMトリス塩酸(pH8.0)に溶解し、HindIIIとEcoRI切断BPEAプラスミドとして保存した。
【0036】
一方、以下の配列からなる2種類のDNA鎖をDNA合成機により作製し、それぞれの鎖を100pmol取り、2μlの0.1M MgClを含む0.66M Tris−Cl(pH7.6)、10ユニットのT4ポリヌクレオチドキナーゼ、20nmolのATPを加えた、計20μlの反応液中で37℃、1時間反応させ、DNA鎖の5’側をリン酸化した。その後この反応液を5分間65℃にしたのち、室温に30分間放置した。
5’ agcttgggtctcgcgagaccctcg 3’(配列表の配列番号8)
5’ aattcgagggtctcgcgagaccca 3’(配列表の配列番号9)
【0037】
上記二種類のDNA鎖が混合された反応液4μlと前述の10mMトリス塩酸に溶かしたHindIIIおよびEcoRI切断BPEAプラスミドを乾燥した沈殿を1μlを混合し、これに5μlの試薬Ligation Highと混ぜ、16℃で15時間、反応させ、これを用いてXL1−Blue大腸菌を形質転換させ、50μg/mlのアンピシリンを含むLB寒天プレートに接種した。生じた大腸菌コロニー数個をアンピシリンを含むLB培地にて培養し、この菌体からQiagen Plasmid Purification Kitによりプラスミドを調製した。
得られたプラスミドについてABI PRISM Genetic Analyzerによりその塩基配列を調べ、BPEAプラスミドのHindIIIおよびEcoRI切断部位に正しくDNA鎖が挿入された配列、つまり、BPEAプラスミドのHindIII部位とEcoRI部位の塩基配列が以下のようになるプラスミドを選んだ(これをBSAプラスミドとする)。
5’ aagcttgggtctcgcgagaccctcgaattc 3’(配列表の配列番号10)
上記において、アンダーライン部分はHindIII制限酵素認識部位(aagctt)及びEcoRI制限酵素認識部位(gaattc)である。
【0038】
上記で選んだプラスミド(5.0μg)は、制限酵素、Nru Iにより消化した後、前述のようにアガロースゲル電気泳動に供与し、精製し、最終的に50μlのTE緩衝液に溶解して保存した。
【0039】
第3実施例
1.DNA鎖の設計
まず、配列表の配列番号11にヒトHsp10の塩基配列を示す。このヒトHsp10タンパク質翻訳領域は、1番目のaから306番目のcまででコードされる。また、1番目からのagtは開始コドンであり、307番目からのtgaは終止コドンである。この配列番号11に示すヒトHsp10の塩基配列をもとに、ヒトHsp10をコードする遺伝子の蛋白質翻訳開始コドン(配列番号11の1番目からのatg)から始めるセンス鎖の配列の一部である配列表の配列番号12〜15の4つの単鎖DNA(S1,S2,S3,S4とする)と、配列番号16〜19(A1,A2,A3,A4とする)のヒトHsp10をコードする遺伝子のアンチセンス鎖の一部である4つの単鎖DNA、計8つをDNA合成機により作製した。配列番号12のS1鎖の3’側の20塩基と配列番号16のA1鎖の3’側20塩基は相補的な配列となっている。また、配列表13のS2鎖と配列番号17のA2鎖、配列番号14のS3鎖と配列番号18のA3鎖、配列番号15のS4鎖と配列番号19のA4鎖についても同様に、対となるセンス鎖の3’側とアンチセンス鎖の3’側の20塩基が相補的な配列となっている。
【0040】
2.二重鎖DNAのBBSプラスミドへのクローニング
上記S1鎖およびその対となるA1鎖を300pmolと、4μlの0.1M酢酸マグネシュウム、0.66M酢酸カリウム、5mMDDT、0.1% BSA(牛血清アルブミン)を含む0.33M Tris−酢酸(pH7.9)緩衝液、4ユニットのT4ポリメラーゼ、それぞれ5nmolのdATP、dGTP、dTTP、dCTPを加えた、計40μlの反応液中で37℃、20分間反応させ、続いて、65℃で30分間処理した。この40μlのDNA溶液に4μlの3M酢酸ナトリウム(pH7.0)を加えた後、終濃度70%になるようにエチルアルコールを加え、マイナス80℃冷凍庫で凍らせた。20分後、冷凍庫から取り出し、15,000rpmで10分間遠心分離し、沈殿をロータリーエパポレターにて乾燥させた。
【0041】
次に、乾燥した沈殿を30μlのTE緩衝液に溶解した。このうち10μlをとり、これに2μlの0.1M MgClを含む0.66M Tris−Cl(pH7.6)、10ユニットのT4ポリヌクレオチドキナーゼ、20nmolのATPを加え、純水で計20μlにし、37℃、1時間反応させ、DNA鎖の5’側をリン酸化した。このリン酸化されたDNA溶液9μlと第1実施例で作成したSma Iにより消化済みBBSプラスミドを1μlを混合し、これにライゲーション試薬DNA Ligation kit I液を10μl加え、16℃で1時間、反応させた。
【0042】
コンピテントセル、XL1−Blue大腸菌100μlを1.5ml容積のチューブに用意し、これに20倍希釈した2‐メルカプトエタノールを3.5μl加え、10分間、氷上で時々振り、16℃で反応させた反応混液を5μl加え、30分間、氷上で放置後、42℃に保温した恒温漕に45秒漬け、直ぐに氷上へもどし、900μlのLBを加え、37℃で1時間培養した。50μg/mlのアンピシリンを含むLB寒天プレート(直径8.5cm、寒天培地量25ml)に100mM IPTGを50μl、20mg/ml X−Gal(5−ブロモ−4−クロロ−3−Iインドリル−b−D−ガラクトシド、ジメチルホルムアミドに溶解)を塗布し、これに前述の菌液を接種し、37℃で18時間、保温した。生じた大腸菌コロニーの内、白いコロニー数個を50μg/mlのアンピシリンを含む3mlのLB培地に接種し、37℃で18時間、培養し、この培養液を、9,000rpmで5分間遠心分離し、沈殿させ、菌体を回収した。この菌体からQiagen Plasmid Purification Kitによりプラスミドを調製した。
【0043】
上記で得られたプラスミドについてABI PRISM Genetic Analyzer(アプライドバイオシステムジャパン株式会社製)によりその塩基配列を調べ、BBSプラスミドのSma I切断部位に正しくDNA鎖が挿入された配列、つまり、アンダーラインで示すBbs I制限酵素認識部位(5’側のgaagacと3’側のgtcttc)に囲まれた配列が以下のようになるものを選び、プラスミドH10−1とした。また、下記において、ベクターと挿入DNAと境界を空欄で示している。
S1鎖とA1鎖を用いて作製された配列(配列表の配列番号20)
5’ gaagaccc atggcaggacaagcgtttagaaagtttcttccactctttgaccgagtattggttgaaaggagtgctgctgaaactgtaaccaaaggaggcattatgctt gggtcttc 3’
【0044】
同様にS2鎖とA2鎖、S3鎖とA3鎖、S4鎖とA4鎖からなる二重鎖DNAもBBSプラスミドにクローニングし、Sma I切断部位に正しくDNA鎖が挿入された配列を持つプラスミド、それぞれ、プラスミドH10−2、H10−3、H10−4を選んだ。このときのBbs I制限酵素切断部位(アンダーラインで示す5’側のgaagacと3’側のgtcttc)に囲まれた塩基配列は、以下の通りである。また、下記においてベクターと挿入DNAとの境界を空欄で示した。
【0045】
S2鎖とA2鎖を用いて作製された配列(配列表の配列番号21)
5’ gaagaccc gcttccagaaaaatctcaaggaaaagtattgcaagcaacagtagtcgctgttggatcgggttctaaaggaaagg gtggagagattcaaccagtt gggtcttc 3’
S3鎖とA3鎖を用いて作製された配列(配列表の配列番号22)
5’ gaagaccc agttagcgtgaaagttggagataaagttcttctcccagaatatggaggcaccaaagtagttctagatgacaagg attatttcctatttagaga gggtcttc 3’
S4鎖とA4鎖を用いて作製された配列(配列表の配列番号23)
5’ gaagaccc gagatggtgacattcttggaaagtacgtagactgaaataagtcactattgaaatggcatcaacatgatgctgcccattccactgaagttctga gggtcttc 3’
【0046】
3.DNA断片の切りだし
プラスミドH10−1、40μgを20units/μlの制限酵素Bbs Iを含む、10mM Tris−HCl(pH7.9)、10mM MgCl、50mM NaCl、1mM DTT(dithiothreitol)の緩衝液中、37℃で一夜反応させ、消化した。消化プラスミドDNAは0.7%のアガロースゲル電気泳動に供与した。分離した約100bpのDNAのバンドをカミソリで切り出し、QiaquickGel Extraction Kitにて精製し、30μlのTE緩衝液に溶解し、H10−1断片として保存した。同様にプラスミドH10−2、H10−3、H10−4からH10−2、H10−3、H10−4断片を調製した。
【0047】
4.DNA断片の連結
調製したH10−1断片とH10−2断片をそれぞれ6μlずつと、ライゲーション試薬DNA Ligation kit I液(宝酒造株式会社製)を6μl加え、室温で2時間、反応させ、これを混合液1とした。調製したH10−3断片とH10−4断片も同様にライゲーションさせ、混合液2とした。次に混合液1と2をそれぞれ6μlずつと、ライゲーション試薬DNA Ligation kit I液を6μl加え、室温で2時間30分反応させた。これを混合液3とした。
【0048】
5.再クローニング用プラスミドベクターの作製
混合液3中の約400bpのDNA鎖を再クローニングするために、以下の2種類の化学合成DNA鎖を用い、BBSプラスミドから後述のBBTプラスミドを作製した。
5’ atggcaggatcctgaagttctga 3’(配列表の配列番号24)
5’ tcagaacttcaggatcctgccat 5’(配列表の配列番号25)
【0049】
上記の23塩基よりなる2種類のDNA鎖をDNA合成機により作製し、それぞれのDNA鎖を100pmolと、2μlの0.1M MgClを含む0.66M Tris−Cl (pH7.6)、10ユニットのT4ポリヌクレオチドキナーゼ、20nmolのATPを加え、純水で計20μlにし、37℃で1時間反応させ、DNA鎖の5’側をリン酸化した。その後、この反応液を65℃で5分間加熱した後、室温に30分放置した。このリン酸化されたDNA溶液4μlと実施例1で作成したBBSプラスミド(Sma Iにより消化済み)を1μlを混合し、これにライゲーション試薬DNA Ligation kit I液を5μl加え、16℃で2時間、反応させた。
【0050】
コンピテントセル、XL1−Blue大腸菌100μlを1.5ml容積のチューブに用意し、これに20倍希釈した2‐メルカプトエタノールを3.5μl加え、10分間、氷上で時々振り、16℃で反応させた反応混液を5μl加え、30分間、氷上で放置後、42℃に保温した恒温漕に45秒漬け、直ぐに氷上へもどし、900μlのLBを加え、37℃で1時間培養した。50μg/mlのアンピシリンを含むLB寒天プレート(直径8.5cm、寒天培地量25ml)に100mM IPTGを50μl、20mg/ml X−Galを塗布し、これに前述の菌液を接種し、37℃で18時間、保温した。生じた大腸菌コロニーの内、白いコロニー数個を50μg/mlのアンピシリンを含む3mlのLB培地に接種し、37℃で18時間、培養し、この培養液を、9,000rpmで5分間遠心分離し、沈殿させ、菌体を回収した。この菌体からQiagen Plasmid Purification Kitによりプラスミドを調製した。
【0051】
上記で得られたプラスミドについてABI PRISM Genetic Analyzerによりその塩基配列を調べ、BBSプラスミドのSma I切断部位に正しくDNA鎖が挿入された配列、つまり、アンダーラインで示すBbs I制限酵素切断部位(5’側のgaagacと3’側のgtcttc)に囲まれた配列が以下のようになるものを選び、このプラスミドをBBTプラスミドとした。また、ベクターと挿入DNAと境界は空欄で示している。
5’ gaagaccc atggcaggatcctgaagttctga gggtcttc 3’(配列表の配列番号26)
【0052】
次に、上記BBTプラスミド、5.0μgを制限酵素Bbs Iにより消化した後、アガロースゲル電気泳動により分離・精製し、50μlTE緩衝液に溶解した。BBTプラスミドは、アンダーラインで示すBbs I制限酵素切断部位(5’側のgaagacと3’側のgtcttc)に囲まれた配列が以下のように切断され、突出末端が生じている。尚、下記反応の詳細は、図3を参照されたい。
5’ gaagaccc(切断)ctgagggtcttc 3’
3’ cttctgggtacc(切断)cccagaag 5’
【0053】
6.連結DNAの再クローニング
作製したBBTプラスミド(Bbs Iにより消化済み)を1μl、4つのDNA断片を連結させた混合液3を4μl、これにライゲーション試薬DNA Ligation kit I液を5μl加え、16℃で2時間、反応させた。この反応液にてXL1−Blue大腸菌100μlを形質転換させ、アンピシリンを含むLB寒天プレートにコロニーを生じせしめ、このコロニーの内、10個を任意に選び、50μg/mlのアンピシリンを含む3mlのLB培地に接種し、37℃で18時間、培養し、この培養液からプラスミドを調製した。得られたプラスミドについてABI PRISM Genetic Analyzerによりその塩基配列を調べたところ、全てのプラスミドが配列表の配列番号27に示すように、Bbs I制限酵素部位(配列番号27の5’側のgaagacと3’側のgtcttc)に囲まれた配列に、Hsp10の遺伝子配列を持つものであった。
【0054】
また、本実施例においてDNA鎖を連結した産物を、アガロースゲル電気泳動により分析したものを図4に示した。レーン1は、分子量マーカで、ラムダファージDNAを制限酵素EcoT14で消化したものである。レーン2も、分子量マーカで、図4に示すバンドの上から、700、525、500、400、300、200、100、50塩基対のDNAを示す。また、レーン3は、S1鎖及びA1鎖から成るDNA断片、H10−1である。また、レーン4は、H10−1断片と、S2鎖及びA2鎖から成るH10−2断片をライゲーションした混合液1で、レーン5は、S3鎖及びA3鎖から成るH10−3断片と、S4鎖及びA4鎖から成るH10−4片をライゲーションした混合液2である。また、レーン6は、混合液2とH10−1断片をライゲーションしたもので、レーン7は、混合液1と混合液2をライゲーションした混合液3である。この分析結果によれば、各DNA断片が効率よく結合され、H10−1、H10−2、H10−3、H10−4断片の4断片の連結でも副産物が少なく、効率良く連結されていることがわかる。
【0055】
第4実施例
1.DNA鎖の設計
ヒトHsp70遺伝子のDNAプローブを作製するために、配列表の配列番号28に示すヒトHsp70遺伝子塩基配列をもとに配列表の配列番号29〜31に示すセンス鎖、S21、S22、S23及び配列番号32〜34に示すアンチセンス鎖、A21、A22、A23をDNA合成機により作製した。尚、ヒトHsp70のタンパク質翻訳領域は、1番目からのatgの開始コドンから始まるものである。また、配列番号28に示す塩基配列は、ヒトHsp70蛋白質のN末から100アミノ酸残基をコードする配列である。
【0056】
2.二重鎖DNAのBSAプラスミドへのクローニング
S21鎖およびその対となるA21鎖を300pmolと、4μlの0.1M酢酸マグネシュウム、0.66M酢酸カリウム、5mMDDT、0.1%BSA(牛血清アルブミン)を含む0.33M Tris−酢酸(pH7.9)緩衝液、4ユニットのT4ポリメラーゼ、それぞれ5nmolのdATP、dGTP、dTTP、dCTPを加えた、計40μlの反応液中で37℃、20分間反応させ、続いて、65℃で30分間処理した。この40μlのDNA溶液をエタノール沈殿させ、この沈殿を30μlのTE緩衝液に溶解した。
【0057】
このうち10μlをとり、これに2μlの0.1M MgClを含む0.66M Tris−Cl(pH7.6)、10ユニットのT4ポリヌクレオチドキナーゼ、20nmolのATPを加え、純水で計20μlにし、37℃で1時間反応させ、DNA鎖の5’側をリン酸化した。このリン酸化されたDNA溶液9μlと第2実施例で作製したNru Iにより消化済みBSAプラスミドを1μl混合し、ライゲーションさせ、これを用いてXL1−Blue大腸菌を形質転換させ、この菌液を、アンピシリン、IPTG、X−Galを含むLB寒天プレートに接種し、生じた大腸菌コロニーの内、白いコロニー数個を、培養し、この菌体からプラスミドを調製した。
【0058】
上記で得られたプラスミドについてABI PRISM Genetic Analyzerによりその塩基配列を調べ、BSAプラスミドのNru I切断部位に正しくDNA鎖が挿入された配列、つまり、アンダーラインで示すBsa I制限酵素認識部位(5’側のggtctcと3’側のgagacc)に囲まれた塩基配列が以下のようになるものを選び、プラスミドH70−P1とした。ベクターと挿入DNAと境界は空欄で示している。
プラスミドH70−P1
S21鎖とA21鎖を用いて作製された配列(配列表の配列番号35)
5’ ggtctcg atggccaaagccgcggcgatcggcatcgacctgggcaccacctactcctgcgtgggggtgttccaacacggcaaggtggagatcatcgccaacg cgagaccctcg 3’
【0059】
同様にS22鎖とA22鎖、S23鎖とA23鎖からなる二重鎖DNAもBSAプラスミドにクローニングし、Nru I切断部位に正しくDNA鎖が挿入された配列を持つプラスミド、プラスミドH70−P2、H70−P3をそれぞれ選んだ。このときのBsa I制限酵素切断部位(アンダーラインで示す5’側のggtctcと3’側のgagacc)に囲まれた塩基配列は以下の通りである。
プラスミドH70−P2
S22鎖とA22鎖を用いて作製された配列(配列表の配列番号36)
5’ ggtctcg aacgaccagggcaaccgcaccacccccagctacgtggccttcacggacaccgagcggctcatcggggatgcggccaagaaccaggtggcgctgaacccgcagaa cgagacc 3’
プラスミドH70−P3
S23鎖とA23鎖を用いて作製された配列(配列表の配列番号37)
5’ ggtctcg agaacaccgtgtttgacgcgaagcggctgatcggccgcaagttcggcgacccggtggtgcagtcggacatgaagcactggcctttccaggtgatcaacgacggagacaag cgagacc 3’
【0060】
3.DNA断片の切りだし
上記2.で作製したプラスミドH70−P1、40μgを20units/μlの制限酵素Bsa Iを含む、50mM Tris−HCl(pH7.9)、10mM MgCl、100mM NaCl、1 mM DTT (dithiothreitol)の緩衝液中、37℃で一夜反応させ、消化した。消化プラスミドDNAは0.7%のアガロースゲル電気泳動に供与した。分離した約100bpのDNAのバンドを切り出し、Qiaquick Gel Extraction Kitにて精製し、30μlのTE緩衝液に溶解し、H70−P1断片として保存した。同様の方法で、プラスミドH70−P2、H70−P3からH70−P2、H70−P3断片を調製した。
【0061】
4.DNA断片の連結
上記3.で調製したH70−P1断片とH70−P2断片をそれぞれ6μlずつと、ライゲーション試薬DNA Ligation kit I 液(宝酒造株式会社製)を6μl加え、室温で2時間、反応させ、これを混合液P1とした。次に18μlの混合液P1にH70−P3断片とライゲーション試薬DNA Ligation kit I 液を6 μlずつ加え、室温で2時間30分反応させた。これを混合液P2とした。
【0062】
5.再クローニング用プラスミドベクターの作製
以下に記載する22塩基よりなる2種類のDNA鎖をDNA合成機により作製した。
5’ atggccaaaggacggagacaag 3’(配列表の配列番号38)
5’ cttgtctccgtcctttggccat 3’(配列表の配列番号39)
【0063】
上記のそれぞれのDNA鎖を100pmolと、2μlの0.1M MgClを含む0.66M Tris−Cl(pH7.6)、10ユニットのT4ポリヌクレオチドキナーゼ、20nmolのATPを加え、純水で計20μlにし、37℃で1時間反応させ、DNA鎖の5’側をリン酸化した。その後、この反応液を65℃で5分間加熱した後、室温に30分放置した。このリン酸化されたDNA溶液4μlとNru I消化BSAプラスミドを1μlを混合し、これにライゲーション試薬DNA Ligation kit I 液を5μl加え、16℃で2時間、反応させた。これを用い、XL1−Blue大腸菌を形質転換させ、アンピシリン、IPTG、X−Galを含むLB寒天プレートに接種し、37℃で18時間、保温した。生じた大腸菌コロニーの内、白いコロニー数個を培養し、プラスミドを調製した。
【0064】
上記で得られたプラスミドについてABI PRISM Genetic Analyzerによりその塩基配列を調べ、BSAプラスミドのNruI切断部位に正しくDNA鎖が挿入された配列、つまり、アンダーラインで示すBsa I制限酵素切断部位(5’側のggtctcと3’側のgagacc)に囲まれた塩基配列が以下のようになるものを選び、このプラスミドをBSTプラスミドとした。また、ベクターと挿入DNAと境界は空欄で示している。5’ ggtctcg atggccaaaggacggagacaag cgagacc 3’(配列表の配列番号40)
【0065】
次に、上記BSTプラスミド、5.0μgを制限酵素Bsa Iにより消化した後、アガロースゲル電気泳動により分離・精製し、50μlTE緩衝液に溶解した。BSTプラスミドは、アンダーラインで示すBsa I制限酵素切断部位(5’側のggtctcと3’側のgagacc)に囲まれた塩基配列が以下のように切断され、突出末端が生じている。5’ ggtctcg (切断)caagcgagacc 3’
3’ ccagagctacc (切断) gctctgg 5’
【0066】
6.連結DNAの再クローニング
上記5.で作製したBSTプラスミド(Bsa Iにより消化済み)を1μl、3つのDNA断片を連結させた混合液P2を4μl、これにライゲーション試薬DNA Ligation kitI 液を5μl加え、16℃で2時間、反応させた。この反応液にてXL1−Blue大腸菌を形質転換させ、アンピシリンを含むLB寒天プレートにコロニーを生じせしめ、このコロニーの内、数個を任意に選び、培養し、この培養液からプラスミドを調製した。得られたプラスミドについてABI PRISM Genetic Analyzerによりその塩基配列を調べたところ、全てのプラスミドが配列表の配列番号41に示すように、Bsa I制限酵素部位(配列番号41の5’側のggtctcgと3’側のcaagcgagacc)に囲まれた配列に、配列表の配列番号28に示すヒトHsp70遺伝子、1番目から300番目の配列を持つものであった。
【0067】
【発明の効果】
本発明は上述の如く構成したものであり、DNA断片あるいは化学合成等で作製されるDNA鎖を効率よく連結し、遺伝子をコードするなど、産業上有用なDNA鎖の合成が可能となる。まず、ゲノム、mRNA等、遺伝子ライブラリーのソースがなくても、塩基配列の情報のみで目的の遺伝子を作製することができる。また、入手が困難なタンパク質等でも、塩基配列の情報のみで作製することができるし、塩基配列を発現に適したコドンにすることもできる。また、塩基配列を任意に選択することにより、自然界に存在しない遺伝子を作製することができるとともに、一塩基のみ或いは数塩基のもの等、人工的な変異を任意に作り出すことが可能となる。
【0068】
また、従来はDNA断片を2つずつしか連結できなかったが、本発明のDNA鎖の連結方法では、一度のクローニング操作で3つ以上のDNA断片を連結することができ、形質転換、プラスミド調製のステップを大幅に削減することができ、DNA鎖の作製日数を短縮することができる。また、本発明のクローニングベクターを用いることにより、DNA断片に内在する制限酵素切断部位を利用せずに、DNA断片をベクターにクローニングできる。また、PCRを用いた方法に比べ、塩基配列の誤り、即ち変異が起こる確率が極めて小さいものとなる。また、本発明のDNAのクローニング方法では、化学合成DNA鎖の塩基配列の誤りを修正でき、塩基配列の誤りが少なく精度の高いDNAを効率的に得ることができる。
【配列表】

Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564

【図面の簡単な説明】
【図1】本発明による、DNA鎖を認識塩基配列とは異なる切断部位を持つ制限酵素部位をクローニング部位の両脇に配置したベクターにクローニングし(図1−あ)、認識塩基配列とは異なる切断部位を持つ制限酵素にてベクターと挿入DNA鎖の境界または挿入DNA鎖内部を切断し特異的な粘着末端を生じせしめ(図1−い)、得られた特異的な粘着末端を持つDNA鎖を連結し(図1−う)、連結したDNA鎖の両端の特異的な粘着末端に相補する粘着末端を持つベクターで再クローニングする方法を示す概念図。図1において、X、Y、W、Z、U、V、E、F、P、Q、N、R、KはDNA鎖の塩基を示す。XとY、WとZ、UとV、EとF、PとQ、RとKは相補的な塩基である。RRRRRRは認識塩基配列とは異なる切断部位を持つ制限酵素の認識配列を示す。5’ RRRRRRN NKKKKKK 3’は、ベクターのクローニング部位である、また、ここでのNとNの間のような空欄はそこでDNA鎖が切られていることを示す。図のX、Y、W、Z、U、V、E、F、P、Q、N、R、Kの個数は一例であり、図1での数に限定されるものではない。図1−いの塩基配列上にかかれた実線は、制限酵素による切断部位を示す。
【図2】あらかじめ設定した特異的な粘着末端を生じせしめるためのベクターのクローニング部位の配列を示す概念図。図2において、N、R、KはDNA鎖の塩基を示す。
RとKは相補的な塩基である。Aで示される領域は平滑末端を生じる制限酵素認識部位、Bで示される領域は認識塩基配列とは異なる切断部位を持つ制限酵素認識部位を示す。5’ RRRRRRN NKKKKKK 3’は、ベクターのクローニング部位である、また、ここでのNとNの間のような空欄はそこでDNA鎖が切られていることを示す。図2のN、R、Kの個数は一例であり、図2での数に限定されるものではない。
【図3】連結したDNA鎖を再クローニングするベクターの作製法を示す概念図。連結したDNA鎖末端部分の配列を両端部分に持つDNA鎖をクローニングし、認識塩基配列とは異なる切断部位を持つ制限酵素で切断時に、連結したDNA鎖の末端部分の配列に相補的となる粘着末端を生じるようにする。このベクターにより、連結したDNA鎖を再クローニングできる。図において、X、Y、P、Q、E、F、N、R、KはDNA鎖の塩基を示す。XとY、PとQ、EとF、RとKは相補的な塩基である。RRRRRRは認識塩基配列とは異なる切断部位を持つ制限酵素の認識配列を示す。5’ RRRRRRN NKKKKKK 3’は、ベクターのクローニング部位である、また、ここでのNとNの間のような空欄はそこでDNA鎖が切られていることを示す。図3のX、Y、P、Q、E、F、N、R、Kの個数は一例であり、図3での数に限定されるものではない。
【図4】第3実施例で調製されたDNA断片を用いて、DNA鎖を連結した産物をアガロースゲル電気泳動により分析したもの。各DNA断片が効率よく結合され、H10−1、H10−2、H10−3、H10−4断片の4断片の連結でも副産物が少なく、効率よく連結されていることがわかる。[0001]
[Industrial applications]
The present invention relates to a method for ligating a DNA chain, a cloning vector, and a method for cloning a DNA, and aims to obtain a novel method for synthesizing a DNA chain by efficiently ligating DNA fragments or DNA chains. is there.
[0002]
[Prior art]
A DNA chain becomes a gene that encodes a certain protein, and since it can be applied to protein production and the like by genetic engineering, artificial synthesis of a DNA chain as a gene from chemically synthesized DNA has been conventionally performed. Was. Techniques for collecting genes from living organisms and using them have also been developed, but methods for artificially producing genes cannot obtain genes from the living organism and can only obtain amino acid sequence information. In addition, when inserted into a host such as Escherichia coli, it is possible to increase the expression efficiency by preparing the base sequence based on the translation codon that is optimal for the host, to impart new properties such as heat resistance to the protein, etc. It is useful as a method for synthesizing a gene not found in the above. Conventionally, an artificial gene is prepared by creating a restriction map of the nucleotide sequence of the gene, annealing and ligating the chemically synthesized DNA strand, connecting several strands, and presenting the nucleotide sequence inside the DNA strand. Using a restriction enzyme site, a linked DNA strand consisting of several chemically synthesized DNA strands is cloned into a plasmid vector or the like. At this time, if there is an error in the base sequence, correction is performed, and the cloned fragment is further linked. Then, the target gene was prepared.
[0003]
[Problems to be solved by the invention]
However, this method has the following problems in addition to the problem that it is complicated and requires a period of several months to six months or more. First, one of the problems is that there is often an error in the chemically synthesized DNA used first. In fact, when synthesizing an oligonucleotide using a DNA synthesizer, it is not rare that an error occurs in the base sequence, but the error increases as the length of the oligonucleotide increases. The second problem is that it is not easy to further link DNA strands obtained by linking chemically synthesized DNAs unless the purity is sufficiently high. This is because by-products are produced with the ligation.
[0004]
The above two problems are that the DNA strand being prepared is cloned into a plasmid vector or the like by using a restriction enzyme site existing on the base sequence inside the DNA strand, to increase the purity, and to correct the base sequence error at this stage. You can do it. However, it is not possible to use a restriction enzyme cleavage site that can be used within the gene of interest.
[0005]
Further, a wheat lectin gene consisting of about 500 base pairs was prepared by using a restriction enzyme site existing inside the base sequence (European Journal Biochemistry (Eur. J. Biochem, 210: 989-997, 1992)). . In this example, a DNA strand of about 150 base pairs is prepared from the oligonucleotide, these are cloned into separate plasmid vectors using restriction enzyme sites existing inside the nucleotide sequence, and the cloned DNA strands are ligated. , Has obtained the gene for wheat lectin. This method was a complicated method using various restriction enzymes.
[0006]
In addition, since DNAse I of bovine pancreas contains a large amount of RNAase in the pancreas, it is difficult to obtain messenger RNA therefrom. In some cases, DNAase I gene is synthesized from oligonucleotide based on amino acid sequence. (The Journal of Biological Chemistry, Vol. 265, pp. 21889-21895, 1990 (The Journal of Biological Chemistry, 265: 21889-21895, 1990)). In this case, the restriction enzyme site existing inside the base sequence is not used, and the clone is not cloned into a plasmid vector until about 800 base pairs are prepared. Therefore, it is not possible to know a base sequence error during the preparation. In this method, a DNA strand of about 50 base pairs is prepared from an oligonucleotide, bound with T4 ligase, separated and purified by polyacrylamide gel electrophoresis, and a highly pure DNA strand is used. After the I gene has been prepared, it is cloned into a plasmid vector, a base sequence error is discovered, an internal restriction enzyme site is used to cut out a base sequence of about 50 base pairs, and this is replaced with a correct DNA strand. The method has forced modification of the base sequence.
[0007]
Furthermore, in recent years, there has been an example in which a gene is produced by a method of linking DNA chains by a polymerase chain reaction, which is more complicated than the conventional method. However, the same problem as the above-mentioned conventional method remains as to the error generated on the base sequence. In addition, a method of ligating DNA chains by a method called ligase chain reaction has also been carried out (Biochemistry Biophysics Research Communication, 248, 200 to 203, 1998 (Biochem Biophys Res Commun 248: 200-203, 1998). )). This method increases the accuracy of linking DNA strands and reduces the purification of by-products. However, there remains a problem that an error in a chemically synthesized DNA chain used first is detected and corrected during the production process.
[0008]
In addition, in order to avoid certain errors in chemically synthesized DNA used for gene production and to increase the purity of a DNA chain to which the chemically synthesized DNA is linked, it is necessary to clone the DNA into a plasmid vector or the like. In this method, a usable restriction enzyme cleavage site is located inside the target gene, and a vector that can be cloned at the same restriction enzyme cleavage site will be prepared. However, it is not possible to use a restriction enzyme cleavage site that can be used within the gene of interest.
[0009]
The present invention is intended to solve the problems as described above, and in an industrially useful method for linking DNA strands, such as encoding a gene, the method uses DNA errors according to errors in chemically synthesized DNA strands and ligation reaction. It is an object of the present invention to provide a method for ligating a DNA chain, a cloning vector, and a method for cloning a DNA, which can avoid a decrease in the purity of a strand and can easily perform ligation of DNA strands.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the first invention is to clone a DNA chain into a vector in which restriction enzyme recognition sites having a cleavage site different from the recognition base sequence are arranged on both sides of the cloning site, and By cutting the boundary between the inserted DNA strand and the vector or the inside of the inserted DNA strand with a restriction enzyme having a cleavage site different from its recognition base sequence, a specific sticky end preset on the cut DNA fragment is set. And joining a plurality of DNA fragments having specific sticky ends obtained by this operation.
[0011]
Further, the second invention is a cloning vector for cloning DNA, which comprises a restriction enzyme recognition site (this enzyme is referred to as an enzyme A) which generates one blunt end serving as a cloning site of the vector. Locates a restriction enzyme recognition site having a different cleavage site (this enzyme is referred to as enzyme B) symmetrically without overlapping or partly with the restriction enzyme recognition site of enzyme A, and a cleavage site different from the recognition base sequence. Upon digestion with a restriction enzyme having a site, a DNA fragment having a sticky end capable of binding is produced by cutting the boundary between the inserted DNA strand and the vector or both ends inside the inserted DNA strand.
[0012]
Further, the third invention is directed to a double-stranded DNA having the sequence of the terminal portion of the target DNA fragment at both ends and a restriction enzyme recognition site generating one blunt end to be a cloning site (this enzyme is referred to as enzyme A). A restriction enzyme recognition site having a cleavage site different from the recognition base sequence (this enzyme is referred to as enzyme B), and a symmetrical arrangement of the restriction enzyme recognition site of enzyme A with partial or no overlap By cloning with a restriction enzyme having a cleavage site different from the recognition base sequence to prepare a vector having a sticky end that is complementary to the sequence of the terminal portion of the DNA fragment. This is a DNA cloning method for cloning the DNA fragment.
[0013]
Further, the fourth invention is directed to a restriction enzyme recognition site having a cleavage site different from a recognition base sequence (this restriction enzyme recognition site which generates one blunt end serving as a cloning site (this enzyme is referred to as enzyme A)). The enzyme is referred to as enzyme B), and the restriction enzyme recognition site having a cleavage site different from the recognition base sequence is located at the cloning site. By cloning the DNA strand into a vector arranged on both sides, and cutting the boundary between the cloned inserted DNA strand and the vector or the inside of the inserted DNA strand with a restriction enzyme having a cleavage site different from its recognition base sequence, A predetermined specific sticky end is added to the cut DNA fragment, and a plurality of DNA fragments having a specific sticky end obtained by this operation are ligated. That is a method of connecting the DNA strand.
[0014]
Further, the fifth invention is directed to a restriction enzyme recognition site having a cleavage site different from the recognition base sequence (this restriction enzyme recognition site which generates one blunt end serving as a cloning site (this enzyme is referred to as enzyme A)). The enzyme is referred to as enzyme B), and the restriction enzyme recognition site having a cleavage site different from the recognition base sequence is located at the cloning site. By cloning the DNA strand into a vector arranged on both sides, and cutting the boundary between the cloned inserted DNA strand and the vector or the inside of the inserted DNA strand with a restriction enzyme having a cleavage site different from its recognition base sequence, A predetermined specific sticky end is added to the cut DNA fragment, and a plurality of DNA fragments having a specific sticky end obtained by this operation are ligated. A double-stranded DNA having the sequence of the terminal portion of the DNA fragment to be cloned obtained at the both ends at the both ends is obtained by a restriction enzyme recognition site which generates one blunt end to serve as a cloning site. A restriction enzyme recognition site having a cleavage site different from the recognition base sequence (this enzyme is referred to as enzyme B) is partially or overlapped with the restriction enzyme recognition site of enzyme A. A vector having a sticky end that is complementary to the sequence of the terminal portion of the DNA fragment by inserting into a cloning site of a symmetrically arranged vector and cutting with a restriction enzyme having a cleavage site different from the recognition base sequence And cloning the DNA fragment with this vector.
[0015]
In addition, the vector has a restriction enzyme recognition site having a cleavage site different from the recognition base sequence (this enzyme is referred to as enzyme A) centering on a restriction enzyme recognition site that generates one blunt end serving as a cloning site (this enzyme is referred to as enzyme A). Enzyme B) is symmetrically arranged without any overlap or overlap with the restriction enzyme recognition site of enzyme A, ggtctcgcgagacc (SEQ ID NO: 1 in the sequence listing) or gaagaccccggttctc (SEQ ID NO: 2 in the sequence listing). It may be.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first and fourth inventions, the method for ligating a DNA chain involves cloning the DNA chain into a vector in which restriction enzyme sites having a cleavage site different from the recognition base sequence are arranged on both sides of the cloning site (FIG. 1-A). A step of cleaving the boundary between the vector and the inserted DNA strand or the inside of the inserted DNA strand with a restriction enzyme having a cleavage site different from the recognition base sequence to generate a preset specific sticky end (FIG. 1-i) The target gene is prepared by the step of ligating the obtained DNA chain having a specific sticky end (FIG. 1-D).
[0017]
In the DNA cloning methods according to the third and fifth aspects of the present invention, the DNA strand is cloned into a vector in which restriction enzyme sites having a cleavage site different from the recognition base sequence are arranged on both sides of the cloning site (FIG. 1-A). ), A step of cleaving the boundary between the vector and the inserted DNA strand or the inside of the inserted DNA strand with a restriction enzyme having a cleavage site different from the recognition base sequence to generate a predetermined specific sticky end (FIG. 1-I). ), Ligating the obtained DNA strand having a specific sticky end (FIG. 1-U), and recloning with a vector having a sticky end complementary to the specific sticky end at both ends of the ligated DNA strand. The target gene is prepared according to (FIG. 1-E).
[0018]
In the second invention, a cloning vector for generating a specific sticky end preset in the second invention has a restriction enzyme recognition site that generates one blunt end serving as a cloning site (this enzyme is referred to as enzyme A). A restriction enzyme recognition site having a cleavage site different from the recognition base sequence (this enzyme is referred to as enzyme B) is placed as a target, and the DNA strand inserted at the time of cleavage with a restriction enzyme having a cleavage site different from the recognition base sequence is targeted. The DNA fragment having a sticky end capable of binding is produced by cutting the boundary between the DNA fragment and the both ends of the inserted DNA strand (referred to as a vector having a sticky end in the third to fifth aspects of the present invention). The nucleotide sequences recognized by the enzymes A and B may or may not partially overlap as shown in FIG. By using such a cloning vector, ligation of DNA chains and cloning of DNA can be performed efficiently.
[0019]
The enzyme B cuts the boundary between the vector and the inserted DNA strand or the inside of the inserted DNA strand when the inserted sequence is located at the restriction enzyme cleavage site serving as the cloning site. Examples of such restriction enzymes include Bbv I, BciV I, Bmr I, Bpm I, Bsa I, BseRI, Bsg I, BsmA I, BsnB I, BsnF I, BspM I, BsrD I, Bts I, Bbs I I, Ear I, Eci I, Fok I, Hga I, Hph I I, Mbo II, Ple I, Sap I, SfaN I, BstF5 I, Fau I, etc., but the recognition base sequence and the single-stranded portion of cohesive end Bbs I, Bsa I and BspMI are preferred. When the cleavage site of enzyme B arranged on both sides is that of Bsa I, the restriction enzyme cleavage site serving as a cloning site is preferably Nru I, and in the case of Bbs I, Sma I is preferred.
[0020]
For example, when Bsa I and Nru I are selected, the nucleotide sequence around the cloning site is: ggtctc g c gagacc (SEQ ID NO: 1 in the sequence listing) is preferred. In this case, the recognition sites of Bsa I are ggtctc and gagacc indicated by underlines. The recognition site of Nru I is tcg cga, and its cleavage site is indicated by a blank.
[0021]
When Bbs I and Sma I were selected, the nucleotide sequence around the cloning site was: gaaccc c g ggtctttc (SEQ ID NO: 2 in the sequence listing) is preferred. In this case, the recognition sites of Bbs I are gaagac and gtctttc indicated by underlines. The recognition site of Sma I is ccc ggg, and its cleavage site is indicated by a blank.
[0022]
Next, the steps of ligation of DNA strands in the method of ligation of DNA strands of the first and fourth inventions and the method of cloning DNA of the fifth invention shown in FIG. The DNA chains X, Z, and V constituting the gene G to be prepared are cloned into the cloning vector having sticky ends as described above. At this time, bases removed when the cloned DNA strand is cut out are overlapped. Specifically, when a vector having a combination of Bsa I and Nru I is used (in this case, RRRRRRN in FIG. 1 is ggtctcg), when the X, Z, and V DNA chains bind in this order (X The upstream side is the strand side and the downstream side is the V chain side), and the four base pairs on the downstream side of the X chain and the upstream side of the Z chain are selected so as to overlap each other. When G is produced by three consecutive DNA strands of X, Z, and V, each is cloned into the cohesive end-donating vector of the present invention which has been cut with enzyme A beforehand, and cut with enzyme B to produce X, Z, V Ends of the DNA strand are cut out with sticky ends for binding in this order, and are joined by specific sticky ends.
[0023]
In the third and fifth inventions for recloning the linked DNA strands, the vector having a sticky end (cloning vector) according to the second invention is used. A restriction enzyme recognition site (this enzyme is referred to as enzyme A) having a cleavage site different from the recognition base sequence around the restriction enzyme recognition site that generates one blunt end to be a cloning site of this vector (this enzyme is referred to as an enzyme) B) is cloned into the cloning site of the vector arranged for the target, and the DNA strand having the sequence of the terminal portion of the ligated DNA strand at both ends is cloned, and digested with a restriction enzyme having a cleavage site different from the recognition base sequence. In order to generate a sticky end that is complementary to the sequence of the terminal portion of the ligated DNA strand (FIG. 3). The DNA linked by this vector can be efficiently recloned to produce a gene having a large molecular weight (FIG. 1-E).
[0024]
In addition, by repeating the operation of the fifth invention (FIGS. 1A to 1E), a plurality of DNA chains having a plurality of DNA fragments linked thereto can be further linked, thereby efficiently synthesizing long chain DNA. It can be carried out.
[0025]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. The first and second embodiments are cloning vectors and show the procedure for their production. The third embodiment relates to a method for ligating DNA strands and a method for cloning DNA using the cloning vector of the first embodiment. The fourth embodiment relates to a method for ligating DNA strands and a method for cloning DNA using the cloning vector of the second embodiment.
[0026]
First Example (Cloning Vector: Preparation of BBS Plasmid)
After digestion of plasmid pUC19 (5.0 μg) with two restriction enzymes, HindIII and EcoRI, the digest was subjected to 0.7% agarose gel electrophoresis. After the electrophoresis, the agarose gel was immersed in a 10 μg / ml aqueous solution of ethidium bromide for 2 hours, and then the agarose gel was placed on an ultraviolet irradiator for DNA, irradiated with ultraviolet light, and illuminated in an orange color of about 2.7 kb. The DNA band was cut out with a razor, purified using a Qiaquick Gel Extraction Kit (manufactured by Qiagen Co., Ltd.), dissolved in 50 μl of 10 mM Tris-HCl (pH 8.0), and stored as HindIII and EcoRI-cut pUC19.
[0027]
On the other hand, two types of DNA strands having the following sequences were prepared by a DNA synthesizer, and 100 pmol of each DNA strand was taken, and 2 μl of 0.1 M MgCl 2 was prepared. 2 In a total of 20 μl of a reaction solution containing 0.66 M Tris-Cl (pH 7.6), 10 units of T4 polynucleotide kinase and 20 nmol of ATP at 37 ° C. for 1 hour, and the 5 ′ side of the DNA strand Was phosphorylated. Thereafter, the reaction solution was heated to 65 ° C. for 5 minutes and left at room temperature for 30 minutes.
5 'agctttgaagaccccgggttctctcg 3' (SEQ ID NO: 3 in Sequence Listing)
5 'aattcgagaagaccccgggtcttca 3' (SEQ ID NO: 4 in Sequence Listing)
[0028]
9 μl of the reaction solution mixed with the above-mentioned DNA chain was mixed with 1 μl of HindIII and EcoRI-cut pUC19, mixed with 10 μl of Ligation High (manufactured by Toyobo Co., Ltd.), and reacted at 16 ° C. for 15 hours. Prepare a competent cell and 100 μl of XL1-Blue E. coli in a 1.5-ml tube, add 3.5 μl of 2-mercaptoethanol diluted 20-fold to this, shake occasionally on ice for 10 minutes, and react at 16 ° C. described above. 2 μl of the DNA solution thus added was left on ice for 30 minutes, then immersed in a thermostat kept at 42 ° C. for 45 seconds, immediately returned to ice, and 900 μl of LB (1% bacto-tryptone, 0.5% bacto-easerase). extract, 1% sodium chloride), and cultured at 37 ° C. for 1 hour, inoculated on an LB agar plate containing 50 μg / ml ampicillin, and kept at 37 ° C. for 18 hours. Some of the resulting E. coli colonies were inoculated into 3 ml of LB medium containing 50 μg / ml of ampicillin, cultured at 37 ° C. for 18 hours, and the culture was centrifuged at 9,000 rpm for 5 minutes to precipitate the cells. The body was recovered. A plasmid was prepared from the cells using Qiagen Plasmid Purification Kit (manufactured by Qiagen).
[0029]
The nucleotide sequence of the plasmid obtained above was examined by ABI PRISM Genetic Analyzer (manufactured by Applied Biosystems Japan), and the sequence in which the DNA strand was correctly inserted into the HindIII and EcoRI cleavage sites of the pUC19 vector, that is, the pUC19 vector A plasmid having the following base sequences of HindIII site and EcoRI site was selected. This selected plasmid is designated as BBS plasmid. The underlined portions indicate the recognition site for HindIII restriction enzyme (agacttt) and the recognition site for EcoRI restriction enzyme (gaattc).
5 ' aagctt gaagaccccggggtcttctc gaattc 3 '(SEQ ID NO: 5 in Sequence Listing)
[0030]
Next, the BBS plasmid (5.0 μg) selected above was digested with a restriction enzyme, SmaI, and then subjected to agarose gel electrophoresis as described above, purified, and finally added to 50 μl of TE buffer. Dissolved and stored.
[0031]
Second Example (Cloning Vector: Preparation of BSA Plasmid)
1. Modification of the Bsa I site of plasmid pUC19
After digesting plasmid pUC19 (5.0 μg) with two restriction enzymes, Bpm I and Eam 1105 I, the digest was donated to 0.7% agarose gel electrophoresis and about 2.7 kb of DNA was removed from the agarose gel. The obtained product was purified by Qiaquick Gel Extraction Kit, dissolved in 50 μl of 10 mM Tris-HCl (pH 8.0), and stored as pUC19 cut with BpmI and Eam1105I.
[0032]
On the other hand, a DNA chain having the following sequence was prepared by a DNA synthesizer. This DNA strand is a Bsa I site ggtc contained in the plasmid pUC19. t c is ggtc g This is changed to c (t is changed to g as indicated by an underline). 300 pmol of each chain and 4 μl of a 0.33 M Tris-acetic acid (pH 7.9) buffer containing 4 μl of 0.1 M magnesium acetate, 0.66 M potassium acetate, 5 mM DDT and 0.1% BSA (bovine serum albumin), 4 units Was reacted at 37 ° C. for 20 minutes in a total of 40 μl of a reaction solution containing 5 nmol of dATP, dGTP, dTTP, and dCTP, followed by treatment at 65 ° C. for 30 minutes. In the following sequences, the underlined portions are complementary sequences.
5'taaattctgggagccgggtgagcgtgggtcgc gcggtatcattgcagcactgggggccagatgggtaagccctcccgtatcg 3 '(28th t from 5' side changed to g) (SEQ ID NO: 6 in Sequence Listing)
5 'tgcctgactccccgtcgtgttagataactactgata cggggggggtaccatctgggccccaggtgctgcaatgataccgc 3 '(SEQ ID NO: 7 in Sequence Listing)
[0033]
After adding 4 μl of 3M sodium acetate (pH 7.0) to the above 40 μl of the DNA solution, ethyl alcohol was added to a final concentration of 70%, and the mixture was frozen in a −80 ° C. freezer. Twenty minutes later, it was taken out of the freezer, centrifuged at 15,000 rpm for 10 minutes, and the precipitate was dried using a rotary evaporator. The dried precipitate was dissolved in 30 μl of 10 mM Tris-HCl (pH 8.0), digested with Bpm I and Eam1105 I, extracted with phenol / chloroform, and added with 3 M sodium acetate (pH 7.0). After ethanol precipitation, the precipitate was dissolved in 30 μl of 10 mM Tris-HCl (pH 8.0) (this is referred to as a DNA strand BPEA).
[0034]
Next, 1 μl of Bpm I and Eam1105 I-cut pUC19 and 4 μl of the above-prepared DNA strand BPEA were mixed, and 5 μl of the reagent Ligation High was mixed with the mixture, and the mixture was reacted at 16 ° C. for 15 hours. XL1-Blue E. coli was transformed and inoculated on LB agar plates containing 50 μg / ml ampicillin. Some of the resulting Escherichia coli colonies were cultured in an LB medium containing ampicillin, and a plasmid was prepared from the cells using a Qiagen Plasmid Purification Kit. The nucleotide sequence of the obtained plasmid was examined by ABI PRISM Genetic Analyzer, and the Bsa I site was found to be ggtc. g A plasmid modified to c was selected and used as a BPEA plasmid.
[0035]
2. Add cloning site
1. After digesting the BPEA plasmid prepared in Step 2 with two restriction enzymes, HindIII and EcoRI, the digest is supplied to 0.7% agarose gel electrophoresis, and about 2.7 kb of DNA is obtained from the agarose gel, and the Qiaquick Gel is obtained. It was purified by Extraction Kit, dissolved in 50 μl of 10 mM Tris-HCl (pH 8.0), and stored as HindIII and EcoRI digested BPEA plasmid.
[0036]
On the other hand, two kinds of DNA strands having the following sequences were prepared by a DNA synthesizer, and 100 pmol of each strand was taken, and 2 μl of 0.1 M MgCl 2 was prepared. 2 In a total of 20 μl of a reaction solution containing 0.66 M Tris-Cl (pH 7.6), 10 units of T4 polynucleotide kinase and 20 nmol of ATP at 37 ° C. for 1 hour, and the 5 ′ side of the DNA strand Was phosphorylated. Thereafter, the reaction solution was heated to 65 ° C. for 5 minutes and left at room temperature for 30 minutes.
5 'agctttggggtctcgcgagacccctcg 3' (SEQ ID NO: 8 in Sequence Listing)
5 'aattcgagggtctcgcgagacccca 3' (SEQ ID NO: 9 in Sequence Listing)
[0037]
4 μl of the reaction mixture obtained by mixing the above two types of DNA chains and 1 μl of the precipitate obtained by drying the HindIII and EcoRI digested BPEA plasmid dissolved in 10 mM Tris-HCl were mixed with 1 μl. For 15 hours, and used to transform XL1-Blue E. coli and inoculated on LB agar plates containing 50 μg / ml ampicillin. Some of the resulting Escherichia coli colonies were cultured in an LB medium containing ampicillin, and a plasmid was prepared from the cells using a Qiagen Plasmid Purification Kit.
The nucleotide sequence of the obtained plasmid was examined by ABI PRISM Genetic Analyzer, and the sequence in which the DNA strand was correctly inserted into the HindIII and EcoRI cleavage sites of the BPEA plasmid, that is, the nucleotide sequences of the HindIII site and the EcoRI site of the BPEA plasmid were as follows: (This is referred to as BSA plasmid).
5 ' aagctt gggtctcgcgagacccctc gaattc 3 '(SEQ ID NO: 10 in Sequence Listing)
In the above description, the underlined portions are the HindIII restriction enzyme recognition site (aagctt) and the EcoRI restriction enzyme recognition site (gaattc).
[0038]
The plasmid (5.0 μg) selected above is digested with a restriction enzyme, Nru I, then subjected to agarose gel electrophoresis as described above, purified, and finally dissolved in 50 μl of TE buffer and stored. did.
[0039]
Third embodiment
1. DNA strand design
First, the nucleotide sequence of human Hsp10 is shown in SEQ ID NO: 11 in the sequence listing. This human Hsp10 protein translation region is encoded from a at position 1 to c at position 306. Further, agt from the first position is a start codon, and tga from the 307th position is a stop codon. Based on the nucleotide sequence of human Hsp10 shown in SEQ ID NO: 11, a sequence that is a part of the sequence of the sense strand starting from the protein translation initiation codon (atg from the first position in SEQ ID NO: 11) of the gene encoding human Hsp10 Four single-stranded DNAs of SEQ ID NOS: 12 to 15 (referred to as S1, S2, S3, and S4) in the column list, and genes of human Hsp10 encoding SEQ ID NOs: 16 to 19 (referred to as A1, A2, A3, and A4) A total of eight single-stranded DNAs, which are part of the antisense strand, were produced by a DNA synthesizer. The 20 nucleotides on the 3 'side of the S1 chain of SEQ ID NO: 12 and the 20 nucleotides on the 3' side of the A1 chain of SEQ ID NO: 16 are complementary sequences. Similarly, the S2 chain of Sequence Listing 13 and the A2 chain of SEQ ID NO: 17, the S3 chain of SEQ ID NO: 14 and the A3 chain of SEQ ID NO: 18, the S4 chain of SEQ ID NO: 15 and the A4 chain of SEQ ID NO: 19 are similarly paired. The 20 nucleotides on the 3 ′ side of the sense strand and the 3 ′ side of the antisense strand are complementary sequences.
[0040]
2. Cloning of double-stranded DNA into BBS plasmid
The S1 chain and its paired A1 chain were each 300 pmol, and 0.33 M Tris-acetic acid (pH 7) containing 4 μl of 0.1 M magnesium acetate, 0.66 M potassium acetate, 5 mM DDT and 0.1% BSA (bovine serum albumin). .9) Reaction in a total of 40 μl of a reaction solution containing a buffer solution, 4 units of T4 polymerase and 5 nmol of dATP, dGTP, dTTP, and dCTP, respectively, at 37 ° C. for 20 minutes, followed by treatment at 65 ° C. for 30 minutes did. After adding 4 μl of 3 M sodium acetate (pH 7.0) to the 40 μl of the DNA solution, ethyl alcohol was added to a final concentration of 70%, and the mixture was frozen in a minus 80 ° C. freezer. Twenty minutes later, it was taken out of the freezer, centrifuged at 15,000 rpm for 10 minutes, and the precipitate was dried using a rotary evaporator.
[0041]
Next, the dried precipitate was dissolved in 30 μl of TE buffer. Take 10 μl of this and add 2 μl of 0.1 M MgCl 2 And 0.66 M Tris-Cl (pH 7.6), 10 units of T4 polynucleotide kinase and 20 nmol of ATP were added, and the total volume was adjusted to 20 μl with pure water, reacted at 37 ° C. for 1 hour, and the 5 ′ side of the DNA strand was Phosphorylated. 9 μl of the phosphorylated DNA solution and 1 μl of the BBS plasmid digested with Sma I prepared in Example 1 were mixed, and 10 μl of a ligation reagent DNA Ligation kit I solution was added thereto, followed by reaction at 16 ° C. for 1 hour. Was.
[0042]
Competent cells and 100 μl of XL1-Blue E. coli were prepared in a 1.5 ml tube, and 3.5 μl of 20-fold diluted 2-mercaptoethanol was added thereto. The mixture was shaken occasionally on ice for 10 minutes and reacted at 16 ° C. 5 μl of the reaction mixture was added, left on ice for 30 minutes, immersed in a thermostat kept at 42 ° C. for 45 seconds, immediately returned to ice, added with 900 μl of LB, and cultured at 37 ° C. for 1 hour. 50 μl of 100 mM IPTG and 20 mg / ml X-Gal (5-bromo-4-chloro-3-I indolyl-bD) were placed on an LB agar plate (8.5 cm in diameter, 25 ml of agar medium) containing 50 μg / ml ampicillin. -Dissolved in galactoside and dimethylformamide), and inoculated with the bacterial solution described above, followed by incubation at 37 ° C. for 18 hours. Among the resulting E. coli colonies, several white colonies were inoculated into 3 ml of LB medium containing 50 μg / ml ampicillin, cultured at 37 ° C. for 18 hours, and centrifuged at 9,000 rpm for 5 minutes. , And the cells were collected. Plasmids were prepared from the cells using Qiagen Plasmid Purification Kit.
[0043]
The nucleotide sequence of the plasmid obtained above was examined by ABI PRISM Genetic Analyzer (manufactured by Applied Biosystems Japan), and the sequence in which the DNA strand was correctly inserted into the SmaI cleavage site of the BBS plasmid, that is, is indicated by an underline. A sequence surrounded by Bbs I restriction enzyme recognition sites (gaagac on the 5 'side and gtctttc on the 3' side) having the following sequence was selected and designated as plasmid H10-1. In the following, the boundaries between the vector and the inserted DNA are shown in blank columns.
Sequence prepared using S1 and A1 chains (SEQ ID NO: 20 in Sequence Listing)
5 ' gaacac cc atggcaggacaaggtttagaaaagtttctttccactctttgaccgagtattggttgaaaaggaggtgctgctgaaactgtaaccaccaagggggcattatggttgggg gtctttc 3 '
[0044]
Similarly, a double-stranded DNA consisting of the S2 and A2 chains, the S3 and A3 chains, and the S4 and A4 chains was also cloned into a BBS plasmid, and a plasmid having a sequence in which the DNA chain was correctly inserted into the SmaI cleavage site, And plasmids H10-2, H10-3, and H10-4. At this time, the base sequence surrounded by the Bbs I restriction enzyme cleavage sites (gaagac on the 5 'side and gtctttc on the 3' side indicated by underlines) is as follows. In the following, the boundary between the vector and the inserted DNA is shown in blank.
[0045]
Sequence prepared using S2 and A2 chains (SEQ ID NO: 21 in Sequence Listing)
5 ' gaacac cc gctttccagaaaaatctcaaggaaaaagtattgcaagcaagagtgtcgctgttggatcgggttctaaaagggaaagg gggggagatttcaccaggtt ggg gtctttc 3 '
Sequence prepared using S3 and A3 chains (SEQ ID NO: 22 in Sequence Listing)
5 ' gaacac cc agtagcgtgaaaagttggagataaaagttcttctcccagaatatggaggcaccacaagtagtttctaggatgacaagg attatttttcctatttaggaga gg gtctttc 3 '
Sequence prepared using S4 and A4 chains (SEQ ID NO: 23 in Sequence Listing)
5 ' gaacac cc gagatggtgcattctttggaaagtacgttagactagaatactattgaaatggcatcaacatgatgctgcccattccactgaagtctctggggg gtctttc 3 '
[0046]
3. Cutting out DNA fragments
Plasmid H10-1, 40 µg, containing 20 units / µl restriction enzyme Bbs I, 10 mM Tris-HCl (pH 7.9), 10 mM MgCl 2 , 50 mM NaCl, 1 mM DTT (dithiothreitol) in a buffer at 37 ° C. overnight for digestion. Digested plasmid DNA was subjected to 0.7% agarose gel electrophoresis. The separated DNA band of about 100 bp was cut out with a razor, purified with Qiaquick Gel Extraction Kit, dissolved in 30 μl of TE buffer, and stored as an H10-1 fragment. Similarly, H10-2, H10-3, and H10-4 fragments were prepared from plasmids H10-2, H10-3, and H10-4.
[0047]
4. Ligation of DNA fragments
6 μl of each of the prepared H10-1 fragment and H10-2 fragment and 6 μl of a ligation reagent DNA Ligation kit I solution (manufactured by Takara Shuzo Co., Ltd.) were added, and the mixture was reacted at room temperature for 2 hours. The prepared H10-3 fragment and H10-4 fragment were ligated in the same manner to prepare a mixed solution 2. Next, 6 μl of each of the mixed solutions 1 and 2 and 6 μl of a ligation reagent DNA Ligation kit I solution were added, and the mixture was reacted at room temperature for 2 hours and 30 minutes. This was designated as mixture 3.
[0048]
5. Construction of plasmid vector for recloning
In order to reclond a DNA chain of about 400 bp in the mixture 3, the following two types of chemically synthesized DNA chains were used to prepare a BBT plasmid described below from the BBS plasmid.
5 ′ atggcaggatcctgaagtttctga 3 ′ (SEQ ID NO: 24 in Sequence Listing)
5 'ttagactacttaggatcctgccat 5' (SEQ ID NO: 25 in Sequence Listing)
[0049]
The two types of DNA strands consisting of the above 23 bases were prepared by a DNA synthesizer, and each DNA strand was made 100 pmol and 2 μl of 0.1 M MgCl 2. 2 0.66 M Tris-Cl (pH 7.6) containing 10 units of T4 polynucleotide kinase and 20 nmol of ATP, make up to a total of 20 μl with pure water, react at 37 ° C. for 1 hour, and remove the 5 ′ side of the DNA strand. Phosphorylated. Thereafter, the reaction solution was heated at 65 ° C. for 5 minutes, and then left at room temperature for 30 minutes. 4 μl of the phosphorylated DNA solution and 1 μl of the BBS plasmid (digested with Sma I) prepared in Example 1 were mixed, and 5 μl of a ligation reagent DNA Ligation kit I solution was added thereto, followed by reaction at 16 ° C. for 2 hours. I let it.
[0050]
Competent cells and 100 μl of XL1-Blue E. coli were prepared in a 1.5 ml tube, and 3.5 μl of 20-fold diluted 2-mercaptoethanol was added thereto. The mixture was shaken occasionally on ice for 10 minutes and reacted at 16 ° C. 5 μl of the reaction mixture was added, left on ice for 30 minutes, immersed in a thermostat kept at 42 ° C. for 45 seconds, immediately returned to ice, added with 900 μl of LB, and cultured at 37 ° C. for 1 hour. 50 μl of 100 mM IPTG and 20 mg / ml X-Gal were applied to an LB agar plate (8.5 cm in diameter, 25 ml of agar medium) containing 50 μg / ml of ampicillin, and the above-mentioned bacterial solution was inoculated at 37 ° C. It was kept warm for 18 hours. Among the resulting E. coli colonies, several white colonies were inoculated into 3 ml of LB medium containing 50 μg / ml ampicillin, cultured at 37 ° C. for 18 hours, and centrifuged at 9,000 rpm for 5 minutes. , And the cells were collected. Plasmids were prepared from the cells using Qiagen Plasmid Purification Kit.
[0051]
The plasmid obtained above was examined for its nucleotide sequence by ABI PRISM Genetic Analyzer, and the sequence in which the DNA strand was correctly inserted into the SmaI cleavage site of the BBS plasmid, that is, the BbsI restriction enzyme cleavage site (5 ′ The sequence surrounded by gaagac on the side and gtctttc on the 3 ′ side was selected as follows, and this plasmid was designated as BBT plasmid. The boundaries between the vector and the inserted DNA are shown in blank columns.
5 ' gaacac cc atggcaggatcctgaagtttctga gg gtctttc 3 '(SEQ ID NO: 26 in Sequence Listing)
[0052]
Next, 5.0 μg of the above-mentioned BBT plasmid was digested with the restriction enzyme BbsI, separated and purified by agarose gel electrophoresis, and dissolved in 50 μl of TE buffer. In the BBT plasmid, the sequence surrounded by the Bbs I restriction enzyme cleavage sites (gaagac on the 5 'side and gtctc on the 3' side) indicated by underlines is cut as follows to generate protruding ends. For details of the following reaction, see FIG.
5 ' gaacac cc (cut) ctgagg gtctttc 3 '
3 ' cttctg ggtacc (cut) cc cagaag 5 '
[0053]
6. Recloning of ligated DNA
1 μl of the prepared BBT plasmid (digested with Bbs I), 4 μl of a mixed solution 3 in which four DNA fragments were ligated, 5 μl of a ligation reagent DNA Ligation kit I solution were added thereto, and the mixture was reacted at 16 ° C. for 2 hours. . 100 μl of XL1-Blue Escherichia coli was transformed with the reaction solution, and colonies were formed on an LB agar plate containing ampicillin. Ten of these colonies were arbitrarily selected, and 3 ml of LB medium containing 50 μg / ml ampicillin was selected. , And cultured at 37 ° C. for 18 hours, and a plasmid was prepared from the culture solution. When the nucleotide sequence of the obtained plasmid was examined by ABI PRISM Genetic Analyzer, all the plasmids showed BbsI restriction enzyme sites (gaagac and 3 'on the 5 ′ side of SEQ ID NO: 27) as shown in SEQ ID NO: 27 in the sequence listing. The sequence surrounded by 'gtcttc) had the gene sequence of Hsp10.
[0054]
In addition, FIG. 4 shows a product obtained by analyzing a product obtained by linking DNA chains in this example by agarose gel electrophoresis. Lane 1 is a molecular weight marker obtained by digesting lambda phage DNA with a restriction enzyme EcoT14. Lane 2 is also a molecular weight marker and shows DNA of 700, 525, 500, 400, 300, 200, 100, and 50 base pairs from the top of the band shown in FIG. Lane 3 is a DNA fragment H10-1 consisting of the S1 chain and the A1 chain. Lane 4 is a mixture 1 in which the H10-1 fragment and the H10-2 fragment composed of the S2 and A2 chains were ligated. Lane 5 is the H10-3 fragment composed of the S3 and A3 chains and the S4 chain. And a mixture 2 obtained by ligating pieces of H10-4 comprising A4 chains. Lane 6 is a mixture obtained by ligating the mixture 2 and the H10-1 fragment, and lane 7 is a mixture 3 obtained by ligating the mixture 1 and the mixture 2. According to the analysis results, each DNA fragment was efficiently bound, and by ligation of the four fragments H10-1, H10-2, H10-3, and H10-4, there were few by-products and the fragments were efficiently ligated. Understand.
[0055]
Fourth embodiment
1. DNA strand design
In order to prepare a DNA probe for the human Hsp70 gene, based on the human Hsp70 gene base sequence shown in SEQ ID NO: 28 in the sequence listing, sense strands shown in SEQ ID NOS: 29 to 31, S21, S22, S23 and SEQ ID NO: Antisense strands A21, A22, and A23 shown in 32-34 were produced by a DNA synthesizer. In addition, the protein translation region of human Hsp70 starts from the start codon of atg from the first position. The base sequence shown in SEQ ID NO: 28 is a sequence encoding 100 amino acid residues from the N-terminal of human Hsp70 protein.
[0056]
2. Cloning of double-stranded DNA into BSA plasmid
0.33 M Tris-acetic acid (pH 7.0) containing 300 pmol of the S21 chain and its paired A21 chain and 4 μl of 0.1 M magnesium acetate, 0.66 M potassium acetate, 5 mM DDT, and 0.1% BSA (bovine serum albumin). 9) Reaction was performed at 37 ° C. for 20 minutes in a total of 40 μl of a reaction solution containing a buffer solution, 4 units of T4 polymerase, and 5 nmol of dATP, dGTP, dTTP, and dCTP, followed by treatment at 65 ° C. for 30 minutes. . This 40 μl DNA solution was precipitated with ethanol, and the precipitate was dissolved in 30 μl of TE buffer.
[0057]
Take 10 μl of this and add 2 μl of 0.1 M MgCl 2 0.66M Tris-Cl (pH 7.6) containing 10 units of T4 polynucleotide kinase and 20 nmol of ATP, make up to a total of 20 μl with pure water, react at 37 ° C. for 1 hour, and make the 5 ′ side of the DNA strand Phosphorylated. 9 μl of the phosphorylated DNA solution and 1 μl of the BSA plasmid digested with Nru I prepared in Example 2 were mixed, ligated, and used to transform XL1-Blue Escherichia coli. , IPTG and X-Gal were inoculated on an LB agar plate, and several white colonies of the resulting E. coli colonies were cultured, and a plasmid was prepared from the cells.
[0058]
The nucleotide sequence of the plasmid obtained above was examined by ABI PRISM Genetic Analyzer, and the sequence in which the DNA strand was correctly inserted into the NruI cleavage site of the BSA plasmid, that is, the BsaI restriction enzyme recognition site (5 ' The base sequence enclosed by ggtctc on the side and gagacc on the 3 ′ side) was selected as follows and designated as plasmid H70-P1. The border between the vector and the inserted DNA is shown in blank.
Plasmid H70-P1
Sequence prepared using S21 and A21 chains (SEQ ID NO: 35 in Sequence Listing)
5 ' ggtctc g atggccaaagccgcggcgatcggcatcgacctggggcaccacctactcctgcgtggggggtgttccaacacggcaaggtggagcatcatcgccacacgc gagacc ctcg 3 '
[0059]
Similarly, a double-stranded DNA consisting of the S22 and A22 chains and the S23 and A23 chains was also cloned into the BSA plasmid, and plasmids having the sequence in which the DNA chain was correctly inserted at the NruI cleavage site, plasmids H70-P2 and H70- I chose P3 each. At this time, the base sequence surrounded by the Bsa I restriction enzyme cleavage sites (ggtctc on the 5 ′ side and gagacc on the 3 ′ side indicated by underlines) is as follows.
Plasmid H70-P2
Sequence prepared using S22 chain and A22 chain (SEQ ID NO: 36 in Sequence Listing)
5 ' ggtctc g aacgaccagggcaaccgcaccacccccgagtacgttgccttcacggacaccgagcggctcatcgggggatgcggcccaagaacaccggtggcgctgaacccgcagacac gagacc 3 '
Plasmid H70-P3
Sequence prepared using S23 chain and A23 chain (SEQ ID NO: 37 in Sequence Listing)
5 ' ggtctc g agaccaccggtttttgacgcgaagcggctgatcgggccgcaagttcggcgacccggtggtgcagtcggacatgaagcactgggcctttccaggtgatcaacgacggagagagag gagacc 3 '
[0060]
3. Cutting out DNA fragments
2 above. 40 μg of the plasmid H70-P1 prepared in the above, containing 20 units / μl of restriction enzyme BsaI, 50 mM Tris-HCl (pH 7.9), 10 mM MgCl 2 2 , 100 mM NaCl, 1 mM DTT (dithiothreitol) in a buffer at 37 ° C. overnight for digestion. Digested plasmid DNA was subjected to 0.7% agarose gel electrophoresis. The separated DNA band of about 100 bp was cut out, purified by Qiaquick Gel Extraction Kit, dissolved in 30 μl of TE buffer, and stored as an H70-P1 fragment. In a similar manner, H70-P2 and H70-P3 fragments were prepared from plasmids H70-P2 and H70-P3.
[0061]
4. Ligation of DNA fragments
3 above. 6 μl each of the H70-P1 fragment and the H70-P2 fragment prepared in the above, and 6 μl of a ligation reagent DNA Ligation kit I solution (manufactured by Takara Shuzo Co., Ltd.) were added, and reacted at room temperature for 2 hours to obtain a mixed solution P1. . Next, 6 μl of the H70-P3 fragment and the ligation reagent DNA Ligation kit I solution were added to 18 μl of the mixed solution P1, and reacted at room temperature for 2 hours and 30 minutes. This was designated as mixture P2.
[0062]
5. Construction of plasmid vector for recloning
Two types of DNA strands consisting of 22 bases described below were prepared by a DNA synthesizer.
5 ′ atggccaaaaaggacggagacaag 3 ′ (SEQ ID NO: 38 in Sequence Listing)
5'ctttgtctccgttccttttggccat 3 '(SEQ ID NO: 39 in Sequence Listing)
[0063]
100 pmol of each of the above DNA strands and 2 μl of 0.1 M MgCl 2 0.66M Tris-Cl (pH 7.6) containing 10 units of T4 polynucleotide kinase and 20 nmol of ATP, make up to a total of 20 μl with pure water, react at 37 ° C. for 1 hour, and make the 5 ′ side of the DNA strand Phosphorylated. Thereafter, the reaction solution was heated at 65 ° C. for 5 minutes, and then left at room temperature for 30 minutes. 4 μl of this phosphorylated DNA solution and 1 μl of Nru I digested BSA plasmid were mixed, and 5 μl of a ligation reagent DNA Ligation kit I solution was added thereto, followed by reaction at 16 ° C. for 2 hours. Using this, XL1-Blue Escherichia coli was transformed, inoculated on an LB agar plate containing ampicillin, IPTG, and X-Gal, and kept at 37 ° C. for 18 hours. Several white colonies were cultured from the resulting E. coli colonies to prepare plasmids.
[0064]
The plasmid obtained above was examined for its nucleotide sequence by ABI PRISM Genetic Analyzer, and the sequence in which the DNA strand was correctly inserted into the NruI cleavage site of the BSA plasmid, that is, the BsaI restriction enzyme cleavage site (5 ′ The base sequence surrounded by ggtctc and 3 ′ side gagacc) was selected as follows, and this plasmid was designated as BST plasmid. The boundaries between the vector and the inserted DNA are shown in blank columns. 5 ' ggtctc g atggccaaaggacgggagaacag c gagacc 3 '(SEQ ID NO: 40 in Sequence Listing)
[0065]
Next, 5.0 μg of the above BST plasmid was digested with a restriction enzyme BsaI, separated and purified by agarose gel electrophoresis, and dissolved in 50 μl of TE buffer. In the BST plasmid, the base sequence surrounded by the Bsa I restriction enzyme cleavage sites (ggtctc on the 5 ′ side and gagacc on the 3 ′ side) indicated by underlines is cut as follows to generate protruding ends. 5 ' ggtctc g (cut) caagc gagacc 3 '
3 ' cccagg ctacc (cut) g ctctgg 5 '
[0066]
6. Recloning of ligated DNA
5 above. 1 μl of the BST plasmid (digested with Bsa I) prepared in 1), 4 μl of a mixed solution P2 in which three DNA fragments were ligated, and 5 μl of a ligation reagent DNA Ligation kit I solution were added thereto, and the mixture was reacted at 16 ° C. for 2 hours. . XL1-Blue Escherichia coli was transformed with this reaction solution, and colonies were formed on an LB agar plate containing ampicillin. Several colonies were arbitrarily selected and cultured, and a plasmid was prepared from the culture solution. When the base sequence of the obtained plasmid was examined by ABI PRISM Genetic Analyzer, all the plasmids were found to have a Bsa I restriction enzyme site (ggtctcg and 3 on the 5 ′ side of SEQ ID NO: 41) as shown in SEQ ID NO: 41 in the sequence listing. The sequence surrounded by 'caagcgacacc' on the 'side had the human Hsp70 gene shown in SEQ ID NO: 28 in the sequence listing and had the first to 300th sequences.
[0067]
【The invention's effect】
The present invention is configured as described above, and enables the synthesis of industrially useful DNA strands, such as efficiently linking DNA fragments or DNA strands produced by chemical synthesis and encoding genes. First, even if there is no source of a gene library such as a genome or mRNA, a target gene can be prepared using only information on the nucleotide sequence. In addition, even for a protein or the like that is difficult to obtain, it can be prepared using only the information on the base sequence, or the base sequence can be made a codon suitable for expression. In addition, by arbitrarily selecting a base sequence, a gene that does not exist in nature can be prepared, and an artificial mutation such as a single base or several bases can be arbitrarily created.
[0068]
Conventionally, only two DNA fragments could be ligated, but the method of ligation of DNA strands of the present invention can ligate three or more DNA fragments by a single cloning operation. Step can be greatly reduced, and the number of days for producing a DNA chain can be shortened. Further, by using the cloning vector of the present invention, a DNA fragment can be cloned into a vector without using a restriction enzyme cleavage site inherent in the DNA fragment. In addition, as compared with the method using PCR, the error of the base sequence, that is, the probability of occurrence of mutation is extremely small. In addition, the DNA cloning method of the present invention can correct errors in the base sequence of a chemically synthesized DNA chain, and can efficiently obtain highly accurate DNA with fewer base sequence errors.
[Sequence list]
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564
Figure 2004180564

[Brief description of the drawings]
FIG. 1 shows a DNA strand according to the present invention, which is cloned into a vector having restriction enzyme sites having cleavage sites different from the recognition base sequence and arranged on both sides of a cloning site (FIG. 1-A), and different from the recognition base sequence. A restriction enzyme having a cleavage site cuts the boundary between the vector and the inserted DNA strand or the inside of the inserted DNA strand to generate a specific sticky end (FIG. 1-B), and the resulting DNA strand having a specific sticky end Fig. 1 is a conceptual diagram showing a method of ligation (Fig. 1-U) and recloning with a vector having sticky ends complementary to specific sticky ends at both ends of a ligated DNA strand. In FIG. 1, X, Y, W, Z, U, V, E, F, P, Q, N, R, and K represent bases of a DNA chain. X and Y, W and Z, U and V, E and F, P and Q, R and K are complementary bases. RRRRRR indicates a recognition sequence of a restriction enzyme having a cleavage site different from the recognition base sequence. 5′RRRRRRRN NKKKKKK 3 ′ is a cloning site of the vector, and a blank such as between N and N indicates that the DNA strand has been cut there. The number of X, Y, W, Z, U, V, E, F, P, Q, N, R, and K in the figure is an example, and is not limited to the number in FIG. The solid line on the base sequence shown in FIG. 1 indicates a cleavage site by the restriction enzyme.
FIG. 2 is a conceptual diagram showing a sequence of a cloning site of a vector for generating a predetermined specific sticky end. In FIG. 2, N, R, and K indicate bases of a DNA chain.
R and K are complementary bases. The region indicated by A indicates a restriction enzyme recognition site generating a blunt end, and the region indicated by B indicates a restriction enzyme recognition site having a cleavage site different from the recognition base sequence. 5'RRRRRRRN NKKKKKK 3 'is a cloning site for the vector, and blanks such as between N and N indicate that the DNA strand has been cut there. The numbers of N, R, and K in FIG. 2 are examples, and are not limited to the numbers in FIG.
FIG. 3 is a conceptual diagram showing a method for preparing a vector for recloning a ligated DNA strand. Cloning of a DNA strand having the sequence of the end portion of the linked DNA chain at both ends, when the DNA sequence is cleaved with a restriction enzyme having a cleavage site different from the recognition base sequence, an adhesive sequence which is complementary to the sequence of the end portion of the linked DNA chain. Make the ends come up. With this vector, the ligated DNA strand can be recloned. In the figure, X, Y, P, Q, E, F, N, R, and K indicate bases of a DNA chain. X and Y, P and Q, E and F, and R and K are complementary bases. RRRRRR indicates a recognition sequence of a restriction enzyme having a cleavage site different from the recognition base sequence. 5′RRRRRRRN NKKKKKK 3 ′ is a cloning site of the vector, and a blank such as between N and N indicates that the DNA strand has been cut there. The number of X, Y, P, Q, E, F, N, R, and K in FIG. 3 is an example, and is not limited to the number in FIG.
FIG. 4 shows a product obtained by linking DNA strands using the DNA fragment prepared in Example 3 and analyzed by agarose gel electrophoresis. It can be seen that the DNA fragments are efficiently linked, and the four fragments of H10-1, H10-2, H10-3, and H10-4 are ligated efficiently with few by-products.

Claims (8)

認識塩基配列とは異なる切断部位を持つ制限酵素認識部位をクローニング部位の両脇に配置したベクターにDNA鎖をクローニングし、クローニングされた挿入DNA鎖とベクターの境界または挿入されたDNA鎖内部を、その認識塩基配列とは異なる切断部位を持つ制限酵素で切断することにより、切断したDNA断片に予め設定した特異的な粘着末端を付与せしめ、この操作で得られた特異的な粘着末端を持つDNA断片を複数個結合する事を特徴とするDNA鎖の連結方法。The DNA strand is cloned into a vector in which a restriction enzyme recognition site having a cleavage site different from the recognition base sequence is arranged on both sides of the cloning site, and the boundary between the cloned inserted DNA strand and the vector or the inside of the inserted DNA strand is By cutting with a restriction enzyme having a cleavage site different from the recognition base sequence, a predetermined specific sticky end is added to the cut DNA fragment, and the DNA having a specific sticky end obtained by this operation is obtained. A method for joining DNA chains, comprising joining a plurality of fragments. DNAをクローニングするクローニングベクターであり、このベクターのクローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに、対称に配置し、認識塩基配列とは異なる切断部位を持つ制限酵素で消化時に、挿入されたDNA鎖とベクターの境界または挿入されたDNA鎖内部の両端を切断することにより結合可能な粘着末端を持つDNA断片を生じせしめる事を特徴とするクローニングベクター。A cloning vector for cloning DNA. A restriction site having a cleavage site different from the recognition base sequence around a restriction enzyme recognition site (this enzyme is referred to as enzyme A) which generates one blunt end serving as a cloning site of this vector. The enzyme recognition site (this enzyme is referred to as enzyme B) is symmetrically arranged without overlapping or partly with the restriction enzyme recognition site of enzyme A, and digested with a restriction enzyme having a cleavage site different from the recognition base sequence. A cloning vector characterized by occasionally cutting a boundary between the inserted DNA strand and the vector or both ends inside the inserted DNA strand to generate a DNA fragment having a sticky end capable of binding. 目的のDNA断片の末端部分の配列を両端部分に持つ2本鎖DNAを、クローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに対称に配置したベクターのクローニング部位に挿入し、認識塩基配列とは異なる切断部位を持つ制限酵素で切断することにより、該DNA断片の末端部分の配列に相補的となる粘着末端を持つベクターを調製し、このベクターにより該DNA断片をクローニングする事を特徴とするDNAのクローニング方法。The double-stranded DNA having the sequence of the terminal portion of the target DNA fragment at both ends is converted into a recognition base sequence centered on a restriction enzyme recognition site (this enzyme is referred to as enzyme A) which generates one blunt end serving as a cloning site. A restriction enzyme recognition site having a cleavage site different from the above (this enzyme is referred to as enzyme B) is inserted into a cloning site of a vector symmetrically arranged without or partially overlapping with the restriction enzyme recognition site of enzyme A, By cutting with a restriction enzyme having a cleavage site different from the recognition base sequence, a vector having a sticky end complementary to the sequence of the terminal portion of the DNA fragment is prepared, and the DNA fragment is cloned with this vector. A method for cloning DNA, characterized by the following. クローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに対称に配置することで、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位をクローニング部位の両脇に配置したベクターにDNA鎖をクローニングし、クローニングされた挿入DNA鎖とベクターの境界または挿入されたDNA鎖内部を、その認識塩基配列とは異なる切断部位を持つ制限酵素で切断することにより、切断したDNA断片に予め設定した特異的な粘着末端を付与せしめ、この操作で得られた特異的な粘着末端を持つDNA断片を複数個結合する事を特徴とするDNA鎖の連結方法。Restriction enzyme recognition site (this enzyme is called enzyme B), which has a cleavage site different from the recognition base sequence around a restriction enzyme recognition site that generates one blunt end to be a cloning site (this enzyme is called enzyme A) Is arranged symmetrically without any overlap or overlap with the restriction enzyme recognition site of enzyme A, so that a restriction enzyme recognition site having a cleavage site different from the recognition base sequence is placed on both sides of the cloning site. The DNA strand is cloned, and the boundary between the cloned inserted DNA strand and the vector or the inside of the inserted DNA strand is cleaved with a restriction enzyme having a cleavage site different from the recognition base sequence, thereby obtaining a cut DNA fragment in advance. The method is characterized in that a specific sticky end is set and a plurality of DNA fragments having a specific sticky end obtained by this operation are bound. Method of connecting the NA chain. クローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに対称に配置することで、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位をクローニング部位の両脇に配置したベクターにDNA鎖をクローニングし、クローニングされた挿入DNA鎖とベクターの境界または挿入されたDNA鎖内部を、その認識塩基配列とは異なる切断部位を持つ制限酵素で切断することにより、切断したDNA断片に予め設定した特異的な粘着末端を付与せしめ、この操作で得られた特異的な粘着末端を持つDNA断片を複数個結合してDNA鎖を作成し、上記操作で得られたクローニング目的のDNA断片の末端部分の配列を両端部分に持つ2本鎖DNAを、クローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに対称に配置したベクターのクローニング部位に挿入し、認識塩基配列とは異なる切断部位を持つ制限酵素で切断することにより、該DNA断片の末端部分の配列に相補的となる粘着末端を持つベクターを調製し、このベクターにより該DNA断片をクローニングする事を特徴とするDNAのクローニング方法。Restriction enzyme recognition site (this enzyme is called enzyme B), which has a cleavage site different from the recognition base sequence around a restriction enzyme recognition site that generates one blunt end to be a cloning site (this enzyme is called enzyme A) Is arranged symmetrically without any overlap or overlap with the restriction enzyme recognition site of enzyme A, so that a restriction enzyme recognition site having a cleavage site different from the recognition base sequence is placed on both sides of the cloning site. The DNA strand is cloned, and the boundary between the cloned inserted DNA strand and the vector or the inside of the inserted DNA strand is cleaved with a restriction enzyme having a cleavage site different from the recognition base sequence, thereby obtaining a cut DNA fragment in advance. The specified specific sticky ends are given, and a DNA chain is created by joining a plurality of DNA fragments having the specific sticky ends obtained by this operation. The double-stranded DNA having the sequence of the terminal portion of the DNA fragment to be cloned obtained at the both ends at the both ends is converted to a restriction enzyme recognition site that generates one blunt end to be a cloning site (this enzyme is referred to as enzyme A). ), A restriction enzyme recognition site having a cleavage site different from the recognition base sequence (this enzyme is referred to as enzyme B) is arranged symmetrically without overlapping or partially overlapping with the restriction enzyme recognition site of enzyme A. The vector was inserted into the cloning site of the vector and cut with a restriction enzyme having a cleavage site different from the recognition base sequence to prepare a vector having a sticky end that was complementary to the sequence of the terminal portion of the DNA fragment. A method for cloning DNA, characterized in that said DNA fragment is cloned by the following method. ベクターのクローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに、対称に配置した配列は、ggtctcgcgagacc(配列表の配列番号1)又はgaagacccgggtcttc(配列表の配列番号2)である事を特徴とする請求項4のDNA鎖の連結方法。A restriction enzyme recognition site having a cleavage site different from the recognition base sequence (this enzyme is referred to as enzyme B), with a restriction enzyme recognition site that generates one blunt end serving as a vector cloning site (this enzyme is referred to as enzyme A). The sequence symmetrically arranged without overlapping or partially overlapping with the restriction enzyme recognition site of enzyme A is ggtctcgcgagacc (SEQ ID NO: 1 in the Sequence Listing) or gaagaccccggtctttc (SEQ ID NO: 2 in the Sequence Listing). The method for ligating DNA strands according to claim 4, characterized in that: ベクターのクローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに、対称に配置した配列は、ggtctcgcgagacc(配列表の配列番号1)又はgaagacccgggtcttc(配列表の配列番号2)である事を特徴とする請求項2のクローニングベクター。A restriction enzyme recognition site having a cleavage site different from the recognition base sequence (this enzyme is referred to as enzyme B), with a restriction enzyme recognition site that generates one blunt end serving as a vector cloning site (this enzyme is referred to as enzyme A). The sequence symmetrically arranged without overlapping or partially overlapping with the restriction enzyme recognition site of enzyme A is ggtctcgcgagacc (SEQ ID NO: 1 in the Sequence Listing) or gaagaccccggtctttc (SEQ ID NO: 2 in the Sequence Listing). The cloning vector according to claim 2, characterized in that: ベクターのクローニング部位となる一つの平滑末端を生じる制限酵素認識部位(この酵素を酵素Aとする)を中心として、認識塩基配列とは異なる切断部位を持つ制限酵素認識部位(この酵素を酵素Bとする)を、酵素Aの制限酵素認識部位と一部重複または重複せずに、対称に配置した配列は、ggtctcgcgagacc(配列表の配列番号1)又はgaagacccgggtcttc(配列表の配列番号2)である事を特徴とする請求項3又は5のDNAのクローニング方法。A restriction enzyme recognition site having a cleavage site different from the recognition base sequence (this enzyme is referred to as enzyme B), with a restriction enzyme recognition site that generates one blunt end serving as a vector cloning site (this enzyme is referred to as enzyme A). The sequence symmetrically arranged without overlapping or partially overlapping with the restriction enzyme recognition site of enzyme A is ggtctcgcgagacc (SEQ ID NO: 1 in the Sequence Listing) or gaagaccccggtctttc (SEQ ID NO: 2 in the Sequence Listing). The method for cloning DNA according to claim 3 or 5, wherein:
JP2002350380A 2002-12-02 2002-12-02 DNA chain linking method and cloning vector Expired - Fee Related JP4443822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350380A JP4443822B2 (en) 2002-12-02 2002-12-02 DNA chain linking method and cloning vector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350380A JP4443822B2 (en) 2002-12-02 2002-12-02 DNA chain linking method and cloning vector

Publications (2)

Publication Number Publication Date
JP2004180564A true JP2004180564A (en) 2004-07-02
JP4443822B2 JP4443822B2 (en) 2010-03-31

Family

ID=32752621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350380A Expired - Fee Related JP4443822B2 (en) 2002-12-02 2002-12-02 DNA chain linking method and cloning vector

Country Status (1)

Country Link
JP (1) JP4443822B2 (en)

Also Published As

Publication number Publication date
JP4443822B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP7546689B2 (en) Class 2 Type II CRISPR System
JP2007534303A (en) Methods for making synthetic genes or other DNA sequences
CN109072244A (en) It is expressed using the cell-free protein of rolling circle amplification product
US20240301374A1 (en) Systems and methods for transposing cargo nucleotide sequences
CN101688208B (en) The preparation of esterase
EP4217499A1 (en) Systems and methods for transposing cargo nucleotide sequences
US20230048564A1 (en) Crispr-associated transposon systems and methods of using same
US20240301445A1 (en) Crispr-associated transposon systems and methods of using same
US20240301371A1 (en) Crispr-associated transposon systems and methods of using same
JP2004180564A (en) Method for dna chain binding, cloning vector and method for dna cloning
US8527211B2 (en) Method to produce recombinant MBP8298 and other polypeptides by nucleotide structure optimization
WO2021058145A1 (en) Phage t7 promoters for boosting in vitro transcription
KR100538990B1 (en) Plasmid having a function of T-vector and expression vector, and expression of the target gene using the same
Liu et al. Rational protein sequence diversification by multi-codon scanning mutagenesis
US11085042B2 (en) Method of producing DNA and DNA library
WO2024126847A1 (en) Mrna recombinant capping enzymes
WO2024215764A1 (en) Compositions and method including rna-binding proteins
CN118006584A (en) Programmable nuclease with CRISPR loci completely deleted from Cas1, cas2 and Cas4 and application thereof
WO2021096391A1 (en) Use of cas9 protein from the bacterium pasteurella pneumotropica
JPH0568557A (en) Factor xa linker dna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees