JP2004180439A - Seal oil supply arrangement of rotating electric machine - Google Patents

Seal oil supply arrangement of rotating electric machine Download PDF

Info

Publication number
JP2004180439A
JP2004180439A JP2002345017A JP2002345017A JP2004180439A JP 2004180439 A JP2004180439 A JP 2004180439A JP 2002345017 A JP2002345017 A JP 2002345017A JP 2002345017 A JP2002345017 A JP 2002345017A JP 2004180439 A JP2004180439 A JP 2004180439A
Authority
JP
Japan
Prior art keywords
sealing oil
oil
sealing
oil supply
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002345017A
Other languages
Japanese (ja)
Other versions
JP3939241B2 (en
Inventor
Tetsuhiro Fujita
鉄博 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002345017A priority Critical patent/JP3939241B2/en
Publication of JP2004180439A publication Critical patent/JP2004180439A/en
Application granted granted Critical
Publication of JP3939241B2 publication Critical patent/JP3939241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To demonstrate an intrinsic function only by providing a single replacement oil deaerator to a plurality of rotating electric machines and sealed oil processors. <P>SOLUTION: A replacement oil deaerator 40 for vacuum deaerating the air side seal oil is provided in the middle of a seal oil refilling pipe 15 which refills a seal oil from an air side seal oil circuit to a hydrogen side seal oil circuit. A plurality of seal oil processors 45 are connected to a single replacement oil deaerator 40. Integrating flowmeters 47 and 48 are provided to the seal oil refilling pipe 15 and a deaerated oil supply pipe 44. The seal oil refilling pipe 15 is provided with a flow rate regulating valve 46. A comparison controller 49 controls open degree of the flow rate regulating valve 46 so that the accumulated amount of the integrating flowmeters 47 and 48 per unit time is identical. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、水素ガスを封入した回転電機軸封部に密封油を供給する回転電機の密封油供給装置に関するものである。
【0002】
【従来の技術】
従来の回転電機の密封油供給装置には、空気側密封油脱気装置を空気側密封油回路から水素側密封油回路への密封油補給管の途中に設置するとともに、均圧弁で水素側の密封油圧力を高く調整し、強制的に空気側回路から水素側回路へ少量補給させて、これを空気側密封油脱気装置に引き入れ真空脱気処理するものがある(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平6−185497号公報(第4頁)
【0004】
【発明が解決しようとする課題】
従来の回転電機の密封油供給装置は上記のように構成されているので、回転電機1台或いは密封油処理装置1台に対し、交換油脱気装置は必ず1台必要であった。
この為、例えば回転電機が複数台(例えば2台)設置してある発電所へ交換油脱気装置を追設して、発電機内の水素ガス純度の低下を防止するためには、交換油脱気装置を2台設置する必要があり、交換油脱気装置の製作費用、並びにその据え付けなどにかかる工事費用が高くなるという問題点があった。
【0005】
この発明は上記のような問題点を解消するためになされたもので、複数台の回転電機及び密封油処理装置が設置してある発電所に対し、交換油脱気装置を1台だけ設置するだけで済むようにすることにより、製作費用並びに工事費用の低減を図るとともに、全ての回転電機の水素ガス純度の低下を防止することが出来る密封油供給装置を得ることを目的としている。
【0006】
【課題を解決するための手段】
この発明の請求項1に係る回転電機の密封油供給装置は、水素ガスを密封した回転電機軸封部の密封器の水素側及び空気側にそれぞれ別個に密封油を供給する水素側密封油供給回路及び空気側密封油回路を備え、空気側密封油回路から水素側密封油回路へ密封油を補給する密封油補給管の途中に空気側密封油を真空脱気する交換油脱気装置を設置したものであって、交換油脱気装置1台に対して複数台の密封油処理装置を接続するとともに、交換油脱気装置と密封油処理装置とをつなぐ密封油補給管と脱気油供給管にそれぞれ積算流量計を設け、更に密封油補給管には流量調整弁を設け、積算流量計の単位時間当たりの積算量が同じになるように流量調整弁の開度を制御する比較制御器を設けたものである。
【0007】
【発明の実施の形態】
前提技術.
図1はこの発明の前提技術となる回転電機の密封油供給装置を示す系統図であり、回転電機,密封油処理装置及び交換油脱気装置を1台ずつ設置した場合を示している。
図において、水素ガスが封入された回転電機1には回転軸2が設けられている。水素側密封油供給管4は、密封器3の水素側(機内側)に密封油を供給しており、又、空気側密封油供給管5は密封器3の空気側(機外側)に密封油を供給している。泡取箱6は密封器3から水素側に排出される密封油を一時停滞させ、密封油内の気泡を除去するために設置されており、この泡取箱6には、水素側密封油排油管7がつながれている。又、軸受油排油管8においては、空気側の油及び軸受油(図示省略)が一体となり、排出される。
【0008】
ループシールタンク9は空気側密封油排油及び軸受排油を一時停滞させ、水素ガス及び空気を排気しており、ループシールタンク排出管10は、ループシールタンク9内で分離された水素ガス及び空気を安全な外部、例えば屋外に導いている。
又、ベーパエクストラクタ11は、ループシールタンク9内の上方空間部の圧力を、軸受部の圧力よりも低くするとともに、ループシールタンク9内の水素ガス及び空気を抽出して屋外に強制的に排出するよう設置されている。
【0009】
ループシールタンク9には空気側密封油戻り管12が結合されており、水素ガス遮断槽13は回転電機1内の水素ガスが外部に流出するのを遮断している。フロート弁14は水素ガス遮断槽13内の油面を一定に維持しており、密封油補給管15は水素側密封油回路の油量が不足したときに空気側密封油回路から油を補給するために設けられている。水素側密封油ポンプ16は水素ガス遮断槽13内の密封油を密封器3の水素側に供給し、密封器3からの水素側密封油排油が水素ガス遮断槽13へ戻るように構成した水素側密封油回路中に設けられている。
【0010】
常用空気側密封油ポンプ(交流電源で駆動)17及び非常用空気側密封油ポンプ(直流電源で駆動)18は、ループシールタンク9内の密封油を密封器3の空気側に供給し、密封器3からの空気側密封油排油を軸受排油とともにループシールタンク9へ戻るように構成されており、これらは空気側密封油回路中に設けられている。
又、空気側密封油回路中には、逆止弁19,ポンプ入口弁20,安全弁21が設けられている。
【0011】
差圧調整弁22は、密封器3部分で機内水素ガス圧より空気側密封油圧が一定値だけ高くなるように常用空気側密封油ポンプ17,又は非常用空気側密封油ポンプ18からの供給量を調整する目的で、ポンプの吐出側と吸込側を結ぶバイパス回路上に設置されている。
又、空気側密封油回路中には、空気側密封油冷却器23及び空気側密封油フィルタ24が設けられている。手動バイパス弁25は水素側密封油ポンプ16からの供給油量を、水素側密封油回路に必要な油量に設定するために水素側密封油ポンプ16の吐出量の内、密封器3へ供給される以外の流量を水素側密封油ポンプ16の吸込側へ戻す目的で設置されており、更に水素側密封油回路には、安全弁26,水素側密封油冷却器27,水素側密封油フィルタ28が設けられている。
【0012】
均圧弁29は、密封器3部分で空気側密封油圧と水素側密封油圧が等圧となるように水素側密封油圧を調整する目的で水素側密封油回路上に設置されている。真空脱気槽30は空気側密封油中から空気を脱気するものであり、フロート弁31は真空脱気槽30の油面を自動的に一定に維持するために設けられている。油面警報器32は真空脱気槽30内の異常油面を検知するものであり、スプレイノズル管33は真空脱気槽30内に保有した密封油の内、水素ガス遮断槽13に供給する以外の密封油を真空脱気槽30内で噴霧して脱気を促進させるものであり、脱気皿34はスプレイノズル管33から噴霧した密封油を徐々に脱気させる。そして導入管35はループシールタンク9から戻ってきた空気側密封油を脱気皿34に導き脱気効果を上げるために設けられている。
【0013】
更に真空計36,油面計37,真空脱気槽入ロ弁38,真空ポンプユニット39によって交換油脱気装置40が構成されている。
又、交換油脱気装置40内には、補給油ポンプ41,補給油ポンプ入口弁42,補給油ポンプ入口管43が設置されており、脱気油供給管44は補給油ポンプ41から水素ガス遮断槽13に脱気された密封油を供給するために設けられている。そして水素ガス遮断槽13等により密封油処理装置45が構成されている。
【0014】
次に動作について説明する。
回転電機1内の水素ガスは水素側密封油回路及び空気側密封油回路の両回路中を循環する密封油により密封されている。
水素側密封油回路においては、密封油は水素側密封油ポンプ16により押し出されるが、交換油脱気装置40の効果を発揮させる為、水素側密封油回路の密封器3における密封油圧を、空気側の密封油圧よりも少し高くなるように均圧弁29の設定をする。
この様にすることで、密封器3では水素側から空気側に密封油が少量流れ出て空気側の密封油となる。そしてその他の大部分の密封油は、回転軸2に沿って水素側に押し出され、泡取箱6に入った後、あふれ出て水素ガス遮断槽13に入る。
【0015】
ここで密封油中に泡となって含まれた水素ガスを抜き、水素ガス遮断槽13の底より引き出された密封油は水素側密封油ポンプ16に送り込まれる。
密封器3で少量の水素側密封油が空気側に流れ出たため、水素側の密封油の量が徐々に減少し、空気側密封油回路から補充のために交換油脱気装置40内にある補給油ポンプ41から押し出された脱気された純粋な密封油の内、密封器3で空気側に流れ出た分と等しい量の密封油が水素ガス遮断槽13内に供給されるように、フロート弁14が一定の開度で開いている。
この様にして水素側の密封油の全量を一定量に維持している。
【0016】
空気側密封油回路においては、密封油は正常運転時には常用空気側密封油ポンプ17により押し出され、差圧調整弁22により機内ガス圧より一定値だけ高い圧力に保たれ、密封器3へ供給される。
そして、密封油は回転軸2に沿って空気側に押し出され、軸受油(図示省略)と一緒になり、ループシールタンク9を通り、密封器3において流れ込んだ水素側密封油により少し多くなった密封油が、ループシールタンク9から常用空気側密封油ポンプ17に送り込まれる。常用空気側密封油ポンプ17から送り出された密封油の内、少量が交換油脱気装置40内にある真空脱気槽30に送り込まれる。
【0017】
真空脱気槽30内に送り込まれた密封油は、脱気皿34で脱気され、真空脱気槽30内で上方の油溜まりとなる。
真空脱気槽30内では下方の油溜まりから補給油ポンプ41へ脱気された密封油を送り出している。常用空気側密封油ポンプ17のトラブルなどで、常用空気側密封油ポンプ17が停止した異常時には、直流電源駆動の非常用空気側密封油ポンプ18が自動起動し、常用空気側密封油ポンプ17と同じ機能を果たす。この様にして空気側密封油回路、水素側密封油回路とも完結され同じ循環を繰り返す。
【0018】
以上のように回転電機1の密封器3内で、水素側密封油が空気側に流れ出ても、同じ回転電機1の空気側密封油となることから、必ず密封油処理装置45に戻ってくることが出来る。
従って、水素側、空気側とも油の過不足による問題は発生せず、交換油脱気装置40が保有している発電機内の水素ガス純度を低下することを防止できる。
【0019】
上記構成においては、回転電機1台或いは密封油処理装置1台に対し、交換油脱気装置を1台設けた場合について説明したが、図2に示すように、密封油処理装置45a,45b2台に対し交換油脱気装置40を1台単純に接続することも考えられる。
尚、図2においては、密封油処理装置45aに対してのみ回転電機1を接続しているが、密封油処理装置45bにも回転電機を接続しているものとして、図示は省略する。
【0020】
このように、回転電機1が2台あり、密封油処理装置45a,45bも2台設置してある状況で、1台の交換油脱気装置40からの密封油を各密封油処理装置45a,45bに供給する事は出来るが、密封器3での水素側密封油の空気側への流れ出し量は回転電機1毎で異なる事が予想される。
【0021】
各回転電機1から密封油処理装置45a,45bに油は戻ってくるが、密封油処理装置45a,45bから交換油脱気装置40への密封油の戻り量が、各密封油処理装置45a,45b内の圧力の違い、あるいは配管形状の違いなどにより異なることがある。
例えば交換油脱気装置40から密封油処理装置45a,45bに供給した密封油量が、同じ密封油処理装置45a,45bから同じ量だけ交換油脱気装置40に戻ってくることはあり得ず、必ず一方が多くなり他方が少なくなることが予想される。
このため経時的に一方の回転電機1を含む発電所ユニット間で油の過不足が発生する事になる。
本発明においては、複数台の回転電機1及び密封油処理装置45に対して、交換油脱気装置40を1台設置しても、個々の回転電機1及び密封油処理装置45における保有油量の増減をなくすことができるように工夫したものである。
【0022】
実施の形態1.
この発明の実施の形態1による回転電機の密封油供給装置を示す系統図は図2と同様である。
図では密封油処理装置45を2台設けた場合を示しているが、3台になれば交換油脱気装置40と密封油処理装置45間を接続している密封油補給管15と脱気油供給管44が各3本になる。
また、複数台として4台になれば、上記と同様4本になる。
【0023】
図3は交換油脱気装置40の主要部分を示す系統図である。
図において、流量調整弁46a,46bは密封油処理装置45a,45bから戻ってくる密封油の回路を構成する密封油補給管15a,15bに設けられている。又、積算流量計47a,47bは脱気油供給管44a,44bに設置されており、積算流量計48a,48bは密封油補給管15に設置されている。そして、比較調整器49が積算流量計47,48からの積算流量信号を比較して流量調整弁46a,46bを動作させる制御信号を送るものである。
【0024】
次に動作について説明する。
脱気油供給管44a,44bにより供給された密封油は、積算流量計47a,47bによって流量積算量が電気信号として比較調整器49に送信される。
また、密封油補給管15a,15bでは、設置された積算流量計48a,48bによって、流量積算量が電気信号として比較調整器49に送信される。比較調整器49では、両者の電気信号に差が無くなるように流量調整弁46a,46bの開度を変化させる信号を送信する。
即ち、密封油処理装置45a,45bへの供給量が増加した場合、その増加は単位時間当たりの積算量の増加となるため、比較調整器49では、密封油処理装置45a,45bから油が戻る密封油補給管15a,15bに設置してある流量調整弁46a,46bの開度を大きくして、密封油処理装置45a,45bへの供給量が増加し、単位時間当たりの積算量の増加分に見合った油量を補う。
【0025】
以上のように本実施形態によれば、脱気油供給管44a,44bそれぞれに積算流量計47a,47bを設け、又、密封油補給管15a,15bそれぞれに積算流量計48a,48bと流量調整弁46a,46bを設けたことにより、密封油処理装置45a,45bへの供給量と戻り量を等しくすることが出来るため、交換油脱気装置40の機能を失うことなく、複数の回転電機1或いは密封油処理装置45への接続が出来る。
【0026】
このようにして、複数台の回転電機1および密封油処理装置45に対し、交換油脱気装置40を1台設置するのみで、交換油脱気装置の機能を維持しながら、即ち回転電機1内の水素ガス純度の低下を防止して、個々の回転電機1或いは密封油処理装置45の保有油量の増減を無くすことが出来る。複数台の回転電機1が設置してある発電所に対し、交換油脱気装置40を1台設置するだけで済むため、交換油脱気装置40の製作費、並びに現地での工事費の低減が図れる。
【0027】
実施の形態2.
図4はこの発明の実施の形態2による交換油脱気装置40の主要部分を示す系統図である。
上記実施の形態1では、密封油補給管15a,15bに流量調整弁46a,46bを設けて弁の開度を調整することにより、密封油処理装置45a,45bへの供給量と戻り量を等しくする様にしていたが、本実施形態においては、流量調整弁46a,46bの代わりに、自動開閉弁50a,50bを設けるようにしたものである。
【0028】
即ち、ある単位時間の間で積算流量計47aが30リッターを積算し、積算流量計47bが20リッターを積算したとした場合、この信号を自動開閉弁開閉調整器51に送り、自動開閉弁50aを開ける信号を出す。
そして積算流量計48aの積算量が30リッターになれば自動開閉弁50aを閉める。
続いて、自動開閉弁開閉調整器51は自動開閉弁50bを開ける信号を出し、積算流量計48bの積算量が20リッターになれば自動開閉弁50bを閉める。
【0029】
この様に制御することで、密封油処理装置45aへの密封油の供給量と戻り量は等しくなり、又、密封油処理装置45bへの密封油の供給量と戻り量も等しくなる。
これにより、上記実施の形態1の場合と同様、1台の交換油脱気装置40により、その機能を失うことなく、複数の回転電機1或いは密封油処理装置45への接続が出来るとともに、更に本実施形態においては、流量調整弁46の代わりに、安価なON−OFF弁である自動開閉弁50を使用することが出来るため、交換油脱気装置40の製作費の低減を図ることができる。
なお、積算流量計47a,47bで計測する単位時間よりも、自動開閉弁50aと自動開閉弁50bの合計の開動作時間は短くするように回路構成を採ることが必要である。
【0030】
実施の形態3.
図5はこの発明の実施の形態3による交換油脱気装置の主要部分を示す系統図である。
上記実施の形態2では、単位時間毎に自動開閉弁50a,50bを開閉していたが、本実施形態の場合は、真空脱気槽油面スイッチ52が真空脱気槽30の油面変化を検知して、自動開閉弁50a,50bを開閉するものである。
【0031】
例えば真空脱気槽30の油面が一定値まで低下した場合、この時に、積算流量計47aが30リッターを積算し、積算流量計47bが20リッターを積算したと仮定する。真空脱気槽30からは合計で50リッターの油が出て行ったため油面が低下する。この油面低下を真空脱気槽油面スイッチ52により検知して自動開閉弁開閉調整器51に油面低下の信号を送る。また、積算流量計47a,47bの積算量の信号も自動開閉弁開閉調整器51に送る。自動開閉弁開閉調整器51は油面低下の信号と積算流量計47aの積算量の信号の2条件で自動開閉弁50aを開ける信号を出す。その後、積算流量計48aの積算量が30リッターになれば自動開閉弁50aを閉める。自動開閉弁50aを開ける信号を出すと同時に、自動開閉弁50bを開ける信号も油面低下の信号と積算流量計47bの積算量の信号の2条件により出し、積算流量計48bの積算量が20リッターになれば自動開閉弁50bを閉める。
【0032】
この様に制御することで、密封油処理装置45aへの密封油の供給量と戻り量は等しくなり、又、密封油処理装置45bへの密封油の供給量と戻り量も等しくなる。
これにより、交換油脱気装置40の機能を失うことなく、1台の交換油脱気装置40を複数の回転電機1或いは密封油処理装置45へ接続することが出来る。
【0033】
上記実施の形態2では、一定時間間隔のタイマーで自動開閉弁50の開閉を行っていたため、例えば密封油処理装置45a,45bへの供給量が多くなりすぎた場合、タイマーの設定変更を行わないと真空脱気槽30の油面低下を起こす可能性があるが、本実施形態の場合には、真空脱気槽油面スイッチ52により真空脱気槽30の油面検知をしているので、真空脱気槽30が油不足に至ることは無くなり、信頼性が向上する。
なお、積算流量計47a,47bを通過して供給する流量よりも、積算流量計48a,48bを通過して戻る流量の方が多くなるように回路を構成をすることが必要である。
【0034】
実施の形態4.
図6はこの発明の実施の形態4による交換油脱気装置の主要部分を示す系統図である。
上記実施の形態1〜3では、積算流量計47,48を使用した場合を示したが、積算流量計の代わりに、瞬時流量計53a,53b,54a,54bを使用しても同様の効果が得られる。
脱気油供給管44a或いは44bを通過して供給された密封油は、瞬時流量計53a,53bによって、瞬時流量が電気信号として比較調整器49に送信される。
【0035】
また、密封油補給管15a或いは15bに設置された瞬時流量計54a,54bによって、瞬時流量が電気信号として比較調整器49に送信される。比較調整器49では、両者の電気信号に差が無くなるように、流量調整弁46a,46bの開度を変化させる信号を送信する。
例えば密封油処理装置45aへの供給量が増加した場合、比較調整器49では、密封油処理装置45aから戻る密封油補給管15aに設置してある流量調整弁46aの開度を大きくして、密封油処理装置45aへの供給量が増加した分、戻り量も同量になるように多くする。
【0036】
以上のようにこの実施形態によれば、脱気油供給管44a,44bそれぞれに瞬時流量計53a,53bを設け、密封油補給管15a,15bそれぞれに瞬時流量計54a,54bと流量調整弁46a,46bを設けたことにより、密封油処理装置45a,45bへの供給量と戻り量を等しくすることが出来る。
これにより、交換油脱気装置40の機能を失うことなく、1台の交換油脱気装置40を複数の回転電機1或いは密封油処理装置45に接続することができる。更に上記実施例1〜3では、高価な積算流量計を使用していたが、本実施形態では、安価な瞬時流量計53,54を使用するので、交換油脱気装置30の製作費の低減を図ることが出来る。
【0037】
実施の形態5.
図7はこの発明の実施の形態5による交換油脱気装置の主要部分を示す系統図である。
上記実施の形態1〜4では、密封油補給管15a,15bに自動の流量調整弁46あるいは自動開閉弁50を設けた場合を示したが、本実施形態では、密封油補給管15a,15bに手動の流量調整弁55を設けている。
脱気油供給管44a,44bにより供給された密封油の瞬時流量は瞬時流量計53a,53bによって表示される。
また、密封油補給管15a,15bでは、設置された瞬時流量計54a,54bによって、瞬時流量が表示される。
【0038】
この表示された両者の瞬時流量が同じになるように、手動流量調整弁55a,55bの開度を手動により調整する。
例えば密封油処理装置45aへの供給量が増加した場合、密封油処理装置45aから戻る密封油補給管15aに設置してある手動流量調整弁55aの開度を大きくして、密封油処理装置45aへの供給量が増加した分、戻り量も同量になるように多くする。
以上のように本実施形態によれば、脱気油供給管44a,44b個々に瞬時流量計53a,53bを設け、密封油補給管15a,15b個々に瞬時流量計54a,54bと手動調整弁55a,55bを設けたことにより、密封油処理装置45a,45bへの供給量と戻り量を等しくすることが出来る。
【0039】
これにより、交換油脱気装置40の機能を失うことなく、1台の交換油脱気装置40を複数の回転電機1或いは密封油処理装置45へ接続するだけで済む。
又、上記実施の形態1〜4では、高価な自動弁を使用していたが、本実施形態では、安価な手動調整弁を使用するだけで済むため、交換油脱気装置40の製作費の低減を図ることが出来る。
なお、本実施形態の場合、手動により調整する関係上、微妙な制御はできないので、回転電機1或いは密封油処理装置45の運転が安定し、脱気油の供給が一定量に落ち着いてから調整することが重要である。
【0040】
【発明の効果】
この発明の請求項1に係る回転電機の密封油供給装置によれば、水素ガスを密封した回転電機軸封部の密封器の水素側及び空気側にそれぞれ別個に密封油を供給する水素側密封油供給回路及び空気側密封油回路を備え、空気側密封油回路から水素側密封油回路へ密封油を補給する密封油補給管の途中に空気側密封油を真空脱気する交換油脱気装置を設置したものであって、交換油脱気装置1台に対して複数台の密封油処理装置を接続するとともに、交換油脱気装置と密封油処理装置とをつなぐ密封油補給管と脱気油供給管にそれぞれ積算流量計を設け、更に密封油補給管には流量調整弁を設け、積算流量計の単位時間当たりの積算量が同じになるように流量調整弁の開度を制御する比較制御器を設けたので、複数台の回転電機および密封油処理装置に交換油脱気装置を1台設置するのみで、回転電機内の水素ガス純度の低下を防止できるとともに、個々の回転電機或いは密封油処理装置の保有油量の増減を無くすことが出来る事により、複数台の回転電機が設置してある発電所に対し、交換油脱気装置を1台納入するのみで済むため、交換油脱気装置の製作費並びに現地での工事費の低減を図ることができる。
【図面の簡単な説明】
【図1】この発明の前提技術となる回転電機の密封油供給装置を示す系統図である。
【図2】この発明の実施形態による回転電機の密封油供給装置を示す系統図である。
【図3】この発明の実施の形態1による交換油脱気装置の主要部分を示す系統図である。
【図4】この発明の実施の形態2による交換油脱気装置の主要部分を示す系統図である。
【図5】この発明の実施の形態3による交換油脱気装置の主要部分を示す系統図である。
【図6】この発明の実施の形態4による交換油脱気装置の主要部分を示す系統図である。
【図7】この発明の実施の形態5による交換油脱気装置の主要部分を示す系統図である。
【符号の説明】
1 回転電機、3 密封器、15 密封油補給管、40 交換油脱気装置、44 脱気油供給管、45 密封油処理装置、46 流量調整弁、47,48 積算流量計、49 比較制御器、50 自動開閉弁、51 自動開閉弁開閉調整器、52 真空脱気槽油面スイッチ、53,54 瞬時流量計、55 手動流量調整弁。
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealing oil supply device for a rotating electric machine that supplies sealing oil to a shaft sealing portion of a rotating electric machine filled with hydrogen gas.
[0002]
[Prior art]
In conventional sealing oil supply devices for rotating electrical machines, an air-side sealing oil deaerator is installed in the middle of the sealing oil supply pipe from the air-side sealing oil circuit to the hydrogen-side sealing oil circuit. There is a method in which the sealing oil pressure is adjusted to a high level and a small amount is forcibly supplied from the air-side circuit to the hydrogen-side circuit, which is drawn into an air-side sealing oil deaerator and subjected to vacuum deaeration treatment (for example, see Patent Document 1). ).
[0003]
[Patent Document 1]
JP-A-6-185497 (page 4)
[0004]
[Problems to be solved by the invention]
Since the conventional sealing oil supply device for a rotating electric machine is configured as described above, one replacement oil degassing device is always required for one rotating electric machine or one sealing oil processing device.
For this reason, for example, in order to prevent a decrease in the purity of hydrogen gas in the generator, a replacement oil degassing device is installed at a power plant in which a plurality of (for example, two) rotating electric machines are installed. It is necessary to install two gas removal devices, and there is a problem in that the cost for manufacturing the replacement oil degassing device and the construction cost for installation thereof are increased.
[0005]
The present invention has been made in order to solve the above-described problems, and only one replacement oil deaerator is installed in a power plant in which a plurality of rotating electric machines and a sealing oil processing device are installed. It is an object of the present invention to obtain a sealing oil supply device capable of reducing the production cost and the construction cost by reducing the cost of hydrogen gas and the purity of hydrogen gas in all rotating electric machines.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a hydrogen-sealed oil supply device for separately supplying seal oil to a hydrogen side and an air side of a sealer of a shaft seal portion of a rotary electric machine in which hydrogen gas is sealed. A replacement oil deaerator that vacuum-degass the air-side sealing oil is installed in the middle of the sealing oil supply pipe that supplies the sealing oil from the air-side sealing oil circuit to the hydrogen-side sealing oil circuit. A plurality of sealing oil treatment devices connected to one replacement oil degassing device, a sealing oil supply pipe connecting the replacement oil degassing device and the sealing oil treatment device, and a supply of deaeration oil. An integrated flow meter is provided for each pipe, and a flow control valve is further provided for the sealed oil supply pipe. A comparative controller that controls the opening of the flow control valve so that the integrated amount per unit time of the integrated flow meter becomes the same. Is provided.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Prerequisite technology.
FIG. 1 is a system diagram showing a sealing oil supply device for a rotating electric machine, which is a prerequisite technology of the present invention, and shows a case where one rotating electric machine, one sealing oil treatment device, and one replacement oil degassing device are installed.
In the figure, a rotating shaft 2 is provided in a rotating electric machine 1 in which hydrogen gas is sealed. The hydrogen-side sealing oil supply pipe 4 supplies the sealing oil to the hydrogen side (inside the machine) of the sealer 3, and the air-side sealing oil supply pipe 5 seals to the air side (outside the machine) of the sealing apparatus 3. Supplying oil. The defoaming box 6 is installed to temporarily stop the sealing oil discharged from the sealing device 3 to the hydrogen side and to remove air bubbles in the sealing oil. Oil pipe 7 is connected. Further, in the bearing oil drain pipe 8, the oil on the air side and the bearing oil (not shown) are integrally discharged.
[0008]
The loop seal tank 9 temporarily suspends the air side sealing oil drainage and the bearing drainage, and exhausts the hydrogen gas and the air. The loop seal tank discharge pipe 10 is provided with the hydrogen gas and the hydrogen gas separated in the loop seal tank 9. It directs air to a safe outside, for example outdoors.
Further, the vapor extractor 11 lowers the pressure in the upper space in the loop seal tank 9 from the pressure in the bearing portion, extracts hydrogen gas and air in the loop seal tank 9, and forcibly outdoors. It is set up to discharge.
[0009]
An air-side sealed oil return pipe 12 is connected to the loop seal tank 9, and a hydrogen gas cutoff tank 13 blocks outflow of hydrogen gas in the rotary electric machine 1 to the outside. The float valve 14 keeps the oil level in the hydrogen gas shut-off tank 13 constant, and the sealing oil supply pipe 15 supplies oil from the air-side sealing oil circuit when the amount of oil in the hydrogen-side sealing oil circuit becomes insufficient. It is provided for. The hydrogen side sealing oil pump 16 supplies the sealing oil in the hydrogen gas shutoff tank 13 to the hydrogen side of the sealing device 3, and the hydrogen side sealing oil drainage from the sealing device 3 returns to the hydrogen gas shutoff tank 13. It is provided in the hydrogen side sealing oil circuit.
[0010]
A service air side sealing oil pump (driven by an AC power supply) 17 and an emergency air side sealing oil pump (driven by a DC power supply) 18 supply the sealing oil in the loop seal tank 9 to the air side of the sealer 3 to seal. It is configured to return the air side sealing oil drainage from the vessel 3 to the loop seal tank 9 together with the bearing oil drainage, and these are provided in the air side sealing oil circuit.
A check valve 19, a pump inlet valve 20, and a safety valve 21 are provided in the air-side sealing oil circuit.
[0011]
The differential pressure regulating valve 22 is supplied from the service air side sealing oil pump 17 or the emergency air side sealing oil pump 18 so that the air side sealing oil pressure becomes higher than the hydrogen gas pressure in the machine by a certain value in the sealing device 3. Is installed on a bypass circuit connecting the discharge side and the suction side of the pump for the purpose of adjusting the pressure.
Further, an air-side sealing oil cooler 23 and an air-side sealing oil filter 24 are provided in the air-side sealing oil circuit. The manual bypass valve 25 supplies the amount of oil supplied from the hydrogen-side sealing oil pump 16 to the sealer 3 out of the discharge amount of the hydrogen-side sealing oil pump 16 in order to set the amount of oil required for the hydrogen-side sealing oil circuit. It is installed for the purpose of returning the flow other than the flow to the suction side of the hydrogen-side sealing oil pump 16. Further, the hydrogen-side sealing oil circuit includes a safety valve 26, a hydrogen-side sealing oil cooler 27, and a hydrogen-side sealing oil filter 28. Is provided.
[0012]
The pressure equalizing valve 29 is installed on the hydrogen-side sealing oil circuit for the purpose of adjusting the hydrogen-side sealing oil pressure so that the air-side sealing oil pressure and the hydrogen-side sealing oil pressure become equal in the sealing device 3. The vacuum degassing tank 30 is for degassing air from the air side sealing oil, and the float valve 31 is provided for automatically maintaining the oil level of the vacuum degassing tank 30 constant. The oil level alarm 32 detects an abnormal oil level in the vacuum degassing tank 30, and the spray nozzle pipe 33 supplies the sealing oil held in the vacuum degassing tank 30 to the hydrogen gas shutoff tank 13. A sealing oil other than the above is sprayed in the vacuum degassing tank 30 to promote degassing, and the degassing plate 34 gradually degass the sealing oil sprayed from the spray nozzle pipe 33. The introduction pipe 35 is provided to guide the air-side sealing oil returned from the loop seal tank 9 to the deaeration plate 34 to enhance the deaeration effect.
[0013]
Further, a replacement oil deaerator 40 is constituted by the vacuum gauge 36, the oil level gauge 37, the vacuum deaeration tank inlet valve 38, and the vacuum pump unit 39.
A replenishing oil pump 41, a replenishing oil pump inlet valve 42, and a replenishing oil pump inlet pipe 43 are installed in the replacement oil deaerator 40. It is provided for supplying the deaerated sealing oil to the shutoff tank 13. The sealed oil processing device 45 is constituted by the hydrogen gas blocking tank 13 and the like.
[0014]
Next, the operation will be described.
The hydrogen gas in the rotating electric machine 1 is sealed by a sealing oil circulating in both the hydrogen-side sealing oil circuit and the air-side sealing oil circuit.
In the hydrogen-side sealing oil circuit, the sealing oil is pushed out by the hydrogen-side sealing oil pump 16, but in order to exhibit the effect of the replacement oil deaerator 40, the sealing oil pressure in the sealer 3 of the hydrogen-side sealing oil circuit is reduced by air. The pressure equalizing valve 29 is set to be slightly higher than the sealing oil pressure on the side.
In this manner, in the sealer 3, a small amount of sealing oil flows from the hydrogen side to the air side and becomes the air-side sealing oil. Most of the other sealing oil is pushed out to the hydrogen side along the rotating shaft 2, enters the bubble collecting box 6, overflows and enters the hydrogen gas blocking tank 13.
[0015]
Here, the hydrogen gas contained as bubbles in the sealing oil is extracted, and the sealing oil drawn out from the bottom of the hydrogen gas shut-off tank 13 is sent to the hydrogen-side sealing oil pump 16.
Since a small amount of the hydrogen-side sealing oil flows out to the air side in the sealer 3, the amount of the hydrogen-side sealing oil gradually decreases, and the replenishment in the replacement oil deaerator 40 for replenishment from the air-side sealing oil circuit. A float valve is provided so that the same amount of sealing oil that has flowed out to the air side by the sealing device 3 from the pure degassed sealing oil pushed out from the oil pump 41 is supplied into the hydrogen gas shut-off tank 13. 14 is open at a constant opening.
In this way, the total amount of the sealing oil on the hydrogen side is maintained at a constant level.
[0016]
In the air-side sealing oil circuit, during normal operation, the sealing oil is pushed out by the service air-side sealing oil pump 17, kept at a pressure higher than the in-machine gas pressure by a differential pressure regulating valve 22 and supplied to the sealer 3. You.
Then, the sealing oil was pushed out to the air side along the rotating shaft 2, and together with the bearing oil (not shown), passed through the loop seal tank 9 and slightly increased due to the hydrogen-side sealing oil flowing into the sealer 3. The sealing oil is sent from the loop seal tank 9 to the service air side sealing oil pump 17. A small amount of the sealing oil sent from the service air side sealing oil pump 17 is sent to the vacuum deaeration tank 30 in the replacement oil deaerator 40.
[0017]
The sealing oil sent into the vacuum degassing tank 30 is degassed by the degassing tray 34 and becomes an upper oil reservoir in the vacuum degassing tank 30.
In the vacuum deaeration tank 30, the deaerated sealing oil is sent from a lower oil reservoir to a replenishing oil pump 41. When the service air side sealing oil pump 17 is stopped due to a trouble of the service air side sealing oil pump 17 or the like, the emergency power side sealing oil pump 18 driven by a DC power supply is automatically started, and the service air side sealing oil pump 17 Serves the same function. In this way, the air-side sealing oil circuit and the hydrogen-side sealing oil circuit are completed and the same circulation is repeated.
[0018]
As described above, even if the hydrogen-side sealing oil flows out to the air side in the sealer 3 of the rotary electric machine 1, the hydrogen-side sealing oil becomes the air-side sealing oil of the same rotary electric machine 1, and therefore always returns to the sealing oil processing device 45. I can do it.
Therefore, neither the hydrogen side nor the air side causes a problem due to excess or deficiency of oil, and it is possible to prevent the hydrogen gas purity in the generator held by the exchange oil deaerator 40 from being lowered.
[0019]
In the above configuration, the case where one replacement oil deaerator is provided for one rotating electric machine or one sealing oil treatment device has been described. However, as shown in FIG. 2, two sealing oil treatment devices 45a and 45b are provided. It is also conceivable to simply connect one exchange oil deaerator 40 to the above.
In FIG. 2, the rotating electric machine 1 is connected only to the sealing oil processing device 45a, but the illustration is omitted as the rotating electric machine is also connected to the sealing oil processing device 45b.
[0020]
Thus, in a situation where there are two rotating electric machines 1 and two sealing oil treatment devices 45a and 45b are installed, the sealing oil from one replacement oil degassing device 40 is supplied to each sealing oil treatment device 45a, 45a, 45b. Although it can be supplied to the rotary electric machine 45b, it is expected that the amount of the hydrogen-side sealing oil flowing out to the air side in the sealer 3 differs for each rotary electric machine 1.
[0021]
Although the oil returns from the rotary electric machines 1 to the sealing oil treatment devices 45a and 45b, the amount of the sealing oil returned from the sealing oil treatment devices 45a and 45b to the replacement oil degassing device 40 depends on each of the sealing oil treatment devices 45a and 45b. It may be different due to a difference in pressure in 45b or a difference in piping shape.
For example, the amount of sealing oil supplied from the replacement oil degassing device 40 to the sealing oil treatment devices 45a and 45b cannot return to the replacement oil degassing device 40 by the same amount from the same sealing oil treatment devices 45a and 45b. It is expected that one will always increase and the other will decrease.
For this reason, excess or deficiency of oil occurs between the power generation units including the one rotating electric machine 1 with time.
In the present invention, even if one replacement oil deaerator 40 is installed for a plurality of rotating electric machines 1 and sealing oil treatment devices 45, the amount of oil retained in each rotating electric machine 1 and sealing oil treatment device 45 It is devised so as to be able to eliminate the increase and decrease of the number.
[0022]
Embodiment 1 FIG.
A system diagram showing a sealing oil supply device for a rotating electric machine according to Embodiment 1 of the present invention is the same as that in FIG.
The figure shows a case in which two sealing oil treatment devices 45 are provided. However, if three sealing oil treatment devices 45 are provided, the sealing oil supply pipe 15 connecting the replacement oil deaeration device 40 and the sealing oil treatment device 45 and the deaeration There are three oil supply pipes 44 each.
If the number of units is four, the number becomes four as described above.
[0023]
FIG. 3 is a system diagram showing a main part of the exchange oil deaerator 40.
In the figure, flow control valves 46a and 46b are provided on sealing oil supply pipes 15a and 15b which constitute a circuit for sealing oil returning from sealing oil processing devices 45a and 45b. The integrating flow meters 47a and 47b are installed on the deaerated oil supply pipes 44a and 44b, and the integrating flow meters 48a and 48b are installed on the sealed oil supply pipe 15. The comparator 49 compares the integrated flow signals from the integrated flow meters 47 and 48 and sends a control signal for operating the flow control valves 46a and 46b.
[0024]
Next, the operation will be described.
With respect to the sealing oil supplied by the deaerated oil supply pipes 44a and 44b, the integrated flow rate is transmitted as an electric signal to the comparator 49 by the integrating flow meters 47a and 47b.
In addition, in the sealing oil supply pipes 15a and 15b, the integrated flow rate is transmitted as an electric signal to the comparator 49 by the integrated flow meters 48a and 48b installed. The comparison adjuster 49 transmits a signal for changing the opening of the flow control valves 46a and 46b so that there is no difference between the two electric signals.
That is, when the supply amount to the sealing oil processing devices 45a and 45b increases, the increase becomes an increase in the integrated amount per unit time, so that the oil returns from the sealing oil processing devices 45a and 45b in the comparator 49. By increasing the degree of opening of the flow control valves 46a, 46b installed in the sealing oil supply pipes 15a, 15b, the supply amount to the sealing oil processing devices 45a, 45b is increased, and the amount of integration per unit time is increased. Make up for the amount of oil that is appropriate.
[0025]
As described above, according to the present embodiment, the integrated flow meters 47a and 47b are provided in the deaerated oil supply pipes 44a and 44b, respectively, and the integrated flow meters 48a and 48b are respectively adjusted in the sealed oil supply pipes 15a and 15b. By providing the valves 46a and 46b, the supply amount and the return amount to the sealing oil processing devices 45a and 45b can be equalized, so that the functions of the replacement oil degassing device 40 are not lost and the plurality of rotating electric machines 1 Alternatively, a connection to the sealing oil treatment device 45 can be made.
[0026]
In this manner, only one replacement oil deaerator 40 is installed for the plurality of rotating electrical machines 1 and the sealing oil treatment device 45, and the function of the replacement oil deaerator is maintained. It is possible to prevent a decrease in the purity of hydrogen gas in the inside, and to prevent an increase or decrease in the amount of oil held by each rotating electric machine 1 or the sealing oil processing device 45. Since it is only necessary to install one replacement oil deaerator 40 for a power plant in which a plurality of rotating electric machines 1 are installed, the production cost of the replacement oil deaerator 40 and the construction cost on site are reduced. Can be achieved.
[0027]
Embodiment 2 FIG.
FIG. 4 is a system diagram showing a main part of a replacement oil deaerator 40 according to Embodiment 2 of the present invention.
In the first embodiment, the flow rate adjusting valves 46a and 46b are provided in the sealing oil supply pipes 15a and 15b to adjust the opening degree of the valves so that the supply amount and the return amount to the sealing oil processing devices 45a and 45b are equal. However, in the present embodiment, automatic opening / closing valves 50a and 50b are provided in place of the flow control valves 46a and 46b.
[0028]
That is, if it is assumed that the integrating flow meter 47a integrates 30 liters and the integrating flow meter 47b integrates 20 liters during a certain unit time, this signal is sent to the automatic opening / closing valve opening / closing regulator 51 and the automatic opening / closing valve 50a To open the signal.
Then, when the integrated amount of the integrating flow meter 48a reaches 30 liters, the automatic on-off valve 50a is closed.
Subsequently, the automatic open / close valve adjuster 51 outputs a signal for opening the automatic open / close valve 50b, and closes the automatic open / close valve 50b when the integrated amount of the integrated flow meter 48b reaches 20 liters.
[0029]
By controlling in this manner, the supply amount and the return amount of the sealing oil to the sealing oil processing device 45a are equal, and the supply amount and the return amount of the sealing oil to the sealing oil processing device 45b are also equal.
Thus, as in the case of the first embodiment, a single exchange oil deaerator 40 can be connected to a plurality of rotary electric machines 1 or a sealing oil treatment device 45 without losing its function. In the present embodiment, since the automatic on-off valve 50, which is an inexpensive ON-OFF valve, can be used instead of the flow control valve 46, the manufacturing cost of the replacement oil degassing device 40 can be reduced. .
It is necessary to adopt a circuit configuration such that the total opening operation time of the automatic opening and closing valve 50a and the automatic opening and closing valve 50b is shorter than the unit time measured by the integrating flow meters 47a and 47b.
[0030]
Embodiment 3 FIG.
FIG. 5 is a system diagram showing a main part of a replacement oil deaerator according to Embodiment 3 of the present invention.
In the second embodiment, the automatic on-off valves 50a and 50b are opened and closed every unit time. However, in this embodiment, the oil level switch 52 of the vacuum degassing tank 30 changes the oil level of the vacuum degassing tank 30. Upon detection, the automatic opening / closing valves 50a and 50b are opened and closed.
[0031]
For example, when the oil level of the vacuum deaeration tank 30 has decreased to a certain value, it is assumed that the integrating flow meter 47a has integrated 30 liters and the integrating flow meter 47b has integrated 20 liters. Since a total of 50 liters of oil came out of the vacuum degassing tank 30, the oil level is lowered. This oil level drop is detected by the vacuum deaeration tank oil level switch 52 and a signal of the oil level drop is sent to the automatic on-off valve opening / closing regulator 51. Further, the signal of the integrated amount of the integrated flow meters 47a and 47b is also sent to the automatic on-off valve opening / closing regulator 51. The automatic opening / closing valve opening / closing regulator 51 outputs a signal for opening the automatic opening / closing valve 50a under two conditions of the signal of the oil level drop and the signal of the integrated amount of the integrating flow meter 47a. Thereafter, when the integrated amount of the integrating flow meter 48a reaches 30 liters, the automatic on-off valve 50a is closed. At the same time that the signal for opening the automatic opening / closing valve 50a is issued, the signal for opening the automatic opening / closing valve 50b is also issued under two conditions of the signal of the oil level decrease and the signal of the integrated amount of the integrating flow meter 47b. When the liter is reached, the automatic on-off valve 50b is closed.
[0032]
By controlling in this manner, the supply amount and the return amount of the sealing oil to the sealing oil processing device 45a are equal, and the supply amount and the return amount of the sealing oil to the sealing oil processing device 45b are also equal.
Thereby, one replacement oil deaerator 40 can be connected to a plurality of rotary electric machines 1 or the sealing oil processing device 45 without losing the function of the replacement oil deaerator 40.
[0033]
In the second embodiment, since the automatic on-off valve 50 is opened and closed by the timer at fixed time intervals, for example, when the supply amount to the sealing oil processing devices 45a and 45b becomes too large, the setting of the timer is not changed. However, in this embodiment, the oil level of the vacuum deaeration tank 30 is detected by the vacuum deaeration tank oil level switch 52. The lack of oil in the vacuum degassing tank 30 does not occur, and the reliability is improved.
In addition, it is necessary to configure the circuit so that the flow rate passing through the integrating flow meters 48a and 48b and returning is larger than the flow rate supplied through the integrating flow meters 47a and 47b.
[0034]
Embodiment 4 FIG.
FIG. 6 is a system diagram showing a main part of a replacement oil deaerator according to Embodiment 4 of the present invention.
In the first to third embodiments, the case where the integrating flow meters 47 and 48 are used has been described. However, similar effects can be obtained by using the instantaneous flow meters 53a, 53b, 54a and 54b instead of the integrating flow meters. can get.
The instantaneous flow rate of the sealing oil supplied through the deaerated oil supply pipe 44a or 44b is transmitted to the comparator 49 as an electric signal by the instantaneous flow meters 53a and 53b.
[0035]
Further, the instantaneous flow rate is transmitted as an electric signal to the comparator 49 by the instantaneous flow meters 54a and 54b installed in the sealing oil supply pipe 15a or 15b. The comparison adjuster 49 transmits a signal for changing the opening of the flow control valves 46a and 46b so that there is no difference between the two electric signals.
For example, when the supply amount to the sealing oil processing device 45a increases, the comparative adjuster 49 increases the opening degree of the flow rate adjustment valve 46a installed on the sealing oil supply pipe 15a returning from the sealing oil processing device 45a, As the supply amount to the sealing oil processing device 45a increases, the return amount is increased so as to be the same.
[0036]
As described above, according to this embodiment, the instantaneous flow meters 53a and 53b are provided in the deaerated oil supply pipes 44a and 44b, respectively, and the instantaneous flow meters 54a and 54b and the flow control valve 46a are provided in the sealing oil supply pipes 15a and 15b, respectively. , 46b, the supply amount and the return amount to the sealing oil treatment devices 45a, 45b can be equalized.
Thus, one replacement oil deaerator 40 can be connected to a plurality of rotating electric machines 1 or the sealing oil processing device 45 without losing the function of the replacement oil deaerator 40. Further, in Examples 1 to 3 above, an expensive integrating flow meter was used. However, in this embodiment, since the inexpensive instantaneous flow meters 53 and 54 are used, the manufacturing cost of the replacement oil deaerator 30 can be reduced. Can be achieved.
[0037]
Embodiment 5 FIG.
FIG. 7 is a system diagram showing a main part of a replacement oil degassing apparatus according to Embodiment 5 of the present invention.
In the above-described first to fourth embodiments, the case has been described in which the automatic oil flow control valve 46 or the automatic opening / closing valve 50 is provided in the sealing oil supply pipes 15a and 15b. A manual flow control valve 55 is provided.
The instantaneous flow rates of the sealing oil supplied by the deaerated oil supply pipes 44a and 44b are displayed by the instantaneous flow meters 53a and 53b.
In addition, in the sealing oil supply pipes 15a and 15b, the instantaneous flow rates are displayed by the installed instantaneous flow meters 54a and 54b.
[0038]
The openings of the manual flow control valves 55a and 55b are manually adjusted so that the displayed instantaneous flow rates are the same.
For example, when the supply amount to the sealing oil processing device 45a increases, the opening degree of the manual flow control valve 55a installed in the sealing oil supply pipe 15a returning from the sealing oil processing device 45a is increased, and the sealing oil processing device 45a The return amount is increased to the same amount as the supply amount to the tank increases.
As described above, according to the present embodiment, the instantaneous flow meters 53a and 53b are provided in each of the deaerated oil supply pipes 44a and 44b, and the instantaneous flow meters 54a and 54b and the manual adjustment valve 55a are individually provided in the sealing oil supply pipes 15a and 15b. , 55b, the supply amount and the return amount to the sealing oil treatment devices 45a, 45b can be equalized.
[0039]
Thus, it is only necessary to connect one replacement oil deaerator 40 to a plurality of rotating electric machines 1 or the sealing oil processing device 45 without losing the function of the replacement oil deaerator 40.
In the first to fourth embodiments, an expensive automatic valve is used. However, in the present embodiment, only an inexpensive manual adjustment valve is used. Reduction can be achieved.
In the case of the present embodiment, since fine adjustment is not possible due to manual adjustment, the operation of the rotating electric machine 1 or the sealing oil processing device 45 is stabilized, and adjustment is performed after the supply of deaerated oil has settled to a certain amount. It is important to.
[0040]
【The invention's effect】
According to the first aspect of the present invention, there is provided an apparatus for supplying oil for sealing a rotating electric machine, in which hydrogen gas is separately supplied to a hydrogen side and an air side of a sealer of a shaft sealing portion of a rotating electric machine sealed with hydrogen gas. A replacement oil deaerator that has an oil supply circuit and an air-side sealing oil circuit, and vacuum-degass the air-side sealing oil in the middle of a sealing oil supply pipe that supplies sealing oil from the air-side sealing oil circuit to the hydrogen-side sealing oil circuit. A plurality of sealing oil treatment devices are connected to one replacement oil deaeration device, and a sealing oil supply pipe connecting the replacement oil deaeration device and the sealing oil treatment device is connected to a deaeration device. A comparison in which an integrating flow meter is provided for each oil supply pipe, and a flow regulating valve is further provided for the sealed oil supply pipe, and the opening of the flow regulating valve is controlled so that the integrating amount per unit time of the integrating flow meter is the same. Since a controller is provided, multiple rotating electric machines and sealing oil By installing only one replacement oil deaerator in the device, it is possible to prevent a decrease in the purity of hydrogen gas in the rotating electric machine and to eliminate the increase or decrease in the amount of oil held in each rotating electric machine or sealing oil treatment device. As a result, it is only necessary to deliver one replacement oil deaerator to a power plant equipped with a plurality of rotating electric machines, thereby reducing the production cost of the replacement oil deaerator and the construction cost on site. be able to.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a sealing oil supply device for a rotating electric machine, which is a base technology of the present invention.
FIG. 2 is a system diagram showing a sealing oil supply device for a rotating electric machine according to an embodiment of the present invention.
FIG. 3 is a system diagram showing a main part of a replacement oil deaerator according to Embodiment 1 of the present invention.
FIG. 4 is a system diagram showing a main part of a replacement oil degassing apparatus according to Embodiment 2 of the present invention.
FIG. 5 is a system diagram showing a main part of a replacement oil deaerator according to Embodiment 3 of the present invention.
FIG. 6 is a system diagram showing a main part of a replacement oil deaerator according to Embodiment 4 of the present invention.
FIG. 7 is a system diagram showing a main part of a replacement oil deaerator according to Embodiment 5 of the present invention.
[Explanation of symbols]
Reference Signs List 1 rotating electric machine, 3 sealer, 15 sealing oil supply pipe, 40 exchange oil deaerator, 44 deaeration oil supply pipe, 45 sealing oil treatment device, 46 flow control valve, 47, 48 integrating flow meter, 49 comparison controller , 50 automatic open / close valve, 51 automatic open / close valve open / close regulator, 52 vacuum deaeration tank oil level switch, 53, 54 instantaneous flow meter, 55 manual flow control valve.

Claims (5)

水素ガスを密封した回転電機軸封部の密封器の水素側及び空気側にそれぞれ別個に密封油を供給する水素側密封油供給回路及び空気側密封油回路を備え、上記空気側密封油回路から上記水素側密封油回路へ密封油を補給する密封油補給管の途中に空気側密封油を真空脱気する交換油脱気装置を設置した回転電機の密封油処理装置において、上記交換油脱気装置1台に対して複数台の密封油処理装置を接続するとともに、上記交換油脱気装置と上記密封油処理装置とをつなぐ上記密封油補給管と脱気油供給管にそれぞれ積算流量計を設け、更に上記密封油補給管には流量調整弁を設け、上記積算流量計の単位時間当たりの積算量が同じになるように上記流量調整弁の開度を制御する比較制御器を設けたことを特徴とする回転電機の密封油供給装置。A hydrogen-side sealing oil supply circuit and an air-side sealing oil circuit that separately supply sealing oil to the hydrogen side and the air side of the sealer of the rotating electrical machine shaft sealing portion that seals the hydrogen gas are provided. In the sealing oil treatment device for a rotating electric machine, a replacement oil degassing device for vacuum degassing the air-side sealing oil is provided in the middle of a sealing oil supply pipe for refilling the sealing oil to the hydrogen-side sealing oil circuit. A plurality of sealing oil treatment devices are connected to one device, and an integrating flow meter is connected to each of the sealing oil supply pipe and the deaeration oil supply pipe that connects the replacement oil degassing device and the sealing oil treatment device. The sealing oil supply pipe is further provided with a flow control valve, and a comparison controller for controlling the opening of the flow control valve so that the integrated amount per unit time of the integrating flow meter is the same. Sealing oil supply device for rotating electric machine characterized by . 水素ガスを密封した回転電機軸封部の密封器の水素側及び空気側にそれぞれ別個に密封油を供給する水素側密封油供給回路及び空気側密封油回路を備え、上記空気側密封油回路から上記水素側密封油回路へ密封油を補給する密封油補給管の途中に空気側密封油を真空脱気する交換油脱気装置を設置した回転電機の密封油供給装置において、上記交換油脱気装置1台に対して複数台の密封油処理装置を接続するとともに、上記交換油脱気装置と上記密封油処理装置とをつなぐ上記密封油補給管と脱気油供給管にそれぞれ積算流量計を設け、更に上記密封油補給管に自動開閉弁を設け、上記積算流量計の単位時間当たりの積算量が同じになるように上記自動開閉弁の開閉を行う自動開閉弁開閉調整器を設けたことを特徴とする回転電機の密封油供給装置。A hydrogen-side sealing oil supply circuit and an air-side sealing oil circuit that separately supply sealing oil to the hydrogen side and the air side of the sealer of the rotary electric machine shaft sealing portion that seals the hydrogen gas are provided. In the sealing oil supply device for a rotating electric machine, a replacement oil degassing device for vacuum degassing the air side sealing oil is installed in the middle of a sealing oil supply pipe for refilling the sealing oil to the hydrogen side sealing oil circuit. A plurality of sealing oil treatment devices are connected to one device, and an integrating flow meter is connected to each of the sealing oil supply pipe and the deaeration oil supply pipe that connects the replacement oil degassing device and the sealing oil treatment device. An automatic opening / closing valve is provided on the sealing oil supply pipe, and an automatic opening / closing valve opening / closing regulator is provided for opening and closing the automatic opening / closing valve so that the integrated amount per unit time of the integrating flow meter is the same. Sealing oil supply for rotating electric machine characterized by Apparatus. 水素ガスを密封した回転電機軸封部の密封器の水素側及び空気側にそれぞれ別個に密封油を供給する水素側密封油供給回路及び空気側密封油回路を備え、上記空気側密封油回路から上記水素側密封油回路へ密封油を補給する密封油補給管の途中に空気側密封油を真空脱気する交換油脱気装置を設置した回転電機の密封油処理装置において、上記交換油脱気装置1台に対して複数台の密封油処理装置を接続するとともに、上記交換油脱気装置と上記密封油処理装置とをつなぐ上記密封油補給管と脱気油供給管にそれぞれ積算流量計を設け、更に上記密封油補給管に自動開閉弁を設けるとともに、真空脱気槽油面スイッチからの油面低下信号により、上記積算流量計の単位時間当たりの積算量が同じになるように自動開閉弁の開閉を行う自動開閉弁開閉調整器を設けたことを特徴とする回転電機の密封油供給装置。A hydrogen-side sealing oil supply circuit and an air-side sealing oil circuit that separately supply sealing oil to the hydrogen side and the air side of the sealer of the rotating electrical machine shaft sealing portion that seals the hydrogen gas are provided. In the sealing oil treatment device for a rotating electric machine, a replacement oil degassing device for vacuum degassing the air-side sealing oil is installed in the middle of a sealing oil supply pipe for refilling the hydrogen-side sealing oil circuit with the sealing oil. A plurality of sealing oil treatment devices are connected to one device, and an integrating flow meter is connected to each of the sealing oil supply pipe and the deaeration oil supply pipe that connects the replacement oil degassing device and the sealing oil treatment device. In addition, an automatic opening and closing valve is provided on the sealing oil supply pipe, and the automatic opening and closing is performed by the oil level lowering signal from the vacuum deaeration tank oil level switch so that the integrated amount per unit time of the integrating flow meter becomes the same. Automatic opening and closing to open and close the valve Sealing oil supply device for a rotary electric machine, characterized in that a closing regulator. 水素ガスを密封した回転電機軸封部の密封器の水素側及び空気側にそれぞれ別個に密封油を供給する水素側密封油供給回路及び空気側密封油回路を備え、上記空気側密封油回路から上記水素側密封油回路へ密封油を補給する密封油補給管の途中に空気側密封油を真空脱気する交換油脱気装置を設置した回転電機の密封油供給装置において、上記交換油脱気装置1台に対して複数台の密封油処理装置を接続するとともに、上記交換油脱気装置と上記密封油処理装置とをつなぐ上記密封油補給管と脱気油供給管にそれぞれ瞬時流量計を設け、更に上記密封油補給管には流量調整弁を設け、上記瞬時流量計の流量が同じ流量になるように上記流量調整弁の開度を制御する比較調整器を設けたことを特徴とする回転電機の密封油供給装置。A hydrogen-side sealing oil supply circuit and an air-side sealing oil circuit that separately supply sealing oil to the hydrogen side and the air side of the sealer of the rotating electrical machine shaft sealing portion that seals the hydrogen gas are provided. In the sealing oil supply device of a rotating electric machine, a replacement oil degassing device for vacuum degassing the air-side sealing oil is provided in the middle of a sealing oil supply pipe for refilling the hydrogen-side sealing oil circuit with the sealing oil. A plurality of sealing oil treatment devices are connected to one device, and instantaneous flow meters are respectively connected to the sealing oil supply pipe and the deaeration oil supply pipe that connect the replacement oil deaeration device and the sealing oil treatment device. The sealing oil supply pipe is further provided with a flow regulating valve, and a comparative regulator for controlling the opening of the flow regulating valve so that the flow rate of the instantaneous flow meter becomes the same flow rate is provided. Sealing oil supply device for rotating electric machines. 水素ガスを密封した回転電機軸封部の密封器の水素側及び空気側にそれぞれ別個に密封油を供給する水素側密封油供給回路及び空気側密封油回路を備え、上記空気側密封油回路から上記水素側密封油回路へ密封油を補給する密封油補給管の途中に空気側密封油を真空脱気する交換油脱気装置を設置した回転電機の密封油供給装置において、上記交換油脱気装置1台に対して複数台の密封油処理装置を接続するとともに、上記交換油脱気装置と上記密封油処理装置とをつなぐ上記密封油補給管と脱気油供給管にそれぞれ瞬時流量計を設け、更に上記瞬時流量計の流量を同じ流量にするための手動流量調整弁を上記密封油補給管に設けたことを特徴とする回転電機の密封油供給装置。A hydrogen-side sealing oil supply circuit and an air-side sealing oil circuit that separately supply sealing oil to the hydrogen side and the air side of the sealer of the rotating electrical machine shaft sealing portion that seals the hydrogen gas are provided. In the sealing oil supply device of a rotating electric machine, a replacement oil degassing device for vacuum degassing the air-side sealing oil is provided in the middle of a sealing oil supply pipe for refilling the hydrogen-side sealing oil circuit with the sealing oil. A plurality of sealing oil treatment devices are connected to one device, and instantaneous flow meters are respectively connected to the sealing oil supply pipe and the deaeration oil supply pipe that connect the replacement oil deaeration device and the sealing oil treatment device. A sealing oil supply device for a rotating electric machine, wherein a manual flow rate adjusting valve for setting the flow rate of the instantaneous flow meter to the same flow rate is provided in the sealing oil supply pipe.
JP2002345017A 2002-11-28 2002-11-28 Sealing oil supply device for rotating electrical machines Expired - Fee Related JP3939241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345017A JP3939241B2 (en) 2002-11-28 2002-11-28 Sealing oil supply device for rotating electrical machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345017A JP3939241B2 (en) 2002-11-28 2002-11-28 Sealing oil supply device for rotating electrical machines

Publications (2)

Publication Number Publication Date
JP2004180439A true JP2004180439A (en) 2004-06-24
JP3939241B2 JP3939241B2 (en) 2007-07-04

Family

ID=32706303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345017A Expired - Fee Related JP3939241B2 (en) 2002-11-28 2002-11-28 Sealing oil supply device for rotating electrical machines

Country Status (1)

Country Link
JP (1) JP3939241B2 (en)

Also Published As

Publication number Publication date
JP3939241B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
JP2004180439A (en) Seal oil supply arrangement of rotating electric machine
JP5646276B2 (en) Sealing oil supply device for rotating electrical machines
EP1496314B1 (en) Humidification system with reverse osmosis filter
JP4970228B2 (en) Sealing oil supply device for rotating electrical machines
JP2757936B2 (en) Sealing oil supply device for rotating electric machines
WO1988002455A1 (en) System for communicating cisterns in heat storage tank
CN210140868U (en) Pressure stabilizing type cold water supply device convenient for backwashing
CN100370211C (en) Device for periodically discharging liquid in facility
CN221197390U (en) Deaerator water supply system
CN220684777U (en) Liquid flow velocity stabilizing device
JP3691997B2 (en) Ozone treatment system and exhaust ozone suction control method
CN217267804U (en) Constant-pressure variable-frequency water supply equipment
JP2002086136A (en) Device for deoxidizing feed water
JP3215835B2 (en) Siphon type water discharge device
CN216717047U (en) Automatic water replenishing device for vacuum breaking valve of steam turbine condenser
CN217745469U (en) Water supplementing adjusting system for compressed air foam fire extinguishing
CN214304575U (en) Centrifugal jet vacuum pump with ejector adjusting device
US20130333573A1 (en) Dynamo-electric machine provided with gas purity maintainer
JP2005246185A (en) Water treatment and air diffusion equipment and operation management method
JP7567599B2 (en) Water treatment system having a degassing device
CN115537485B (en) Method for reconstructing water seal of water-cooling airtight box water seal system
JP4088609B2 (en) Oil-water separation method and apparatus
CN215601738U (en) Pure water cooling system of rectifier cabinet
CN212274653U (en) Open water cooling device
CN209744521U (en) heat balance adjusting device for heat supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees