JP2004179668A - Magnetoresistive element - Google Patents

Magnetoresistive element Download PDF

Info

Publication number
JP2004179668A
JP2004179668A JP2003404674A JP2003404674A JP2004179668A JP 2004179668 A JP2004179668 A JP 2004179668A JP 2003404674 A JP2003404674 A JP 2003404674A JP 2003404674 A JP2003404674 A JP 2003404674A JP 2004179668 A JP2004179668 A JP 2004179668A
Authority
JP
Japan
Prior art keywords
layer
magnetoresistive element
magnetic
substrate
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003404674A
Other languages
Japanese (ja)
Inventor
Masayoshi Hiramoto
雅祥 平本
Nozomi Matsukawa
望 松川
Akihiro Odakawa
明弘 小田川
Kenji Iijima
賢二 飯島
Hiroshi Sakakima
博 榊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003404674A priority Critical patent/JP2004179668A/en
Publication of JP2004179668A publication Critical patent/JP2004179668A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetoresistance element capable of improving an MR ratio in a tunnel magnetoresistive (TMR) element and decreasing variation in resistance. <P>SOLUTION: In one form of a TMR element, a surface control layer, which is an amorphous conductor, is arranged between a substrate and a tunnel layer. Also, in another form, at least one of a pair of magnetic layers sandwiching the tunnel layer has a polycrystalline structure having a controlled crystal orientation surface in addition to a fine surface. In still another form, at least one of the pair of magnetic layers includes at least one kind of magnetic element and the element other than the magnetic element, and the average number of electrons calculated from the composition ratio is adjusted to not less than 23.5 and not more than 25.5, or not less than 26.5 and not more than 36. Moreover, in still another form, an alloy containing a surplus element or an element capturing layer for capturing the surplus element including a compound is further formed, and the content of the surplus element is higher in the surplus element capturing layer than any one of the pair of magnetic layers. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、磁気抵抗素子に関する。この磁気抵抗素子は、例えば、磁気ディスク、光磁気ディスク、磁気テープのような磁気メディア用の再生ヘッド、自動車等で用いられる磁気センサー、磁気ランダム・アクセス・メモリ(MRAM)に使用できる。   The present invention relates to a magnetoresistance element. This magnetoresistive element can be used, for example, in a reproducing head for a magnetic medium such as a magnetic disk, a magneto-optical disk, and a magnetic tape, a magnetic sensor used in an automobile, and a magnetic random access memory (MRAM).

近年、トンネル磁気抵抗(TMR)素子が活発に研究されている。TMR素子では、トンネル非磁性層(トンネル絶縁層)を挟持するように配置された2つの強磁性層の磁化方向がなす角度に応じてトンネル遷移確率が変化する。TMR素子では、磁性層のフェルミ面近傍でのスピン分極率が高いほど大きなMR変化が期待できる。高分極率が期待できる金属磁性材料としては、FeCo合金、NiFe合金、ハーフメタリック強磁性体が知られている。   In recent years, tunnel magnetoresistive (TMR) elements have been actively studied. In the TMR element, the tunnel transition probability changes according to the angle between the magnetization directions of two ferromagnetic layers arranged so as to sandwich the tunnel nonmagnetic layer (tunnel insulating layer). In the TMR element, a higher MR change can be expected as the spin polarizability near the Fermi surface of the magnetic layer increases. FeCo alloys, NiFe alloys, and half-metallic ferromagnetic materials are known as metal magnetic materials that can be expected to have high polarizability.

しかし、これまで、これらの金属磁性材料を超えるMR特性を示す材料は報告されていない。   However, a material exhibiting MR characteristics exceeding these metallic magnetic materials has not been reported so far.

また、TMR素子では、素子サイズがサブミクロンになると、多結晶基板の粒界や厚膜電極の粒成長がトンネル絶縁層の膜厚や膜質の変化による接合抵抗のバラツキをもたらす。   Also, in the TMR element, when the element size becomes submicron, the grain boundary of the polycrystalline substrate or the grain growth of the thick film electrode causes variation in the junction resistance due to a change in the thickness or film quality of the tunnel insulating layer.

本発明は、従来よりも高いMR比を示すTMR素子を提供することを目的とする。また、本発明の別の目的は、接合抵抗のバラツキが抑制されたTMR素子を提供することにある。   An object of the present invention is to provide a TMR element having a higher MR ratio than the conventional one. Another object of the present invention is to provide a TMR element in which a variation in junction resistance is suppressed.

本発明の第1のTMR素子は、基板と、前記基板上に形成された多層膜とを含み、前記多層膜が、トンネル層と、前記トンネル層を挟持する一対の磁性層とを含み、前記一対の磁性層における磁化方向の相対角度に応じて抵抗値が変化し、前記基板と前記トンネル層との間に導電層が配置され、前記導電層が、a)Pt、Pd、Ag、Au、C、Si、Ge、SnおよびPbから選ばれる少なくとも1種からなる導電体、b)アモルファス膜、およびc)平均結晶粒径が5nm以下の微結晶膜、d)Cu膜とCu以外の金属膜とを含む積層体、から選ばれる少なくとも1種である。   A first TMR element of the present invention includes a substrate, and a multilayer film formed on the substrate, wherein the multilayer film includes a tunnel layer, and a pair of magnetic layers sandwiching the tunnel layer. The resistance value changes according to the relative angle of the magnetization direction in the pair of magnetic layers, and a conductive layer is disposed between the substrate and the tunnel layer, and the conductive layers are a) Pt, Pd, Ag, Au, A conductor made of at least one selected from C, Si, Ge, Sn and Pb, b) an amorphous film, c) a microcrystalline film having an average crystal grain size of 5 nm or less, d) a Cu film and a metal film other than Cu And at least one member selected from the group consisting of:

本発明の第2のTMR素子は、基板と、前記基板上に形成された多層膜とを含み、前記多層膜が、トンネル層と、前記トンネル層を挟持する一対の磁性層とを含み、前記一対の磁性層における磁化方向の相対角度に応じて抵抗値が変化し、前記一対の磁性層の少なくとも一方が、e)結晶構造から算出される格子定数に対して、0.1%以上5%以下の範囲で異なる格子定数で表される格子歪み、f)常温常圧(大気圧)下で優先的に形成される結晶構造とは異なる結晶構造、およびg)細密面以外に制御された結晶配向面を有する多結晶構造、から選ばれる少なくとも1種を有する。   The second TMR element of the present invention includes a substrate, and a multilayer film formed on the substrate, wherein the multilayer film includes a tunnel layer, and a pair of magnetic layers sandwiching the tunnel layer. The resistance value changes according to the relative angle of the magnetization direction in the pair of magnetic layers, and at least one of the pair of magnetic layers has a lattice constant calculated from e) a crystal structure of 0.1% or more and 5% or more. Lattice distortion represented by different lattice constants in the following ranges; f) a crystal structure different from the crystal structure formed preferentially at normal temperature and pressure (atmospheric pressure); and g) a crystal controlled other than a fine surface. And at least one selected from a polycrystalline structure having an orientation plane.

本発明の第3のTMR素子は、基板と、前記基板上に形成された多層膜とを含み、前記多層膜が、トンネル層と、前記トンネル層を挟持する一対の磁性層とを含み、前記一対の磁性層における磁化方向の相対角度に応じて抵抗値が変化し、 前記一対の磁性層の少なくとも一方が、Fe、CoおよびNiから選ばれる少なくとも1種の磁性元素と、前記磁性元素以外の元素とを含み、平均電子数が、23.5以上25.5以下または26.5以上36以下である。ここで、平均電子数とは、組成に応じて算出した1原子あたりの電子数であり、膜中の原子の原子番号(電子数)を平均化することにより求めることができる。   A third TMR element of the present invention includes a substrate, and a multilayer film formed on the substrate, wherein the multilayer film includes a tunnel layer, and a pair of magnetic layers sandwiching the tunnel layer. The resistance value changes according to the relative angle of the magnetization direction in the pair of magnetic layers. At least one of the pair of magnetic layers has at least one magnetic element selected from Fe, Co, and Ni, and at least one other than the magnetic element. And an average number of electrons is 23.5 or more and 25.5 or less or 26.5 or more and 36 or less. Here, the average number of electrons is the number of electrons per atom calculated according to the composition, and can be obtained by averaging the atomic numbers (number of electrons) of the atoms in the film.

本発明の第4のTMR素子は、基板と、前記基板上に形成された多層膜とを含み、前記多層膜が、トンネル層と、前記トンネル層を挟持する一対の磁性層とを含み、前記一対の磁性層における磁化方向の相対角度に応じて抵抗値が変化し、前記一対の磁性層以外であって前記多層膜に含まれる少なくとも1つの層が、前記一対の磁性層の少なくとも一方の層における濃度が増加したときに前記少なくとも一方の層のスピン分極率が低下する余剰元素を含み、前記多層膜が、前記余剰元素を含有する合金または化合物を含む余剰元素捕獲層をさらに含み、前記余剰元素の含有率が、前記一対の磁性層のいずれよりも、前記余剰元素捕獲層において高くなっている。   A fourth TMR element of the present invention includes a substrate, and a multilayer film formed on the substrate, wherein the multilayer film includes a tunnel layer, and a pair of magnetic layers sandwiching the tunnel layer. The resistance value changes according to the relative angle of the magnetization direction in the pair of magnetic layers, and at least one layer other than the pair of magnetic layers and included in the multilayer film is at least one layer of the pair of magnetic layers. The excess of which decreases the spin polarizability of at least one of the layers when the concentration in the multilayer increases, the multilayer film further includes a surplus element capture layer containing an alloy or compound containing the surplus element, the surplus element The element content is higher in the surplus element trapping layer than in any of the pair of magnetic layers.

以下、本発明の好ましい実施形態について説明する。   Hereinafter, a preferred embodiment of the present invention will be described.

図1に示したように、本発明のTMR素子は、トンネル層7を、一対の磁性層6,8が挟持する基本構成を有する。トンネル層7は、窒化物、酸化物、硼化物、炭化物等の絶縁体または半導体から構成されていればよい。磁性層6,8は強磁性体またはフェリ磁性体であればよい。   As shown in FIG. 1, the TMR element of the present invention has a basic configuration in which a pair of magnetic layers 6 and 8 sandwich a tunnel layer 7. The tunnel layer 7 may be made of an insulator such as a nitride, an oxide, a boride, or a carbide, or a semiconductor. The magnetic layers 6 and 8 may be ferromagnetic or ferrimagnetic.

本発明のTMR素子は、いわゆるスピンバルブ型の素子としてもよい。この場合、磁性層の一方は、外部磁界に対して相対的に磁化回転しにくい固定磁性層となり、他方は相対的に磁化回転しやすい自由磁性層となる。固定層には、反強磁性層や積層フェリのような磁化回転制御層を磁気的に結合させて磁化回転を抑制するとよい。自由層には、軟磁性層を磁気的に結合させてもよい。   The TMR element of the present invention may be a so-called spin valve element. In this case, one of the magnetic layers is a fixed magnetic layer that is relatively hard to rotate the magnetization with respect to the external magnetic field, and the other is a free magnetic layer that is relatively easy to rotate the magnetization. A magnetization rotation control layer such as an antiferromagnetic layer or a laminated ferrimagnetic layer may be magnetically coupled to the fixed layer to suppress magnetization rotation. A soft magnetic layer may be magnetically coupled to the free layer.

(実施形態1)
まず、本発明の第1のTMR素子について説明する。
(Embodiment 1)
First, the first TMR element of the present invention will be described.

この素子では、基板とトンネル層との間に、上記a)〜d)の少なくとも1種に相当する導電層(表面性制御層)が配置される。   In this device, a conductive layer (surface property control layer) corresponding to at least one of the above a) to d) is disposed between the substrate and the tunnel layer.

a)に相当する所定の元素からなる層は、サーファクタント層として作用し、トンネル層の表面性を改善する作用を奏する。b)またはc)に相当する層(アモルファスまたは微結晶体)は、この層の上に形成される膜のラフネスやトンネル層のピンホールを抑制する作用を奏する。d)に相当する積層体も、この積層体上に形成される膜のラフネス等を改善する。これらの作用により、表面性制御層は、特にサブミクロンサイズにまで微細化されたトンネル層の抵抗のバラツキを抑制し、さらにオレンジピール効果による抗磁力の増大を抑制する。   The layer composed of the predetermined element corresponding to a) functions as a surfactant layer, and has an effect of improving the surface properties of the tunnel layer. The layer (amorphous or microcrystalline) corresponding to b) or c) has the effect of suppressing the roughness of the film formed on this layer and the pinhole of the tunnel layer. The laminate corresponding to d) also improves the roughness and the like of a film formed on the laminate. By these actions, the surface property control layer suppresses the variation in the resistance of the tunnel layer which is miniaturized particularly to the submicron size, and further suppresses the increase in the coercive force due to the orange peel effect.

表面性制御層がa)、b)およびc)から選ばれる少なくとも1種である場合には、この層の膜厚は10nm以下が好適である。サブミクロンサイズの素子における反磁界の影響等を抑制できるからである。表面性制御層の膜厚は、ラフネスをさらに抑制するためには0.5nm以上が好適である。   When the surface property control layer is at least one selected from a), b) and c), the thickness of this layer is preferably 10 nm or less. This is because the influence of a demagnetizing field in a submicron-sized element can be suppressed. The thickness of the surface property control layer is preferably 0.5 nm or more in order to further suppress the roughness.

表面性制御層は、磁性層(磁性導電層)であっても非磁性層(非磁性導電層)であってもよいが、a)に相当する導電体は非磁性層であり、c)に相当する微結晶体は磁性層とすることが好ましい。   The surface property control layer may be a magnetic layer (magnetic conductive layer) or a non-magnetic layer (non-magnetic conductive layer), and the conductor corresponding to a) is a non-magnetic layer, and c) is a non-magnetic layer. The corresponding microcrystal is preferably a magnetic layer.

b)またはc)に相当する磁性導電層は、例えば、Fe、Co、Niから選ばれる少なくとも1種を主成分とする磁性材料に、Al、Si、Ga、Ge、IIa族(新IUPAC表示では2族)およびVIa族(6族)から選ばれる少なくとも1種の元素と、B、C、N、OおよびPから選ばれる少なくとも1種の元素とを添加すると、作製しやすくなる。ここで、B、C、N、OおよびPの好ましい含有量は10〜30原子%である。なお、ここでは、主成分とは含有元素中で最も多い含有量の元素を指す。   The magnetic conductive layer corresponding to b) or c) includes, for example, a magnetic material mainly composed of at least one selected from Fe, Co, and Ni, and a group of Al, Si, Ga, Ge, and IIa (in the new IUPAC display). Addition of at least one element selected from Group 2) and VIa (Group 6) and at least one element selected from B, C, N, O and P facilitates fabrication. Here, the preferable content of B, C, N, O and P is 10 to 30 atomic%. Here, the main component refers to the element having the largest content among the contained elements.

d)に相当する層において、Cu膜と積層する金属膜としては、Cu膜とは10%以上異なる格子定数を有する金属膜、またはCu膜と異なる結晶構造を有する金属膜が好ましい。Cu膜の好ましい膜厚は2nm以上100nm以下であり、Cu以外の金属膜の好ましい膜厚は0.3nm以上5nm以下であり、積層体の膜厚合計の好ましい範囲は50nm以上5μm以下である。この積層体は、下部電極または下部電極の一部として用いてもよい。   In the layer corresponding to d), as the metal film laminated with the Cu film, a metal film having a lattice constant different from the Cu film by 10% or more or a metal film having a crystal structure different from the Cu film is preferable. The preferable thickness of the Cu film is 2 nm or more and 100 nm or less, the preferable thickness of the metal film other than Cu is 0.3 nm or more and 5 nm or less, and the preferable total thickness of the laminate is 50 nm or more and 5 μm or less. This laminate may be used as a lower electrode or a part of a lower electrode.

磁性層である表面性制御層は、磁性層の一部を構成していてもよい。この場合、表面性制御層は、基板側(図1下方)に配置された磁性層(図1における磁性層6)に含まれることになる。   The surface property control layer which is a magnetic layer may constitute a part of the magnetic layer. In this case, the surface property control layer is included in the magnetic layer (the magnetic layer 6 in FIG. 1) disposed on the substrate side (the lower part in FIG. 1).

通常、磁性層は、a)〜d)のいずれでもない層であるが、磁性層が表面性制御層を兼ねていてもよい。表面性制御層とは別に配置した磁性層を、アモルファス磁性体および平均結晶粒が5nm以下の微結晶磁性体から選ばれるいずれか一方としてもよい。この形態では、MR比がやや低下することがあるが、接合抵抗値のバラツキは低減する。   Usually, the magnetic layer is a layer other than any of a) to d), but the magnetic layer may also serve as a surface property control layer. The magnetic layer provided separately from the surface property control layer may be any one selected from an amorphous magnetic material and a microcrystalline magnetic material having an average crystal grain of 5 nm or less. In this mode, the MR ratio may slightly decrease, but the variation in the junction resistance value decreases.

図2に示したように、表面性制御層2は磁性層6と別に配置してもよい。この場合、表面性制御層2は磁性層6に接して配置する必要はなく、図3に示したように、(トンネル層7から見て基板1と反対側9ではなく)基板1と磁性層6との間の位置5に介在するように多層膜10に含まれていればよい。磁性層である表面性制御層は、基板側に配置された磁性層6に磁気的に接する高保磁力層や軟磁性層であってもよい。   As shown in FIG. 2, the surface property control layer 2 may be arranged separately from the magnetic layer 6. In this case, the surface property control layer 2 does not need to be disposed in contact with the magnetic layer 6, and as shown in FIG. 3, the substrate 1 and the magnetic layer (not the side 9 opposite to the substrate 1 as viewed from the tunnel layer 7). 6 as long as it is included in the multilayer film 10 so as to be interposed at the position 5 between them. The surface property control layer, which is a magnetic layer, may be a high coercive force layer or a soft magnetic layer magnetically in contact with the magnetic layer 6 disposed on the substrate side.

このTMR素子を用いれば、例えばセラミックス多結晶基板のように、本質的にピンホールが多く、ラフネスが比較的大きい多結晶体の基板を用いても、安定した接合抵抗を得やすくなる。   If this TMR element is used, stable junction resistance can be easily obtained even if a polycrystalline substrate having many pinholes and relatively large roughness, such as a ceramic polycrystalline substrate, is used.

(実施形態2)
次に、本発明の第2のTMR素子について説明する。
(Embodiment 2)
Next, the second TMR element of the present invention will be described.

この素子では、磁性層の少なくとも一方に、e)所定の格子歪み、f)常温常圧下では優先的に形成されない結晶構造(結晶系)、g)細密面以外の結晶配向面、から選ばれる少なくとも1種が導入され、これにより、より高いMR比を得ることができる。   In this element, at least one of the magnetic layers has at least one selected from the group consisting of e) a predetermined lattice strain, f) a crystal structure (crystal system) that is not formed preferentially at normal temperature and pressure, and g) a crystal orientation plane other than a fine plane. One type is introduced, so that a higher MR ratio can be obtained.

磁性層にe)〜g)の少なくとも1種を導入するためには、例えば、この磁性層に接するように結晶構造制御層を配置するとよい。図2に示したように、結晶構造制御層2は、格子歪み等を導入する磁性層6と接するように形成するとよい。磁性層と結晶構造制御層とは、いずれか一方の上に他方をエピタキシャル成長させて形成してもよい。   In order to introduce at least one of e) to g) into the magnetic layer, for example, a crystal structure control layer may be disposed so as to be in contact with the magnetic layer. As shown in FIG. 2, the crystal structure control layer 2 is preferably formed so as to be in contact with the magnetic layer 6 for introducing lattice distortion or the like. The magnetic layer and the crystal structure control layer may be formed by epitaxially growing the other on either one.

結晶構造制御層は、格子歪みを導入する場合には、磁性層において優先的に形成される結晶系の細密結晶面に対して格子ミスマッチを有するように形成するとよい。また、結晶系または配向性を制御する場合には、細密結晶面以外の面に対して比較的格子ミスマッチが小さくなるように形成するとよい。   When introducing a lattice distortion, the crystal structure control layer is preferably formed so as to have a lattice mismatch with a fine crystal plane of a crystal system preferentially formed in the magnetic layer. When the crystal system or the orientation is controlled, it is preferable to form the crystal system such that the lattice mismatch with respect to a plane other than the fine crystal plane is relatively small.

e)に相当する適度な格子歪みを磁性層に導入すると、フェルミ面近傍のスピン分極率が高くなり、MR比が向上すると考えられる。   It is considered that when an appropriate lattice strain corresponding to e) is introduced into the magnetic layer, the spin polarizability near the Fermi surface increases and the MR ratio improves.

格子歪みを導入するための結晶構造制御層は、格子歪みを導入する磁性層が含む磁性元素(Fe、CoおよびNiから選ばれる少なくとも1種)と、これら磁性元素(Fe、CoおよびNi)以外の元素(非磁性元素)とを含むとよい。例えば、格子歪みを導入する磁性層が磁性元素Mからなる場合、結晶構造制御層はM1-xx(Aは磁性元素以外の元素;0<x<1)とすることが好ましい。 The crystal structure control layer for introducing lattice strain is a magnetic element (at least one selected from Fe, Co, and Ni) included in the magnetic layer for introducing lattice distortion, and a material other than these magnetic elements (Fe, Co, and Ni). (Non-magnetic element). For example, when the magnetic layer that introduces lattice distortion is made of a magnetic element M, the crystal structure control layer preferably has M 1-x A x (A is an element other than the magnetic element; 0 <x <1).

f)常温常圧下で優先的に取りうる結晶構造とは異なる結晶構造を磁性層に導入しても、MR比が向上する。   f) Even if a crystal structure different from the crystal structure that can be preferentially obtained under normal temperature and normal pressure is introduced into the magnetic layer, the MR ratio is improved.

常温常圧下では、例えばFeはbcc(体心立方格子)、Coはhcp(六方最密格子)、Niはfcc(面心立方格子)の結晶構造を優先的に取る。しかし、例えばfcc−Fe、bcc−Co、bcc−Niのように準安定な結晶構造を含む磁性層を用いると、より高いMR比が得られる。   Under normal temperature and normal pressure, for example, Fe preferentially takes a crystal structure of bcc (body-centered cubic lattice), Co takes hcp (hexagonal close-packed lattice), and Ni takes a crystal structure of fcc (face-centered cubic lattice) preferentially. However, when a magnetic layer having a metastable crystal structure such as fcc-Fe, bcc-Co, and bcc-Ni is used, a higher MR ratio can be obtained.

同様に、優先的にbcc構造をとる組成のFeCo合金(例えばFe50Co50)はhcpやfccとするとよく、優先的にhcpまたはfcc構造をとる組成のFeCo合金(例えばFe10Co90)はbccとするとよく、優先的にfcc構造をとる組成のNiFe合金はbcc構造とするとよい。 Similarly, an FeCo alloy (eg, Fe 50 Co 50 ) having a composition that preferentially has a bcc structure may be hcp or fcc. An FeCo alloy (eg, Fe 10 Co 90 ) having a composition that preferentially has an hcp or fcc structure is bcc, and a NiFe alloy having a composition that preferentially has an fcc structure may have a bcc structure.

発明者の検討によると、MR比向上の観点からは、これら準安定な結晶構造は、磁性層の結晶構造全体の30%以上を占めていることが好ましい。また、磁性元素に非磁性元素を加えた磁性層でも、準安定な結晶構造の導入によるMR比向上の効果は同様に得られる。   According to the study by the inventors, it is preferable that these metastable crystal structures account for 30% or more of the entire crystal structure of the magnetic layer from the viewpoint of improving the MR ratio. Further, even in a magnetic layer in which a non-magnetic element is added to a magnetic element, the effect of improving the MR ratio by introducing a metastable crystal structure can be similarly obtained.

多くの場合、準安定な結晶構造には、格子歪みも同時に導入されやすい。現段階では、結晶構造の変化による影響と格子歪みによる影響とを分離して明確に説明することは困難である。しかし、いずれにしても、結晶構造の変化に伴うバンド構造の変化によるスピン分極率の上昇が、MR比の向上に寄与していると考えられる。   In many cases, lattice distortion is likely to be simultaneously introduced into a metastable crystal structure. At this stage, it is difficult to separately and clearly explain the effects of the change in crystal structure and the effects of lattice distortion. However, in any case, it is considered that the increase in the spin polarizability due to the change in the band structure accompanying the change in the crystal structure contributes to the improvement in the MR ratio.

g)細密面以外に制御された結晶配向面を有する多結晶体を磁性層に導入しても、MR比が向上する。   g) Even if a polycrystalline material having a controlled crystal orientation plane other than the fine plane is introduced into the magnetic layer, the MR ratio is improved.

磁性層は、例えば結晶配向面がbccの場合は(111)配向成分、fccの場合は(100)もしくは(110)成分のように、細密面以外の成分が大きくなったときに、MR比が大きくなる。具体的には、例えばX線回折により、細密面以外に配向していると確認されたときに、MR比が大きくなる傾向がある。   The magnetic layer has an MR ratio when the component other than the fine surface increases, such as the (111) orientation component when the crystal orientation plane is bcc and the (100) or (110) component when the crystal orientation plane is fcc. growing. Specifically, for example, when it is confirmed by X-ray diffraction that the orientation is other than the fine surface, the MR ratio tends to increase.

磁性層に、少なくともf)およびg)を同時に導入すると、より高いMR比が得られる。f)、g)とともにe)を導入すると、さらに高いMR比を実現できる可能性がある。   When at least f) and g) are simultaneously introduced into the magnetic layer, a higher MR ratio is obtained. If e) is introduced together with f) and g), a higher MR ratio may be realized.

この素子においては、e)〜g)の少なくとも1種を導入する磁性層の膜厚は、3nm以下が好適である。   In this device, the thickness of the magnetic layer into which at least one of e) to g) is introduced is preferably 3 nm or less.

(実施形態3)
引き続き、本発明の第3の素子について説明する。
(Embodiment 3)
Subsequently, the third element of the present invention will be described.

磁性元素(Fe、CoおよびNi)同士の合金からなる磁性層では、最も高いスピン分極率はFe70Co30近傍で得られる。Fe70Co30は、平均電子数に換算すると26.3に対応する(Feの原子番号:26,Coの原子番号:27;26×0.7+27×0.3=26.3)。しかし、少なくとも1種の磁性元素と、少なくとも1種の非磁性元素とを含む磁性層では、平均電子数を23.5以上25.5以下または26.5以上36以下とすると、MR比が向上する。 In a magnetic layer made of an alloy of magnetic elements (Fe, Co, and Ni), the highest spin polarizability is obtained in the vicinity of Fe 70 Co 30 . When converted to an average number of electrons, Fe 70 Co 30 corresponds to 26.3 (atomic number of Fe: 26, atomic number of Co: 27; 26 × 0.7 + 27 × 0.3 = 26.3). However, in a magnetic layer containing at least one magnetic element and at least one nonmagnetic element, the MR ratio is improved when the average number of electrons is 23.5 or more and 25.5 or less or 26.5 or more and 36 or less. I do.

後述する実施例により確認されたところによると、より好ましい平均電子数は、24.5以上25.5以下または27.5以上32.5以下である。この磁性層では、磁性元素を主成分とすることが好ましい。ここでは、磁性元素の合計量が非磁性元素の合計量よりも多ければよい。   According to the results confirmed in Examples described later, the more preferable average electron number is 24.5 or more and 25.5 or less or 27.5 or more and 32.5 or less. This magnetic layer preferably contains a magnetic element as a main component. Here, the total amount of the magnetic elements may be larger than the total amount of the non-magnetic elements.

本発明者が確認した範囲では、適用できる非磁性元素に制限はない。好ましい非磁性元素としては、例えば、Si、Al、Ti、V、Cr、Mn、Ru、Rh、Pd、Os、Ir、Pt、B、C,NおよびOから選ばれる少なくとも1種が挙げられる。   There is no limitation on the applicable non-magnetic element within the range confirmed by the present inventors. Preferred non-magnetic elements include, for example, at least one selected from Si, Al, Ti, V, Cr, Mn, Ru, Rh, Pd, Os, Ir, Pt, B, C, N and O.

(実施形態4)
最後に、本発明の第4の素子について説明する。
(Embodiment 4)
Finally, a fourth device of the present invention will be described.

この素子は、余剰元素捕獲層を含んでいる。余剰元素は、磁性層における濃度の増加が当該磁性層におけるスピン分極率の低下をもたらす元素であり、例えば、Mn、Ru、B、C、NおよびOから選ばれる少なくとも1種が該当する。余剰元素は、素子の製造工程における熱処理中に、余剰元素供給層から素子全体に拡散し、磁性層へと拡散する。その結果、磁性層におけるスピン分極率が低下する。   This device includes a surplus element trapping layer. The surplus element is an element in which an increase in the concentration in the magnetic layer causes a decrease in the spin polarizability in the magnetic layer, and for example, at least one selected from Mn, Ru, B, C, N, and O corresponds. The surplus element diffuses from the surplus element supply layer to the entire device and to the magnetic layer during the heat treatment in the device manufacturing process. As a result, the spin polarizability of the magnetic layer decreases.

なお、磁性層内の余剰元素は、スピン分極率とは別の要因により、磁気抵抗素子のMR比を引き上げることがある。   The surplus element in the magnetic layer may raise the MR ratio of the magnetoresistive element due to a factor different from the spin polarizability.

余剰元素捕獲層は、余剰元素を捕獲する前には、好ましくは余剰元素と合金または化合物を形成する金属を含有しており、余剰元素を捕獲した後には、余剰元素を含有する合金または化合物を含有している。   Before capturing the surplus element, the surplus element capturing layer preferably contains a metal that forms an alloy or a compound with the surplus element, and after capturing the surplus element, an alloy or a compound containing the surplus element is used. Contains.

トンネル層が、硼化物、炭化物、窒化物および酸化物から選ばれる少なくとも1種である場合、B、C、NおよびOから選ばれる少なくとも1種が余剰元素となりうる。この場合、余剰元素捕獲層は、酸化物、窒化物、炭化物および硼化物から選ばれる少なくとも1種の化合物の生成自由エネルギーが、Feよりも低い金属を含むことが好ましい。このような金属としては、例えば、Al、Si、IVa族(4族)、Va族(5族)およびVIa族(6族)元素から選ばれる少なくとも1種が挙げられる。   When the tunnel layer is at least one selected from borides, carbides, nitrides, and oxides, at least one selected from B, C, N, and O can be a surplus element. In this case, the surplus element capturing layer preferably contains a metal having a free energy of formation of at least one compound selected from oxides, nitrides, carbides, and borides lower than Fe. Examples of such a metal include at least one selected from the group consisting of Al, Si, a group IVa (group 4), a group Va (group 5), and a group VIa (group 6).

スピンバルブ型の素子における磁化回転抑制層から余剰元素が拡散することもある。磁化回転抑制層に含まれる代表的な余剰元素は、MnおよびRuから選ばれる少なくとも1種である。Mnは、例えばMnを含む反強磁性層から拡散し、Ruは、例えばRuを含む非磁性膜から拡散する。この非磁性膜は、積層フェリ(磁性膜/Ru/磁性膜の積層構造)の一部として用いることができる。この積層フェリは、磁化回転制御層としてのみならず、磁性層自体として、TMR素子に用いられることがある。磁化回転制御層からの余剰元素を捕獲するためには、余剰元素捕獲層は、Fe、Ni、Ir、PdおよびPtから選ばれる少なくとも1種である金属を含むことが好ましい。   Excess elements may diffuse from the magnetization rotation suppressing layer in the spin valve type element. A typical surplus element contained in the magnetization rotation suppressing layer is at least one selected from Mn and Ru. Mn diffuses, for example, from an antiferromagnetic layer containing Mn, and Ru diffuses, for example, from a nonmagnetic film containing Ru. This nonmagnetic film can be used as a part of a laminated ferrimagnetic (magnetic film / Ru / magnetic film laminated structure). This laminated ferri-layer may be used not only as a magnetization rotation control layer but also as a magnetic layer itself in a TMR element. In order to capture a surplus element from the magnetization rotation control layer, the surplus element capturing layer preferably contains at least one metal selected from Fe, Ni, Ir, Pd, and Pt.

余剰元素は、トンネル層や磁化回転制御層のような余剰元素供給層から他の層へと拡散する。拡散の後、余剰元素の各層における含有率(濃度)には、Rs≧Rc>Rmの関係式が成立することが好ましい。ここで、Rsは余剰元素供給層における余剰元素の含有率、Rcは余剰元素捕獲層における余剰元素の含有率、Rmは磁性層における余剰元素の含有率である。   The surplus element diffuses from a surplus element supply layer such as a tunnel layer and a magnetization rotation control layer to another layer. After the diffusion, it is preferable that the relational expression of Rs ≧ Rc> Rm holds for the content (concentration) of the surplus element in each layer. Here, Rs is the surplus element content in the surplus element supply layer, Rc is the surplus element content in the surplus element capture layer, and Rm is the surplus element content in the magnetic layer.

図4に示したように、余剰元素捕獲層21は、多層膜の厚さ方向について、この層と磁性層の少なくとも一方(図4では磁性層8)との距離Lが10nm以下となるように配置することが好ましい。磁性層における余剰元素の濃度の低減に有効だからである。   As shown in FIG. 4, the surplus element trapping layer 21 is arranged such that the distance L between the layer and at least one of the magnetic layers (the magnetic layer 8 in FIG. 4) is 10 nm or less in the thickness direction of the multilayer film. It is preferable to arrange them. This is because it is effective for reducing the concentration of surplus elements in the magnetic layer.

以下は、各素子に共通する形態の説明である。   The following is a description of an embodiment common to each element.

これらの素子では、例えば、磁性層の少なくとも一方が、B、C、N、OおよびPから選ばれる少なくとも1種の元素を0.1原子%以上15原子%以下の範囲で含んでいてもよい。格子歪みの導入、結晶配向面の制御、平均電子数の調整等に効果があるからである。また例えば、磁性層の少なくとも一方が、Mnおよび白金族元素から選ばれる少なくとも1種の元素を0.1原子%以上40原子%以下の範囲で含んでいてもよい。   In these elements, for example, at least one of the magnetic layers may contain at least one element selected from B, C, N, O, and P in a range of 0.1 atomic% to 15 atomic%. . This is because it is effective in introducing lattice distortion, controlling the crystal orientation plane, adjusting the average number of electrons, and the like. Further, for example, at least one of the magnetic layers may contain at least one element selected from Mn and a platinum group element in a range of 0.1 at% to 40 at%.

これらの素子の作製には、例えば真空蒸着、IBD(イオンビームデポジション)、スパッタリング、MBE、イオンプレーティング法のような従来から公知の各種成膜法を適用すればよい。   For the production of these elements, various conventionally known film forming methods such as vacuum evaporation, IBD (ion beam deposition), sputtering, MBE, and ion plating may be applied.

トンネル層は、化合物ターゲットを用いたスパッタリング法によって成膜してもよく、反応性蒸着法、反応性スパッタリング法、イオンアシスト等を適用してもよい。CVD法(化学蒸着法)を用いても構わない。また、金属膜を、反応ガスを含む適当な分圧のガス、またはプラズマ雰囲気と接触させて形成してもよい。   The tunnel layer may be formed by a sputtering method using a compound target, or a reactive deposition method, a reactive sputtering method, ion assist, or the like may be applied. A CVD method (chemical vapor deposition method) may be used. Further, the metal film may be formed by contacting with a gas having an appropriate partial pressure including a reaction gas or a plasma atmosphere.

これらの膜の加工には、通常の半導体プロセスで用いられるイオンミリング、RIE、EB、FIB、I/M等の物理的または化学的エッチング法、およびフォトグラフィー法を適用すればよい。微細プロセス中に平坦化が必要であればCMP法やクラスターイオンビームエッチング法を適用してもよい。   These films may be processed by a physical or chemical etching method such as ion milling, RIE, EB, FIB, I / M, or the like, which is used in a normal semiconductor process, and a photography method. If planarization is required during the fine process, a CMP method or a cluster ion beam etching method may be applied.

本発明の磁気抵抗素子は、各種の磁気デバイスに適用できる。図5に、自由層18をヨークとする磁気ヘッドに応用した場合の構成例を示す。基板11上に、下部電極13、制御層12、反強磁性膜14、固定磁性層16、トンネル層17、自由磁性層18、上部電極20がこの順に積層されている。制御層12は、例えば第1の素子における表面性制御層、第2の素子における結晶構造制御層を用いればよい。   The magnetoresistive element of the present invention can be applied to various magnetic devices. FIG. 5 shows a configuration example when applied to a magnetic head using the free layer 18 as a yoke. On a substrate 11, a lower electrode 13, a control layer 12, an antiferromagnetic film 14, a fixed magnetic layer 16, a tunnel layer 17, a free magnetic layer 18, and an upper electrode 20 are laminated in this order. As the control layer 12, for example, a surface property control layer in the first element and a crystal structure control layer in the second element may be used.

この素子では、磁性層16,18およびトンネル層17を挟持するように一対の電極13,20が配置され、これら電極の間を流れる電流がすべてトンネル層17を通過するように、層間絶縁膜15が配置されている。なお、19は、硬質磁性膜または反強磁性膜である。   In this device, a pair of electrodes 13 and 20 are arranged so as to sandwich the magnetic layers 16 and 18 and the tunnel layer 17, and the interlayer insulating film 15 is formed so that all the current flowing between these electrodes passes through the tunnel layer 17. Is arranged. Reference numeral 19 denotes a hard magnetic film or an antiferromagnetic film.

(実施例1)
この実施例では、本発明の第1の素子を作製した。
(Example 1)
In this example, a first element of the present invention was manufactured.

RFマグネトロンスパッタと抵抗加熱による蒸着法を用い、多結晶AlTiC基板上に、以下の構成を有する多層膜を形成した。   A multilayer film having the following configuration was formed on a polycrystalline AlTiC substrate by using RF magnetron sputtering and an evaporation method using resistance heating.

Ta(3)/Cu(500)/表面性制御層(10)/Ta(3)/PtMn(30)/CoFe(3)/Ru(0.7)/CoFe(3)/Al(0.4; 200Torr 純酸素1min酸化)/Al(0.3; 200Torr純酸素1min酸化)/CoFe(3)/NiFe(5)/Ta(3)
ただし、各層は基板側から順に記載されており、括弧内の数値は単位をnmとする各層の膜厚であり、括弧内にはAlの酸化条件も併せて示す(以下、同様)。
Ta (3) / Cu (500) / Surface control layer (10) / Ta (3) / PtMn (30) / CoFe (3) / Ru (0.7) / CoFe (3) / Al (0.4; 200Torr Pure oxygen 1min oxidation) / Al (0.3; 200Torr pure oxygen 1min oxidation) / CoFe (3) / NiFe (5) / Ta (3)
However, each layer is described in order from the substrate side, the numerical value in parentheses is the film thickness of each layer in units of nm, and the oxidation conditions of Al are also shown in parentheses (the same applies hereinafter).

この膜をメサ加工した後、Taをミリングで除去し、さらにNiFe(5)/CoPt(30)を成膜し、メサ構造直上のCoPtを除き、最終面にCu(500)を成膜した。こうして、図5と同様の構造を有する素子を作製した。   After this film was mesa-processed, Ta was removed by milling, and a film of NiFe (5) / CoPt (30) was formed, and a film of Cu (500) was formed on the final surface except for CoPt immediately above the mesa structure. Thus, an element having a structure similar to that of FIG. 5 was manufactured.

一軸方向性異方性を付与するために、PtMnを280℃、5kOe(約398kA/m)の磁界で熱処理を行い、さらにこの磁化方向と直交するように100Oeの磁界を印加しながら200℃で熱処理を施した。   In order to impart uniaxial anisotropy, PtMn is heat-treated at 280 ° C. in a magnetic field of 5 kOe (approximately 398 kA / m). Heat treatment was applied.

さらに、上記多層膜におけるCu(500)/表面性制御層(10)に代えてCu(50)と表面性制御層(0.5または2.5)との2層構造を10層重ねた積層体を用いた以外は、上記と同様にして素子を作製した。また、多結晶AlTiC基板に代えてSi熱酸化基板(Si/SiO2)を用いた以外は、上記と同様にして素子を作製した。比較のため、表面性制御層を形成しない素子も作製した。 Further, instead of the Cu (500) / surface property control layer (10) in the multilayer film, a laminate in which ten two-layer structures of Cu (50) and the surface property control layer (0.5 or 2.5) were used was used. Except for the above, an element was produced in the same manner as described above. An element was manufactured in the same manner as described above, except that a Si thermal oxidation substrate (Si / SiO 2 ) was used instead of the polycrystalline AlTiC substrate. For comparison, an element without the surface property control layer was also manufactured.

各素子について、MR比、抗磁力、接合抵抗のバラツキを測定した。接合抵抗のバラツキは、6インチのウェハ上において30点を測定し、その標準偏差σを採用した。結果を表1に示す。   For each element, variations in MR ratio, coercive force, and junction resistance were measured. The variation in the junction resistance was measured at 30 points on a 6-inch wafer, and the standard deviation σ was adopted. Table 1 shows the results.

Figure 2004179668
Figure 2004179668

ここで、Auからなる表面性制御層としては、室温で成膜後に500℃で熱処理した層と、室温で成膜して熱処理しない層とを記載した。その他の表面性制御層に対しては、熱処理しない層を記載した。a)に相当する元素では、Pt、Pdは室温で成膜して熱処理しないことが好ましく、Auは成膜後に400℃以上で熱処理することが好ましく、残りの元素はいずれでもよい。  Here, as the surface property control layer made of Au, a layer formed at room temperature and then heat-treated at 500 ° C. and a layer formed at room temperature and not heat-treated are described. For the other surface property control layers, the layers that were not heat-treated were described. Among the elements corresponding to a), Pt and Pd are preferably formed at room temperature and not heat-treated, while Au is preferably heat-treated at 400 ° C. or higher after film formation, and any of the remaining elements may be used.

また、TiSi、ZrAlNiCu、ZrNbAlCuおよびCuSiBはアモルファス非磁性膜であり、CoFeBはアモルファス磁性膜であり、FeSiBは平均結晶粒が5nm以下である磁性膜である。   TiSi, ZrAlNiCu, ZrNbAlCu, and CuSiB are amorphous non-magnetic films, CoFeB is an amorphous magnetic film, and FeSiB is a magnetic film having an average crystal grain of 5 nm or less.

また、その他の実験から、Cu膜と交互に積層する金属膜としては、Cu膜とは10%以上異なる格子定数を有する金属膜、またはCu膜と異なる結晶構造を有する金属膜が特に効果があった。Cuとの固溶率が10%以下の金属を用いると、さらに効果があることも確認できた。Crは、これらの条件を満たす金属膜の例である。Ptは、相図上では固溶するが、Cuに対する拡散係数が比較的小さいために、良好な結果が得られる。   From other experiments, as a metal film alternately stacked with a Cu film, a metal film having a lattice constant different from the Cu film by 10% or more or a metal film having a crystal structure different from the Cu film is particularly effective. Was. It was also confirmed that the use of a metal having a solid solution rate of 10% or less with Cu was more effective. Cr is an example of a metal film satisfying these conditions. Although Pt forms a solid solution on the phase diagram, good results are obtained because the diffusion coefficient for Cu is relatively small.

さらに、上記と同様の膜構成において、基板側のCoFe膜に代えてCoFeB膜またはFeSiNb膜を用いて素子を作製した。これらの素子では、MR比がそれぞれ16%、17%と低下したが、接合抵抗のバラツキはそれぞれ5%、6%となった。なお、両素子の抗磁力はともに10Oeであった。   Further, an element was manufactured using a CoFeB film or a FeSiNb film instead of the CoFe film on the substrate side in the same film configuration as described above. In these devices, the MR ratio was reduced to 16% and 17%, respectively, but the variation in the junction resistance was 5% and 6%, respectively. The coercive force of both elements was 10 Oe.

AFM(原子間力顕微鏡)を用いた観察の結果、表面性制御層により多層膜のラフネスが抑制されることも確認できた。   As a result of observation using an AFM (atomic force microscope), it was confirmed that the roughness of the multilayer film was suppressed by the surface property control layer.

(実施例2)
(実施例2−1)
RFマグネトロンスパッタを用い、熱酸化膜付きSi基板上に、以下の構成を有する多層膜を形成した。
(Example 2)
(Example 2-1)
Using RF magnetron sputtering, a multilayer film having the following configuration was formed on a Si substrate with a thermal oxide film.

Ta(3)/Cu(500)/Ta(3)/結晶構造制御層(10)/Fe(3)/Al(0.4; 200Torr 純酸素1min酸化)/Al(0.3; 200Torr純酸素1min酸化)/CoFe(3)/Ru(0.7)/CoFe(3)/PtMn(30)/Ta(3)
さらに、実施例1と同様にして、図6に示した素子を作製した。図6において、符号は、図5と同様である。
Ta (3) / Cu (500) / Ta (3) / crystal structure control layer (10) / Fe (3) / Al (0.4; 200 Torr pure oxygen 1 min oxidation) / Al (0.3; 200 Torr pure oxygen 1 min oxidation) / CoFe (3) / Ru (0.7) / CoFe (3) / PtMn (30) / Ta (3)
Further, in the same manner as in Example 1, the device shown in FIG. 6, the reference numerals are the same as those in FIG.

まず、結晶構造制御層として、Fe1-xSix(110)配向(0<x<1)を用い、Si量を調整することにより(110)面の面間隔を変化させ、この上のFe膜に格子歪みを導入した。各素子について、MR比を測定した。結果を表2に示す。 First, a crystal structure controlling layer, Fe 1-x Si x (110) using the alignment (0 <x <1), by changing the spacing of (110) plane by adjusting the Si amount, Fe on this Lattice strain was introduced into the film. The MR ratio of each device was measured. Table 2 shows the results.

Figure 2004179668
Figure 2004179668

ここで、格子定数の伸びは、X線回折およびRHEED(反射高速電子回折)により測定したFe膜の格子定数の測定値と、結晶構造から算出される格子定数とから算出した。   Here, the elongation of the lattice constant was calculated from the measured value of the lattice constant of the Fe film measured by X-ray diffraction and RHEED (reflection high-speed electron diffraction), and the lattice constant calculated from the crystal structure.

(実施例2−2)
RFマグネトロンスパッタを用い、ガラス基板上に、以下の構成を有する多層膜を形成した。
(Example 2-2)
A multilayer film having the following configuration was formed on a glass substrate by using RF magnetron sputtering.

Ta(3)/Cu(500)/Ta(3)/結晶構造制御層(10)/CoFe(3)/Al(0.4; 200Torr 純酸素1min酸化)/Al(0.3; 200Torr純酸素1min酸化)/CoFe(3)/Ru(0.7)/CoFe(3)/PtMn(30)/Ta(3)
さらに、実施例1と同様にして、図6と同様の素子を作製した。
Ta (3) / Cu (500) / Ta (3) / crystal structure control layer (10) / CoFe (3) / Al (0.4; 200 Torr pure oxygen 1 min oxidation) / Al (0.3; 200 Torr pure oxygen 1 min oxidation) / CoFe (3) / Ru (0.7) / CoFe (3) / PtMn (30) / Ta (3)
Further, a device similar to that of FIG. 6 was produced in the same manner as in Example 1.

ここでは、結晶構造制御層として、Fe1-xAlx(110)配向(0<x<1)を用い、Al量を調整することにより、この上のCoFe膜に格子歪みを導入した。各素子について、MR比を測定した。結果を表3に示す。 Here, as the crystalline structure control layer, using a Fe 1-x Al x (110 ) orientation (0 <x <1), by adjusting the Al content was introduced lattice distortion CoFe film thereon. The MR ratio of each device was measured. Table 3 shows the results.

Figure 2004179668
Figure 2004179668

(実施例2−3)
RFマグネトロンスパッタを用い、Cu単結晶基板上に、以下の構成を有する多層膜を形成した。
(Example 2-3)
A multilayer film having the following configuration was formed on a Cu single crystal substrate using RF magnetron sputtering.

Cu(500; 結晶構造制御層)/Fe(5ML)/Al(0.4; 200Torr 純酸素1min酸化)/Al(0.3; 200Torr純酸素1min酸化)/CoFe(3)/Ru(0.7)/CoFe(3)/PtMn(30)/Ta(3)
ここで、5MLとは、基本格子を5層積層したことを意味する。この厚みを有するFe膜は、多結晶体であった。
Cu (500; crystal structure control layer) / Fe (5ML) / Al (0.4; 200 Torr pure oxygen 1 min oxidation) / Al (0.3; 200 Torr pure oxygen 1 min oxidation) / CoFe (3) / Ru (0.7) / CoFe (3 ) / PtMn (30) / Ta (3)
Here, 5ML means that five basic lattices are stacked. The Fe film having this thickness was polycrystalline.

さらに、実施例1と同様にして、図6と同様の素子を作製した。この素子では、基板および結晶構造制御層が下部電極を兼ねている。ここでは、Cu単結晶の方位を変え、Feの結晶構造を変化させた。   Further, a device similar to that of FIG. 6 was produced in the same manner as in Example 1. In this device, the substrate and the crystal structure control layer also serve as the lower electrode. Here, the orientation of the Cu single crystal was changed to change the crystal structure of Fe.

さらに、Cu単結晶基板に代えて、MgO単結晶基板または熱酸化膜付きSi基板を、結晶構造制御層としてCu膜に代えてPt膜を用いた以外は上記と同様にして素子を作製した。   Further, an element was manufactured in the same manner as described above except that an MgO single crystal substrate or a Si substrate with a thermal oxide film was used instead of the Cu single crystal substrate, and a Pt film was used as the crystal structure control layer instead of the Cu film.

これらの素子について、MR比を測定した。また、Fe膜の配向率を測定した。ここで、配向率は、X線格子回折法によるピーク高さの比により測定した。配向率とは、当該結晶面の界面での面積の割合である。厳密には、X線で観測された値とバリア界面での配向率は必ずしも同一ではないが、本実施例の範囲内では、X線回折法により測定した配向率とMR比とは良い相関を示した。結果を表4に示す。   For these devices, the MR ratio was measured. Further, the orientation ratio of the Fe film was measured. Here, the orientation ratio was measured by a ratio of peak heights by an X-ray lattice diffraction method. The orientation ratio is the ratio of the area at the interface of the crystal plane. Strictly speaking, the value observed by X-rays and the orientation ratio at the barrier interface are not necessarily the same, but within the range of this embodiment, a good correlation between the orientation ratio measured by the X-ray diffraction method and the MR ratio is obtained. Indicated. Table 4 shows the results.

Figure 2004179668
Figure 2004179668

Fe膜が、常温常圧下で優先的に形成される構造(bcc)以外の結晶構造を有する素子では、MR比が向上した。hcp−Feにおいてもbcc−Feよりも高いMR比が得られた。また、fcc−Fe膜において、より高いMR比が得られたのは、細密面(111)以外の結晶方位とした場合であった。   In an element having a crystal structure other than the structure (bcc) in which the Fe film is preferentially formed at normal temperature and normal pressure, the MR ratio is improved. A higher MR ratio was obtained for hcp-Fe than for bcc-Fe. In the fcc-Fe film, a higher MR ratio was obtained when the crystal orientation was other than the fine plane (111).

同様にして、fcc−Fe膜に代えて、fcc−Co膜またはbcc−Ni膜を形成した場合にも、優先的に形成されるhcp−Co膜やfcc−Ni膜と比較して同等以上のMR比が得られた。これらの膜においても、細密面以外の方位において、より高いMR比が得られた。   Similarly, when an fcc-Co film or a bcc-Ni film is formed instead of the fcc-Fe film, the same or higher than the hcp-Co film or the fcc-Ni film formed preferentially. An MR ratio was obtained. Also in these films, higher MR ratios were obtained in directions other than the fine plane.

その他の実験から、MR比の向上には、細密面以外の配向率が60%以上、特に80%以上が好ましいことも確認できた。   From other experiments, it was confirmed that the orientation ratio other than the fine surface is preferably 60% or more, particularly preferably 80% or more, for improving the MR ratio.

(実施例2−4)
RFマグネトロンスパッタを用い、熱酸化膜付きSi基板上に、以下の構成を有する多層膜を形成した。
(Example 2-4)
Using RF magnetron sputtering, a multilayer film having the following configuration was formed on a Si substrate with a thermal oxide film.

Cu(100)/CuAu(500;結晶構造制御層)/Fe(5ML)/Al(0.4; 200Torr 純酸素1min酸化)/Al(0.3; 200Torr純酸素1min酸化)/CoFe(3)/Ru(0.7)/CoFe(3)/PtMn(30)/Ta(3)
さらに、実施例1と同様にして、図6と同様の素子を作製した。
Cu (100) / CuAu (500; crystal structure control layer) / Fe (5ML) / Al (0.4; 200 Torr pure oxygen 1 min oxidation) / Al (0.3; 200 Torr pure oxygen 1 min oxidation) / CoFe (3) / Ru (0.7 ) / CoFe (3) / PtMn (30) / Ta (3)
Further, a device similar to that of FIG. 6 was produced in the same manner as in Example 1.

ここでは、結晶構造制御層として、Cu1-xAux(110)配向(0<x<1)を用い、Au量を調整することにより、この上のfcc−Fe(100)膜に格子歪みを導入した。各素子について、MR比を測定した。結果を表5に示す。 Here, Cu 1-x Au x (110) orientation (0 <x <1) is used as the crystal structure control layer, and by adjusting the amount of Au, lattice distortion is caused in the fcc-Fe (100) film thereon. Was introduced. The MR ratio of each device was measured. Table 5 shows the results.

Figure 2004179668
Figure 2004179668

準安定結晶においても格子歪みを導入することでMR比が向上した。   In the metastable crystal, the MR ratio was improved by introducing lattice distortion.

なお、基板から見て遠い磁性層に接して結晶構造制御層を配置した場合も、上記と同様、MR比が向上することが確認できた。   In addition, also when the crystal structure control layer was disposed in contact with the magnetic layer far from the substrate, it was confirmed that the MR ratio was improved in the same manner as described above.

(実施例3)
RFマグネトロンスパッタを用い、熱酸化膜付きSi基板上に、以下の構成を有する多層膜を形成した。
(Example 3)
Using RF magnetron sputtering, a multilayer film having the following configuration was formed on a Si substrate with a thermal oxide film.

Ta(3)/Cu(500)/Ta(3)/磁性層(3)/Al(0.4; 200Torr 純酸素1min酸化)/Al(0.3; 200Torr純酸素1min酸化)/CoFe(3)/Ru(0.7)/CoFe(3)/PtMn(30)/Ta(3)
厚み3nmの磁性層は、Feを主成分とし、タ−ゲットに添加元素を加えたり、反応性ガスを導入することにより、組成を調整した。さらに、実施例1と同様にして、図6と同様の素子を作製した。
Ta (3) / Cu (500) / Ta (3) / magnetic layer (3) / Al (0.4; 200 Torr pure oxygen 1 min oxidation) / Al (0.3; 200 Torr pure oxygen 1 min oxidation) / CoFe (3) / Ru ( 0.7) / CoFe (3) / PtMn (30) / Ta (3)
The magnetic layer having a thickness of 3 nm was composed mainly of Fe, and the composition was adjusted by adding an additive element to a target or introducing a reactive gas. Further, a device similar to that of FIG. 6 was produced in the same manner as in Example 1.

各素子について、MR比を測定した。MR比は最大値を1.0として規格化した。結果を表6に示す。   The MR ratio of each device was measured. The MR ratio was normalized by setting the maximum value to 1.0. Table 6 shows the results.

Figure 2004179668
Figure 2004179668

表6より、磁性金属に非磁性または反磁性元素を添加すると、2領域でMR比が極大値を示した。この現象は、Feに限らず、NiMn合金、FeCo合金、NiFeCo合金等においても確認された。また、添加元素も、上記に限らず、Ti、V、Mn,Ru、Os、Pd、O、C、Bでも同様の結果が得られた。平均電子数が24.5のFeCrは、磁性元素(Fe)を主成分としていないため、MR比が低くなった。   From Table 6, when a nonmagnetic or diamagnetic element was added to the magnetic metal, the MR ratio showed a maximum value in two regions. This phenomenon was confirmed not only in Fe but also in NiMn alloy, FeCo alloy, NiFeCo alloy and the like. In addition, the same result was obtained not only for the additive elements described above but also for Ti, V, Mn, Ru, Os, Pd, O, C, and B. FeCr having an average number of electrons of 24.5 did not contain a magnetic element (Fe) as a main component, and thus had a low MR ratio.

(実施例4)
(実施例4−1)
RFマグネトロンスパッタを用い、熱酸化膜付きSi基板上に、以下の構成を有する多層膜を形成した。
(Example 4)
(Example 4-1)
Using RF magnetron sputtering, a multilayer film having the following configuration was formed on a Si substrate with a thermal oxide film.

Cu(500)/余剰元素捕獲層(1-20)/NiFe(5)/CoFe(1.5)/Al(0.4; 600Torr 純酸素1min酸化)/Al(0.3; 600Torr純酸素1min酸化)/CoFe(3)/Ru(0.7)/CoFe(3)/PtMn(30)/Ta(3)
さらに、実施例1と同様にして、図6と同様の素子を作製した。ただし、熱処理の最高温度は260℃とした。こうして得た各素子について、MR比を測定した。結果を表7に示す。
Cu (500) / Excess element trapping layer (1-20) / NiFe (5) / CoFe (1.5) / Al (0.4; 600 Torr pure oxygen 1 min oxidation) / Al (0.3; 600 Torr pure oxygen 1 min oxidation) / CoFe (3 ) / Ru (0.7) / CoFe (3) / PtMn (30) / Ta (3)
Further, a device similar to that of FIG. 6 was produced in the same manner as in Example 1. However, the maximum temperature of the heat treatment was 260 ° C. The MR ratio of each element thus obtained was measured. Table 7 shows the results.

Figure 2004179668
Figure 2004179668

RBS(ラザフォード・バック・スキャタリング)により熱処理後の磁性層内の軽元素を調べたところ、余剰元素捕獲層をFe膜とした素子では、CoFe膜が酸化されていた。余剰元素捕獲層をFeR膜(RはFeよりも酸素親和性が高い金属;表7におけるFe以外の各元素)とした素子では、余剰元素捕獲層内に酸素元素のピークが確認できた。これらの素子では、余剰元素捕獲層内に、トンネル層よりも低く磁性層よりも高い濃度で酸素が含有されていた。   When the light element in the magnetic layer after the heat treatment was examined by RBS (Rutherford back scattering), the CoFe film was oxidized in the element in which the surplus element trapping layer was the Fe film. In the device in which the surplus element trapping layer was an FeR film (R is a metal having higher oxygen affinity than Fe; each element other than Fe in Table 7), a peak of the oxygen element was confirmed in the surplus element trapping layer. In these devices, the excess element trapping layer contained oxygen at a lower concentration than the tunnel layer and a higher concentration than the magnetic layer.

(実施例4−2)
RFマグネトロンスパッタを用い、熱酸化膜付きSi基板上に、以下の構成を有する多層膜を形成した。
(Example 4-2)
Using RF magnetron sputtering, a multilayer film having the following configuration was formed on a Si substrate with a thermal oxide film.

Cu(500)/NiFe(5)/CoFe(1.5)/Al(0.4; 600Torr 純酸素1min酸化)/Al(0.3; 600Torr純酸素1min酸化)/CoFe(3)/Ru(0.7)/CoFe(1.5)/余剰元素捕獲層A(0.5-2)/CoFe(1.5)/PtMn(30)/余剰元素捕獲層B(1-5)/Ta(3)
さらに、実施例1と同様にして、図6と同様の素子を作製した。ただし、熱処理の最高温度は350℃とした。こうして得た各素子について、MR比を測定した。結果を表8に示す。
Cu (500) / NiFe (5) / CoFe (1.5) / Al (0.4; 600 Torr pure oxygen 1 min oxidation) / Al (0.3; 600 Torr pure oxygen 1 min oxidation) / CoFe (3) / Ru (0.7) / CoFe (1.5 ) / Surplus element trapping layer A (0.5-2) / CoFe (1.5) / PtMn (30) / surplus element trapping layer B (1-5) / Ta (3)
Further, a device similar to that of FIG. 6 was produced in the same manner as in Example 1. However, the maximum temperature of the heat treatment was 350 ° C. The MR ratio of each element thus obtained was measured. Table 8 shows the results.

Figure 2004179668
Figure 2004179668

SIMSおよびオージェにより分析したところ、PtMn膜に含まれるMnが拡散していることが確認できた。余剰元素捕獲層A,Bを形成していない素子では、磁性層(CoFe膜)におけるMnの濃度は、最上層のTa膜におけるMn濃度よりも高かった。   Analysis by SIMS and Auger confirmed that Mn contained in the PtMn film was diffused. In the device in which the excess element capturing layers A and B were not formed, the Mn concentration in the magnetic layer (CoFe film) was higher than the Mn concentration in the uppermost Ta film.

一方、余剰元素捕獲層を形成した素子では、磁性層におけるMn濃度は、余剰元素捕獲層におけるMn濃度よりも低かった。また、余剰元素捕獲層の形成により、磁性層におけるMn濃度は低下した。余剰元素捕獲層Aを形成した素子における磁性層のMn濃度は、余剰元素捕獲層Bを形成した素子におけるMn濃度よりもさらに低くなっていた。余剰元素捕獲層は、余剰元素供給層(反強磁性層)とトンネル層との間に配置するとよい。   On the other hand, in the element in which the surplus element trapping layer was formed, the Mn concentration in the magnetic layer was lower than the Mn concentration in the surplus element trapping layer. Further, the Mn concentration in the magnetic layer decreased due to the formation of the surplus element capturing layer. The Mn concentration of the magnetic layer in the device in which the surplus element trapping layer A was formed was lower than the Mn concentration in the device in which the surplus element trapping layer B was formed. The surplus element trapping layer is preferably disposed between the surplus element supply layer (antiferromagnetic layer) and the tunnel layer.

本発明の磁気抵抗素子の基本構成を示す断面図である。FIG. 1 is a cross-sectional view illustrating a basic configuration of a magnetoresistive element of the present invention. 図1の基本構成に制御層を付加した形態を示す断面図である。FIG. 2 is a cross-sectional view illustrating an embodiment in which a control layer is added to the basic configuration of FIG. 1. 制御層の好ましい配置を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining a preferred arrangement of a control layer. 余剰元素捕獲層の好ましい配置を説明するための断面図である。It is sectional drawing for demonstrating the preferable arrangement | positioning of a surplus element capture layer. 本発明の磁気抵抗素子の一形態を示す断面図である。FIG. 3 is a cross-sectional view illustrating one embodiment of the magnetoresistive element of the present invention. 本発明の磁気抵抗素子の別の一形態を示す断面図である。It is sectional drawing which shows another one form of the magnetoresistive element of this invention.

Claims (37)

基板と、前記基板上に形成された多層膜とを含み、前記多層膜が、トンネル層と、前記トンネル層を挟持する一対の磁性層とを含み、前記一対の磁性層における磁化方向の相対角度に応じて抵抗値が変化する磁気抵抗素子であって、
前記基板と前記トンネル層との間に導電層が配置され、前記導電層が平均結晶粒径が5nm以下の微結晶膜である磁気抵抗素子。
A substrate, and a multilayer film formed on the substrate, wherein the multilayer film includes a tunnel layer and a pair of magnetic layers sandwiching the tunnel layer, and a relative angle of a magnetization direction in the pair of magnetic layers. A magnetoresistive element whose resistance value changes according to
A magnetoresistive element, wherein a conductive layer is disposed between the substrate and the tunnel layer, and the conductive layer is a microcrystalline film having an average crystal grain size of 5 nm or less.
導電層が、非磁性膜である請求項1に記載の磁気抵抗素子。 2. The magnetoresistive element according to claim 1, wherein the conductive layer is a non-magnetic film. 導電層が、磁性膜である請求項1に記載の磁気抵抗素子。 2. The magnetoresistive element according to claim 1, wherein the conductive layer is a magnetic film. 導電層の平均膜厚が10nm以下である請求項1に記載の磁気抵抗素子。 The magnetoresistive element according to claim 1, wherein the average thickness of the conductive layer is 10 nm or less. 基板が多結晶体である請求項1に記載の磁気抵抗素子。 The magnetoresistive element according to claim 1, wherein the substrate is a polycrystalline body. 基板と、前記基板上に形成された多層膜とを含み、前記多層膜が、トンネル層と、前記トンネル層を挟持する一対の磁性層とを含み、前記一対の磁性層における磁化方向の相対角度に応じて抵抗値が変化する磁気抵抗素子であって、
前記一対の磁性層の少なくとも一方が、e)結晶構造から算出される格子定数に対する0.1%以上5%以下の範囲で異なる格子定数差で表される格子歪み、f)常温常圧下で優先的に形成される結晶構造とは異なる結晶構造、およびg)細密面以外に制御された結晶配向面を有する多結晶構造、から選ばれる少なくとも1種を有する磁気抵抗素子。
A substrate, and a multilayer film formed on the substrate, wherein the multilayer film includes a tunnel layer and a pair of magnetic layers sandwiching the tunnel layer, and a relative angle of a magnetization direction in the pair of magnetic layers. A magnetoresistive element whose resistance value changes according to
At least one of the pair of magnetic layers has e) a lattice strain represented by a lattice constant difference different from 0.1% to 5% with respect to a lattice constant calculated from the crystal structure, and f) priority at normal temperature and normal pressure. A magnetoresistive element having at least one selected from the group consisting of a crystal structure different from the crystallographically formed structure and g) a polycrystalline structure having a controlled crystal orientation plane other than the fine plane.
多層膜が、e)、f)およびg)から選ばれる少なくとも1種を有する磁性層に接するように配置された結晶構造制御層をさらに含み、前記結晶構造制御層により、前記e)、f)およびg)から選ばれる少なくとも1種が前記磁性層に導入された請求項6に記載の磁気抵抗素子。 The multilayer film further includes a crystal structure control layer disposed so as to be in contact with a magnetic layer having at least one selected from e), f) and g), and the e), f) 7. The magnetoresistive element according to claim 6, wherein at least one selected from the group consisting of g) and g) is introduced into the magnetic layer. 少なくともe)を有する磁性層が、Fe、CoおよびNiから選ばれる少なくとも1種の元素を含み、結晶構造制御層が、前記少なくとも1種の元素と、Fe、CoおよびNi以外の元素とを含む請求項7に記載の磁気抵抗素子。 The magnetic layer having at least e) includes at least one element selected from Fe, Co, and Ni, and the crystal structure control layer includes the at least one element and elements other than Fe, Co, and Ni. A magnetoresistive element according to claim 7. 多層膜が、少なくともf)およびg)を有する磁性層を含む請求項6に記載の磁気抵抗素子。 7. The magnetoresistive element according to claim 6, wherein the multilayer film includes a magnetic layer having at least f) and g). 多層膜が、e)、f)およびg)を有する磁性層を含む請求項9に記載の磁気抵抗素子。 The magnetoresistive element according to claim 9, wherein the multilayer film includes a magnetic layer having e), f) and g). 基板と、前記基板上に形成された多層膜とを含み、前記多層膜が、トンネル層と、前記トンネル層を挟持する一対の磁性層とを含み、前記一対の磁性層における磁化方向の相対角度に応じて抵抗値が変化する磁気抵抗素子であって、
前記一対の磁性層の少なくとも一方が、Fe、CoおよびNiから選ばれる少なくとも1種の元素と、Fe、CoおよびNi以外の元素とを含み、平均電子数が、23.5以上25.5以下である磁気抵抗素子。
ここで、平均電子数とは、組成比から算出される原子1個あたりの電子数である。
A substrate, and a multilayer film formed on the substrate, wherein the multilayer film includes a tunnel layer and a pair of magnetic layers sandwiching the tunnel layer, and a relative angle of a magnetization direction in the pair of magnetic layers. A magnetoresistive element whose resistance value changes according to
At least one of the pair of magnetic layers contains at least one element selected from Fe, Co, and Ni, and an element other than Fe, Co, and Ni, and has an average number of electrons of 23.5 or more and 25.5 or less. A magnetoresistive element.
Here, the average number of electrons is the number of electrons per atom calculated from the composition ratio.
Fe、CoおよびNi以外の元素が、Si、Al、Ti、V、Cr、Mn、Ru、Rh、Pd、Os、Ir、Pt、B、C、NおよびOから選ばれる少なくとも1種である請求項11に記載の磁気抵抗素子。 Claims wherein the element other than Fe, Co and Ni is at least one selected from Si, Al, Ti, V, Cr, Mn, Ru, Rh, Pd, Os, Ir, Pt, B, C, N and O. Item 12. The magnetoresistive element according to item 11. 平均電子数が、24.5以上25.5以下である請求項11に記載の磁気抵抗素子。 The magnetoresistive element according to claim 11, wherein the average number of electrons is 24.5 or more and 25.5 or less. 基板と、前記基板上に形成された多層膜とを含み、前記多層膜が、トンネル層と、前記トンネル層を挟持する一対の磁性層とを含み、前記一対の磁性層における磁化方向の相対角度に応じて抵抗値が変化する磁気抵抗素子であって、
前記一対の磁性層以外であって前記多層膜に含まれる少なくとも1つの層が、前記一対の磁性層の少なくとも一方の層における濃度が増加したときに前記少なくとも一方の層のスピン分極率が低下する余剰元素を含み、
前記多層膜が、前記余剰元素を含有する合金または化合物を含む余剰元素捕獲層をさらに含み、
前記余剰元素の含有率が、前記一対の磁性層のいずれよりも、前記余剰元素捕獲層において高い磁気抵抗素子。
A substrate, and a multilayer film formed on the substrate, wherein the multilayer film includes a tunnel layer and a pair of magnetic layers sandwiching the tunnel layer, and a relative angle of a magnetization direction in the pair of magnetic layers. A magnetoresistive element whose resistance value changes according to
When the concentration of at least one layer other than the pair of magnetic layers and included in the multilayer film in at least one of the pair of magnetic layers increases, the spin polarizability of the at least one layer decreases. Including surplus elements,
The multilayer film further includes a surplus element capturing layer including an alloy or a compound containing the surplus element,
A magnetoresistive element having a surplus element content higher in the surplus element trapping layer than in any of the pair of magnetic layers.
多層膜が、余剰元素供給層を含み、前記余剰元素供給層における余剰元素の含有率が、余剰元素捕獲層における前記含有率以上である請求項14に記載の磁気抵抗素子。 The magnetoresistive element according to claim 14, wherein the multilayer film includes a surplus element supply layer, and a surplus element content in the surplus element supply layer is equal to or higher than the content rate in the surplus element capture layer. 余剰元素供給層がトンネル層であり、余剰元素が、B、C、NおよびOから選ばれる少なくとも1種である請求項15に記載の磁気抵抗素子。 The magnetoresistive element according to claim 15, wherein the surplus element supply layer is a tunnel layer, and the surplus element is at least one selected from B, C, N, and O. 余剰元素捕獲層が、酸化物、窒化物、炭化物および硼化物から選ばれる化合物の生成自由エネルギーが、Feよりも低い金属の化合物を含む請求項16に記載の磁気抵抗素子。 17. The magnetoresistive element according to claim 16, wherein the surplus element trapping layer contains a compound of a metal selected from oxides, nitrides, carbides, and borides, the free energy of formation of which is lower than Fe. 余剰元素供給層が、反強磁性層および積層フェリから選ばれる少なくとも一方である請求項15に記載の磁気抵抗素子。 The magnetoresistive element according to claim 15, wherein the surplus element supply layer is at least one selected from an antiferromagnetic layer and a laminated ferrimagnetic layer. 余剰元素が、MnおよびRuから選ばれる少なくとも1種である請求項18に記載の磁気抵抗素子。 The magnetoresistive element according to claim 18, wherein the surplus element is at least one selected from Mn and Ru. 多層膜の厚さ方向について、余剰元素捕獲層と一対の磁性層の少なくとも一方との距離が10nm以下である請求項14に記載の磁気抵抗素子。 The magnetoresistive element according to claim 14, wherein a distance between the surplus element trapping layer and at least one of the pair of magnetic layers is 10 nm or less in a thickness direction of the multilayer film. 基板と、前記基板上に形成された多層膜とを含み、前記多層膜が、トンネル層と、前記トンネル層を挟持する一対の磁性層とを含み、前記一対の磁性層における磁化方向の相対角度に応じて抵抗値が変化する磁気抵抗素子であって、
前記基板と前記トンネル層との間に導電層が配置され、前記導電層が、Cu膜とCu以外の金属膜とを交互に積層した多層膜を含む積層体である磁気抵抗素子。
A substrate, and a multilayer film formed on the substrate, wherein the multilayer film includes a tunnel layer and a pair of magnetic layers sandwiching the tunnel layer, and a relative angle of a magnetization direction in the pair of magnetic layers. A magnetoresistive element whose resistance value changes according to
A magnetoresistive element in which a conductive layer is disposed between the substrate and the tunnel layer, and the conductive layer is a laminate including a multilayer film in which a Cu film and a metal film other than Cu are alternately laminated.
導電層が、非磁性膜である請求項21に記載の磁気抵抗素子。 22. The magnetoresistive element according to claim 21, wherein the conductive layer is a non-magnetic film. 導電層が、磁性膜である請求項21に記載の磁気抵抗素子。 22. The magnetoresistive element according to claim 21, wherein the conductive layer is a magnetic film. 基板が多結晶体である請求項21に記載の磁気抵抗素子。 22. The magnetoresistive element according to claim 21, wherein the substrate is a polycrystalline body. 基板と、前記基板上に形成された多層膜とを含み、前記多層膜が、トンネル層と、前記トンネル層を挟持する一対の磁性層とを含み、前記一対の磁性層における磁化方向の相対角度に応じて抵抗値が変化する磁気抵抗素子であって、
前記基板と前記トンネル層との間に導電層が配置され、前記導電層が、Pt、Pd、Ag、Au、C、Si、Ge、SnおよびPbから選ばれる少なくとも1種からなる導電体である磁気抵抗素子。
A substrate, and a multilayer film formed on the substrate, wherein the multilayer film includes a tunnel layer and a pair of magnetic layers sandwiching the tunnel layer, and a relative angle of a magnetization direction in the pair of magnetic layers. A magnetoresistive element whose resistance value changes according to
A conductive layer is disposed between the substrate and the tunnel layer, and the conductive layer is a conductor made of at least one selected from Pt, Pd, Ag, Au, C, Si, Ge, Sn, and Pb. Magnetic resistance element.
導電層が、非磁性膜である請求項25に記載の磁気抵抗素子。 26. The magnetoresistive element according to claim 25, wherein the conductive layer is a non-magnetic film. 導電層が、磁性膜である請求項25に記載の磁気抵抗素子。 The magnetoresistive element according to claim 25, wherein the conductive layer is a magnetic film. 導電層の平均膜厚が10nm以下である請求項25に記載の磁気抵抗素子。 The magnetoresistive element according to claim 25, wherein the average thickness of the conductive layer is 10 nm or less. 基板が多結晶体である請求項25に記載の磁気抵抗素子。 The magnetoresistive element according to claim 25, wherein the substrate is a polycrystalline body. 基板と、前記基板上に形成された多層膜とを含み、前記多層膜が、トンネル層と、前記トンネル層を挟持する一対の磁性層とを含み、前記一対の磁性層における磁化方向の相対角度に応じて抵抗値が変化する磁気抵抗素子であって、
前記基板と前記トンネル層との間に導電層が配置され、前記導電層がアモルファス膜である磁気抵抗素子。
A substrate, and a multilayer film formed on the substrate, wherein the multilayer film includes a tunnel layer and a pair of magnetic layers sandwiching the tunnel layer, and a relative angle of a magnetization direction in the pair of magnetic layers. A magnetoresistive element whose resistance value changes according to
A magnetoresistive element, wherein a conductive layer is disposed between the substrate and the tunnel layer, and the conductive layer is an amorphous film.
導電層が、非磁性膜である請求項30に記載の磁気抵抗素子。 31. The magnetoresistive element according to claim 30, wherein the conductive layer is a non-magnetic film. 導電層が、磁性膜である請求項30に記載の磁気抵抗素子。 31. The magnetoresistive element according to claim 30, wherein the conductive layer is a magnetic film. 導電層の平均膜厚が10nm以下である請求項30に記載の磁気抵抗素子。 31. The magnetoresistive element according to claim 30, wherein the average thickness of the conductive layer is 10 nm or less. 基板が多結晶体である請求項30に記載の磁気抵抗素子。 31. The magnetoresistive element according to claim 30, wherein the substrate is a polycrystalline body. 基板と、前記基板上に形成された多層膜とを含み、前記多層膜が、トンネル層と、前記トンネル層を挟持する一対の磁性層とを含み、前記一対の磁性層における磁化方向の相対角度に応じて抵抗値が変化する磁気抵抗素子であって、
前記一対の磁性層の少なくとも一方が、Fe、CoおよびNiから選ばれる少なくとも1種の元素と、Fe、CoおよびNi以外の元素とを含み、平均電子数が、26.5以上36以下である磁気抵抗素子。
ここで、平均電子数とは、組成比から算出される原子1個あたりの電子数である。
A substrate, and a multilayer film formed on the substrate, wherein the multilayer film includes a tunnel layer and a pair of magnetic layers sandwiching the tunnel layer, and a relative angle of a magnetization direction in the pair of magnetic layers. A magnetoresistive element whose resistance value changes according to
At least one of the pair of magnetic layers contains at least one element selected from Fe, Co, and Ni, and an element other than Fe, Co, and Ni, and has an average number of electrons of 26.5 or more and 36 or less. Magnetic resistance element.
Here, the average number of electrons is the number of electrons per atom calculated from the composition ratio.
Fe、CoおよびNi以外の元素が、Si、Al、Ti、V、Cr、Mn、Ru、Rh、Pd、Os、Ir、Pt、B、C、NおよびOから選ばれる少なくとも1種である請求項35に記載の磁気抵抗素子。 Claims wherein the element other than Fe, Co and Ni is at least one selected from Si, Al, Ti, V, Cr, Mn, Ru, Rh, Pd, Os, Ir, Pt, B, C, N and O. Item 36. The magnetoresistive element according to item 35. 平均電子数が、27.5以上32.5以下である請求項35に記載の磁気抵抗素子。

The magnetoresistive element according to claim 35, wherein the average number of electrons is 27.5 or more and 32.5 or less.

JP2003404674A 2001-05-15 2003-12-03 Magnetoresistive element Withdrawn JP2004179668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003404674A JP2004179668A (en) 2001-05-15 2003-12-03 Magnetoresistive element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001144386 2001-05-15
JP2003404674A JP2004179668A (en) 2001-05-15 2003-12-03 Magnetoresistive element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002590430A Division JPWO2002093661A1 (en) 2001-05-15 2002-05-13 Magnetoresistive element

Publications (1)

Publication Number Publication Date
JP2004179668A true JP2004179668A (en) 2004-06-24

Family

ID=32715466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003404674A Withdrawn JP2004179668A (en) 2001-05-15 2003-12-03 Magnetoresistive element

Country Status (1)

Country Link
JP (1) JP2004179668A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787220B2 (en) 2005-04-04 2010-08-31 Tdk Corporation Magnetoresistance element with improved magentoresistance change amount and with free layer having improved soft magnetic characteristics
JP5598697B2 (en) * 2007-06-25 2014-10-01 日本電気株式会社 Magnetoresistive element and magnetic random access memory
KR20160056377A (en) * 2014-11-10 2016-05-20 삼성전자주식회사 Magnetic memory device and method of manufacturing the same
JP2017535073A (en) * 2014-10-16 2017-11-24 マイクロン テクノロジー, インク. Memory cell, semiconductor device, and manufacturing method
KR20180015329A (en) * 2016-08-02 2018-02-13 삼성전자주식회사 Magnetic memory devices and method for forming the same
US10014466B2 (en) 2013-09-18 2018-07-03 Micron Technology, Inc. Semiconductor devices with magnetic and attracter materials and methods of fabrication
US10020446B2 (en) 2013-09-13 2018-07-10 Micron Technology, Inc. Methods of forming magnetic memory cells and semiconductor devices
US10026889B2 (en) 2014-04-09 2018-07-17 Micron Technology, Inc. Semiconductor structures and devices and methods of forming semiconductor structures and magnetic memory cells
US10134978B2 (en) 2014-12-02 2018-11-20 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
US10439131B2 (en) 2015-01-15 2019-10-08 Micron Technology, Inc. Methods of forming semiconductor devices including tunnel barrier materials

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787220B2 (en) 2005-04-04 2010-08-31 Tdk Corporation Magnetoresistance element with improved magentoresistance change amount and with free layer having improved soft magnetic characteristics
JP5598697B2 (en) * 2007-06-25 2014-10-01 日本電気株式会社 Magnetoresistive element and magnetic random access memory
US11211554B2 (en) 2013-09-13 2021-12-28 Micron Technology, Inc. Electronic systems including magnetic regions
US10020446B2 (en) 2013-09-13 2018-07-10 Micron Technology, Inc. Methods of forming magnetic memory cells and semiconductor devices
US10290799B2 (en) 2013-09-13 2019-05-14 Micron Technology, Inc. Magnetic memory cells and semiconductor devices
US10014466B2 (en) 2013-09-18 2018-07-03 Micron Technology, Inc. Semiconductor devices with magnetic and attracter materials and methods of fabrication
US10396278B2 (en) 2013-09-18 2019-08-27 Micron Technology, Inc. Electronic devices with magnetic and attractor materials and methods of fabrication
US11251363B2 (en) 2014-04-09 2022-02-15 Micron Technology, Inc. Methods of forming electronic devices
US10505104B2 (en) 2014-04-09 2019-12-10 Micron Technology, Inc. Electronic devices including magnetic cell core structures
US10026889B2 (en) 2014-04-09 2018-07-17 Micron Technology, Inc. Semiconductor structures and devices and methods of forming semiconductor structures and magnetic memory cells
US10347689B2 (en) 2014-10-16 2019-07-09 Micron Technology, Inc. Magnetic devices with magnetic and getter regions and methods of formation
US10355044B2 (en) 2014-10-16 2019-07-16 Micron Technology, Inc. Magnetic memory cells, semiconductor devices, and methods of formation
US10680036B2 (en) 2014-10-16 2020-06-09 Micron Technology, Inc. Magnetic devices with magnetic and getter regions
JP2017535073A (en) * 2014-10-16 2017-11-24 マイクロン テクノロジー, インク. Memory cell, semiconductor device, and manufacturing method
KR102268187B1 (en) * 2014-11-10 2021-06-24 삼성전자주식회사 Magnetic memory device and method of manufacturing the same
KR20160056377A (en) * 2014-11-10 2016-05-20 삼성전자주식회사 Magnetic memory device and method of manufacturing the same
US10134978B2 (en) 2014-12-02 2018-11-20 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
US10439131B2 (en) 2015-01-15 2019-10-08 Micron Technology, Inc. Methods of forming semiconductor devices including tunnel barrier materials
KR20180015329A (en) * 2016-08-02 2018-02-13 삼성전자주식회사 Magnetic memory devices and method for forming the same
KR102611463B1 (en) * 2016-08-02 2023-12-08 삼성전자주식회사 Magnetic memory devices and method for forming the same

Similar Documents

Publication Publication Date Title
JPWO2002093661A1 (en) Magnetoresistive element
US7672088B2 (en) Heusler alloy with insertion layer to reduce the ordering temperature for CPP, TMR, MRAM, and other spintronics applications
US9021685B2 (en) Two step annealing process for TMR device with amorphous free layer
KR100875844B1 (en) New buffer (seed) layer for fabricating high performance magnetic tunneling junction MRM
US7906231B2 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
JP4409656B2 (en) Magnetoresistive element and magnetic reproducing apparatus
US7855860B2 (en) Magnetoresistance element magnetic random access memory, magnetic head and magnetic storage device
US20060056114A1 (en) Magnetic tunnel device and magnetic memory using same
KR20020077797A (en) Magnetoresistance effect device and method for manufacturing the same
JP4945704B2 (en) Magnetic tunnel junction element
JP2003324225A (en) Laminated ferrimagnetic thin film, and magneto- resistance effect element and ferromagnetic tunnel element using the same
JP2002319722A (en) Magnetoresistance effect element and manufacturing method therefor
US11374168B2 (en) Precursor structure of perpendicularly magnetized film, perpendicularly magnetized film structure and method for manufacturing the same, perpendicular magnetization-type magnetic tunnel junction film in which said structure is used and method for manufacturing the same, and perpendicular magnetization-type magnetic tunnel junction element in which said structure or magnetic tunnel junction film is used
JP2004179668A (en) Magnetoresistive element
JP3629057B2 (en) Method for manufacturing Heusler alloy thin film, laminated film provided with magnetic film, magnetoresistive effect element and solid-state magnetic recording element using the same
KR20230118765A (en) Magnetic tunneling junctions based on spin-orbit torque and method manufacturing thereof
JP2002190631A (en) Magnetoresistive effect element and its fabricating method and method for forming compound magnetic thin film
JP4039656B2 (en) Exchange coupling element and method of manufacturing exchange coupling element
JP3607265B2 (en) Magnetoresistive element
JPWO2019193871A1 (en) Planar current giant magnetoresistive element, its precursor, and its manufacturing method
KR102560822B1 (en) Magnetic tunneling junctions based on spin-orbit torque and method manufacturing thereof
JP3551196B2 (en) Method of manufacturing magnetoresistive element
JP3532607B2 (en) Magnetoresistance effect element
JP3843837B2 (en) Method for manufacturing spin valve magnetoresistive sensor and method for manufacturing thin film magnetic head
JP2007221086A (en) Tunnel-type magnetism detection element and method of manufacturing same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802