JP2004179034A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2004179034A
JP2004179034A JP2002345142A JP2002345142A JP2004179034A JP 2004179034 A JP2004179034 A JP 2004179034A JP 2002345142 A JP2002345142 A JP 2002345142A JP 2002345142 A JP2002345142 A JP 2002345142A JP 2004179034 A JP2004179034 A JP 2004179034A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
purge valve
flow path
circulation flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002345142A
Other languages
Japanese (ja)
Other versions
JP4133264B2 (en
Inventor
Tomoki Kobayashi
知樹 小林
Minoru Uoshima
稔 魚嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002345142A priority Critical patent/JP4133264B2/en
Publication of JP2004179034A publication Critical patent/JP2004179034A/en
Application granted granted Critical
Publication of JP4133264B2 publication Critical patent/JP4133264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system capable of exhausting residual moisture even when remaining pressure of hydrogen is low by making a volume of hydrogen exhausted from an exhaust valve constant while preventing wasteful consumption of air for dilution. <P>SOLUTION: The fuel cell system S is provided with a circulation flow path 24 sending hydrogen exhausted from a fuel cell FC back to the fuel cell FC, and a purge valve 25 for hydrogen for exhausting hydrogen in the circulation flow path 24 outside. The fuel cell system S is further provided with a pressure sensor 4 detecting remaining pressure of the hydrogen in the circulation flow path 24 at generation stoppage of the fuel cell FC, and an ECU 3 setting an opening time of the purge valve for hydrogen 25 according to a signals output from the pressure sensor 4 and controlling it so as to exhaust a given volume of hydrogen outward by opening the purge valve 25 during the opening time. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、低温環境下における燃料電池の起動を円滑に行うために、発電停止時においてその内部に残溜した水分を効果的に排出させる燃料電池システムに関するものである。
【0002】
【従来の技術】
従来、燃料電池システムでは、その発電停止時に燃料電池の水素極側流路に設けた水素排出用のパージ弁を開けることで、発電中に燃料電池内部に残溜した凝縮水を水素の残存圧力などを利用して排水する手法が取られていた。この手法では、発電停止直後にパージ弁を一定時間だけ開けることで、残溜水分を排出していた。ちなみに、これ以外の手法としては、燃料電池内の残溜水分量に基づいて燃料電池の出力電流を制御することで、蒸発速度を向上させて効率よく残溜水分を除去するものがある(たとえば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−246053号公報(第2頁、第1図)
【0004】
【発明が解決しようとする課題】
ところで、前記した水素の残存圧力を利用して残溜水分を排水する手法では、発電停止直後にパージ弁を一定時間だけ開けるため、このパージ弁から排出される水素の量はそのときの残存圧力に依存して変化する。そのため、このパージ弁から排出される水素を希釈して大気に放出するための空気の量は、その希釈後の水素濃度を一定値以下にするために、あらかじめ推定される排出水素量の最大値に合わせて設定する必要があった。そして、このように排出水素量の最大値に合わせて空気の量を設定すると、少量の水素が排出される場合であっても多量の空気を送ることとなり、その分エネルギが無駄に消費されていた。
【0005】
また、前記のように無駄なエネルギを消費しないために排出水素量の最大値を低く押さえるべく、前記パージ弁の開放時間を短く設定すると、水素の残存圧力が低い場合には、残溜水分が十分に排水できなくなるおそれがあった。
【0006】
そこで、本発明の課題は、パージ弁から排出される水素の量を一定にすることで、希釈用の空気の無駄な消費を防止するとともに、水素の残存圧力が低い場合でも残溜水分を確実に排出することが可能な燃料電池システムを提供することにある。
【0007】
【課題を解決するための手段】
前記課題を解決した本発明のうちの請求項1に記載の発明は、燃料電池から排出される水素を再度燃料電池に戻す循環流路と、この循環流路内の水素を外部へ排出させるパージ弁とを備えた燃料電池システムであって、前記燃料電池の発電停止時において、前記燃料電池または前記循環流路内の水素の残存圧力を検知する検知手段と、この検知手段から出力される信号に基づいて前記パージ弁の開放時間を設定し、この開放時間の間で前記パージ弁を開放させることで外部に水素を排出するように制御する制御装置を備えたことを特徴とする。
【0008】
請求項1に記載の発明によれば、燃料電池の発電が停止すると、検知手段が燃料電池または循環流路内の水素の残存圧力を検知し、その信号を制御装置に出力する。この制御装置は、検知手段からの信号に基づいてパージ弁の開放時間をたとえば所定のマップにより設定し、この開放時間の間パージ弁を開放させて水素を外部に排出させる。
【0009】
請求項2に記載の発明は、請求項1に記載の発明の構成において、前記制御装置は、前記検知手段で検知した前記水素の残存圧力が所定値以下の場合、前記パージ弁の開放を禁止するように、前記パージ弁を制御することを特徴とする。
【0010】
請求項2に記載の発明によれば、請求項1に記載の発明による作用に加え、燃料電池の発電停止時に、検知手段が水素の残存圧力が所定値以下であると検知した場合、制御装置はこの検知手段からの信号に基づいてパージ弁の開放を禁止する。
【0011】
【発明の実施の形態】
以下、図面を参照して、本発明に係る燃料電池システムの詳細について説明する。参照する図面において、図1は本発明に係る燃料電池システムを示す構成図であり、図2は図1のECUが参照するマップを示す図である。また、図3は図1のECUの動作を示すフローチャートであり、図4は図1の循環流路内の残存圧力と時間との関係を示すグラフ(a)と、図4(a)の時間軸に対応した燃料電池の発電状態を示すシーケンス図(b)と、図4(a)の時間軸に対応した水素用パージ弁の動作状態を示すシーケンス図(c)である。
【0012】
図1に示すように、燃料電池システムSは、走行モータMに電流を供給する燃料電池FCと、この燃料電池FCに空気を供給する空気供給系1と、燃料電池FCに水素を供給する水素供給系2と、各種機器の制御を行うECU(制御装置)3とで主に構成されている。空気供給系1は、空気を圧縮して供給するスーパーチャージャS/Cと、このスーパーチャージャS/Cからの空気を燃料電池FCに導くとともに燃料電池FCから排出される空気を外部に導く空気用流路11と、この空気用流路11内の空気を排出するために適宜開閉される空気用パージ弁12とを主に備えている。
【0013】
水素供給系2は、水素タンクT、水素供給用流路21、遮断弁22、エゼクタ23、圧力センサ(検知手段)4、循環流路24、循環ポンプPおよび水素用パージ弁25を主に備えている。水素タンクT内には、燃料ガスとしての水素が充填されており、この水素は、遮断弁22と水素タンクT内に備えられた図示しない電磁弁とが開放されることで燃料電池FCへ排出されるようになっている。エゼクタ23は、水素タンクTからの水素と燃料電池FCから戻ってくる水素を混合させ、これを燃料電池FCに再供給して水素を循環させている。
【0014】
循環流路24は、燃料電池FCから排出される水素をエゼクタ23を介して再度燃料電池FCに戻す流路である。この循環流路24には、水素が供給される燃料電池FCの入口近傍の部分に圧力センサ4が取り付けられるとともに、燃料電池FCの出口側の部分に循環ポンプPと水素用パージ弁25が取り付けられている。なお、燃料電池FCの入口とエゼクタ23とを結ぶ流路は、水素タンクTからの水素を燃料電池FCに導く水素供給用流路21として機能する他、燃料電池FCから排出される水素を再度燃料電池FCに戻す循環流路24としても機能している。
【0015】
圧力センサ4は、燃料電池FCの発電停止時において、循環流路24内の水素の残存圧力を検知している。循環ポンプPは、循環流路24内で水素を所定の方向(図では反時計回り)に循環させている。水素用パージ弁25は、燃料電池FCおよび循環流路24内の水素および残溜水分を適宜外部へ排出している。また、水素用パージ弁25は、この燃料電池システムSにおける水の排出性を考慮した下方の位置、すなわち燃料電池FCや循環流路24内の残溜水分が溜まりやすい位置に配設されている。
【0016】
ECU3は、燃料電池システムSの各機器、主にスーパーチャージャS/C、空気用パージ弁12、遮断弁22、循環ポンプPおよび水素用パージ弁25の制御を行っている。特に、このECU3は、燃料電池FCの発電停止時に圧力センサ4から出力される信号に基づいて水素用パージ弁25の開放時間を設定し、この開放時間の間で水素用パージ弁25を開放させることで外部に一定量の水素を排出するように制御している。具体的に、このECU3は、図2に示すマップを用いて圧力センサ4から出力される信号(圧力)に基づいて、圧力が高いほど開放時間が短くなるように開放時間を設定している。
【0017】
また、このECU3は、燃料電池FCの発電停止後においては圧力センサ4を介して循環流路24内の圧力を常に監視している。そして、この圧力センサ4で検知した水素の残存圧力が所定値以下の場合、水素用パージ弁25の開放を禁止するように、この水素用パージ弁25を制御している。なお、この水素用パージ弁25の開放を禁止するための閾値、すなわち前記所定値はいくつに設定してもよいが、本実施形態においては、水素供給系2内を水素で適切にシールする(充満させる)ため、この値を140kPaより少し高めの値として説明することとする。
【0018】
次に、この燃料電池システムSによる残溜水分の排水方法について主に図3および図4を参照して説明する。
図3に示すように、燃料電池FCの発電が停止すると(IG OFF)、まずECU3から遮断弁22に制御信号が出力され、この制御信号に基づいて遮断弁22が閉じられる(図1参照)。次に、ECU3が圧力センサ4から出力される信号(水素の残存圧力)を読み取ると、このECU3は図2に示すマップを参照してこの信号に基づいて水素用パージ弁25の開放時間を設定し(ステップS1)、この開放時間で水素用パージ弁25を開放させる(ステップS2)。
【0019】
その後、このECU3は、循環流路24内の水素の残存圧力が所定値以下であるか否かを判断する(ステップS3)。このステップS3において、残存圧力が所定値よりも高いと判断された場合では(No)、次にこのECU3はステップS1で設定した開放時間が経過したか否かを判断する(ステップS4)。このステップS4において、開放時間が経過していないと判断された場合は(No)、再度ステップS3に戻される。
【0020】
ステップS3において残存圧力が所定値以下であると判断された場合や(Yes)、ステップS4において開放時間が経過したと判断された場合は(Yes)、ECU3により水素用パージ弁25が閉じられ(ステップS5)、この燃料電池システムSにおける排水動作が終了する。
【0021】
このECU3による制御方法をより詳しく説明すると、図4(b)および(c)に示すように、燃料電池FCの発電が停止して(IG OFF)、水素用パージ弁25が開放されると、図4(a)に示すグラフのように循環流路24内の残存圧力が徐々に下がっていく。そして、この残存圧力が、図2に示すマップで設定した開放時間(map値)を経過する前に、あらかじめ設定された所定値以下となった場合には、図4(c)に点線で示すように水素用パージ弁25が閉じられ、循環流路24内の残存圧力が140kPaを下回らない所定値に維持されることとなる。
【0022】
以上によれば、本実施形態において、次のような効果を得ることができる。
循環流路24内の残存圧力の値に基づいて適宜設定される開放時間で水素用パージ弁25が開放されるので、水素用パージ弁25から一定量の水素を排出することができる。そのため、希釈用の空気を必要以上に多く設定する必要がなくなり、その無駄な消費が防止されるとともに、水素の残存圧力が低い場合でも残溜水分を確実に排出することができる。
循環流路24内の水素の残存圧力が所定値以下になると、水素用パージ弁25が閉じられるので、循環流路24内の圧力が必要以上に下がることがなくなり、負圧により循環流路24内に空気等が吸い込まれるのを確実に防止することができる。
【0023】
以上、本発明は、前記実施形態に限定されることなく、様々な形態で実施される。
本実施形態では、マップを用いて開放時間を設定したが、本発明はこれに限定されず、たとえば圧力センサ4から出力される圧力値に基づいて開放時間を、種々の条件(水素用パージ弁25を通る水素の流体特性等)を考慮してその都度算出するようにして設定してもよい。また、しばらく使用しない場合も、水素供給系2内が水素で適切にシール(充満)されるので、再起動を行いやすくなる。
【0024】
【発明の効果】
請求項1に記載の発明によれば、水素の残存圧力に関係なくパージ弁から一定量の水素が排出されるので、希釈用の空気の無駄な消費が防止されるとともに、水素の残存圧力が低い場合でも残溜水分を確実に排出することができる。
【0025】
請求項2に記載の発明によれば、請求項1に記載の発明による効果に加え、燃料電池または循環流路内の水素の残存圧力が所定値以下の場合は、パージ弁が開かないので、燃料電池または循環流路内の圧力が必要以上に下がることがなくなり、負圧により循環流路内等に空気等が吸い込まれるのを確実に防止することができる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池システムを示す構成図である。
【図2】図1のECUが参照するマップを示す図である。
【図3】図1のECUの動作を示すフローチャートである。
【図4】図1の循環流路内の残存圧力と時間との関係を示すグラフ(a)と、図4(a)の時間軸に対応した燃料電池の発電状態を示すシーケンス図(b)と、図4(a)の時間軸に対応した水素用パージ弁の動作状態を示すシーケンス図(c)である。
【符号の説明】
S 燃料電池システム
M 走行モータ
FC 燃料電池
T 水素タンク
P 循環ポンプ
1 空気供給系
2 水素供給系
21 水素供給用流路
22 遮断弁
23 エゼクタ
24 循環流路
25 水素用パージ弁
3 ECU(制御装置)
4 圧力センサ(検知手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a fuel cell system that effectively discharges water remaining therein when power generation is stopped in order to smoothly start a fuel cell in a low-temperature environment.
[0002]
[Prior art]
Conventionally, in a fuel cell system, when a power generation is stopped, a purge valve for discharging hydrogen provided in a hydrogen electrode side flow path of the fuel cell is opened, so that condensed water remaining inside the fuel cell during power generation is reduced to a residual pressure of hydrogen. The method of draining using such as was taken. In this method, the residual water is discharged by opening the purge valve for a certain time immediately after the power generation is stopped. Incidentally, as another method, there is a method in which the output current of the fuel cell is controlled based on the amount of remaining water in the fuel cell to improve the evaporation rate and efficiently remove the remaining water (for example, And Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-246053 (Page 2, FIG. 1)
[0004]
[Problems to be solved by the invention]
By the way, in the above-mentioned method of draining residual moisture by using the residual pressure of hydrogen, the purge valve is opened for a certain time immediately after the power generation is stopped, so that the amount of hydrogen discharged from the purge valve depends on the residual pressure at that time. Varies depending on Therefore, the amount of air for diluting the hydrogen discharged from the purge valve and releasing it to the atmosphere is set to the maximum value of the estimated amount of discharged hydrogen in order to keep the hydrogen concentration after the dilution below a certain value. It was necessary to set according to. If the amount of air is set in accordance with the maximum value of the amount of discharged hydrogen in this manner, a large amount of air is sent even when a small amount of hydrogen is discharged, and energy is wasted by that amount. Was.
[0005]
Further, when the opening time of the purge valve is set short to keep the maximum value of the discharged hydrogen amount low so as not to waste energy as described above, when the residual pressure of hydrogen is low, the residual moisture is reduced. There was a risk that the water could not be drained sufficiently.
[0006]
Accordingly, an object of the present invention is to prevent the wasteful consumption of air for dilution by making the amount of hydrogen discharged from the purge valve constant, and to ensure the residual water content even when the residual pressure of hydrogen is low. It is an object of the present invention to provide a fuel cell system capable of discharging fuel to a fuel cell.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention that solves the above-mentioned problems, a circulation flow path for returning hydrogen discharged from the fuel cell to the fuel cell again, and a purge for discharging hydrogen in the circulation flow path to the outside A fuel cell system comprising: a valve; a detection unit configured to detect a residual pressure of hydrogen in the fuel cell or the circulation channel when power generation of the fuel cell is stopped; and a signal output from the detection unit. And a control device for controlling the discharge of hydrogen to the outside by setting the open time of the purge valve based on the above, and opening the purge valve during the open time.
[0008]
According to the first aspect of the invention, when the power generation of the fuel cell is stopped, the detecting means detects the residual pressure of hydrogen in the fuel cell or the circulation flow path and outputs a signal to the control device. The control device sets the opening time of the purge valve based on a signal from the detection means, for example, using a predetermined map, and opens the purge valve during this opening time to discharge hydrogen to the outside.
[0009]
According to a second aspect of the present invention, in the configuration of the first aspect, the control device prohibits the opening of the purge valve when the residual pressure of the hydrogen detected by the detection unit is equal to or less than a predetermined value. The purge valve is controlled so as to perform the operation.
[0010]
According to the second aspect of the present invention, in addition to the operation of the first aspect of the present invention, when the detecting means detects that the residual pressure of hydrogen is equal to or lower than a predetermined value when the power generation of the fuel cell is stopped, Prohibits the opening of the purge valve based on the signal from this detecting means.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the fuel cell system according to the present invention will be described in detail with reference to the drawings. In the drawings to be referred to, FIG. 1 is a configuration diagram showing a fuel cell system according to the present invention, and FIG. 2 is a diagram showing a map referred to by the ECU in FIG. FIG. 3 is a flowchart showing the operation of the ECU shown in FIG. 1, and FIG. 4 is a graph (a) showing the relationship between the residual pressure in the circulation flow path and time shown in FIG. 1 and the time shown in FIG. FIG. 5B is a sequence diagram illustrating a power generation state of the fuel cell corresponding to the axis, and FIG. 4C is a sequence diagram illustrating an operation state of the hydrogen purge valve corresponding to the time axis of FIG.
[0012]
As shown in FIG. 1, the fuel cell system S includes a fuel cell FC that supplies current to the traveling motor M, an air supply system 1 that supplies air to the fuel cell FC, and a hydrogen cell that supplies hydrogen to the fuel cell FC. It mainly includes a supply system 2 and an ECU (control device) 3 that controls various devices. The air supply system 1 includes a supercharger S / C that compresses and supplies air, and air for guiding air from the supercharger S / C to the fuel cell FC and guiding air discharged from the fuel cell FC to the outside. The apparatus mainly includes a flow path 11 and an air purge valve 12 that is appropriately opened and closed to discharge air in the air flow path 11.
[0013]
The hydrogen supply system 2 mainly includes a hydrogen tank T, a hydrogen supply flow path 21, a shutoff valve 22, an ejector 23, a pressure sensor (detection means) 4, a circulation flow path 24, a circulation pump P, and a hydrogen purge valve 25. ing. The hydrogen tank T is filled with hydrogen as a fuel gas, and this hydrogen is discharged to the fuel cell FC by opening the shut-off valve 22 and an electromagnetic valve (not shown) provided in the hydrogen tank T. It is supposed to be. The ejector 23 mixes the hydrogen from the hydrogen tank T with the hydrogen returned from the fuel cell FC, and re-supplies this to the fuel cell FC to circulate the hydrogen.
[0014]
The circulation flow path 24 is a flow path for returning the hydrogen discharged from the fuel cell FC to the fuel cell FC via the ejector 23 again. The pressure sensor 4 is attached to a portion near the inlet of the fuel cell FC to which hydrogen is supplied, and a circulation pump P and a purge valve 25 for hydrogen are attached to a portion near the outlet of the fuel cell FC. Have been. The flow path connecting the inlet of the fuel cell FC and the ejector 23 functions as a hydrogen supply flow path 21 for guiding the hydrogen from the hydrogen tank T to the fuel cell FC, and also re-uses the hydrogen discharged from the fuel cell FC. It also functions as a circulation channel 24 returning to the fuel cell FC.
[0015]
The pressure sensor 4 detects the remaining pressure of hydrogen in the circulation channel 24 when the power generation of the fuel cell FC is stopped. The circulation pump P circulates hydrogen in a predetermined direction (counterclockwise in the figure) in the circulation channel 24. The hydrogen purge valve 25 appropriately discharges hydrogen and residual moisture in the fuel cell FC and the circulation flow path 24 to the outside. Further, the hydrogen purge valve 25 is disposed at a lower position in consideration of the water discharging property of the fuel cell system S, that is, at a position where residual water in the fuel cell FC and the circulation flow path 24 is likely to accumulate. .
[0016]
The ECU 3 controls the components of the fuel cell system S, mainly the supercharger S / C, the air purge valve 12, the shutoff valve 22, the circulation pump P, and the hydrogen purge valve 25. In particular, the ECU 3 sets the opening time of the hydrogen purge valve 25 based on a signal output from the pressure sensor 4 when the power generation of the fuel cell FC is stopped, and opens the hydrogen purge valve 25 during this opening time. This controls a certain amount of hydrogen to the outside. Specifically, the ECU 3 sets the opening time such that the higher the pressure, the shorter the opening time, based on the signal (pressure) output from the pressure sensor 4 using the map shown in FIG.
[0017]
The ECU 3 constantly monitors the pressure in the circulation channel 24 via the pressure sensor 4 after the power generation of the fuel cell FC is stopped. When the residual pressure of hydrogen detected by the pressure sensor 4 is equal to or lower than a predetermined value, the hydrogen purge valve 25 is controlled so that the opening of the hydrogen purge valve 25 is prohibited. The threshold value for inhibiting the opening of the hydrogen purge valve 25, that is, the predetermined value may be set to any number. However, in the present embodiment, the inside of the hydrogen supply system 2 is appropriately sealed with hydrogen ( For this reason, the value will be described as a value slightly higher than 140 kPa.
[0018]
Next, a method of draining residual moisture by the fuel cell system S will be described mainly with reference to FIGS.
As shown in FIG. 3, when the power generation of the fuel cell FC stops (IG OFF), first, a control signal is output from the ECU 3 to the shut-off valve 22, and the shut-off valve 22 is closed based on the control signal (see FIG. 1). . Next, when the ECU 3 reads a signal (residual pressure of hydrogen) output from the pressure sensor 4, the ECU 3 sets an opening time of the hydrogen purge valve 25 based on the signal with reference to a map shown in FIG. Then, the hydrogen purge valve 25 is opened during this opening time (step S2).
[0019]
Thereafter, the ECU 3 determines whether the residual pressure of hydrogen in the circulation flow path 24 is equal to or lower than a predetermined value (step S3). If it is determined in step S3 that the remaining pressure is higher than the predetermined value (No), the ECU 3 determines whether the opening time set in step S1 has elapsed (step S4). If it is determined in step S4 that the release time has not elapsed (No), the process returns to step S3 again.
[0020]
If it is determined in step S3 that the remaining pressure is equal to or lower than the predetermined value (Yes), or if it is determined in step S4 that the open time has elapsed (Yes), the hydrogen purge valve 25 is closed by the ECU 3 ( Step S5), the drainage operation in the fuel cell system S ends.
[0021]
The control method by the ECU 3 will be described in more detail. As shown in FIGS. 4B and 4C, when the power generation of the fuel cell FC is stopped (IG OFF) and the hydrogen purge valve 25 is opened, As shown in the graph of FIG. 4A, the residual pressure in the circulation channel 24 gradually decreases. If the remaining pressure becomes equal to or less than a predetermined value before the opening time (map value) set in the map shown in FIG. 2 elapses, it is indicated by a dotted line in FIG. Thus, the purge valve 25 for hydrogen is closed, and the residual pressure in the circulation flow path 24 is maintained at a predetermined value not lower than 140 kPa.
[0022]
As described above, the following effects can be obtained in the present embodiment.
Since the hydrogen purge valve 25 is opened for an opening time appropriately set based on the value of the residual pressure in the circulation flow path 24, a fixed amount of hydrogen can be discharged from the hydrogen purge valve 25. Therefore, it is not necessary to set the dilution air more than necessary, so that the wasteful consumption is prevented, and the residual moisture can be reliably discharged even when the residual pressure of hydrogen is low.
When the residual pressure of hydrogen in the circulation flow path 24 becomes equal to or lower than a predetermined value, the hydrogen purge valve 25 is closed, so that the pressure in the circulation flow path 24 does not drop more than necessary. It is possible to reliably prevent air or the like from being sucked into the inside.
[0023]
As described above, the present invention is not limited to the above embodiment, but may be embodied in various forms.
In the present embodiment, the opening time is set using the map. However, the present invention is not limited to this. For example, the opening time is determined based on the pressure value output from the pressure sensor 4 under various conditions (the purge valve for hydrogen). 25 may be set so as to be calculated each time. Further, even when the hydrogen supply system 2 is not used for a while, the inside of the hydrogen supply system 2 is appropriately sealed (filled) with hydrogen, so that it is easy to restart.
[0024]
【The invention's effect】
According to the first aspect of the present invention, since a fixed amount of hydrogen is discharged from the purge valve regardless of the residual pressure of hydrogen, wasteful consumption of air for dilution is prevented, and the residual pressure of hydrogen is reduced. Even when it is low, residual water can be reliably discharged.
[0025]
According to the second aspect of the invention, in addition to the effect of the first aspect, when the residual pressure of hydrogen in the fuel cell or the circulation flow path is equal to or lower than a predetermined value, the purge valve does not open. The pressure in the fuel cell or the circulation channel will not be reduced more than necessary, and it is possible to reliably prevent air or the like from being sucked into the circulation channel or the like due to the negative pressure.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a fuel cell system according to the present invention.
FIG. 2 is a view showing a map referred to by an ECU of FIG. 1;
FIG. 3 is a flowchart showing an operation of the ECU of FIG. 1;
4 is a graph (a) showing the relationship between the residual pressure in the circulation flow path and time in FIG. 1 and a sequence diagram (b) showing a power generation state of the fuel cell corresponding to the time axis in FIG. 4 (a). FIG. 5C is a sequence diagram (c) illustrating an operation state of the hydrogen purge valve corresponding to the time axis of FIG.
[Explanation of symbols]
S Fuel cell system M Running motor FC Fuel cell T Hydrogen tank P Circulation pump 1 Air supply system 2 Hydrogen supply system 21 Hydrogen supply flow path 22 Shutoff valve 23 Ejector 24 Circulation flow path 25 Hydrogen purge valve 3 ECU (control device)
4 Pressure sensor (detection means)

Claims (2)

燃料電池から排出される水素を再度燃料電池に戻す循環流路と、
この循環流路内の水素を外部へ排出させるパージ弁とを備えた燃料電池システムであって、
前記燃料電池の発電停止時において、前記燃料電池または前記循環流路内の水素の残存圧力を検知する検知手段と、
この検知手段から出力される信号に基づいて前記パージ弁の開放時間を設定し、この開放時間の間で前記パージ弁を開放させることで外部に水素を排出するように制御する制御装置を備えたことを特徴とする燃料電池システム。
A circulation flow path for returning hydrogen discharged from the fuel cell to the fuel cell again;
A purge valve for discharging hydrogen in the circulation flow path to the outside,
When power generation of the fuel cell is stopped, a detecting unit that detects a residual pressure of hydrogen in the fuel cell or the circulation flow path,
A control device is provided for setting an open time of the purge valve based on a signal output from the detection means, and controlling to discharge hydrogen to the outside by opening the purge valve during the open time. A fuel cell system, characterized in that:
前記制御装置は、前記検知手段で検知した前記水素の残存圧力が所定値以下の場合、前記パージ弁の開放を禁止するように、前記パージ弁を制御することを特徴とする請求項1に記載の燃料電池システム。2. The control device according to claim 1, wherein the control device controls the purge valve so as to prohibit the opening of the purge valve when the residual pressure of the hydrogen detected by the detection unit is equal to or less than a predetermined value. Fuel cell system.
JP2002345142A 2002-11-28 2002-11-28 Fuel cell system Expired - Fee Related JP4133264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345142A JP4133264B2 (en) 2002-11-28 2002-11-28 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345142A JP4133264B2 (en) 2002-11-28 2002-11-28 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2004179034A true JP2004179034A (en) 2004-06-24
JP4133264B2 JP4133264B2 (en) 2008-08-13

Family

ID=32706394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345142A Expired - Fee Related JP4133264B2 (en) 2002-11-28 2002-11-28 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4133264B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118367A (en) * 2004-10-19 2006-05-11 Tokyo Electric Power Co Inc:The Combustion engine using dimethyl ether as fuel
JP2006196432A (en) * 2004-12-16 2006-07-27 Nissan Motor Co Ltd Fuel cell system
JP2007103224A (en) * 2005-10-06 2007-04-19 Honda Motor Co Ltd Fuel cell system and pressure reduction method of the same
JP2007149609A (en) * 2005-11-30 2007-06-14 Honda Motor Co Ltd Fuel cell system
JP2007193983A (en) * 2006-01-17 2007-08-02 Honda Motor Co Ltd Fuel cell system and its operation method
KR100805448B1 (en) 2006-12-08 2008-02-20 현대자동차주식회사 The hydrogen recirculation system of the fuel cell vehicle
JP2008103189A (en) * 2006-10-19 2008-05-01 Toyota Motor Corp Fuel cell system
US9484586B2 (en) 2014-07-15 2016-11-01 Hyundai Motor Company Driving control method and system of fuel cell system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118367A (en) * 2004-10-19 2006-05-11 Tokyo Electric Power Co Inc:The Combustion engine using dimethyl ether as fuel
JP2006196432A (en) * 2004-12-16 2006-07-27 Nissan Motor Co Ltd Fuel cell system
US8283083B2 (en) 2004-12-16 2012-10-09 Nissan Motor Co., Ltd. Fuel cell system
JP2007103224A (en) * 2005-10-06 2007-04-19 Honda Motor Co Ltd Fuel cell system and pressure reduction method of the same
JP4504896B2 (en) * 2005-10-06 2010-07-14 本田技研工業株式会社 Fuel cell system
JP2007149609A (en) * 2005-11-30 2007-06-14 Honda Motor Co Ltd Fuel cell system
JP2007193983A (en) * 2006-01-17 2007-08-02 Honda Motor Co Ltd Fuel cell system and its operation method
US8247121B2 (en) 2006-01-17 2012-08-21 Honda Motor Co., Ltd. Fuel cell system with purging and method of operating the same
JP2008103189A (en) * 2006-10-19 2008-05-01 Toyota Motor Corp Fuel cell system
KR100805448B1 (en) 2006-12-08 2008-02-20 현대자동차주식회사 The hydrogen recirculation system of the fuel cell vehicle
US9484586B2 (en) 2014-07-15 2016-11-01 Hyundai Motor Company Driving control method and system of fuel cell system

Also Published As

Publication number Publication date
JP4133264B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
KR101035319B1 (en) Fuel cell system and method of stopping the same
JP2005141943A (en) Fuel cell system
JP2009032513A (en) Fuel cell automobile
JP2004179034A (en) Fuel cell system
WO2006019027A1 (en) Fuel cell system and liquid discharging method for the same
JP2005251576A (en) Fuel cell system and moving body mounting the same
JP2024026174A (en) Operating method of fuel cell system and fuel cell system
US8277994B2 (en) Fuel cell system
JP2003331888A (en) Fuel cell system
JP4498707B2 (en) Operation method of fuel cell system and fuel cell operation device
JP2007226987A (en) Fuel cell system and starting method of fuel cell
JP3916150B2 (en) Fuel cell system
JP4263547B2 (en) Water discharge method for fuel cell system
JP2010062015A (en) Fuel cell system
JP2007035464A (en) Fuel cell system
JP3952461B2 (en) Control method for exhaust gas treatment device of fuel cell
JP2006100101A (en) Fuel cell system and its control method as well as vehicle
JP4348067B2 (en) Fuel cell system
JP2004179100A (en) Method for stopping operation of fuel cell system
JP2007242381A (en) Fuel cell system
JP5103930B2 (en) Fuel cell system
JP2006302832A (en) Fuel cell system
JP2005093231A (en) Fuel cell operation device and operation method
JP3952456B2 (en) Fuel cell exhaust gas treatment device
JP5034358B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4133264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees