JP2004178773A - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP2004178773A
JP2004178773A JP2002347260A JP2002347260A JP2004178773A JP 2004178773 A JP2004178773 A JP 2004178773A JP 2002347260 A JP2002347260 A JP 2002347260A JP 2002347260 A JP2002347260 A JP 2002347260A JP 2004178773 A JP2004178773 A JP 2004178773A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical
head device
optical head
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002347260A
Other languages
Japanese (ja)
Other versions
JP4207550B2 (en
JP2004178773A5 (en
Inventor
Yousuke Fujino
陽輔 藤野
Shinko Murakawa
真弘 村川
Koichi Murata
浩一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002347260A priority Critical patent/JP4207550B2/en
Publication of JP2004178773A publication Critical patent/JP2004178773A/en
Publication of JP2004178773A5 publication Critical patent/JP2004178773A5/ja
Application granted granted Critical
Publication of JP4207550B2 publication Critical patent/JP4207550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical head device which has reduced aberration and is small-sized and light-weighted, and which is compatible with different kinds of optical disks. <P>SOLUTION: A liquid crystal element mounted in an optical head device is constituted so that a liquid crystal is sandwiched between two transparent substrates. At the periphery of an area decided by a numerical aperture to outgoing light having a maximum wavelength between at least two usable wavelength on a surface of one transparent substrate, the element is formed so that concentric electrodes about an optical axis are formed and a wave aberration of the outgoing light having the maximum wave length is compensated. The liquid crystal device 10 is located in an optical path between a synthesis prism 7 of the optical head device, and an optical recording medium 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は光ヘッド装置に関し、特に異なる3つの波長を用いて光ディスクなどの光記録媒体の記録および/または再生を行う光ヘッド装置に関する。
【0002】
【従来の技術】
光ディスクであるDVDは、同じく光ディスクであるCDに比べデジタル情報が高密度で記録されており、DVDを再生するための光ヘッド装置は、光源の波長をCDの780nmよりも短い650nmとしたり、また対物レンズの開口数(以下、NAと称す)をCDの0.45または0.5よりも大きい0.6または0.65にして光ディスク面上に集光するスポット径を小さくしている。
【0003】
さらに、次世代の光記録においては光源の波長を400nm前後で、NAを0.6以上とすることで、より高記録密度を得ることが提案されている(以下、高記録密度をHDと称す)。しかし、光源の短波長化や対物レンズの高NA化が原因で、光ディスク面が光軸に対して直角より傾くチルトの許容量や光ディスクの厚さムラの許容量が小さくなる。これら許容量が小さくなる理由は、光ディスクのチルトの場合にはコマ収差が発生することにより、光ディスクの厚さムラの場合には球面収差が発生するために、光ヘッド装置の集光特性が劣化して信号の読み取りが困難になることによる。高密度記録において、光ディスクのチルトや厚さムラに対対処して光ヘッド装置の許容量を拡げるためにいくつかの方式が提案されている。
【0004】
一つの方式として、通常光ディスクの接線方向と半径方向との2軸方向に移動する対物レンズのアクチュエータに、検出されたチルト角に応じて対物レンズを傾けるように傾斜用の軸を追加する方式がある。しかし、この追加軸方式では球面収差は補正できないことや、アクチュエータの構造が複雑になるなどの問題がある。
【0005】
また別の方式として、対物レンズと光源との間に備えた位相補正素子により波面収差を補正する方式がある。この補正方式では、アクチュエータに大幅な改造を施すことなく光ヘッド装置に素子を組み入れるだけで光ディスクのチルトの許容量や厚さムラの許容量を拡げることができる。
【0006】
例えば、位相補正素子を用いて光ディスクのチルトを補正する上記の補正方式は特開平10−20263に記載がある。これは、位相補正素子を構成している液晶などの複屈折性材料を挟持している一対の基板のそれぞれに、電極が分割されて形成された分割電極に電圧を印加して、複屈折性材料の実質的な屈折率を光ディスクのチルト角に応じて変化させ、この屈折率の変化により発生した透過光の波面変化により、光ディスクのチルトで発生したコマ収差を補正する方式である。
【0007】
さらに、HD/DVD/CDの光ディスクでは、それぞれディスク厚および使用波長が異なることにより、いずれか一種類のディスク厚に対して設計された対物レンズを用いると他のディスク厚に対して、大きな球面収差が発生することによりピット情報の記録・再生ができない問題点があった。同一の対物レンズを用いて異なる光ディスクの情報の記録・再生を行う場合に発生する球面収差を低減するために、種々の方式が提案されている。その中で基板に光学多層膜をドーナツ状にパターニングし、例えば2波長の光のうち一方の波長の光は透過させ同時に他方の波長の光は反射させてNAを切り替える開口制限素子が提案されている。
【0008】
【特許文献1】
特開2001−143303号公報
【0009】
【発明が解決しようとする課題】
しかし、上記の開口制限素子と液晶位相補正素子とを組み合わせて用いる場合、それぞれを個別部品で構成する、液晶位相補正素子の基板上に光学多層膜をパターニングし開口制限と一体化する、など考えられる。しかし、前者では重量が重くなる、コストアップに繋がるなど問題があり、後者はコストアップに繋がる問題があった。これは、2波長の光を使用する場合でも、3波長の光を使用する場合でも同じである。
【0010】
【課題を解決するための手段】
本発明は、上記の課題を解決するためになされたものであり、光源と、光源からの出射光を光記録媒体に集光させるための対物レンズと、光記録媒体に集光され反射された出射光を受光する光検出器と、光源と光記録媒体との間の光路中に配置された液晶素子とを備え、少なくとも2つの異なる波長の出射光を用いる光ヘッド装置において、前記液晶素子は2枚の透明基板間に液晶が挟持されてなり、一方の透明基板の表面における、最大波長の出射光に対する開口数により決まる領域の周辺部には、光軸を中心とする同心円状の電極が形成されていて最大波長の出射光の波面収差が補正されることを特徴とする光ヘッド装置を提供する。
【0011】
また、前記光ヘッド装置で用いられる出射光が異なる3つの波長λ、λ、λ(λ<λ<λ)の光であり、前記液晶素子の前記一方の透明基板の表面における、前記開口数によって決まる領域の内部にさらに波面収差を補正するための電極が形成されており、かつ他方の透明基板の表面には波長λおよび波長λの出射光の波面収差を補正するための電極が形成されている上記の光ヘッド装置を提供する。
【0012】
さらに、前記液晶素子が位相板と一体化されている上記の光ヘッド装置を提供する。
【0013】
【発明の実施の形態】
本発明は、少なくとも2つの異なる波長の出射光を用いて情報の記録および/または再生を行う光ヘッド装置に関しており、本光ヘッド装置では、光源と、光源からの出射光を光記録媒体に集光させるための対物レンズと、光記録媒体に集光され反射された出射光を受光する光検出器と、光源と光記録媒体との間の光路中に配置された液晶素子とを備えている。
【0014】
本発明における、液晶素子は2枚の透明基板間に液晶が挟持されており、一方の透明基板の表面における、2つ以上の波長のうち最大波長の出射光に対する開口数により決まる領域の周辺部には、光軸を中心とする同心円状の透明電極が形成されていて最大波長の出射光の波面収差が補正される。この同心円は光軸と透明基板の電極が形成されている面との交点を中心としている。そしてこの同心円状の電極への電圧の印加により、最大波長の出射光に位相差を与えて最大波長の出射光の波面収差とくに球面収差を低減する効果を有する。また、最大波長の出射光に対する開口制限素子の役目を果たす。2つ以上の波長の出射光とは、DVDとCD光ディスクを使用する場合は2つの波長となり、HD、DVDおよびCD光ディスクを使用する場合は3つの波長となる。
【0015】
以下、図面に基づいて、詳細に説明する。図1は本発明の光ヘッド装置の原理構成の一例を示す概念的断面図である。本例は、CD、DVD、HDなどの光ディスクに情報の記録および/または再生する光ディスク装置に関する。本光ヘッド装置は光源である発振波長の異なる半導体レーザ1A、1B、1C(例えば、1AはHD用半導体レーザ、1BはDVD用半導体レーザ、1CはCD用半導体レーザ)、ビームスプリッタ2、合波プリズム3、7、コリメートレンズ4、光ディスク6、光検出器8A、8B、8C、ホログラム素子9B、9C、および対物レンズ5を搭載したアクチュエータ101を有する。
【0016】
さらに、半導体レーザ1A、1Bまたは1Cからの出射光の波面を変化させる液晶素子10を配置した。この液晶素子10は、液晶が2枚の透明基板間に挟まれており、透明基板の表面には液晶に電圧を印加するための電極を有している。
【0017】
図2に示す液晶素子の構造について説明する。透明基板であるガラス基板21A、21Bがシール材22により接着され液晶セルを形成している。ガラス基板21Aの内側表面には、内側表面側から電極24A、シリカなどを主成分とする絶縁膜25、配向膜26がこの順に、またガラス基板21Bの内側表面には、内側表面側から電極24B、絶縁膜25、配向膜26がこの順に被膜されている。
【0018】
電極24Aは電極引出部27が設けられている。液晶セル内部には液晶が充填され液晶層23とされており、図2に示した液晶分子28は、一方向に配向されたホモジニアス配向の状態にある。この液晶素子の、光ヘッド装置における収差補正機能について図2に基づき説明する。
【0019】
液晶層中の液晶分子の配向方向と入射光の偏光方向が一致した場合に、液晶層に電圧を印加することで実効的な屈折率が変化し、光の偏光状態をほとんど変化させずに、光の波面を変化させることができる。このことで出射光は、液晶素子を透過するときに偏光状態をほとんど変化させることなく、液晶層に電圧を印加することで光の波面を変化させることができる。
【0020】
すなわち、いま3つ光が用いられるとし波長をλ、λ、λ(λ<λ<λ)とすると、液晶素子の一方の透明基板の表面における、波長λの開口数によって決まる領域の内部にも、外部の同心円状の電極に加えさらに波面収差を補正するための電極が形成されており、かつ他方の透明基板の表面には波長λおよび波長λの出射光の波面収差を補正するための電極が形成されていることが好ましい。
【0021】
すなわち、液晶層23を挟む2の透明基板のうち他方の透明基板には、例えばHD(波長λを使用)またはDVD(波長λを使用)用光ディスク基板の厚み偏差や多層光ディスクの再生、あるいは波長の違いにより発生する球面収差の補正用に分割された例えば図3に示すような電極を設ける。
【0022】
また、一方の基板には、CD(波長λを使用)用の光ディスク基板の厚み補正用およびNAにより決められる領域外に配置した位相差により収差を低減させるために、例えば図4に示すような電極を設ける。それぞれの波長の光ディスクを再生または記録する場合には、光検出器により得られた収差信号を補正するように、それぞれの電極に電圧を印加する。使用しない側の面の電極は同一の電圧とする。
【0023】
NAにより決められる領域外の同心円状の透明電極50、51、52に関してはここでは3つとしているが、1つ以上であればいくつでもよい。しかし、8つ程度が作製の容易さ、さらには効果の点からも好ましい。なお球面収差の補正用にはNAにより決められる領域内を図5に示すような分割された電極(同心円は分割線を表す)を設けることにより補正してもよい。
【0024】
また、光ディスクの傾斜(チルト)により発生するコマ収差の補正用に分割された図6に示す電極(図中の線は分割線を示す)を、図3または図4に示す電極との組み合わせで設けてもよい。また、図3および図4の電極では、連続的な電圧分布を発生させるために、NA2により決められる領域内部では、基板の表面に薄膜の電極40を形成し、所望の電圧分布となるようにこの分割しない電極40上に、それぞれの収差に対処できる形状の複数の給電部材30、31、32を設ける。60は給電部材用の引出配線である。そして、それぞれの給電部材に適切な電圧を印加することで、給電部材間の電極面内での電圧降下を利用し、給電部材間の電極面内に連続的な電圧分布を発生させ収差を補正させてもよい。さらに、CDのNAにより決められる領域外の透明電極50、51、52についても上記連続的な電圧分布としてもよい。
【0025】
また、前記液晶素子が位相板と一体化されている光ヘッド装置とすることが好ましい。すなわち、液晶素子に例えば4分の1波長板などの位相板を積層することで部品点数を減らすことができる。さらに、対物レンズを搭載したアクチュエータに液晶素子を搭載することで、トラッキング時に対物レンズと液晶素子とが一体に動き、この2つ部品の位置ズレによる収差補正性能の劣化を抑制できる。
【0026】
液晶素子に使用する液晶材料は、ディスプレイ用途などに用いられるネマティック液晶などが好ましく、カイラル剤の添加によりツイストさせてもよい。
また、使用する透明基板の材料としては、ガラス、ポリカーボネート系樹脂、アクリル系樹脂、エポキシ系樹脂、塩化ビニル系樹脂などが使用できるが、耐久性などの点からガラスの透明基板が好ましい。
【0027】
4分の1波長板としては、4分の3波長板や、4分の5波長板などの4分の1波長の奇数倍の位相差をもつものを使用してもよい。また、4分の1波長板の材料としては、水晶やLiNbOのような複屈折性単結晶を用いてもよいし、高分子液晶、ポリカーボネートなどの有機物膜を用いてもよい。
【0028】
光検出器から得られる光ディスクの、例えば再生信号の強度が最適となるように、図1に示す液晶素子10に向けて制御電圧発生手段である液晶素子制御回路により電圧が出力される。液晶素子制御回路より出力される電圧は、光ディスクの厚み偏差量、チルト量、液晶素子と対物レンズの位置ずれなどに応じた電圧であり、液晶素子の電極に印加する実質的に変化する電圧となる。
【0029】
【実施例】
本実施例の光ヘッド装置は、HD/DVD/CD光ディスクの互換機能を有する。HDおよびDVD光ディスクはNAが0.65、CD光ディスクはNAが0.50で使用される。波長はHD光ディスクがλ=405nm、DVD光ディスクがλ=660nm、CD光ディスクがλ=780nmを使用した。また、対物レンズはHDの一層光ディスクに最適化したものを用いた。
【0030】
したがってHDの二層光ディスク再生または記録の場合、DVD光ディスクの再生または記録の場合、CD光ディスクの再生または記録の場合には、球面収差が発生して信号読みとり精度が低下する。その収差を補正するために図2に示した位相補正用液晶素子を光ヘッド装置に組み込んだ。
【0031】
なお光ディスクの基板厚はHD/DVDは0.6mmでCDは1.2mmであり、HD光ディスクの一層と二層間距離は40μm離れたものを使用した。この位相補正用液晶素子(図2を参照)は、半導体レーザからの出射光の波面を変化させるように、液晶分子28の配向方向が、液晶層23を透過するときの出射光の偏光方向に平行とした。
【0032】
この液晶層23は図2に示すように、液晶層23を、シール材22で囲み、配向膜26、中間膜25、透明電極膜24A、24Bおよびガラス基板21A、21Bではさみ込む構成とした。本実施例では液晶層を挟む2枚の透明基板であるガラス基板には、液晶層に電圧を印加できるようにHDおよびDVD光ディスク用として図3に示す、球面収差補正用の連続的な電圧分布を発生させる電極を上面のガラス基板21Bに形成し、CD用の球面収差補正電極として図7に示す電極を下面のガラス基板21Aに形成した。
【0033】
また、素子小型化を目的として液晶素子10の対物レンズ側にはHD/DVD/CD光ディスク用の広帯域4分の1波長板を積層した。HD二層光ディスクまたはDVD光ディスクの記録および再生をする場合には、ガラス基板21Aへ印加する図7に示す信号A〜Dはゼロ電位とし、光検出器より得られる収差信号より発生する収差を補正するように、ガラス基板21Bの図3に示す信号1〜3の電極に最適な交流電圧を加えることにより良好な記録および再生特性を得ることができた。また波長λ=780nm用の開口制限素子を組み込む必要がないため、装置の小型軽量化を図ることができた。
【0034】
さらに、CD光ディスクの記録および再生を行う場合には、ガラス基板21Bの図3に示す信号1〜3はゼロ電位とし、得られる収差信号により発生する収差を補正する最適な交流電圧をガラス基板21Aの電極信号A〜D(図7)に加えることにより良好な記録および再生特性を得ることができた。なお、図7の同心円状電極の外径D1〜2の値は表1に示す値とし、図7の信号Dの電圧は信号Cと同じ電圧、信号Aの電圧は信号CおよびDの電圧により発生する位相差よりも0.366μm大きな位相差が発生する電圧を加えた。
【0035】
【表1】

Figure 2004178773
【0036】
【発明の効果】
以上説明したように、本発明の異なる2波長以上の光(例えばHD/DVD/CD用では3波長)で再生または記録する互換光ヘッド装置において、その収差を低減させるために組み込んだ液晶素子にHD/DVD光ディスク用の収差補正機能、およびCD光ディスク用収差補正機能を組み合わせて一体化することにより良好な再生または記録特性が得られ、さらに装置を小型化できた。また、CD光ディスクの収差補正機能に関しては、開口数により決定される領域の周辺部に形成された光軸を中心とする同心円状の電極により収差を低減する位相差を発生させることにより収差補正機能を付与し、別の開口制限素子を組み込む必要がなくなり、装置の小型軽量化およびコスト低減が実現できた。
【図面の簡単な説明】
【図1】本発明の光ヘッド装置の原理構成の一例を示す概念的断面図。
【図2】液晶素子の構成の一例を示す概念的断面図。
【図3】HD/DVD光ディスクの収差を補正する、本発明における液晶素子に形成された電極および給電部材パターンを示す模式的平面図。
【図4】CD光ディスクの収差を低減する、本発明における液晶素子に形成された電極および給電部材パターンを示す模式的平面図。
【図5】球面収差を補正する本発明における液晶素子に形成された分割電極パターンを示す模式的平面図。
【図6】コマ収差を補正する本発明における液晶素子の電極分割パターンを示す模式的平面図。
【図7】CD光ディスクの収差を低減する、本発明における液晶素子に形成された電極および給電部材パターンを示す模式的平面図。
【符号の説明】
1A、1B、1C:半導体レーザ
2:ビームスプリッタ
3、7:合波プリズム
4:コリメートレンズ
5:対物レンズ
6:光ディスク
8、8A、8B:光検出器
9、9B、9C:ホログラム素子
10:液晶素子
21、21A、21B:ガラス基板
22:シール材
23:液晶
24、24A、24B:電極
25:絶縁膜
26:配向膜
28:液晶分子
30〜32:給電部材
40、50〜53:透明電極
60:引出配線
101:アクチュエータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical head device, and more particularly to an optical head device that records and / or reproduces an optical recording medium such as an optical disk using three different wavelengths.
[0002]
[Prior art]
A DVD, which is an optical disk, records digital information at a higher density than a CD, which is also an optical disk, and an optical head device for reproducing a DVD has a light source wavelength of 650 nm, which is shorter than the 780 nm of the CD. The numerical aperture (hereinafter referred to as NA) of the objective lens is set to 0.6 or 0.65, which is larger than 0.45 or 0.5 of CD, to reduce the spot diameter focused on the optical disk surface.
[0003]
Further, in the next generation optical recording, it has been proposed to obtain a higher recording density by setting the wavelength of the light source to around 400 nm and NA of 0.6 or more (hereinafter, the high recording density is referred to as HD). ). However, due to the shortening of the wavelength of the light source and the increase of the NA of the objective lens, the allowable amount of tilt in which the optical disk surface is tilted from the right angle with respect to the optical axis and the allowable amount of uneven thickness of the optical disk are reduced. The reason why these tolerances are reduced is that coma aberration occurs when the optical disc is tilted, and spherical aberration occurs when the optical disc is uneven in thickness. This makes it difficult to read signals. In high-density recording, several methods have been proposed to increase the allowable amount of the optical head device by coping with tilt and thickness unevenness of the optical disk.
[0004]
As one method, there is a method in which an axis for tilting is added to an objective lens actuator that normally moves in the biaxial direction of the tangential direction and the radial direction of the optical disc so that the objective lens is tilted according to the detected tilt angle. is there. However, this additional axis method has problems such that spherical aberration cannot be corrected and the structure of the actuator is complicated.
[0005]
As another method, there is a method in which wavefront aberration is corrected by a phase correction element provided between the objective lens and the light source. In this correction method, the allowable amount of tilt of the optical disk and the allowable amount of thickness unevenness can be increased only by incorporating an element into the optical head device without significantly modifying the actuator.
[0006]
For example, the above correction method for correcting the tilt of the optical disk using a phase correction element is described in JP-A-10-20263. This is because the voltage is applied to the divided electrodes formed by dividing the electrodes on each of the pair of substrates sandwiching the birefringent material such as liquid crystal constituting the phase correction element, and the birefringence is achieved. In this method, the substantial refractive index of the material is changed in accordance with the tilt angle of the optical disk, and the coma aberration generated by the tilt of the optical disk is corrected by the wavefront change of transmitted light generated by the change of the refractive index.
[0007]
Further, in the HD / DVD / CD optical disc, the disc thickness and the operating wavelength are different from each other. Therefore, when an objective lens designed for any one type of disc thickness is used, a large spherical surface is obtained for other disc thicknesses. There is a problem that pit information cannot be recorded / reproduced due to aberration. Various methods have been proposed to reduce spherical aberration that occurs when information is recorded / reproduced on different optical discs using the same objective lens. Among them, an aperture limiting element is proposed in which an optical multilayer film is patterned on a substrate in a donut shape, for example, one of two wavelengths of light is transmitted and the other wavelength is reflected at the same time to switch the NA. Yes.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-143303
[Problems to be solved by the invention]
However, when the above aperture limiting element and liquid crystal phase correction element are used in combination, each of them is composed of individual components, and an optical multilayer film is patterned on the substrate of the liquid crystal phase correction element and integrated with the aperture limitation. It is done. However, the former has problems such as an increase in weight and an increase in cost, and the latter has a problem in connection with an increase in cost. This is the same when using light of two wavelengths or when using light of three wavelengths.
[0010]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-described problems. The light source, the objective lens for condensing the light emitted from the light source onto the optical recording medium, and the light collected and reflected on the optical recording medium. In an optical head device comprising a photodetector for receiving emitted light, and a liquid crystal element disposed in an optical path between the light source and the optical recording medium, and using the emitted light of at least two different wavelengths, the liquid crystal element is A liquid crystal is sandwiched between two transparent substrates, and a concentric electrode centered on the optical axis is formed at the periphery of a region determined by the numerical aperture for the emitted light having the maximum wavelength on the surface of one transparent substrate. Provided is an optical head device in which the wavefront aberration of emitted light having a maximum wavelength is corrected.
[0011]
Further, the emitted light used in the optical head device is light of three wavelengths λ 1 , λ 2 , λ 3123 ), and the surface of the one transparent substrate of the liquid crystal element in the provided electrodes for correcting the further wavefront aberration within a region determined by the numerical aperture is formed, and the surface of the other transparent substrate correcting the wavefront aberration of the light emitted from the wavelength lambda 1 and wavelength lambda 2 There is provided the above-described optical head device in which an electrode is formed.
[0012]
Furthermore, the above-mentioned optical head device in which the liquid crystal element is integrated with a phase plate is provided.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to an optical head device that records and / or reproduces information using emitted light of at least two different wavelengths. In this optical head device, the light source and the emitted light from the light source are collected on an optical recording medium. An objective lens for causing light to illuminate, a photodetector for receiving outgoing light collected and reflected by the optical recording medium, and a liquid crystal element disposed in an optical path between the light source and the optical recording medium .
[0014]
In the liquid crystal element of the present invention, the liquid crystal is sandwiched between two transparent substrates, and the peripheral portion of the region determined by the numerical aperture for the emitted light having the maximum wavelength of two or more wavelengths on the surface of one transparent substrate In this case, a concentric transparent electrode centered on the optical axis is formed to correct the wavefront aberration of the emitted light having the maximum wavelength. This concentric circle is centered on the intersection of the optical axis and the surface on which the electrodes of the transparent substrate are formed. The application of a voltage to the concentric electrodes has an effect of reducing the wavefront aberration, particularly spherical aberration, of the emitted light having the maximum wavelength by giving a phase difference to the emitted light having the maximum wavelength. Also, it serves as an aperture limiting element for outgoing light with the maximum wavelength. Outgoing light having two or more wavelengths has two wavelengths when using a DVD and a CD optical disk, and has three wavelengths when using an HD, DVD, and CD optical disk.
[0015]
Hereinafter, it demonstrates in detail based on drawing. FIG. 1 is a conceptual sectional view showing an example of the principle configuration of the optical head device of the present invention. This example relates to an optical disc apparatus that records and / or reproduces information on an optical disc such as a CD, DVD, or HD. This optical head device is a semiconductor laser 1A, 1B, 1C (for example, 1A is an HD semiconductor laser, 1B is a DVD semiconductor laser, and 1C is a CD semiconductor laser), a beam splitter 2, and a multiplexing light source. It has an actuator 101 on which prisms 3 and 7, a collimating lens 4, an optical disk 6, photodetectors 8A, 8B and 8C, hologram elements 9B and 9C, and an objective lens 5 are mounted.
[0016]
Furthermore, the liquid crystal element 10 that changes the wavefront of the light emitted from the semiconductor laser 1A, 1B, or 1C is disposed. The liquid crystal element 10 has a liquid crystal sandwiched between two transparent substrates, and has an electrode for applying a voltage to the liquid crystal on the surface of the transparent substrate.
[0017]
The structure of the liquid crystal element shown in FIG. 2 will be described. Glass substrates 21A and 21B, which are transparent substrates, are bonded by a sealing material 22 to form a liquid crystal cell. On the inner surface of the glass substrate 21A, an electrode 24A from the inner surface side, an insulating film 25 mainly composed of silica and the alignment film 26 are arranged in this order, and on the inner surface of the glass substrate 21B, the electrode 24B from the inner surface side. The insulating film 25 and the alignment film 26 are coated in this order.
[0018]
The electrode 24A is provided with an electrode lead portion 27. The liquid crystal cell is filled with liquid crystal to form a liquid crystal layer 23, and the liquid crystal molecules 28 shown in FIG. 2 are in a homogeneous alignment state aligned in one direction. The aberration correction function of this liquid crystal element in the optical head device will be described with reference to FIG.
[0019]
When the alignment direction of the liquid crystal molecules in the liquid crystal layer matches the polarization direction of the incident light, the effective refractive index changes by applying a voltage to the liquid crystal layer, and the polarization state of the light is hardly changed. The wavefront of light can be changed. As a result, the outgoing light can change the wavefront of the light by applying a voltage to the liquid crystal layer with almost no change in the polarization state when passing through the liquid crystal element.
[0020]
That is, assuming that three lights are now used and the wavelengths are λ 1 , λ 2 , and λ 3123 ), the numerical aperture of the wavelength λ 3 on the surface of one transparent substrate of the liquid crystal element. In addition to an external concentric electrode, an electrode for correcting wavefront aberration is further formed inside the region determined by, and the outgoing light of wavelength λ 1 and wavelength λ 2 is formed on the surface of the other transparent substrate. It is preferable that an electrode for correcting the wavefront aberration is formed.
[0021]
That is, of the two transparent substrates sandwiching the liquid crystal layer 23, the other transparent substrate includes, for example, a thickness deviation of an optical disc substrate for HD (using wavelength λ 1 ) or DVD (using wavelength λ 2 ), reproduction of a multilayer optical disc, Alternatively, for example, an electrode as shown in FIG. 3 divided for correcting spherical aberration generated due to a difference in wavelength is provided.
[0022]
Further, the one of the substrates, CD in order to reduce the aberration by the phase difference arranged outside the determined area by the optical disc substrate of thickness correction and NA (wavelength lambda 3 using) for, for example, as shown in FIG. 4 Provide a suitable electrode. When reproducing or recording an optical disk of each wavelength, a voltage is applied to each electrode so as to correct the aberration signal obtained by the photodetector. The electrodes on the unused side have the same voltage.
[0023]
The number of concentric transparent electrodes 50, 51, 52 outside the area determined by NA is three here, but any number of concentric transparent electrodes 50, 51, 52 may be used as long as it is one or more. However, about eight are preferable from the viewpoint of ease of production and further effects. For correction of spherical aberration, the region determined by NA may be corrected by providing divided electrodes (concentric circles indicate dividing lines) as shown in FIG.
[0024]
Further, the electrode shown in FIG. 6 (the line in the figure indicates the dividing line) divided for correcting the coma generated by the tilt of the optical disk is combined with the electrode shown in FIG. 3 or FIG. It may be provided. 3 and 4, in order to generate a continuous voltage distribution, a thin film electrode 40 is formed on the surface of the substrate inside the region determined by NA2, so that the desired voltage distribution is obtained. On the electrode 40 that is not divided, a plurality of power supply members 30, 31, and 32 having shapes that can cope with the respective aberrations are provided. Reference numeral 60 denotes a lead wiring for the power supply member. By applying an appropriate voltage to each power supply member, the voltage drop in the electrode surface between the power supply members is used to generate a continuous voltage distribution in the electrode surface between the power supply members to correct aberrations. You may let them. Furthermore, the continuous voltage distribution may be applied to the transparent electrodes 50, 51, and 52 outside the region determined by the NA of the CD.
[0025]
The liquid crystal element is preferably an optical head device integrated with a phase plate. That is, the number of components can be reduced by laminating a phase plate such as a quarter wave plate on the liquid crystal element. Furthermore, by mounting the liquid crystal element on the actuator mounted with the objective lens, the objective lens and the liquid crystal element move together during tracking, and deterioration of the aberration correction performance due to the positional deviation of these two parts can be suppressed.
[0026]
The liquid crystal material used for the liquid crystal element is preferably a nematic liquid crystal used for display or the like, and may be twisted by adding a chiral agent.
Moreover, as a material of the transparent substrate to be used, glass, polycarbonate resin, acrylic resin, epoxy resin, vinyl chloride resin, and the like can be used, but a glass transparent substrate is preferable from the viewpoint of durability.
[0027]
As the quarter-wave plate, a plate having a phase difference that is an odd multiple of the quarter-wavelength, such as a quarter-wave plate or a quarter-wave plate, may be used. As a material for the quarter-wave plate, a birefringent single crystal such as quartz or LiNbO 3 may be used, or an organic film such as a polymer liquid crystal or polycarbonate may be used.
[0028]
A voltage is output by a liquid crystal element control circuit, which is a control voltage generation means, toward the liquid crystal element 10 shown in FIG. 1 so that, for example, the intensity of the reproduction signal of the optical disk obtained from the photodetector is optimized. The voltage output from the liquid crystal element control circuit is a voltage corresponding to the thickness deviation amount and tilt amount of the optical disk, the positional deviation between the liquid crystal element and the objective lens, and the substantially changing voltage applied to the electrodes of the liquid crystal element. Become.
[0029]
【Example】
The optical head device of the present embodiment has an HD / DVD / CD optical disk compatibility function. HD and DVD optical discs are used with NA of 0.65, and CD optical discs with NA of 0.50. The wavelength used was λ 1 = 405 nm for the HD optical disc, λ 2 = 660 nm for the DVD optical disc, and λ 3 = 780 nm for the CD optical disc. The objective lens used was optimized for a single-layer HD optical disc.
[0030]
Therefore, in the case of HD double-layer optical disc playback or recording, DVD optical disc playback or recording, or CD optical disc playback or recording, spherical aberration occurs and signal reading accuracy decreases. In order to correct the aberration, the phase correcting liquid crystal element shown in FIG. 2 was incorporated in the optical head device.
[0031]
The substrate thickness of the optical disk was 0.6 mm for HD / DVD and 1.2 mm for CD, and the HD optical disk was used with a distance between two layers of 40 μm. In this phase correcting liquid crystal element (see FIG. 2), the orientation direction of the liquid crystal molecules 28 is changed to the polarization direction of the outgoing light when passing through the liquid crystal layer 23 so as to change the wavefront of the outgoing light from the semiconductor laser. Parallel.
[0032]
As shown in FIG. 2, the liquid crystal layer 23 is surrounded by a sealing material 22 and sandwiched between the alignment film 26, the intermediate film 25, the transparent electrode films 24A and 24B, and the glass substrates 21A and 21B. In this embodiment, a glass substrate, which is two transparent substrates sandwiching a liquid crystal layer, has a continuous voltage distribution for correcting spherical aberration as shown in FIG. 3 for HD and DVD optical disks so that a voltage can be applied to the liquid crystal layer. Was formed on the glass substrate 21B on the upper surface, and the electrode shown in FIG. 7 was formed on the lower glass substrate 21A as a spherical aberration correction electrode for CD.
[0033]
For the purpose of reducing the size of the element, a wide-band quarter-wave plate for HD / DVD / CD optical disc was laminated on the objective lens side of the liquid crystal element 10. When recording and reproducing an HD double-layer optical disc or a DVD optical disc, the signals A to D shown in FIG. 7 applied to the glass substrate 21A are set to zero potential, and the aberration generated from the aberration signal obtained from the photodetector is corrected. Thus, good recording and reproduction characteristics could be obtained by applying an optimum AC voltage to the electrodes of signals 1 to 3 shown in FIG. 3 of the glass substrate 21B. Further, since it is not necessary to incorporate an aperture limiting element for wavelength λ 3 = 780 nm, the apparatus can be reduced in size and weight.
[0034]
Further, when recording and reproducing a CD optical disk, the signals 1 to 3 shown in FIG. 3 of the glass substrate 21B are set to zero potential, and an optimum AC voltage for correcting the aberration generated by the obtained aberration signal is set to the glass substrate 21A. The recording and reproducing characteristics can be obtained by adding to the electrode signals A to D (FIG. 7). Note that the values of the outer diameters D1 to D2 of the concentric electrodes in FIG. 7 are the values shown in Table 1, the voltage of the signal D in FIG. 7 is the same voltage as the signal C, and the voltage of the signal A is the voltage of the signals C and D. A voltage that generates a phase difference 0.366 μm larger than the generated phase difference was applied.
[0035]
[Table 1]
Figure 2004178773
[0036]
【The invention's effect】
As described above, in the compatible optical head device that reproduces or records with light of two or more wavelengths (for example, three wavelengths for HD / DVD / CD) according to the present invention, the liquid crystal element incorporated to reduce the aberration is used. By combining and integrating the aberration correction function for HD / DVD optical disc and the aberration correction function for CD optical disc, good reproduction or recording characteristics can be obtained, and the apparatus can be further downsized. As for the aberration correction function of the CD optical disc, the aberration correction function is achieved by generating a phase difference that reduces aberration by concentric electrodes centered on the optical axis formed in the periphery of the region determined by the numerical aperture. Therefore, it is not necessary to incorporate another aperture limiting element, and the apparatus can be reduced in size and weight and cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a conceptual cross-sectional view showing an example of the principle configuration of an optical head device of the present invention.
FIG. 2 is a conceptual cross-sectional view illustrating an example of a structure of a liquid crystal element.
FIG. 3 is a schematic plan view showing electrodes and a power supply member pattern formed on a liquid crystal element according to the present invention for correcting aberrations of an HD / DVD optical disc.
FIG. 4 is a schematic plan view showing electrodes and power supply member patterns formed on a liquid crystal element according to the present invention for reducing aberration of a CD optical disk.
FIG. 5 is a schematic plan view showing a divided electrode pattern formed on a liquid crystal element according to the present invention for correcting spherical aberration.
FIG. 6 is a schematic plan view showing an electrode division pattern of a liquid crystal element according to the present invention for correcting coma aberration.
FIG. 7 is a schematic plan view showing electrodes and power supply member patterns formed on a liquid crystal element according to the present invention for reducing aberration of a CD optical disk.
[Explanation of symbols]
1A, 1B, 1C: Semiconductor laser 2: Beam splitter 3, 7: Combined prism 4: Collimator lens 5: Objective lens 6: Optical disc 8, 8A, 8B: Photo detectors 9, 9B, 9C: Hologram element 10: Liquid crystal Element 21, 21A, 21B: Glass substrate 22: Sealing material 23: Liquid crystal 24, 24A, 24B: Electrode 25: Insulating film 26: Alignment film 28: Liquid crystal molecules 30-32: Power supply members 40, 50-53: Transparent electrode 60 : Lead wire 101: Actuator

Claims (3)

光源と、光源からの出射光を光記録媒体に集光させるための対物レンズと、光記録媒体に集光され反射された出射光を受光する光検出器と、光源と光記録媒体との間の光路中に配置された液晶素子とを備え、少なくとも2つの異なる波長の出射光を用いる光ヘッド装置において、前記液晶素子は2枚の透明基板間に液晶が挟持されてなり、一方の透明基板の表面における、最大波長の出射光に対する開口数により決まる領域の周辺部には、光軸を中心とする同心円状の電極が形成されていて最大波長の出射光の波面収差が補正されることを特徴とする光ヘッド装置。A light source, an objective lens for condensing the light emitted from the light source on the optical recording medium, a photodetector for receiving the emitted light collected and reflected by the optical recording medium, and between the light source and the optical recording medium A liquid crystal element disposed in the optical path of the optical head device, wherein the liquid crystal element includes a liquid crystal sandwiched between two transparent substrates, and uses one of the transparent substrates. A concentric electrode centered on the optical axis is formed in the periphery of the surface determined by the numerical aperture for the emitted light with the maximum wavelength on the surface of the surface to correct the wavefront aberration of the emitted light with the maximum wavelength. An optical head device. 前記光ヘッド装置で用いられる出射光が異なる3つの波長λ、λ、λ(λ<λ<λ)の光であり、前記液晶素子の前記一方の透明基板の表面における、前記開口数によって決まる領域の内部にさらに波面収差を補正するための電極が形成されており、かつ他方の透明基板の表面には波長λおよび波長λの出射光の波面収差を補正するための電極が形成されている請求項1に記載の光ヘッド装置。The emitted light used in the optical head device is light of three different wavelengths λ 1 , λ 2 , λ 3123 ), and on the surface of the one transparent substrate of the liquid crystal element, An electrode for correcting wavefront aberration is further formed in the region determined by the numerical aperture, and the wavefront aberration of the emitted light having the wavelengths λ 1 and λ 2 is corrected on the surface of the other transparent substrate. The optical head device according to claim 1, wherein the electrode is formed. 前記液晶素子が位相板と一体化されている請求項1または2に記載の光ヘッド装置。The optical head device according to claim 1, wherein the liquid crystal element is integrated with a phase plate.
JP2002347260A 2002-11-29 2002-11-29 Optical head device Expired - Fee Related JP4207550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347260A JP4207550B2 (en) 2002-11-29 2002-11-29 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347260A JP4207550B2 (en) 2002-11-29 2002-11-29 Optical head device

Publications (3)

Publication Number Publication Date
JP2004178773A true JP2004178773A (en) 2004-06-24
JP2004178773A5 JP2004178773A5 (en) 2005-12-02
JP4207550B2 JP4207550B2 (en) 2009-01-14

Family

ID=32707920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347260A Expired - Fee Related JP4207550B2 (en) 2002-11-29 2002-11-29 Optical head device

Country Status (1)

Country Link
JP (1) JP4207550B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092968A1 (en) * 2005-03-03 2006-09-08 Citizen Holdings Co., Ltd. Liquid crystal optical element
JP2006323380A (en) * 2005-04-22 2006-11-30 Citizen Watch Co Ltd Liquid crystal optical element, optical device and aperture control method
JP2006330089A (en) * 2005-05-23 2006-12-07 Citizen Watch Co Ltd Liquid crystal optical element, optical apparatus and aperture control method
US7414950B2 (en) 2002-12-11 2008-08-19 Pioneer Corporation Aberration correction liquid crystal device and optical pickup apparatus
US7898926B2 (en) 2007-01-25 2011-03-01 Funai Electric Co., Ltd. Optical pickup
JP2012256421A (en) * 2005-04-22 2012-12-27 Citizen Holdings Co Ltd Liquid crystal optical element, optical device, and aperture control method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414950B2 (en) 2002-12-11 2008-08-19 Pioneer Corporation Aberration correction liquid crystal device and optical pickup apparatus
WO2006092968A1 (en) * 2005-03-03 2006-09-08 Citizen Holdings Co., Ltd. Liquid crystal optical element
US7839458B2 (en) 2005-03-03 2010-11-23 Citizen Holdings Co., Ltd. Liquid crystal optical element having grouped concentric electrodes
JP4712796B2 (en) * 2005-03-03 2011-06-29 シチズンホールディングス株式会社 Liquid crystal optical element
JP2006323380A (en) * 2005-04-22 2006-11-30 Citizen Watch Co Ltd Liquid crystal optical element, optical device and aperture control method
JP2012256421A (en) * 2005-04-22 2012-12-27 Citizen Holdings Co Ltd Liquid crystal optical element, optical device, and aperture control method
US8928845B2 (en) 2005-04-22 2015-01-06 Citizen Holdings Co., Ltd. Liquid crystal optical element, optical device, and aperture control method
JP2006330089A (en) * 2005-05-23 2006-12-07 Citizen Watch Co Ltd Liquid crystal optical element, optical apparatus and aperture control method
US7898926B2 (en) 2007-01-25 2011-03-01 Funai Electric Co., Ltd. Optical pickup

Also Published As

Publication number Publication date
JP4207550B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP4692489B2 (en) Liquid crystal diffractive lens element and optical head device
JP3886313B2 (en) Optical pickup
KR101118812B1 (en) Objective lens and optical pickup apparatus
US7034980B2 (en) Optical element, optical head, optical recording reproducing apparatus and optical recording/ reproducing method
KR100667790B1 (en) Liquid crystal device for compensating birefringence and optical pickup and optical recording and/or reproducing apparatus employing it
KR20060038982A (en) Optical recording medium and optical recording and reproducing apparatus
JP2006351086A (en) Optical path compensation apparatus and optical pickup using the same
JP4224654B2 (en) Optical head device
KR20030025348A (en) HOE device and optical pick-up using the same
JP4207550B2 (en) Optical head device
JPH10188322A (en) Optical head
JP2001143303A (en) Optical head device
JP2002319172A (en) Optical head device
JP4082072B2 (en) Optical head device
JP4082085B2 (en) Optical head device
JP4136400B2 (en) Information recording / reproducing device
KR20090051686A (en) Objective lens
KR20010107579A (en) Optical pickup apparatus of tilt control type
JP2002373444A (en) Optical pickup device and information recording/ reproducing device
JP2009009617A (en) Optical head, optical information apparatus, computer, video recording/reproducing apparatus, video player, server, and car navigation system
KR101120026B1 (en) Active compensation device and compatible optical pickup and optical recording and/or reproducing apparatus employing it
JP2005293686A (en) Optical pickup device
JP2003173572A (en) Optical disk and its recording and playing-back apparatus
KR101215799B1 (en) Optical pickup device
JP2000155974A (en) Phase control element and optical head device using it

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees