JP2004176792A - Reaction absorbing weight - Google Patents
Reaction absorbing weight Download PDFInfo
- Publication number
- JP2004176792A JP2004176792A JP2002342594A JP2002342594A JP2004176792A JP 2004176792 A JP2004176792 A JP 2004176792A JP 2002342594 A JP2002342594 A JP 2002342594A JP 2002342594 A JP2002342594 A JP 2002342594A JP 2004176792 A JP2004176792 A JP 2004176792A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- sintered body
- weight
- bismuth
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は機械装置の部品に用いられる錘に関するものである。
【0002】
【従来の技術】
機械装置では、加重および釣り合いを取り、回転運動および往復運動による振動などを減じるために、錘を部材として用いることがある。
【0003】
錘は装置設計上、高比重であるほうがその形状を小さくすることができるため好ましく、例えばタングステン(19.3g/cm3)などの高密度な金属、より廉価で、加工性の良い鉛(11.4g/cm3)および鋳鉄(7.9g/cm3)などの金属が用いられることが多い。
【0004】
一方、電子線露光装置など電子線を利用する装置では、不必要な電磁界が発生すると性能に支障をきたすため、部材には非磁性、絶縁性であることが求められる。一般に錘には金属が用いられているが、金属材料は導電性があるため、渦電流の発生により不要な電磁界を生じてしまい、不適である。
【0005】
高密度で、非磁性かつ絶縁性である化合物としては、酸化ビスマス(8.9g/cm3)、酸化ハフニウム、酸化トリウム(9.9g/cm3)、酸化インジウム(7.2g/cm3)などがある。このうち酸化ハフニウム、酸化トリウム、および酸化インジウムは質量あたりの単価が高く、錘として用いた場合に高コストとなる。これに対し、酸化ビスマスは廉価である。
【0006】
二三酸化ビスマスは融点が825℃の低融点化合物であり、ガラス成分または触媒成分などの添加剤として古くから用いられてきた。
【0007】
二三酸化ビスマス単体については、α相である低温安定相およびδ相である高温安定相をはじめ、いくつかの多形が報告されている(例えば、非特許文献1参照。)。通常、低温ではα相であるが、720〜730℃程度でδ相に転移し、冷却時にα相にもどる。この転移は6.9%もの大きな体積変化を伴う。
【0008】
一般にセラミックスの焼結には、圧縮形成された粉体間における表面拡散、固相拡散、気相拡散、および液相生成などの原子の移動を利用するため、成形体を高温で保持することが必要である。しかしながら高温で保持した後、常温まで冷却し、大きな体積変化を伴う相転移が場合、転移の際に焼結体に割れが生じ、精密機械の反力吸収用錘として使用する場合などには問題となる。
【0009】
二三酸化ビスマスを主成分とする焼結体の研究は、δ相である高温安定相が酸素イオン導電体となることから、1970年代に多くなされており、酸化イットリウム、酸化ガドリニウム、酸化ニオブ、酸化タンタル、酸化タングステンなど、種々の添加物を加え固溶体とすることにより、δ相が常温でも安定化することが知られている(例えば、非特許文献2〜4参照。)。この場合、焼結に必要な温度、酸化イットリウム添加で900℃程度、酸化ガドリニウム添加で950℃程度、酸化ニオブ添加で900℃程度、酸化タングステン添加で800℃程度に保持した後、室温まで徐冷を行っても相転移が生じないため焼結体に割れは生じないと考えられる。
【0010】
これらの固溶体も非磁性、絶縁性を兼ね備えている。しかし、添加元素の分子量は二三酸化ビスマスよりも小さく、固溶体とした際に比重が小さくなることが予想され、またδ相はα相に比べ体積が相転移の際に6.9%大きくなる点でも比重が小さくなる。
【0011】
一般に広く用いられている酸化アルミニウムおよび窒化珪素などのセラミックスは非磁性、絶縁性を有するが、嵩密度はそれぞれ4.0g/cm3、3.2g/cm3程度であり、高比重ではない。酸化ジルコニウムは比較的高比重であるが、それでも密度は6.0g/cm3程度であり、他の材料と比較してあまり高密度とは言えない。
【0012】
【非特許文献1】
John W.Medernach and Robert L.Snyder著,「Powder diffraction patterns and structures of the bismuth oxide」,Journal of the American ceramic society,(米国),第61巻,第11〜12号,p.494〜497
【非特許文献2】
T.Takahashi 他著,「High oxide ion conduction in sintered oxide of the system Bi2O3−Y2O3」,Journal of applied electrochemistry,(米国),第5巻、p.187〜195
【非特許文献3】
H.Iwahara 他著,「Formation of high oxide ion conductive phases in the sintered oxide of the system Bi2O3−Ln2O3(Ln=La・Yb)」,Journal ofsolid state chemistry,(米国),第39巻,p.173〜180
【非特許文献4】
Takehiko Takahashi 他著,「High oxide ion conduction in sintered oxides of the system Bi2O3−M2O5」,Journal of the electrochemical society,(米国),第124巻,第10号,p.1563〜1569
【0013】
【発明が解決しようとする課題】
電子線露光装置など、部材に非磁性、絶縁性を求められる装置に用いられ、高比重が求められる部材は、従来の高密度金属を用いることが出来ない。
【0014】
非磁性、絶縁性を有する錘などの部材として、例えば酸化アルミニウムおよび窒化珪素、酸化ジルコニウムを利用し、必要な質量を有する部材を設計した場合、高比重でないため、錘の体積が大きくなり、設計の自由度が減じられる。
【0015】
二三酸化ビスマスは非磁性、絶縁性を有し、かつ高密度な化合物である。この化合物を部材として利用するためには、圧縮形成された粉体間における原子の移動を利用するため、原料粉体を高温で焼結する必要がある。
【0016】
しかし、これまでの二三酸化ビスマスの焼結に関する知見は、酸素イオン導電体等の利用を想定し、添加物を加えることにより本来高温で安定なδ相を低温でも安定化させるためのものであった。
【0017】
二三酸化ビスマスを単味で、かつδ相に転移することなく、α相のままの割れを生じていない焼結体を、錘として利用することが出来ればより好ましい。
【0018】
そこで本発明は、高比重である二三酸化ビスマスのα相を用いた錘を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明は、前述の課題に対し、高密度で、非磁性かつ絶縁性を有する廉価な錘を提供するものである。
すなわち
(1) 二三酸化ビスマスのα相セラミックス焼結体からなる反力吸収用錘、
(2) 二三酸化ビスマスのα相を50質量%以上含むセラミックス焼結体からなる反力吸収用錘、
(3) 二三酸化ビスマスのα相セラミックス焼結体を構成部品とする反力吸収用錘、
(4) 二三酸化ビスマスのα相を50質量%以上含むセラミックス焼結体を構成部品とする反力吸収用錘、
(5) 該セラミックス焼結体の嵩密度が9.2g/cm3以上である(1)〜 (4)のいずれかに記載の反力吸収用錘、
である。
【0020】
【発明の実施の形態】
本発明は、二三酸化ビスマスのα相からなる焼結体、もしくは二三酸化ビスマスのα相を50質量%以上含み、より好適にはその嵩密度が9.2g/cm3以上の焼結体からなる反力吸収用錘、もしくは該焼結体を構成部品とする反力吸収用錘である。
【0021】
二三酸化ビスマスは、非磁性、絶縁性を有し、かつ高密度で廉価な化合物であり、これを焼結体として部材に用いることにより、電磁界に影響を与えない錘ないし該反力吸収用錘等の部材(構成部品)を得ることが出来る。特に反力吸収用錘に用いた場合、電子線を利用する装置において、不必要な電磁界を発生しないため、該装置の性能に影響を与えずに往復運動および回転運動による振動などを効果的に減ずることができる。
【0022】
なお焼結体の嵩密度を9.2g/cm3以上とし、健全な焼結体を得るためには、これらの焼結体の製造段階で成形体を焼結する際に、α相のまま、δ相の高温安定相に相転移しないよう640℃以上、718℃未満で焼結し、その後、常温まで冷却する際に相転移による大きな体積変化を伴うことなく冷却する。これにより高比重でかつ割れ等のないものとすることができる。
【0023】
さらに、これらの焼結体の嵩密度が9.2g/cm3以上であれば、割れ等の欠陥もなくかつ高比重のものとすることができ、高品質の反力吸収用錘を提供できる点で有利である。
【0024】
該焼結体は二三酸化ビスマスのα相のみからなってもよく、あるいは二三酸化ビスマスのα相を50質量%以上含めばよい。但し、二三酸化ビスマスのα相が50質量%未満であると、充分な比重を得ることが出来ない。
【0025】
ここで本発明のセラミックス焼結体に含まれるα相の二三酸化ビスマス以外の成分としては、本発明の作用効果に影響を与えるものでなく、また焼結の際に分解、揮発、燃焼してしまわないものであれば特に制限されず、例えば混ぜて焼結性をより良くする低融点物質、強度や靭性等の機械的特性を向上するSiCなどの高強度材、ファイバー等の成分が挙げられる。
【0026】
二三酸化ビスマスのα相からなる焼結体、もしくは二三酸化ビスマスのα相を50質量%以上含む焼結体からなる反力吸収用錘は、原料粉末をプレス成形し、焼結して得られた焼結体を必要に応じて加工、接着等をして作製する。
【0027】
他の材料を加えることにより、加工性および焼結性の向上をはかってもよく、また、該原料粉体にバインダー、分散剤等を適量添加し、スプレードライ法などで造粒し、成形性を高めてもよい。
【0028】
該プレス成形の方法には、一軸プレス、冷間静水圧プレス等の方法がある。また必要に応じて、素地加工及び焼結体加工を施す。
【0029】
該焼結は640℃以上、718℃未満の範囲で行えばよいが、好ましくは650〜710℃で、60〜1200分間、大気雰囲気、窒素などの不活性雰囲気、真空雰囲気、加圧雰囲気で行う。
【0030】
該二三酸化ビスマスのα相からなる焼結体、もしくは二三酸化ビスマスのα相を50質量%以上含む焼結体をそのまま反力吸収用錘として用いてもよく、必要に応じて焼結体を加工して反力吸収用錘を作製するか、または二三酸化ビスマスのα相からなる焼結体、もしくは二三酸化ビスマスのα相を50質量%以上含む焼結体を接合、接着して反力吸収用錘を作製してもよい。
【0031】
二三酸化ビスマスのα相からなる焼結体は強度および靭性があまり高くないため、該焼結体を直接反力吸収用錘とするのではなく、例えば該焼結体を構成部品として、酸化アルミニウムおよび酸化ジルコニウムなどの非磁性、絶縁性、および高密度な材料からなる筐体に内蔵することで強度および靭性を補い、かつ廉価な材料を本発明の作用効果に影響を与えるものでなければ他に複合して反力吸収用錘としてもよい。
【0032】
該複合方法としては、接合、貼り合せ等があり、比重低下を避けるため他の材料は必要最低限に抑えることが望ましい。
【0033】
二三酸化ビスマスは、非磁性、絶縁性を有し、かつ高密度で廉価な化合物であり、二三酸化ビスマスのα相からなる焼結体、もしくは二三酸化ビスマスのα相を50質量%以上を含む焼結体を、廉価で非磁性、絶縁性、高密度が要求される部材として用いることにより、電磁界に影響を与えない反力吸収用錘を得ることが出来る。
【0034】
【実施例】
以下、実施例に従って、発明の実施の形態をより詳しく説明する。
【0035】
実施例1
粒径0.1〜10μmの二三酸化ビスマス粉体を水を溶媒とし、バインダーおよび分散剤を添加し、スプレードライ法にて粒径10〜100μmに造粒した。得られた造粒体を10MPaで一軸プレス成形して、110×110×55mmの成形体を5個得た。得られた成形体を大気中にて脱脂後、大気中で700℃で10時間焼成し、二三酸化ビスマスの焼結体を得た。得られた焼結体の嵩密度をアルキメデス法にて測定した。また、X線回折法にて結晶相の同定を行った。得られた焼結体は非磁性、絶縁体であった。前記嵩密度は9.24〜9.25g/cm3、また結晶相はα相であり、またひび割れ等の欠陥もなかった。前記焼結体のうち4個を80×80×40mmの形状にダイヤモンド砥石により加工し、残りの1個を80×80×9mmの形状に加工し、全てをエポキシ系の接着剤1gで接合して80×80×169mmの形状で、10kgの質量の錘とした。得られた錘は非磁性、絶縁体であった。
【0036】
比較例1
粒径0.1〜10μmの酸化アルミニウム粉体を水を溶媒とし、バインダーおよび分散剤を添加し、スプレードライ法にて粒径10〜100μmに造粒した。得られた造粒体を10MPaで一軸プレス成形して、110×110×55mmの成形体を10個得た。得られた成形体を大気中にて脱脂後、大気中で1600℃で10時間焼成し、酸化アルミニウムの焼結体を得た。得られた焼結体の嵩密度をアルキメデス法にて測定した。また。得られた焼結体は非磁性、絶縁体であった。前記嵩密度は3.8〜3.9g/cm3であった。前記焼結体のうち9個を80×80×40mmの形状に加工し、残りの1個を80×80×30mmの形状にダイヤモンド砥石により加工し、全てをエポキシ系の接着剤を1gで接合して80×80×390mmの形状で、10kgの質量の錘とした。得られた錘は非磁性、絶縁体であった。
【0037】
比較例2
粒径0.1〜10μmの窒化珪素を水を溶媒とし、バインダーおよび分散剤を添加し、スプレードライ法にて粒径10〜100μmに造粒した。得られた造粒粉を10MPaで一軸プレス成形して、110×110×55mmの成形体を13個得た。得られた成形体を窒素中にて脱脂後、窒素中で1750℃で10時間焼成し、焼結体を得た。得られた焼結体の嵩密度をアルキメデス法にて測定した。得られた焼結体は非磁性、絶縁体であった。前記嵩密度は3.19〜3.21g/cm3であった。前記焼結体のうち12個を80×80×40mmの形状にダイヤモンド砥石により加工し、残りの1個を80×80×8mmの形状に加工し、全てをエポキシ系の接着剤を1gで接合して80×80×488mmの形状で、10kgの質量の錘とした。得られた錘は非磁性、絶縁体であった。
【0038】
比較例3
粒径0.1〜10μmの酸化ジルコニウムを水を溶媒とし、バインダーおよび分散剤を添加し、スプレードライ法にて粒径10〜100μmに造粒した。得られた造粒粉を10MPaで一軸プレス成形して、110×110×55mmの成形体を7個得た。得られた成形体を大気中にて脱脂後、大気中で1500℃で10時間焼成し、酸化ジルコニウムの焼結体を得た。得られた焼結体の嵩密度をアルキメデス法にて測定した。得られた焼結体は非磁性、絶縁体であった。前記嵩密度は5.9〜6.0g/cm3であった。前記焼結体のうち6個を80×80×40mmの形状に加工し、残りの1個を80×80×20mmの形状にダイヤモンド砥石により加工し、全てをエポキシ系の接着剤を1gで接合して80×80×260mmの形状で、10kgの質量の錘とした。得られた錘は非磁性、絶縁体であった。
【0039】
比較例1〜3と比較して、本発明による実施例1では、より小型で、非磁性、絶縁性を有する錘を得ることが出来る。また、錘が小型化することにより、装置自体を小型化出来れば、必要な錘の質量をさらに低減する効果も期待できる。
【0040】
また、この部材は酸化物セラミックスであるため、他の金属材料と比較して酸化性雰囲気でも利用することが出来る。
【0041】
【発明の効果】
本発明によれば、非磁性、絶縁性を有し、高密度な反力吸収用錘が廉価に得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a weight used for a component of a mechanical device.
[0002]
[Prior art]
In a mechanical device, a weight may be used as a member in order to balance weights and reduce vibrations due to rotational motion and reciprocating motion.
[0003]
It is preferable that the weight has a high specific gravity in terms of the device design because the shape can be reduced. For example, a high-density metal such as tungsten (19.3 g / cm 3 ) or a less expensive lead (11 Metal such as 0.4 g / cm 3 ) and cast iron (7.9 g / cm 3 ).
[0004]
On the other hand, in an apparatus using an electron beam such as an electron beam exposure apparatus, the performance is hindered when an unnecessary electromagnetic field is generated. Therefore, the member is required to be non-magnetic and insulating. Generally, a metal is used for the weight, but since the metal material is conductive, an unnecessary electromagnetic field is generated due to generation of an eddy current, which is inappropriate.
[0005]
Bismuth oxide (8.9 g / cm 3 ), hafnium oxide, thorium oxide (9.9 g / cm 3 ), and indium oxide (7.2 g / cm 3 ) are high-density, non-magnetic and insulating compounds. and so on. Of these, hafnium oxide, thorium oxide, and indium oxide have a high unit price per mass and are expensive when used as a weight. In contrast, bismuth oxide is inexpensive.
[0006]
Bismuth trioxide is a low melting point compound having a melting point of 825 ° C., and has been used for a long time as an additive such as a glass component or a catalyst component.
[0007]
With respect to bismuth dioxide alone, several polymorphs have been reported, including a low-temperature stable phase as the α phase and a high-temperature stable phase as the δ phase (for example, see Non-Patent Document 1). Usually, it is an α phase at a low temperature, but changes to a δ phase at about 720 to 730 ° C., and returns to the α phase upon cooling. This transition is accompanied by a large volume change of 6.9%.
[0008]
Generally, in sintering ceramics, it is necessary to hold the compact at a high temperature in order to utilize the movement of atoms such as surface diffusion, solid-phase diffusion, gas-phase diffusion, and liquid-phase generation between the compacted powders. is necessary. However, after holding at a high temperature, it is cooled down to room temperature, and when phase transition involving a large volume change occurs, the sintered body cracks at the time of the transition, which is a problem when used as a reaction force absorbing weight of precision machinery. It becomes.
[0009]
Research on sintered bodies containing bismuth trioxide as a main component has been carried out in the 1970s since the high-temperature stable phase, which is the δ phase, becomes an oxygen ion conductor, and yttrium oxide, gadolinium oxide, niobium oxide, It is known that the δ phase is stabilized at room temperature by adding various additives such as tantalum oxide and tungsten oxide to form a solid solution (for example, see Non-Patent Documents 2 to 4). In this case, the temperature required for sintering is maintained at about 900 ° C. with the addition of yttrium oxide, about 950 ° C. with the addition of gadolinium oxide, about 900 ° C. with the addition of niobium oxide, and about 800 ° C. with the addition of tungsten oxide, and then gradually cooled to room temperature. It is considered that no cracks occur in the sintered body because no phase transition occurs even if the above-mentioned process is performed.
[0010]
These solid solutions also have non-magnetic and insulating properties. However, the molecular weight of the added element is smaller than that of bismuth trioxide, and it is expected that the specific gravity of the solid solution becomes smaller, and the volume of the δ phase is 6.9% larger than that of the α phase at the time of phase transition. The specific gravity also decreases in terms of point.
[0011]
Generally widely used ceramics such as aluminum oxide and silicon nitride are non-magnetic, has an insulation property, each bulk density of 4.0 g / cm 3, is about 3.2 g / cm 3, not a high specific gravity. Zirconium oxide has a relatively high specific gravity, but still has a density of about 6.0 g / cm 3, which is not so high as compared with other materials.
[0012]
[Non-patent document 1]
John W. Medernach and Robert L. Snyder, "Powder diffraction patterns and structures of the bismuth oxide", Journal of the American ceramic society, vol. 1, No. 1, p. 494-497
[Non-patent document 2]
T. Takahashi et al., "High oxide ion conduction in sintered oxide of the system Bi 2 O 3 -Y 2 O 3 ", Journal of applied electrochemistry, (the United States), Vol. 5, p. 187-195
[Non-Patent Document 3]
H. Iwahara et al., "Formation of high oxide ion conductive phases in the sintered oxide of the system Bi 2 O 3 -Ln 2 O 3 (Ln = La · Yb) ", Journal ofsolid state chemistry, (the United States), Vol. 39, p. 173-180
[Non-patent document 4]
Takehiko Takahashi et al., "High oxide ion conduction in sintered oxides of the system Bi 2 O 3 -M 2 O 5 ", Journal of the electrochemical society, (the United States), the first 124 Vol., No. 10, p. 1563-1569
[0013]
[Problems to be solved by the invention]
A member which is used for an apparatus requiring non-magnetic and insulating properties such as an electron beam exposure apparatus and requires a high specific gravity cannot use a conventional high-density metal.
[0014]
When a member having a required mass is designed using aluminum oxide, silicon nitride, or zirconium oxide as a member such as a weight having non-magnetic and insulating properties, the volume of the weight becomes large because the specific gravity is not high. Is reduced.
[0015]
Bismuth trioxide is a nonmagnetic, insulating and high-density compound. In order to use this compound as a member, it is necessary to sinter the raw material powder at a high temperature in order to utilize the movement of atoms between the powders formed by compression.
[0016]
However, the knowledge about bismuth trioxide sintering so far is based on the assumption of using an oxygen ion conductor, etc., to stabilize the originally high temperature stable δ phase at low temperature by adding additives. there were.
[0017]
It is more preferable that a sintered body in which bismuth dioxide is simple and does not transform into the δ phase and does not crack while maintaining the α phase can be used as the weight.
[0018]
Therefore, an object of the present invention is to provide a weight using the α phase of bismuth trioxide having a high specific gravity.
[0019]
[Means for Solving the Problems]
An object of the present invention is to provide an inexpensive weight that has a high density, is nonmagnetic, and has insulating properties.
That is, (1) a reaction force absorbing weight made of an α-phase ceramics sintered body of bismuth trioxide,
(2) a reaction-absorbing weight made of a ceramic sintered body containing at least 50% by mass of α phase of bismuth trioxide;
(3) a reaction-absorbing weight made of a bismuth trioxide bismuth α-phase ceramic sintered body as a component;
(4) a reaction-absorbing weight having a ceramic sintered body containing at least 50% by mass of α phase of bismuth trioxide as a component;
(5) The reaction force absorbing weight according to any one of (1) to (4), wherein the bulk density of the ceramic sintered body is 9.2 g / cm 3 or more.
It is.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention provides a sintered body composed of bismuth trioxide α phase, or a sintered body containing 50 mass% or more of bismuth trioxide α phase, more preferably having a bulk density of 9.2 g / cm 3 or more. A reaction force absorbing weight made of a body or a reaction force absorbing weight having the sintered body as a component.
[0021]
Bismuth trioxide is a non-magnetic, insulating, high-density and inexpensive compound. By using this as a sintered body for a member, a weight that does not affect the electromagnetic field or the reaction force absorption A member (component) such as a weight for use can be obtained. Especially when used as a reaction force absorption weight, unnecessary electromagnetic fields are not generated in a device that uses an electron beam, so vibrations due to reciprocating motion and rotational motion can be effectively prevented without affecting the performance of the device. Can be reduced to
[0022]
In order to increase the bulk density of the sintered body to 9.2 g / cm 3 or more and to obtain a sound sintered body, when sintering the compact in the production stage of these sintered bodies, , Sintering at 640 ° C. or higher and lower than 718 ° C. so as not to cause a phase transition to a high-temperature stable phase of δ phase, and then cooling to room temperature without a large volume change due to the phase transition. This makes it possible to achieve a high specific gravity without cracks or the like.
[0023]
Furthermore, if the bulk density of these sintered bodies is 9.2 g / cm 3 or more, the sintered bodies can be free from defects such as cracks and have a high specific gravity, and can provide a high-quality weight for absorbing a reaction force. This is advantageous.
[0024]
The sintered body may be composed of only the α phase of bismuth trioxide, or may contain 50 mass% or more of the α phase of bismuth trioxide. However, if the α phase of bismuth trioxide is less than 50% by mass, sufficient specific gravity cannot be obtained.
[0025]
Here, components other than the α-phase bismuth trioxide contained in the ceramic sintered body of the present invention do not affect the operation and effect of the present invention, and decompose, volatilize, and burn during sintering. It is not particularly limited as long as it does not cause any problems, and examples thereof include components such as a low-melting substance that improves sinterability by mixing, a high-strength material such as SiC that improves mechanical properties such as strength and toughness, and a fiber. Can be
[0026]
A reaction force absorbing weight made of a sintered body composed of bismuth trioxide (α) phase or a sintered body containing bismuth trioxide (α) phase in an amount of 50% by mass or more is formed by pressing and sintering raw material powder. The obtained sintered body is manufactured by processing, bonding and the like as necessary.
[0027]
By adding other materials, the workability and sinterability may be improved.In addition, a suitable amount of a binder, a dispersant, etc. is added to the raw material powder, and granulation is performed by a spray drying method or the like, and the formability is improved. May be increased.
[0028]
Examples of the press molding method include a uniaxial press and a cold isostatic press. Further, if necessary, the substrate processing and the sintered body processing are performed.
[0029]
The sintering may be performed at a temperature of 640 ° C. or higher and lower than 718 ° C., but is preferably performed at 650 to 710 ° C. for 60 to 1200 minutes in an air atmosphere, an inert atmosphere such as nitrogen, a vacuum atmosphere, or a pressurized atmosphere. .
[0030]
The sintered body composed of the bismuth trioxide a phase or the sintered body containing 50 mass% or more of the bismuth trioxide a phase may be used as it is as a reaction force absorbing weight. The body is processed to produce a reaction force absorbing weight, or a sintered body composed of bismuth trioxide (α) phase or a sintered body containing bismuth trioxide (α phase) of 50% by mass or more is bonded and bonded. Thus, a reaction force absorbing weight may be manufactured.
[0031]
Since the sintered body composed of the bismuth bismuth oxide α phase is not very high in strength and toughness, the sintered body is not directly used as a weight for absorbing a reaction force. Non-magnetic, insulating, such as aluminum and zirconium oxide, and strength and toughness are supplemented by being built in a housing made of a high-density material, and inexpensive materials that do not affect the operation and effect of the present invention. Alternatively, the weight may be combined with a reaction force absorbing weight.
[0032]
The composite method includes bonding, bonding, and the like, and it is desirable that other materials be kept to the minimum necessary to avoid a decrease in specific gravity.
[0033]
Bismuth trioxide is a nonmagnetic, insulating, high-density, and inexpensive compound, and is a sintered body composed of bismuth trioxide alpha phase or 50 mass% of bismuth trioxide alpha phase. By using the sintered body including the above as an inexpensive member requiring non-magnetic, insulating and high density, it is possible to obtain a reaction force absorbing weight which does not affect the electromagnetic field.
[0034]
【Example】
Hereinafter, embodiments of the invention will be described in more detail with reference to Examples.
[0035]
Example 1
Bismuth trioxide powder having a particle size of 0.1 to 10 μm was granulated to a particle size of 10 to 100 μm by a spray-drying method using water as a solvent, a binder and a dispersant. The obtained granules were subjected to uniaxial press molding at 10 MPa to obtain five 110 × 110 × 55 mm compacts. The obtained molded body was degreased in the air and then fired in the air at 700 ° C. for 10 hours to obtain a sintered body of bismuth trioxide. The bulk density of the obtained sintered body was measured by the Archimedes method. Further, the crystal phase was identified by the X-ray diffraction method. The obtained sintered body was a non-magnetic, insulator. The bulk density was 9.24 to 9.25 g / cm 3 , the crystal phase was an α phase, and there were no defects such as cracks. Four of the sintered bodies were processed into a shape of 80 × 80 × 40 mm with a diamond grindstone, the other one was processed into a shape of 80 × 80 × 9 mm, and all were joined with 1 g of an epoxy adhesive. The weight was 80 × 80 × 169 mm and the weight was 10 kg. The resulting weight was a non-magnetic, insulator.
[0036]
Comparative Example 1
Aluminum oxide powder having a particle size of 0.1 to 10 μm was granulated to a particle size of 10 to 100 μm by using a water as a solvent, adding a binder and a dispersant, and spray-drying. The obtained granules were subjected to uniaxial press molding at 10 MPa to obtain 10 compacts of 110 × 110 × 55 mm. The obtained molded body was degreased in the air and then fired in the air at 1600 ° C. for 10 hours to obtain a sintered body of aluminum oxide. The bulk density of the obtained sintered body was measured by the Archimedes method. Also. The obtained sintered body was a non-magnetic, insulator. The bulk density was 3.8 to 3.9 g / cm 3 . Nine of the sintered bodies were processed into a shape of 80 × 80 × 40 mm, and the remaining one was processed into a shape of 80 × 80 × 30 mm with a diamond grindstone, and all were joined with an epoxy-based adhesive of 1 g. Then, the weight was set to 80 × 80 × 390 mm and the weight was 10 kg. The resulting weight was a non-magnetic, insulator.
[0037]
Comparative Example 2
Silicon nitride having a particle size of 0.1 to 10 μm was mixed with water as a solvent, a binder and a dispersant were added, and the mixture was granulated to a particle size of 10 to 100 μm by a spray dry method. The obtained granulated powder was subjected to uniaxial press molding at 10 MPa to obtain 13 molded bodies of 110 × 110 × 55 mm. The obtained molded body was degreased in nitrogen and fired in nitrogen at 1750 ° C. for 10 hours to obtain a sintered body. The bulk density of the obtained sintered body was measured by the Archimedes method. The obtained sintered body was a non-magnetic, insulator. The bulk density was 3.19~3.21g / cm 3. Twelve of the sintered bodies were processed into a shape of 80 × 80 × 40 mm with a diamond grindstone, the remaining one was processed into a shape of 80 × 80 × 8 mm, and all were bonded with an epoxy-based adhesive of 1 g. Then, the weight was 80 × 80 × 488 mm and the weight was 10 kg. The resulting weight was a non-magnetic, insulator.
[0038]
Comparative Example 3
A binder and a dispersant were added to zirconium oxide having a particle size of 0.1 to 10 μm using water as a solvent, and the mixture was granulated to a particle size of 10 to 100 μm by a spray drying method. The obtained granulated powder was subjected to uniaxial press molding at 10 MPa to obtain seven molded bodies of 110 × 110 × 55 mm. After the obtained compact was degreased in the air, it was baked in the air at 1500 ° C. for 10 hours to obtain a sintered body of zirconium oxide. The bulk density of the obtained sintered body was measured by the Archimedes method. The obtained sintered body was a non-magnetic, insulator. The bulk density was 5.9 to 6.0 g / cm 3 . Six of the sintered bodies were processed into a shape of 80 × 80 × 40 mm, and the remaining one was processed into a shape of 80 × 80 × 20 mm with a diamond grindstone, and all were joined with an epoxy-based adhesive of 1 g. Then, the weight was set to 80 × 80 × 260 mm and the weight was 10 kg. The resulting weight was a non-magnetic, insulator.
[0039]
As compared with Comparative Examples 1 to 3, in Example 1 according to the present invention, a smaller, non-magnetic, insulating weight can be obtained. If the weight of the device can be reduced by reducing the size of the weight, an effect of further reducing the required weight of the weight can be expected.
[0040]
Since this member is an oxide ceramic, it can be used in an oxidizing atmosphere as compared with other metal materials.
[0041]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the non-magnetic and insulating property and the high density reaction force absorption weight can be obtained at low cost.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002342594A JP2004176792A (en) | 2002-11-26 | 2002-11-26 | Reaction absorbing weight |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002342594A JP2004176792A (en) | 2002-11-26 | 2002-11-26 | Reaction absorbing weight |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004176792A true JP2004176792A (en) | 2004-06-24 |
Family
ID=32704619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002342594A Pending JP2004176792A (en) | 2002-11-26 | 2002-11-26 | Reaction absorbing weight |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004176792A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6113603A (en) * | 1984-06-28 | 1986-01-21 | 株式会社東芝 | Voltage nonlinear resistor |
JPH04505603A (en) * | 1989-04-24 | 1992-10-01 | ガス リサーチ インスティテュート | stabilized bismuth oxide |
JP2001184777A (en) * | 1999-12-27 | 2001-07-06 | Akai Electric Co Ltd | Rotation balancer for disk drive assembly |
JP2001307909A (en) * | 2000-04-25 | 2001-11-02 | Toshiba Corp | Current-voltage nonlinear resistor |
JP2002161865A (en) * | 2000-11-29 | 2002-06-07 | Honda Motor Co Ltd | Pump provided with vibration damping device |
-
2002
- 2002-11-26 JP JP2002342594A patent/JP2004176792A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6113603A (en) * | 1984-06-28 | 1986-01-21 | 株式会社東芝 | Voltage nonlinear resistor |
JPH04505603A (en) * | 1989-04-24 | 1992-10-01 | ガス リサーチ インスティテュート | stabilized bismuth oxide |
JP2001184777A (en) * | 1999-12-27 | 2001-07-06 | Akai Electric Co Ltd | Rotation balancer for disk drive assembly |
JP2001307909A (en) * | 2000-04-25 | 2001-11-02 | Toshiba Corp | Current-voltage nonlinear resistor |
JP2002161865A (en) * | 2000-11-29 | 2002-06-07 | Honda Motor Co Ltd | Pump provided with vibration damping device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7744780B2 (en) | Yttrium oxide material, member for use in semiconductor manufacturing apparatus, and method for producing yttrium oxide material | |
JPS6346032B2 (en) | ||
US20040171474A1 (en) | Aluminum nitride materials and members for use in the production of semiconductors | |
KR20110020292A (en) | Oxide sintered object, sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object | |
US5773733A (en) | Alumina-aluminum nitride-nickel composites | |
JP2010208871A (en) | Aluminum oxide sintered compact, method for producing the same and member for semiconductor producing apparatus | |
JP2009067619A (en) | Zirconium tungstate-silicon oxide composite sintered compact, method of manufacturing the composite sintered compact and formed body provided with composite sintered compact | |
JP2002128569A (en) | High thermal conductive silicon nitride ceramic and its manufacturing method | |
KR101681184B1 (en) | Composition for Pressureless Sintered Silicon Carbide Material Having Low-Resistivity, Sintered Body and the Producing Method of the Same | |
KR101797232B1 (en) | Electrostatic chuck | |
JP2004176792A (en) | Reaction absorbing weight | |
KR101402501B1 (en) | Sintered body of aluminium nitride using yttria nitrate as sintering aid and preparation method of the same | |
JP3106160B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP2003226580A (en) | Aluminum nitride-based ceramic and member for producing semiconductor | |
JPH02192467A (en) | Production of sintered material of aluminum nitride-hexagonal boron nitride system | |
JP2021138581A (en) | Ceramic sintered compact and manufacturing method thereof | |
JP2008156142A (en) | Aluminum nitride sintered compact and method for manufacturing the same | |
KR102626997B1 (en) | Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same | |
JP2004175610A (en) | Ceramic sintered compact having high specific gravity and its production process | |
JP3121996B2 (en) | Alumina sintered body | |
JP2690571B2 (en) | Zirconia cutting tool and its manufacturing method | |
Vu et al. | Effects of High-Energy Ball Milling and Sintering Time on the Electric-Field-Induced Strain Properties of Lead-Free BNT-Based Ceramic Composites | |
JPH06191953A (en) | Aluminum nitride sintered compact | |
JP2000044351A (en) | Silicon nitride-based heat radiating member and its production | |
JP2876521B2 (en) | Manufacturing method of aluminum nitride sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050112 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061019 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070403 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070605 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070605 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071106 |