JP2004176699A - Motor integral type compressor - Google Patents

Motor integral type compressor Download PDF

Info

Publication number
JP2004176699A
JP2004176699A JP2003002428A JP2003002428A JP2004176699A JP 2004176699 A JP2004176699 A JP 2004176699A JP 2003002428 A JP2003002428 A JP 2003002428A JP 2003002428 A JP2003002428 A JP 2003002428A JP 2004176699 A JP2004176699 A JP 2004176699A
Authority
JP
Japan
Prior art keywords
motor
shaft
compressor
side housing
power side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003002428A
Other languages
Japanese (ja)
Other versions
JP4119757B2 (en
Inventor
Yasunori Ono
靖典 小野
Masayuki Sango
正幸 山後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2003002428A priority Critical patent/JP4119757B2/en
Publication of JP2004176699A publication Critical patent/JP2004176699A/en
Application granted granted Critical
Publication of JP4119757B2 publication Critical patent/JP4119757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor integral type compressor capable of preventing intrusion of a lubricating oil and dust into a motor chamber and hardly receiving respective thermal influence of a compressor body and a motor. <P>SOLUTION: A shaft sealing device 33 preventing the lubricating oil lubricating a bearing of the compressor body 2 from leaking onto a motor side and a shaft sealing cover 37 fixing the shaft sealing device are arranged on the motor side of the bearing 16 supporting a driving shaft 14 on the driving shaft 14 of the compressor body 2. A communicating hole 55 communicating the inside of a power side housing with its outside is formed in the power side housing 31 extending from the compressor body 2. A partition plate 57 connecting an inner peripheral face of the power side housing 31 with the shaft sealing cover 37 to partition the inside of a motor casing 53 and the inside of the power side housing 31 is provided at a position on the motor side of the communicating hole 55. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮機本体とモータとが一体に構成されたモータ一体型圧縮機に関する。
【0002】
【従来の技術】
従来の油冷式スクリュ圧縮機を図4,図5を例に説明する。
【0003】
図5において、61はスクリュ圧縮機本体(以下「圧縮機本体」と称す)で、この圧縮機本体のシリンダ63内に形成されるロータ室内64に雌雄一対のスクリュロータ(以下「ロータ」と称す)65,66が収容されている。前記ロータ室64の軸方向一側には吸入口68及び吸入通路69が形成された吸入側ケーシング67を接続し、前記ロータ室64の軸方向他側には吐出口72及び吐出通路(図示しない)が形成された吐出側ケーシング71を接続している。そして、前記ロータ各々の端部に延設された軸部76,77,78,79は前記吸入側ケーシング67と吐出側ケーシング71とに収容された軸受81,82,83,84で支承されている。
【0004】
図4において、前記圧縮機本体61の吸入口68は吸入管85を介して吸入フィルタ86及び被圧縮気体の供給路87と接続し、吐出口72は吐出管88を介して油分離タンク62及び消費側の消費側配管89に接続する。前記油分離タンク62は下部に潤滑油Oを貯留し、この油分離タンク62の下部と圧縮機本体61のロータ室64内とをオイルクーラ90及びオイルフィルタ91を介して油配管92により接続している。
【0005】
前記圧縮機本体61はモータ95などの原動機により駆動され、前記ロータ65,66の噛み合い回転により、圧縮機本体61の吸入口68から被圧縮気体を吸入してロータ室64内で圧縮すると共に、この圧縮の過程で圧縮気体の冷却、ロータ同志の潤滑及び密封のために油分離タンク62に貯留する潤滑油Oをロータ室64内に供給し、吐出口72から圧縮気体と潤滑油の気液混合状態の気体を油分離タンク62内に吐出する。前記油分離タンク62では該タンク内の側壁に気液混合状態の気体を衝突させることで、圧縮気体と潤滑油とに一次分離し、圧縮気体は油分離タンク62の上部に接続する油分離フィルタ93によって圧縮気体中に含まれる霧状の潤滑油を除去して、消費側に圧縮気体だけを供給し、一方潤滑油は油分離タンク62内の下部に貯留するようになっている。なお、前記圧縮機本体61のロータの軸部76をモータ95の軸と一体としたものがある(特許文献1参照)。
【0006】
この発明の先行技術文献情報としては次のものがある。
【特許文献1】特開平11−351168号公報 (第2−3頁、図1−図2)。
【0007】
【発明が解決しようとする課題】
前述従来の圧縮機に対して圧縮機本体とモータとの全長を短縮するために、圧縮機本体とモータとを一体に構成したモータ一体型圧縮機がある。このモータ一体型圧縮機は、圧縮機本体からモータ側へ潤滑油が漏洩するとモータ室内で潤滑油が炭化しモータ回転子の絶縁破壊を起こす可能性がある。また、運転時に圧縮機本体の温度上昇によりモータが熱影響を受けて温度が上昇したり、又は、モータの温度上昇により圧縮機本体が熱影響を受けて温度が上昇することから、従来以上に圧縮機本体及びモータの冷却を行う必要がある。
【0008】
このことから、モータの回転子及び固定子を収納するモータ室内を大気と連通し、モータ室内にこもった熱気を大気に開放して冷却を行うことも考えられるが、モータ室内を大気に開放すると大気を漂う塵埃等がモータ室内に侵入するという問題がある。
【0009】
そこで、本発明は、モータ室内に潤滑油や塵埃の侵入を防止し、圧縮機本体及びモータのそれぞれの熱影響を受けにくいモータ一体型圧縮機の提供を目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明は、圧縮機本体2の駆動軸14とモータ4の回転軸とを直結ないしは一体に形成し、圧縮機本体2から延出するパワーサイドハウジング31とモータ4の固定子52を固定するモータケーシング53とを固定し、圧縮機本体2の駆動軸14を支承する軸受16がモータ4の回転軸を支承する軸受と兼用するモータ一体型圧縮機において、前記圧縮機本体2の駆動軸14上で前記駆動軸14を支承する軸受16のモータ側には、圧縮機本体2の軸受等を潤滑した潤滑油がモータ側へ漏洩することを防止する軸封装置33と該軸封装置を固定する軸封カバー37とを配設し、前記圧縮機本体2から延出するパワーサイドハウジング31に該パワーサイドハウジング31の内外とを連通する連通穴55を形成すると共に、前記パワーサイドハウジング31を被蓋する仕切板57を設け、前記モータケーシング53内とパワーサイドハウジング31内をそれぞれ隔離密閉することを特徴とする。(請求項1)。
【0011】
前記仕切板は、例えば、前記連通穴55のモータ側の位置で前記パワーサイドハウジング31の内周面から前記ロータ軸(14)方向に膨出するフランジ部56と、前記軸封カバー37のモータ側端壁面とに固着され、両部材を連結して配置することができる(請求項2)。また、本発明は、軸封装置33から漏れだした極少量のドレン(潤滑油)がロータ軸14を伝わってモータケーシング53内へ浸入することを有効に防止する装置として、前記軸封装置33の軸封カバー37に穿設形成された挿孔に一端を固着し、他端を前述パワーサイドハウジング31の内外とを連通する連通穴55から外部に臨ませたドレン回収通路28と前記仕切板57との間にシール29を設けたもの(請求項3)を含む。さらに、前述軸封カバー37に対して、前記ドレン回収通路28と前記仕切板57との間にパワーサイドハウジング31の内部空間32と、軸封カバー37の内周とモータケーシング53側のロータ軸外周間の微少間隙を連通する貫通孔30を穿設形成することができる。また、前記シール29と前記仕切板57との間に前記貫通孔30を形成することができる(請求項4)。
【0012】
【発明の実施の形態】
第1の実施の形態について図1乃び図2に基づき説明する。
【0013】
図1及び図2において、油冷式スクリュ圧縮機1は、雌雄一対のスクリュロータ6,7をシリンダ8のロータ室9内に噛合回転可能に収納し、前記一対のスクリュロータ6,7の回転により被圧縮気体を圧縮する過程で前記ロータ室9内に冷却媒体である潤滑油を注入する油冷式の圧縮機本体2と、前記圧縮機本体2のロータ室9内で圧縮され吐出された圧縮気体と潤滑油との気液混合流体を導入し、圧縮気体と潤滑油とに分離して圧縮気体を消費側に供給する気液分離装置3と、圧縮機本体2を回転駆動するモータ4とを一体に結合している。
【0014】
前記圧縮機本体2は、前記スクリュロータ6,7の軸線方向に対して前記シリンダ8の一側に被圧縮気体を吸入する吸入口12及び吸入通路13を形成し、前記スクリュロータ6,7の一側ロータ軸14,15を支承する軸受16,17を収納する吸入側ケーシング11と、前記スクリュロータ6,7の軸線方向に対して前記シリンダ8の他側に圧縮気体を吐出する吐出口22及び吐出通路23とを形成し、前記スクリュロータ6,7の他側ロータ軸24,25を支承する軸受26,27を収納する吐出側ケーシング21とを備え、前記吸入側ケーシング11と前記シリンダ8とは一体に形成され、オスロータ6の吸入側ロータ軸14は前記吸入側ケーシング11を貫通して圧縮機本体2の外部に突出して該圧縮機本体の駆動軸となり、前記吸入側ケーシング11の外周から圧縮機本体2の外部に突出し、オスロータ6の吸入側ロータ軸14の周囲にモータ4と一体に連結するためのパワーサイドハウジング31を延出する。
【0015】
前記オスロータ6の吸入側ロータ軸14を支承する軸受16は吸入側ケーシング11に形成された軸受室18内に収納され、前記吸入側ロータ軸14の軸上の前記軸受室18内で該ロータ軸14を支承する軸受16に並んだ外側に、軸受室18内の潤滑油が圧縮機本体2から漏出することを防止するための軸封装置であるメカニカルシール33を設け、前記メカニカルシール33の外側には前記軸受室18を塞ぐと共に、前記メカニカルシールを固定する軸封カバー37を設けている。
【0016】
前記気液分離装置3は圧縮機本体2から吐出された前記気液混合流体を一次分離するレシーバタンク41と、前記レシーバタンク41内で一次分離された気液混合流体を導入して微細な潤滑油を分離し圧縮気体を消費側に供給するセパレータ42とを備え、前記レシーバタンク41には前記セパレータ42を接続する接続口43と、レシーバタンク41内を点検・掃除するための点検口44とを形成し、前記圧縮機本体の吐出側ケーシング21を前記レシーバタンク41の点検口から内部に挿入し、前記シリンダ8の吐出側ケーシング21との接続部に形成したフランジ部47でレシーバタンク41の開口部から成る点検口44を閉塞し、後述するように、モータケーシング4を固設した圧縮機本体2を前記フランジ部47でレシーバタンク41に連結し、モータケーシング4、圧縮機本体2及びレシーバタンク41を一体に構成している。
【0017】
前記モータ4は前記オスロータ6の吸入側ロータ軸14の軸上に回転子51を固定して前記ロータ軸14とモータ4の回転軸、前記ロータ軸14を支承する前記軸受16とモータ4の回転軸を支承する軸受とを兼用し、モータ4の固定子52を固定するモータケーシング53の圧縮機本体側の端縁に形成するフランジを、パワーサイドハウジング31のモータ側の端縁に形成するフランジに連結し、圧縮機本体2と一体に構成している。
【0018】
前記圧縮機本体2から延出するパワーサイドハウジング31に、パワーサイドハウジング31の内部空間32(図3参照)とパワーサイドハウジング31外とを連通する連通穴55を形成する。そして、前記軸封装置であるメカニカルシール33の外側に位置する前記軸受室18を閉塞すると共に、前記メカニカルシール33を固定する軸封カバー37をロータ軸14の外周に設ける。前記連通穴55のモータ方向側位置で前記パワーサイドハウジング31の内周面に、前記ロータ軸14方向に膨出するフランジ部56を形成し、前記パワーサイドハウジング31の前記フランジ部56と前記軸封カバー37のモータ側端壁面とを連結する仕切板57を前記フランジ部56と前記軸封カバー37のモータ側端壁面にそれぞれ固着して設け、前記パワーサイドハウジング31を被蓋しモータケーシング53内とパワーサイドハウジング31内をそれぞれ隔離密閉する。
【0019】
以上のように構成したモータ一体型のスクリュ圧縮機は、オスロータ6の吸入側ロータ軸14にモータ4の回転子51を固定することで、モータ4の構成部品を圧縮機本体2の構成部品と兼用して、モータ4と圧縮機本体2とを一体に構成していることで従来の圧縮機に対して全長を短縮することができたことはもちろんであるが、その他にモータケーシング53内とパワーサイドハウジング31内とを仕切板57で仕切っていて、モータ4の回転子51及び固定子52を収納する空間(モータ室58)を密閉すると共に、吸入側ケーシング11と仕切板57との間の空間をパワーサイドハウジング31に形成した連通穴55で大気に開放していることから、前記吸入側ケーシング11と軸封カバー37の結合面から潤滑油が漏洩した場合でも、連通穴55よりパワーサイドハウジング31の外部に排出され、モータ室58内に潤滑油が侵入することを防止できる。また、この連通穴55は前記吸入側ケーシング11と軸封カバー37の結合面から潤滑油が漏洩しているか否かを目視により確認することができる。さらに、圧縮機の運転時に圧縮機本体2の温度が上昇しても吸入側ケーシング11と仕切板57との間が内部空間32により遮断され、該空間が断熱して、モータ4が圧縮機本体2の熱影響を受けて温度上昇しない。また、圧縮機の運転時にモータ4の温度が上昇しても吸入側ケーシング11と仕切板57との間が前記空間により遮断され断熱するため、圧縮機本体2がモータ4の熱影響を受けて温度上昇しない。
【0020】
さらに、比較的に簡単な構成により、モータケーシング53内とパワーサイドハウジング31内とを仕切ってモータ4の回転子51や固定子52を収容するモータ室58を密封することができ、モータ室58内に塵埃などが侵入することを防止できる。
【0021】
図3(A)、図3(B)は、本発明の第2〜第4の実施形態の詳細を示すもので、軸封装置33の前記軸封カバー37に穿設形成された挿孔に一端を固着し、他端を前述パワーサイドハウジング31の内外とを連通する前記連通穴55から外部に臨ませたドレン回収通路28と前記仕切板57との間にシール29を設けたものである。このシール29は軸封装置33から漏れだした極少量のドレン(潤滑油)がロータ軸14を伝わってモータケーシング53内へ浸入することを有効に防止するもので、図3(A)にあっては軸封カバー37の内周に形成した溝部にリング状のフェルト製シール29を装着し、このシール29の中心にロータ軸14が挿通すると共に該ロータ軸14とシール29とが接触している。これにより、軸封装置33から漏れだしたドレンはシール29でモータケーシング53内への浸入を防ぎ、ドレン回収通路28から機外へ排出される。なお、前記シール29はフェルト製シールに限定されず、例えば軸封カバー37の内周に前記ロータ軸14の回転によりドレンの漏れ方向とは逆方向に流れるようねじ溝が切られたねじシールであってもよい〔図3(B)〕。モータケーシング53内への潤滑油の浸入によるモータ本体の絶縁不良、可燃性の被圧縮気体を圧縮する場合の潤滑油に溶け込んだ前記可燃性気体による爆発の可能性を回避できる。他は第1実施形態と同様の構成である。
【0022】
図3(B)において、第3の実施形態として、前述軸封カバー37に対して、前記ドレン回収通路28と前記仕切板57との間にパワーサイドハウジング31の内部空間32と軸封カバー37の内周とモータケーシング53側のロータ軸外周間の微少間隙を連通する貫通孔30を穿設形成したものである。
【0023】
前述ドレン及びドレン(潤滑油)中に溶け込んでいる被圧縮気体は、前記貫通孔30を介してパワーサイドハウジング31の内部空間32から前記連通穴55を経て外部へ排出される。
【0024】
第4の実施形態として、前記図3(A)、図3(B)の実施形態におけるシール29から漏出した場合に対処するために、ここでは前記シール29と前記仕切板57との間に貫通孔30を形成したものである。なお、前記ドレンに溶け込んでいる被圧縮気体の性状に対応して、前記被圧縮気体が外気より比重の重い場合には、前記貫通孔30を軸封カバー37の図中下方(図示省略)に、比重の軽いときは、図中上方にそれぞれ貫通孔30を形成する。
【0025】
前記内部空間32と軸封カバー37の内周とモータケーシング53側のロータ軸外周間の微少間隙はほぼ同圧であり、ドレンは貫通孔30を介して円滑に排出される。
【0026】
なお、本発明は実施の形態に限定されるものではなく、特許請求の範囲内において例えば、冷却媒体を水にした水噴射式圧縮機やスライドベーン圧縮機など各種形態に変形可能である。
【0027】
【発明の効果】
以上説明したように、本発明によれば、圧縮機本体の駆動軸とモータの回転軸とを直結ないしは一体に形成し、圧縮機本体から延出するパワーサイドハウジングとモータケーシングとを固定し、圧縮機本体の駆動軸を支承する軸受がモータの回転軸を支承する軸受と兼用するモータ一体型圧縮機において、前記圧縮機本体の駆動軸上で前記駆動軸を支承する軸受のモータ側には、圧縮本体の軸受等を潤滑した潤滑油がモータ側へ漏洩することを防止する軸封装置と該軸封装置を固定する軸封カバーとを配設し、前記圧縮機本体から延出するパワーサイドハウジングに該パワーサイドハウジングの内外とを連通する連通穴を形成し、前記連通穴のモータ側の位置に前記パワーサイドハウジングの内周面と前記軸封カバーとを連結してモータケーシング内とパワーサイドハウジング内とを仕切る仕切板を設けたことから、圧縮機本体から潤滑油が漏洩した場合でもモータ室内へ潤滑油が侵入することを防止し、また圧縮機の運転時に圧縮機本体の温度が上昇しても圧縮機本体と仕切板との間の空間が断熱して、モータが圧縮機本体の熱影響を受けて温度上昇しない。又は、圧縮機の運転時にモータの温度が上昇しても圧縮機本体と仕切板との間の空間が断熱して、圧縮機本体がモータの熱影響を受けて温度上昇しない。さらに、比較的に簡単な構成により、モータケーシング内とパワーサイドハウジング内とを仕切ってモータの回転子や固定子を収容するモータ室を密封することができ、モータ室内に塵埃などが侵入することを防止できる。
【0028】
また、本願第2、第3発明によれば、軸封装置33から漏れだした極少量のドレン(潤滑油)がロータ軸14を伝わってモータケーシング53内へ浸入することを有効に防止し、モータの絶縁不良、潤滑油に溶け込んでいる可燃性被圧縮気体の爆発などによる事故を防止できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に掛かる油冷式スクリュ圧縮機の横断面図
【図2】本発明の実施の形態に掛かる油冷式スクリュ圧縮機の平面断面図
【図3】(A)、(B)は本発明の第2〜第4の実施の形態を示す部分拡大断面図
【図4】従来の技術の油冷式スクリュ圧縮機の系統図
【図5】従来技術のスクリュ圧縮機本体の断面図
【符号の説明】
1 油冷式スクリュ圧縮機
2 圧縮機本体
3 気液分離装置
4 モータ
6 オスロータ
8 シリンダ
9 吸入側ケーシング
14 ロータ軸(オスロータ)
16 軸受
21 吐出側ケーシング
28 ドレン回収通路
29 シール
30 貫通孔
31 パワーサイドハウジング
32 内部空間
33 メカニカルシール
37 軸封カバー
51 回転子
52 固定子
53 モータケーシング
55 連通穴
57 仕切板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a motor-integrated compressor in which a compressor body and a motor are integrally formed.
[0002]
[Prior art]
A conventional oil-cooled screw compressor will be described with reference to FIGS.
[0003]
In FIG. 5, reference numeral 61 denotes a screw compressor main body (hereinafter referred to as a “compressor main body”). A pair of male and female screw rotors (hereinafter referred to as “rotors”) is provided in a rotor chamber 64 formed in a cylinder 63 of the compressor main body. ) 65 and 66 are accommodated. A suction side casing 67 having a suction port 68 and a suction passage 69 is connected to one side of the rotor chamber 64 in the axial direction, and a discharge port 72 and a discharge passage (not shown) are connected to the other side of the rotor chamber 64 in the axial direction. The discharge-side casing 71 in which is formed) is connected. The shaft portions 76, 77, 78, 79 extending at the end portions of the rotors are supported by bearings 81, 82, 83, 84 accommodated in the suction side casing 67 and the discharge side casing 71. Yes.
[0004]
In FIG. 4, the suction port 68 of the compressor body 61 is connected to a suction filter 86 and a compressed gas supply path 87 via a suction pipe 85, and the discharge port 72 is connected to an oil separation tank 62 and a compression pipe 88 via a discharge pipe 88. Connect to the consumption side piping 89 on the consumption side. The oil separation tank 62 stores lubricating oil O in the lower part, and the lower part of the oil separation tank 62 and the inside of the rotor chamber 64 of the compressor body 61 are connected by an oil pipe 92 via an oil cooler 90 and an oil filter 91. ing.
[0005]
The compressor main body 61 is driven by a prime mover such as a motor 95, and the rotor 65, 66 engages and rotates to suck compressed gas from the suction port 68 of the compressor main body 61 and compress it in the rotor chamber 64. In this compression process, the lubricating oil O stored in the oil separation tank 62 is supplied into the rotor chamber 64 for cooling of the compressed gas, lubrication and sealing between the rotors, and the compressed gas and the gas-liquid of the lubricating oil are supplied from the discharge port 72. The mixed gas is discharged into the oil separation tank 62. In the oil separation tank 62, gas in a gas-liquid mixed state collides with the side wall in the tank to primarily separate into compressed gas and lubricating oil, and the compressed gas is connected to the upper portion of the oil separation tank 62. The mist-like lubricating oil contained in the compressed gas is removed by 93 and only the compressed gas is supplied to the consuming side, while the lubricating oil is stored in the lower part in the oil separation tank 62. In addition, there exists what integrated the shaft part 76 of the rotor of the said compressor main body 61 with the axis | shaft of the motor 95 (refer patent document 1).
[0006]
Prior art document information of the present invention includes the following.
Japanese Patent Laid-Open No. 11-351168 (page 2-3, FIG. 1 to FIG. 2).
[0007]
[Problems to be solved by the invention]
In order to reduce the overall length of the compressor main body and the motor as compared with the conventional compressor, there is a motor-integrated compressor in which the compressor main body and the motor are integrated. In this motor-integrated compressor, if the lubricating oil leaks from the compressor main body to the motor side, the lubricating oil may carbonize in the motor chamber and cause a dielectric breakdown of the motor rotor. In addition, during operation, the temperature of the compressor rises due to the effect of heat on the compressor body, or the temperature of the compressor body rises due to the influence of heat due to the temperature rise of the motor. It is necessary to cool the compressor body and the motor.
[0008]
For this reason, it is conceivable that the motor chamber that houses the rotor and stator of the motor communicates with the atmosphere, and the hot air trapped in the motor chamber is released to the atmosphere for cooling, but if the motor chamber is opened to the atmosphere, There is a problem that dust or the like floating in the air enters the motor chamber.
[0009]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a motor-integrated compressor that prevents intrusion of lubricating oil and dust into the motor chamber and is less susceptible to the thermal effects of the compressor body and the motor.
[0010]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention is configured such that the drive shaft 14 of the compressor body 2 and the rotating shaft of the motor 4 are directly connected or integrally formed, and the power side housing 31 extending from the compressor body 2 and the motor 4 are integrated. In the motor-integrated compressor, the motor casing 53 for fixing the stator 52 is fixed, and the bearing 16 for supporting the drive shaft 14 of the compressor body 2 also serves as the bearing for supporting the rotating shaft of the motor 4. On the motor side of the bearing 16 that supports the drive shaft 14 on the drive shaft 14 of the main body 2, a shaft seal device 33 that prevents the lubricating oil that lubricated the bearings of the compressor main body 2 from leaking to the motor side, and A shaft seal cover 37 for fixing the shaft seal device is provided, and a communication hole 55 is formed in the power side housing 31 extending from the compressor body 2 so as to communicate the inside and outside of the power side housing 31. In the partition plate 57 to the cover the power side housing 31 is provided, characterized in that each isolating seal the inside motor casing 53 and the power side housing 31. (Claim 1).
[0011]
The partition plate includes, for example, a flange portion 56 that bulges from the inner peripheral surface of the power side housing 31 toward the rotor shaft (14) at a position of the communication hole 55 on the motor side, and a motor of the shaft seal cover 37. It is fixed to the side end wall surface, and both members can be connected and arranged (Claim 2). Further, the present invention provides a shaft sealing device 33 as a device that effectively prevents a very small amount of drain (lubricant) leaking from the shaft sealing device 33 from entering the motor casing 53 through the rotor shaft 14. The drain collecting passage 28 and the partition plate having one end fixed to an insertion hole formed in the shaft seal cover 37 and the other end facing the outside through a communication hole 55 communicating with the inside and outside of the power side housing 31. 57, and a seal 29 provided between them (Claim 3). Further, with respect to the shaft seal cover 37, the inner space 32 of the power side housing 31, the inner periphery of the shaft seal cover 37, and the rotor shaft on the motor casing 53 side between the drain collection passage 28 and the partition plate 57. A through hole 30 that communicates a minute gap between the outer circumferences can be formed. Further, the through hole 30 can be formed between the seal 29 and the partition plate 57 (Claim 4).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment will be described with reference to FIGS.
[0013]
1 and 2, the oil-cooled screw compressor 1 accommodates a pair of male and female screw rotors 6 and 7 in a rotor chamber 9 of a cylinder 8 so as to be able to mesh and rotate, and the pair of screw rotors 6 and 7 rotate. In the process of compressing the gas to be compressed, the oil-cooled compressor main body 2 for injecting the lubricating oil as a cooling medium into the rotor chamber 9 and the rotor chamber 9 of the compressor main body 2 are compressed and discharged. A gas-liquid separator 3 that introduces a gas-liquid mixed fluid of compressed gas and lubricating oil, separates the compressed gas and lubricating oil and supplies the compressed gas to the consumption side, and a motor 4 that rotationally drives the compressor main body 2. And are united together.
[0014]
The compressor body 2 has a suction port 12 and a suction passage 13 for sucking compressed gas on one side of the cylinder 8 with respect to the axial direction of the screw rotors 6, 7. A suction-side casing 11 that houses bearings 16 and 17 that support the one-side rotor shafts 14 and 15, and a discharge port 22 that discharges compressed gas to the other side of the cylinder 8 with respect to the axial direction of the screw rotors 6 and 7. And a discharge-side casing 21 that accommodates bearings 26 and 27 that form the discharge passages 23 and support the other rotor shafts 24 and 25 of the screw rotors 6 and 7, and the suction-side casing 11 and the cylinder 8. The suction rotor shaft 14 of the male rotor 6 penetrates the suction casing 11 and protrudes outside the compressor body 2 to serve as a drive shaft for the compressor body. Protrudes from the outer periphery of the inlet-side casing 11 to the outside of the compressor body 2, extending the power side housing 31 for coupling to the motor 4 integrally around the suction side rotor shaft 14 of the male rotor 6.
[0015]
A bearing 16 for supporting the suction side rotor shaft 14 of the male rotor 6 is housed in a bearing chamber 18 formed in the suction side casing 11, and the rotor shaft is accommodated in the bearing chamber 18 on the shaft of the suction side rotor shaft 14. A mechanical seal 33 that is a shaft seal device for preventing the lubricating oil in the bearing chamber 18 from leaking out of the compressor body 2 is provided on the outer side of the bearing 16 that supports the outer side of the mechanical seal 33. A shaft seal cover 37 for closing the bearing chamber 18 and fixing the mechanical seal is provided.
[0016]
The gas-liquid separator 3 introduces a receiver tank 41 that primarily separates the gas-liquid mixed fluid discharged from the compressor body 2 and a gas-liquid mixed fluid primarily separated in the receiver tank 41 to provide fine lubrication. A separator 42 for separating oil and supplying compressed gas to the consumption side; a connection port 43 for connecting the separator 42 to the receiver tank 41; and an inspection port 44 for inspecting and cleaning the interior of the receiver tank 41; The discharge side casing 21 of the compressor main body is inserted into the receiver tank 41 through the inspection port, and the flange portion 47 formed at the connection portion of the cylinder 8 with the discharge side casing 21 is used to fix the receiver tank 41. As will be described later, the compressor main body 2 to which the motor casing 4 is fixed is connected to the receiver tank by the flange portion 47. Coupled to 1, and integrally formed with the motor casing 4, compressor body 2 and the receiver tank 41.
[0017]
In the motor 4, a rotor 51 is fixed on the suction side rotor shaft 14 of the male rotor 6, the rotor shaft 14 and the rotation shaft of the motor 4, and the bearing 16 that supports the rotor shaft 14 and the rotation of the motor 4. A flange that is also used as a bearing that supports the shaft and that is formed on the end of the motor casing 53 on the compressor body side of the motor casing 53 that fixes the stator 52 of the motor 4. To the compressor main body 2.
[0018]
A communication hole 55 is formed in the power side housing 31 extending from the compressor main body 2 to communicate the internal space 32 (see FIG. 3) of the power side housing 31 with the outside of the power side housing 31. Then, the bearing chamber 18 positioned outside the mechanical seal 33 serving as the shaft seal device is closed, and a shaft seal cover 37 for fixing the mechanical seal 33 is provided on the outer periphery of the rotor shaft 14. A flange portion 56 bulging in the direction of the rotor shaft 14 is formed on the inner peripheral surface of the power side housing 31 at a position on the motor direction side of the communication hole 55, and the flange portion 56 and the shaft of the power side housing 31 are formed. A partition plate 57 for connecting the motor-side end wall surface of the sealing cover 37 is fixedly provided on the flange portion 56 and the motor-side end wall surface of the shaft sealing cover 37, and the power side housing 31 is covered to cover the motor casing 53. The inside and the power side housing 31 are separated and sealed.
[0019]
In the motor-integrated screw compressor configured as described above, the rotor 51 of the motor 4 is fixed to the suction-side rotor shaft 14 of the male rotor 6, whereby the components of the motor 4 are replaced with the components of the compressor body 2. Of course, since the motor 4 and the compressor body 2 are integrally formed, the overall length can be shortened compared to the conventional compressor. The inside of the power side housing 31 is partitioned by a partition plate 57 to seal a space (motor chamber 58) that houses the rotor 51 and the stator 52 of the motor 4, and between the suction side casing 11 and the partition plate 57. Is opened to the atmosphere through a communication hole 55 formed in the power side housing 31, so that when the lubricating oil leaks from the coupling surface of the suction side casing 11 and the shaft seal cover 37. , Is discharged to the outside of the power side housing 31 from the communication hole 55, it is possible to prevent the lubricating oil from entering the motor chamber 58. Further, the communication hole 55 can visually confirm whether or not the lubricating oil leaks from the coupling surface of the suction side casing 11 and the shaft seal cover 37. Further, even if the temperature of the compressor main body 2 rises during the operation of the compressor, the space between the suction-side casing 11 and the partition plate 57 is blocked by the internal space 32, the space is thermally insulated, and the motor 4 is connected to the compressor main body. The temperature does not increase due to the heat effect of 2. Even if the temperature of the motor 4 rises during the operation of the compressor, the space between the suction-side casing 11 and the partition plate 57 is blocked by the space to insulate the compressor body 2, and the compressor body 2 is affected by the heat of the motor 4. The temperature does not rise.
[0020]
Furthermore, with a relatively simple configuration, the motor chamber 58 that houses the rotor 51 and the stator 52 of the motor 4 by partitioning the motor casing 53 and the power side housing 31 can be sealed. It is possible to prevent dust and the like from entering the inside.
[0021]
3A and 3B show details of the second to fourth embodiments of the present invention. In the insertion hole formed in the shaft seal cover 37 of the shaft seal device 33, FIG. One end is fixed, and the other end is provided with a seal 29 between the drain collecting passage 28 facing the outside through the communication hole 55 communicating with the inside and outside of the power side housing 31 and the partition plate 57. . This seal 29 effectively prevents a very small amount of drain (lubricating oil) leaking from the shaft seal device 33 from passing through the rotor shaft 14 and entering the motor casing 53. FIG. A ring-shaped felt seal 29 is attached to a groove formed on the inner periphery of the shaft seal cover 37. The rotor shaft 14 is inserted into the center of the seal 29 and the rotor shaft 14 and the seal 29 are in contact with each other. Yes. As a result, the drain leaked from the shaft seal device 33 is prevented from entering the motor casing 53 by the seal 29 and discharged from the drain recovery passage 28 to the outside of the machine. The seal 29 is not limited to a felt seal. For example, the seal 29 is a screw seal in which a thread groove is cut on the inner periphery of the shaft seal cover 37 so as to flow in the direction opposite to the drain leakage direction due to the rotation of the rotor shaft 14. It may be present (FIG. 3B). Insulation failure of the motor body due to penetration of the lubricating oil into the motor casing 53, and the possibility of explosion due to the flammable gas dissolved in the lubricating oil when compressing the combustible compressed gas can be avoided. Other configurations are the same as those of the first embodiment.
[0022]
In FIG. 3B, as a third embodiment, the inner space 32 of the power side housing 31 and the shaft seal cover 37 are disposed between the drain collecting passage 28 and the partition plate 57 with respect to the shaft seal cover 37. A through hole 30 is formed to communicate a minute gap between the inner periphery of the rotor and the outer periphery of the rotor shaft on the motor casing 53 side.
[0023]
The above-mentioned drain and the compressed gas dissolved in the drain (lubricating oil) are discharged from the internal space 32 of the power side housing 31 through the through hole 30 to the outside through the communication hole 55.
[0024]
As a fourth embodiment, in order to cope with a case where leakage occurs from the seal 29 in the embodiment shown in FIGS. 3 (A) and 3 (B), a penetration is made between the seal 29 and the partition plate 57 here. A hole 30 is formed. When the compressed gas has a higher specific gravity than the outside air, corresponding to the properties of the compressed gas dissolved in the drain, the through hole 30 is located below the shaft seal cover 37 in the drawing (not shown). When the specific gravity is light, the through holes 30 are formed in the upper part of the drawing.
[0025]
The minute gap between the inner space 32 and the inner periphery of the shaft seal cover 37 and the outer periphery of the rotor shaft on the motor casing 53 side is substantially the same pressure, and the drain is smoothly discharged through the through hole 30.
[0026]
In addition, this invention is not limited to embodiment, For example, within a claim, it can deform | transform into various forms, such as a water injection type compressor and a slide vane compressor which used the cooling medium as water.
[0027]
【The invention's effect】
As described above, according to the present invention, the drive shaft of the compressor body and the rotating shaft of the motor are directly connected or integrally formed, and the power side housing extending from the compressor body and the motor casing are fixed, In the motor-integrated compressor in which the bearing that supports the drive shaft of the compressor body also serves as the bearing that supports the rotation shaft of the motor, the motor side of the bearing that supports the drive shaft on the drive shaft of the compressor body A shaft sealing device that prevents the lubricating oil that has lubricated the bearings of the compression body from leaking to the motor side, and a shaft sealing cover that fixes the shaft sealing device, and the power extending from the compressor body A communication hole that communicates the inside and outside of the power side housing is formed in the side housing, and the motor casing is connected to the inner peripheral surface of the power side housing and the shaft seal cover at a position of the communication hole on the motor side. Since the partition plate that separates the inside of the motor side from the inside of the power side housing is provided, even if the lubricating oil leaks from the compressor body, the lubricating oil is prevented from entering the motor chamber, and the compressor is operated during the operation of the compressor. Even if the temperature of the main body rises, the space between the compressor main body and the partition plate insulates, and the motor does not rise in temperature due to the heat effect of the compressor main body. Alternatively, even if the temperature of the motor rises during operation of the compressor, the space between the compressor body and the partition plate is thermally insulated, and the compressor body is not affected by the heat of the motor and the temperature does not rise. Furthermore, with a relatively simple configuration, the motor chamber that houses the rotor and stator of the motor can be sealed by partitioning the motor casing and the power side housing, and dust and the like can enter the motor chamber. Can be prevented.
[0028]
Further, according to the second and third inventions of the present application, it is possible to effectively prevent a very small amount of drain (lubricating oil) leaking from the shaft seal device 33 from entering the motor casing 53 through the rotor shaft 14, Accidents caused by poor motor insulation and explosion of combustible compressed gas dissolved in lubricating oil can be prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an oil-cooled screw compressor according to an embodiment of the present invention. FIG. 2 is a plan sectional view of an oil-cooled screw compressor according to an embodiment of the present invention. ), (B) are partial enlarged cross-sectional views showing the second to fourth embodiments of the present invention. FIG. 4 is a system diagram of a conventional oil-cooled screw compressor. FIG. 5 is a conventional screw compression. Cross section of machine body [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oil-cooled screw compressor 2 Compressor body 3 Gas-liquid separator 4 Motor 6 Male rotor 8 Cylinder 9 Suction side casing 14 Rotor shaft (male rotor)
16 Bearing 21 Discharge side casing 28 Drain collection passage 29 Seal 30 Through-hole 31 Power side housing 32 Internal space 33 Mechanical seal 37 Shaft seal cover 51 Rotor 52 Stator 53 Motor casing 55 Communication hole 57 Partition plate

Claims (4)

圧縮機本体の駆動軸とモータの回転軸とを直結ないしは一体に形成し、圧縮機本体から延出するパワーサイドハウジングとモータケーシングとを固定し、圧縮機本体の駆動軸を支承する軸受がモータの回転軸を支承する軸受を兼用するモータ一体型圧縮機において、
前記圧縮機本体の駆動軸上で前記駆動軸を支承する軸受のモータ側には、圧縮機本体の軸受等を潤滑した潤滑油がモータ側へ漏洩することを防止する軸封装置と該軸封装置を固定する軸封カバーとを配設し、前記圧縮機本体から延出するパワーサイドハウジングに該パワーサイドハウジングの内外とを連通する連通穴を形成すると共に、前記パワーサイドハウジングを被蓋しモータケーシング内とパワーサイドハウジング内をそれぞれ隔離密閉する仕切板を設けたことを特徴とするモータ一体型圧縮機。
The drive shaft of the compressor body and the rotation shaft of the motor are directly connected or integrally formed, the power side housing extending from the compressor body and the motor casing are fixed, and the bearing that supports the drive shaft of the compressor body is the motor. In a motor-integrated compressor that also serves as a bearing that supports the rotating shaft of
On the motor side of the bearing that supports the drive shaft on the drive shaft of the compressor body, a shaft seal device that prevents the lubricating oil that lubricated the bearings of the compressor body from leaking to the motor side and the shaft seal A shaft seal cover for fixing the device is formed, and a communication hole is formed in the power side housing extending from the compressor main body so as to communicate with the inside and outside of the power side housing, and the power side housing is covered. A motor-integrated compressor comprising a partition plate for separating and sealing the motor casing and the power side housing.
前記仕切板は、前記連通穴のモータ方向側位置で前記パワーサイドハウジングの内周面から前記ロータ軸方向に膨出するフランジ部と、前記軸封カバーのモータ側端壁面とに固着され、両部材を連結して配置した請求項1記載のモータ一体型圧縮機。The partition plate is fixed to a flange portion that bulges in the rotor axial direction from the inner peripheral surface of the power side housing at a position in the motor direction side of the communication hole, and a motor side end wall surface of the shaft seal cover. The motor-integrated compressor according to claim 1, wherein the members are connected and arranged. 前記軸封装置の軸封カバーに穿設形成された挿孔に一端を固着し、他端を前述パワーサイドハウジングの内外とを連通する連通穴から外部に臨ませて設けたドレン回収通路と前記仕切板との間にシールを設けた請求項1記載のモータ一体型圧縮機。A drain collecting passage provided with one end fixed to an insertion hole formed in the shaft sealing cover of the shaft sealing device and the other end facing the outside from a communication hole communicating with the inside and outside of the power side housing; The motor-integrated compressor according to claim 1, wherein a seal is provided between the partition plate and the partition plate. 前記ドレン回収通路と前記仕切板との間で前記軸封カバーに対して、前記パワーサイドハウジングの内部空間と、前記軸封カバーの内周とモータケーシング側のロータ軸外周間の微少間隙を連通する貫通孔を穿設形成した請求項1又は3記載のモータ一体型圧縮機。An internal space of the power side housing and a minute gap between the inner periphery of the shaft seal cover and the outer periphery of the rotor shaft on the motor casing side communicate with the shaft seal cover between the drain collecting passage and the partition plate. The motor-integrated compressor according to claim 1 or 3, wherein a through-hole is formed.
JP2003002428A 2002-09-30 2003-01-08 Motor integrated compressor Expired - Lifetime JP4119757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003002428A JP4119757B2 (en) 2002-09-30 2003-01-08 Motor integrated compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002323173 2002-09-30
JP2003002428A JP4119757B2 (en) 2002-09-30 2003-01-08 Motor integrated compressor

Publications (2)

Publication Number Publication Date
JP2004176699A true JP2004176699A (en) 2004-06-24
JP4119757B2 JP4119757B2 (en) 2008-07-16

Family

ID=32716008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003002428A Expired - Lifetime JP4119757B2 (en) 2002-09-30 2003-01-08 Motor integrated compressor

Country Status (1)

Country Link
JP (1) JP4119757B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092702A (en) * 2005-09-30 2007-04-12 Hitachi Industrial Equipment Systems Co Ltd Oil cooled screw compressor
JP2009257331A (en) * 2009-08-03 2009-11-05 Hitachi Industrial Equipment Systems Co Ltd Oil cooled screw compressor
JP2012219664A (en) * 2011-04-05 2012-11-12 Hitachi Industrial Equipment Systems Co Ltd Air compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092702A (en) * 2005-09-30 2007-04-12 Hitachi Industrial Equipment Systems Co Ltd Oil cooled screw compressor
US7473084B2 (en) 2005-09-30 2009-01-06 Hitachi Industrial Equipment System Co. Oil-cooled screw compressor
US7762799B2 (en) 2005-09-30 2010-07-27 Hitachi Industrial Equipment Systems Co. Oil-cooled screw compressor
JP4521344B2 (en) * 2005-09-30 2010-08-11 株式会社日立産機システム Oil-cooled screw compressor
US8226388B2 (en) 2005-09-30 2012-07-24 Hitachi Industrial Equipment Systems Co., Ltd. Oil-cooled screw compressor
JP2009257331A (en) * 2009-08-03 2009-11-05 Hitachi Industrial Equipment Systems Co Ltd Oil cooled screw compressor
JP2012219664A (en) * 2011-04-05 2012-11-12 Hitachi Industrial Equipment Systems Co Ltd Air compressor
US9506469B2 (en) 2011-04-05 2016-11-29 Hitachi Industrial Equipment Systems Co., Ltd. Vented motor seal for a compressor

Also Published As

Publication number Publication date
JP4119757B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
KR101143166B1 (en) Two-stage screw compressor and refrigerating device
KR100372045B1 (en) Scroll compressors to effectively cool the motor
RU2443881C2 (en) Gas turbine engine with stator mounted on gearbox of assembly units
JP2015508858A (en) Screw compressor
JP5167201B2 (en) Screw compressor
JP2011256828A (en) Oilless screw compressor
JP4119757B2 (en) Motor integrated compressor
JP2008303781A (en) Screw compressor
JP2005299467A (en) Oil injection type compressor
JP2008232005A (en) Screw compressor
JP2005054716A (en) Electric compressor
JP5033351B2 (en) Hermetic compressor for refrigerant
JPS59500572A (en) Sealed compressor
JP2005090371A (en) Motor built-in fuel gas compressor
JP2005171959A (en) Shaft seal mechanism for motor integrated fuel gas compressor
JPH08543Y2 (en) Oil-cooled screw compressor
JP4066038B2 (en) Oil-cooled screw compressor
JP2591612Y2 (en) Two-stage screw compressor
CN220118323U (en) Vortex air compressor
JP2005069062A (en) Oil injection type screw compressor
JP4638582B2 (en) Shaft seal structure of oil-free screw compressor
JP2005171819A (en) Refrigerating compressor
JPH03124990A (en) Sealed oil-cooled compressor
JP2003139060A (en) Sealed compressor
JP2004176700A (en) Liquid cooling type screw compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4119757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term