JP2004176675A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2004176675A
JP2004176675A JP2002346281A JP2002346281A JP2004176675A JP 2004176675 A JP2004176675 A JP 2004176675A JP 2002346281 A JP2002346281 A JP 2002346281A JP 2002346281 A JP2002346281 A JP 2002346281A JP 2004176675 A JP2004176675 A JP 2004176675A
Authority
JP
Japan
Prior art keywords
nox
internal combustion
motor
combustion engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002346281A
Other languages
Japanese (ja)
Other versions
JP4042546B2 (en
Inventor
Hiroshige Hashimoto
浩成 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002346281A priority Critical patent/JP4042546B2/en
Priority to DE10355621A priority patent/DE10355621A1/en
Publication of JP2004176675A publication Critical patent/JP2004176675A/en
Application granted granted Critical
Publication of JP4042546B2 publication Critical patent/JP4042546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0425Air cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/41Control to generate negative pressure in the intake manifold, e.g. for fuel vapor purging or brake booster
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine capable of more securely emitting NOx in forcedly setting an exhaust air-fuel ratio rich to emit NOx from NOx absorbing material by use of a turbo charger with a motor. <P>SOLUTION: This control device for an internal combustion engine is provided with the NOx absorbing material (NOx storage reduction catalyst) 29 which absorbs nitrogen oxide NOx when an exhaust air-fuel ratio is lean, and which emits NOx when it is rich or stoichiometric, a turbo charger 11 disposed to be attached on the internal combustion engine, the motor 11b capable of changing supercharge pressure by rotating a turbine/compressor 11 by exhaust currents, and performing regenerative power generation by exhaust energy, and motor control means 16 and 21 to control the motor 11b. The motor control means 16 and 21 controls the motor 11b to reduce intake air quantity when the exhaust air-fuel ratio is set rich to emit NOx from the NOx absorbing material 29. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、排気通路上にNOx吸収材を有すると共にタービン/コンプレッサに電動機が組み込まれたターボチャージャを有している内燃機関の制御装置に関する。
【0002】
【従来の技術】
近年になって、燃費向上や排気ガスのクリーン化に対する要望が強くなっており、リーンバーンエンジンなども実用されている。リーンバーンエンジンにおいては、リーンバーン時に排出されるNOxの浄化のためにNOx吸収材を三元触媒と併用したり、NOx吸蔵還元型の排気浄化触媒を採用するなどして、排気ガス中のNOxの浄化率を向上させている。NOx吸収材は、流入する排気ガスの排気空燃比がリーンの時に窒素酸化物NOxを吸収し、リッチ又はストイキの時に吸収した窒素酸化物NOxを放出する性質を有しており、排気空燃比がリーンの時に排出されるNOxを一旦吸収・吸蔵し、排気空燃比がリッチ又はストイキとなったときに放出して三元触媒(NOx吸蔵還元型排気浄化触媒の場合はそれ自身)で浄化させる。吸蔵したNOxを強制的に浄化させるため、排気空燃比を短時間強制的にリッチにするいわゆるリッチスパイクなどが行われることもある。
【0003】
【特許文献1】
特開2001−55946号公報
【0004】
【発明が解決しようとする課題】
リッチスパイクを行う内燃機関としては[特許文献1]に記載のものが知られている。[特許文献1]に記載の内燃機関においては、リッチスパイク時に増量して噴射された燃料の霧化が促進されるようにターボチャージャによる過給圧を上げるものである。ターボチャージャを有する内燃機関においてリッチスパイクを行うと排気エネルギーが増大して過給圧が上昇するため、リッチになりにくいという傾向がある。[特許文献1]ではさらに霧化促進のためにさらに過給圧を上げる(吸入空気量を増やす)ため、排気空燃比を十分にリッチにできずにリッチスパイクの効果が十分に得られないことが懸念される。
【0005】
本発明における内燃機関にはタービン/コンプレッサに電動機(モータ)を組み込んだ電動機付ターボチャージャが付随して配設されており、電動機を駆動して強制的にタービン/コンプレッサを駆動して過給をアシストしたり、排気エネルギーを利用して電動機に回生発電を行わせることが可能である。本発明の目的は、電動機付ターボチャージャを利用して、強制的に排気空燃比をリッチにしてNOx吸収材からNOxを放出させる際(リッチスパイク時など)に、より確実かつより早期にNOxを放出させることのできる内燃機関の制御装置を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に記載の内燃機関の制御装置は、内燃機関の排気通路上に配設され、流入する排気ガスの排気空燃比がリーンの時に窒素酸化物NOxを吸収し、リッチ又はストイキの時に吸収した窒素酸化物NOxを放出するNOx吸収材と、内燃機関に付随して配設されたターボチャージャと、排気流によって該ターボチャージャのタービン/コンプレッサを回転させて過給圧を変更し得ると共に排気エネルギーによって回生発電を行い得る電動機と、電動機の駆動・回生発電制御を行う電動機制御手段とを備え、電動機制御手段が、排気空燃比が強制的にリッチにされてNOx吸収材から吸収したNOxが放出される際に、吸入空気量を低減させるように電動機を制御することを特徴としている。
【0007】
また、請求項2に記載の発明は、請求項1に記載の内燃機関の制御装置において、電動機制御手段が、電動機に供給する駆動用通電量を低下させて吸入空気量を低減させることを特徴としている。
【0008】
また、請求項3に記載の発明は、請求項1に記載の内燃機関の制御装置において、電動機制御手段が、電動機から回収する回生発電量を増加させて吸入空気量を低減させることを特徴としている。
【0009】
【発明の実施の形態】
本発明の制御装置の一実施形態について以下に説明する。本実施形態の制御装置を有するエンジン1を図1に示す。
【0010】
本実施形態で説明するエンジン1は、多気筒エンジンであるが、ここではそのうちの一気筒のみが断面図として図1に示されている。エンジン1は、インジェクタ2によってシリンダ3内のピストン4の上面に燃料を噴射するタイプのエンジンである。このエンジン1は、成層燃焼が可能であり、いわゆるリーンバーンエンジンである。後述するターボチャージャによってより多くの吸入空気を過給してリーンバーンを行うことによって、高出力化だけでなく低燃費化をも実現し得るものである。
【0011】
エンジン1は、吸気通路5を介してシリンダ3内に吸入した空気をピストン4によって圧縮し、ピストン4の上面に形成された窪みの内部に燃料を噴射して濃い混合気を点火プラグ7近傍に集め、これに点火プラグ7で着火させて燃焼させ得る(成層燃焼)。吸気行程に燃料噴射すれば、通常の均質燃焼も行える。シリンダ3の内部と吸気通路5との間は、吸気バルブ8によって開閉される。燃焼後の排気ガスは排気通路6に排気される。シリンダ3の内部と排気通路6との間は、排気バルブ9によって開閉される。吸気通路5上には、上流側からエアクリーナ10、エアフロメータ27、ターボユニット11、インタークーラー12、スロットルバルブ13などが配置されている。
【0012】
エアクリーナ10は、吸入空気中のゴミや塵などを取り除くフィルタである。本実施形態のエアフロメータ27は、ホットワイヤ式のものであり、吸入空気量を質量流量として検出するものである。ターボユニット11は、吸気通路5と排気通路6との間に配され、過給を行うものである。本実施形態のターボユニット11においては、タービン側インペラーとコンプレッサ側インペラーとが回転軸で連結されている(以下、この部分を単にタービン/コンプレッサ11aと言うこととする)。
【0013】
また、本実施形態のターボチャージャは、タービン/コンプレッサ11aの回転軸が出力軸となるように電動機11bが組み込まれている電動機付ターボチャージャである。電動機11bは、排気エネルギーを用いて発電する発電機としても機能し得る。なお、ターボユニット11は、排気エネルギーによってのみ過給を行う通常の過給機としても機能し得るが、電動機11bによってタービン/コンプレッサ11aを強制的に駆動することでさらなる過給を行うこともできる。
【0014】
また、排気エネルギーを利用して、タービン/コンプレッサ11aを介して電動機11bを回転させることで回生発電させ、発電された電力を回収することもできる。電動機11bは、タービン/コンプレッサ11aの回転軸に固定されたロータと、その周囲に配置されたステータとを主たる構成部分として有している。吸気通路5上のターボユニット11の下流側には、ターボユニット11による過給で圧力上昇に伴って温度が上昇した吸入空気の温度を下げる空冷式インタークーラー12が配されている。インタークーラー12によって吸入空気の温度を下げ、充填効率を向上させる。
【0015】
インタークーラー12の下流側には、吸入空気量を調節するスロットルバルブ13が配されている。本実施形態のスロットルバルブ13は、いわゆる電子制御式スロットルバルブであり、アクセルペダル14の操作量をアクセルポジショニングセンサ15で検出し、この検出結果と他の情報量とに基づいてECU16がスロットルバルブ13の開度を決定するものである。スロットルバルブ13は、これに付随して配設されたスロットルモータ17によって開閉される。また、スロットルバルブ13に付随して、その開度を検出するスロットルポジショニングセンサ18も配設されている。
【0016】
スロットルバルブ13の下流側には、吸気通路5内の圧力(過給圧・吸気圧)を検出する圧力センサ19が配設されている。これらのセンサ15,18,19,27はECU16に接続されており、その検出結果をECU16に送出している。ECU16は、CPU,ROM,RAM等からなる電子制御ユニットである。ECU16には、上述したインジェクタ2、点火プラグ7や、電動機11b、等が接続されており、これらはECU16からの信号によって制御されている。ECU16には、このほかにも、吸気バルブ8の開閉タイミングを制御する可変バルブタイミング機構20の油圧や、電動機11bと接続されたコントローラ21、バッテリ22なども接続されている。
【0017】
コントローラ21は、電動機11bの駆動を制御するだけでなく、電動機11bが回生発電した電力の電圧変換を行うインバータとしての機能も有している。回生発電による電力は、コントローラ21によって電圧変換された後にバッテリ22に充電される。一方、排気通路6上には、ターボユニット11の上流側に、排気空燃比を検出する空燃比センサ28が配されている。空燃比センサ28の上述したECU16に接続されており、その検出結果をECU16に送出している。本実施形態における空燃比センサ28は、リーン域からリッチ域までリニアに空燃比を検出することのできる、いわゆるリニア空燃比センサである。
【0018】
また、ターボユニット11の下流側には、排気ガスを浄化する排気浄化触媒23が取り付けられている。この排気浄化触媒23は通常の三元触媒で、排気通路6の上流側に配設され、冷間始動時に排気温によってより早期に活性化温度まで昇温され、より早期に触媒機能を発現するものである。この排気浄化触媒23の下流側には、NOx吸収還元型の排気浄化触媒(以下単にNOx吸蔵還元型触媒とも言う)29が配設されている。NOx吸蔵還元型触媒29は、三元触媒上にNOx吸収材をも担持させたもので、通常の三元触媒としての機能とNOx吸収材としての機能とを併有している。即ち、NOx吸蔵還元型触媒29はNOx吸収材でもある。
【0019】
NOx吸蔵還元型触媒29は、表面にアルミナの薄膜層がコーティングされた担体上に、白金やパラジウムやロジウムなどの貴金属の他にアルミナコーティング層上に、アルカリ金属(K,Na,Li,Csなど)、アルカリ土類金属(Ba,Caなど)又は希土類元素(La,Yなど)などをもさらに担持させ、エンジンがリーン空燃比で運転されたときに排気ガス中に含まれるNOxを吸蔵させることができるようにしたものである。このため、NOx吸蔵還元型触媒29は、上述したように、通常の三元触媒としての機能、即ち、理論空燃比近傍で燃焼されたときの排気ガス内のHC,CO,NOxを浄化する機能に加えて、排気ガス中に含まれる還元されないNOxを吸蔵することができる。
【0020】
NOx吸蔵還元型触媒29に吸蔵されたNOxは、リッチ空燃比あるいは理論空燃比(ストイキ空燃比)で燃焼されたときに放出され、排気ガス中のHC,COによって還元されて浄化される(このときHC,COは同時に酸化されて浄化される)。このため、リーンバーン領域での運転が継続した場合など、NOx吸蔵還元型触媒29のNOx吸蔵量が一杯に近づいたと判断されたときは、リッチ空燃比で短時間エンジンを運転して吸蔵されたNOxを還元させる、いわゆるリッチスパイク運転が強制的に行われる場合もある。
【0021】
また、排気通路6(空燃比センサ28の上流側)から吸気通路5(圧力センサ19の下流側に形成されたサージタンク部)にかけて排気ガスを還流させるためのEGR(Exhaust Gas Recirculation)通路24が配設されている。EGR通路24上には、排気ガス還流量を調節するEGRバルブ25が取り付けられている。EGRバルブ25の開度制御も上述したECU16によって行われる。また、エンジン1のクランクシャフト近傍には、クランクシャフトの回転位置を検出するクランクポジショニングセンサ26が取り付けられている。クランクポジショニングセンサ26は、クランクポジションの位置からエンジン回転数を検出することもできる。
【0022】
上述した内燃機関における制御について説明する。図2に、本実施形態における制御のフローチャートを示す。
【0023】
図2のフローチャートの制御は、空燃比制御や通常の電動機制御と並行して実行されている。そして、電動機制御に関しては、通常の電動機制御に対して割り込む形で実行される。なお、通常の電動機制御とは、目標過給圧と実過給圧とから電動機11bによる過給アシスト量(電動機11bへの通電量)を決定すると共に、エンジン1の状況によっては過給アシストではなく回生発電を行わせる制御である。なお、電動機11bは、ECU16とコントローラ21とが協調して制御しており、これらが電動機制御手段として機能している。
【0024】
まず、リッチスパイク要求が生成されているか否かが判定される(ステップ200)。リッチスパイク要求は、平行して実行されている空燃比制御において生成される。この空燃比制御では、上述したようにリッチスパイクが行われる場合があり、このときリッチスパイク要求が生成され、これに基づいて燃料噴射量が制御される。なお、このとき、必要があればスロットルバルブ13によって吸入空気量が制御されたり、EGRバルブ25に排気ガス還流量が制御される。例えば、リーンバーン領域での運転が継続されているような場合はNOx吸蔵還元型触媒29にはNOxが蓄積されていくので、リーンバーン領域での運転が数十秒継続したらリッチスパイクがコンマ数秒から1秒程度行われる。
【0025】
リッチスパイク要求がなければ、図2に示されるフローチャートの制御を終えるが、リッチスパイク要求がある場合は、電動機11bを制御して吸入空気量を低減させるべく、まず、電動機11bが駆動中であるかどうかを判定する(ステップ210)。電動機11bが駆動中であるとは、電動機11bに対して駆動電力が供給されており、電動機11bによる過給アシストが行われている最中であるということである。ステップ210が肯定される場合は、まず、電動機11bへの駆動電力の供給を停止して電動機11bによる過給アシストを停止させ(ステップ220)、回生発電を開始する(ステップ230)。
【0026】
過給アシストを停止させ、かつ、回生発電を開始させることで、タービン/コンプレッサ11aの回転に抵抗が生じることとなり、この結果、吸入空気量を低減させることとなる。リッチスパイク時に吸入空気量を低減させることで、よりリッチ度合いを増すことができ、より確実に、また、より多くのNOxを放出させることができる。本実施形態では、NOx吸蔵還元型触媒29から放出されたNOxは、NOx吸蔵還元型触媒29自身によって浄化される。また、電動機11bを制御して吸入空気量を直接的に低減させるため、より早期にリッチな状態を実現することができるので、より早期にリッチスパイクの効果が得られる。
【0027】
一方、ステップ210が否定される場合は、次いで、電動機11bによる回生発電が既に行われているか否かを判定する(ステップ240)。ステップ240が否定される場合、即ち、電動機11bによって過給アシストも回生発電も行われていない場合は、回生発電を開始して(ステップ230)、吸入空気量を低減させる。この場合も、リッチスパイクの効果をより確実に、かつ、より早期に得ることができる。また、ステップ240が肯定される場合は、回生発電量を増加させる(ステップ250)。制御にもよるが、コントローラ21によって回生発電量を可変制御しているような場合は本実施形態のように、回生発電量を増加させることでも吸入空気量を低減させることができる。
【0028】
最大発電量を既に発電しているような場合は、スロットルバルブ13の開度を絞るなどしても良い。ステップ230によって開始された回生発電、又は、ステップ250によって発電量が増加された回生発電は、所定時間継続される(ステップ260)。この所定時間としては、例えば、リッチスパイクの時間に合わせた時間が考えられる。なお、より早期にリッチに移行させればその状況は維持され得るため、本実施形態のように所定時間だけ電動機11bによって吸入空気量を低減させてリッチな状態に移行させるだけで十分な効果が得られる。この所定時間は、予め実験によって最適な時間が決定されている。また、この所定時間は固定値としても良いし、過給圧やリッチ度合い(リッチスパイク実行時の空燃比やその前後の空燃比差など)に基づいて可変制御しても良い。
【0029】
電動機11bによって所定時間吸入空気量を低減させた後、通常の状態に復帰する(ステップ270)。即ち、上述したように、目標過給圧と実過給圧とから電動機11bによる過給アシスト量(電動機11bへの通電量)を決定すると共に、エンジン1の状況によっては過給アシストではなく回生発電を行わせる制御に基づいて電動機11bが制御される。その後、再度リッチスパイクが行われる場合は、上述した図2のフローチャートの制御が実行される。本実施形態では、電動機11bによる吸入空気量低減に伴って、回生発電が開始されたり、その回生発電量が増加されるので、電気エネルギーの回収によってエネルギー効率を向上させることができるという利点もある。
【0030】
なお、リッチスパイク時には、エンジン1の出力トルクに段差が生じ得る。特に、リーンバーン領域での運転時にリッチスパイクが実行されれば、空燃比はリーンから一気にリッチとなるので、トルクの段差も顕著になりやすい。そこで、本実施形態では、このトルクの段差は点火時期を調節し(遅角し)、リッチスパイクの実行前後での出力トルクがほぼ同等となるようにしている。
【0031】
本発明は上述した実施形態に限定されるものではない。例えば、上述した実施形態においては、リッチスパイク実行時(排気空燃比を強制的にリッチにしてNOx吸収材からNOxを放出させる際)に、ターボチャージャの電動機が駆動中(過給アシスト中)である場合は、電動機を停止し、かつ、電動機による回生発電を開始した。しかし、駆動中の電動機を停止させるだけでも吸入空気量を低減させる効果はあるので、駆動中の電動機を停止させるだけでも良い。
【0032】
また、NOx吸収材(NOx吸蔵還元型触媒)には、硫黄酸化物SOxがNOxよりも安定的に吸蔵されてしまうという性質がある。このため、燃料やエンジンオイル中の硫黄成分がSOxとしてNOx吸蔵還元型触媒に吸蔵され、NOxを吸蔵する容量が減少する、いわゆるSOx被毒が生じ得る。このSOx被毒を解消するためにもリッチスパイクが行われ得るが、この場合のリッチスパイクにおいてもSOxと同時にNOxも放出されるため、このときに電動機を制御して吸入空気量を低減させれば本発明の範囲内である。
【0033】
【発明の効果】
本発明の内燃機関の制御装置によれば、排気空燃比を強制的にリッチにしてNOx吸収材からNOxを放出させる際に電動機によって吸入空気量を低減させることで、より早期により確実に排気空燃比をリッチに移行させることができ、NOxの放出効果をより早期かつ確実に得ることができる。ここで、電動機への通電量を低下させることで吸入空気量を低減させれば、無駄な電気エネルギーの消費を抑制してエネルギー効率を向上させることができる。ここで、電動機による回生発電量を増加させれば、電気エネルギーの回収行え、エネルギー効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の制御装置の一実施形態を有する内燃機関(エンジン)の構成を示す構成図である。
【図2】本発明の制御装置の一実施形態による電動機制御のフローチャートである。
【符号の説明】
1…エンジン、2…インジェクタ、3…シリンダ、4…ピストン、5…吸気通路、6…排気通路、7…点火プラグ、8…吸気バルブ、9…排気バルブ、10…エアクリーナ、11…ターボユニット、11a…タービン、11b…電動機、12…インタークーラー、13…エアクリーナ、13…スロットルバルブ、14…アクセルペダル、15…アクセルポジショニングセンサ、16…ECU(電動機制御手段)、17…スロットルモータ、18…スロットルポジショニングセンサ、19…圧力センサ、20…可変バルブタイミング機構、21…コントローラ(電動機制御手段)、22…バッテリ、23…排気浄化触媒(三元触媒)、24…EGR通路、25…EGRバルブ、26…クランクポジショニングセンサ、27…エアフロメータ、28…空燃比センサ、29…NOx吸蔵還元型触媒(NOx吸収材)。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for an internal combustion engine having a NOx absorber on an exhaust passage and a turbocharger having an electric motor incorporated in a turbine / compressor.
[0002]
[Prior art]
In recent years, there has been a strong demand for improved fuel efficiency and cleaner exhaust gas, and lean burn engines and the like have been put to practical use. In a lean burn engine, a NOx absorbent is used in combination with a three-way catalyst to purify NOx emitted during lean burn, or a NOx storage reduction type exhaust purification catalyst is employed to reduce NOx in exhaust gas. The purification rate has been improved. The NOx absorbent has the property of absorbing nitrogen oxides NOx when the exhaust air-fuel ratio of the inflowing exhaust gas is lean, and releasing the absorbed nitrogen oxides NOx when the exhaust air-fuel ratio is rich or stoichiometric. NOx discharged at the time of leaning is temporarily absorbed and stored, released when the exhaust air-fuel ratio becomes rich or stoichiometric, and purified by a three-way catalyst (in the case of a NOx storage reduction type exhaust purification catalyst itself). In order to forcibly purify the stored NOx, a so-called rich spike for forcibly enriching the exhaust air-fuel ratio for a short time may be performed.
[0003]
[Patent Document 1]
JP 2001-55946 A
[Problems to be solved by the invention]
As an internal combustion engine that performs a rich spike, the one described in Patent Literature 1 is known. In the internal combustion engine described in [Patent Document 1], the supercharging pressure by the turbocharger is increased so as to promote the atomization of the injected fuel in an increased amount during a rich spike. When a rich spike is performed in an internal combustion engine having a turbocharger, the exhaust energy increases and the supercharging pressure increases. In Patent Literature 1, the boost pressure is further increased (increased intake air amount) to further promote atomization, so that the exhaust air-fuel ratio cannot be made sufficiently rich and the effect of the rich spike cannot be sufficiently obtained. Is concerned.
[0005]
The internal combustion engine according to the present invention is provided with a turbocharger with a motor in which a motor (motor) is incorporated in a turbine / compressor, and drives the motor to forcibly drive the turbine / compressor to perform supercharging. It is possible to assist or to make the electric motor perform regenerative power generation using the exhaust energy. An object of the present invention is to use a turbocharger with a motor to forcibly make the exhaust air-fuel ratio rich and release NOx from the NOx absorbent (for example, at the time of rich spike). It is an object of the present invention to provide a control device for an internal combustion engine that can release the internal combustion engine.
[0006]
[Means for Solving the Problems]
The control device for an internal combustion engine according to claim 1 is disposed on an exhaust passage of the internal combustion engine, and absorbs nitrogen oxides NOx when the exhaust air-fuel ratio of the inflowing exhaust gas is lean, and absorbs nitrogen oxide NOx when the exhaust gas is rich or stoichiometric. A NOx absorbent that releases nitrogen oxide NOx, a turbocharger provided in association with the internal combustion engine, and a turbocharger that is rotated by the exhaust gas to change the supercharging pressure and exhaust gas. An electric motor capable of performing regenerative power generation with energy and motor control means for controlling the driving and regenerative power generation of the motor are provided. The electric motor control means forcibly makes the exhaust air-fuel ratio rich and absorbs NOx absorbed from the NOx absorbent. It is characterized in that the electric motor is controlled so as to reduce the amount of intake air when being discharged.
[0007]
According to a second aspect of the present invention, in the control apparatus for an internal combustion engine according to the first aspect, the motor control means reduces the amount of drive current supplied to the motor to reduce the amount of intake air. And
[0008]
According to a third aspect of the present invention, in the control device for an internal combustion engine according to the first aspect, the electric motor control means reduces an intake air amount by increasing a regenerative power generation amount recovered from the electric motor. I have.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the control device of the present invention will be described below. FIG. 1 shows an engine 1 having a control device according to the present embodiment.
[0010]
The engine 1 described in the present embodiment is a multi-cylinder engine, but here only one cylinder is shown in FIG. 1 as a cross-sectional view. The engine 1 is of a type in which fuel is injected into the upper surface of a piston 4 in a cylinder 3 by an injector 2. This engine 1 is capable of performing stratified combustion, and is a so-called lean burn engine. By supercharging a larger amount of intake air by a turbocharger described later and performing lean burn, not only high output but also low fuel consumption can be realized.
[0011]
The engine 1 compresses air sucked into the cylinder 3 through the intake passage 5 by the piston 4, injects fuel into a hollow formed on the upper surface of the piston 4, and moves a rich mixture to the vicinity of the ignition plug 7. It can be collected and ignited by the spark plug 7 to burn (stratified combustion). If fuel is injected during the intake stroke, normal homogeneous combustion can also be performed. The interior of the cylinder 3 and the intake passage 5 are opened and closed by an intake valve 8. The exhaust gas after combustion is exhausted to the exhaust passage 6. The interior of the cylinder 3 and the exhaust passage 6 are opened and closed by an exhaust valve 9. An air cleaner 10, an air flow meter 27, a turbo unit 11, an intercooler 12, a throttle valve 13, and the like are arranged on the intake passage 5 from the upstream side.
[0012]
The air cleaner 10 is a filter that removes dust and dirt from the intake air. The air flow meter 27 of the present embodiment is of a hot wire type, and detects an intake air amount as a mass flow rate. The turbo unit 11 is disposed between the intake passage 5 and the exhaust passage 6 and performs supercharging. In the turbo unit 11 of the present embodiment, the turbine-side impeller and the compressor-side impeller are connected by a rotating shaft (hereinafter, this portion is simply referred to as a turbine / compressor 11a).
[0013]
Further, the turbocharger of the present embodiment is a turbocharger with an electric motor in which the electric motor 11b is incorporated so that the rotation shaft of the turbine / compressor 11a becomes the output shaft. The motor 11b can also function as a generator that generates power using exhaust energy. The turbo unit 11 can function as a normal supercharger that performs supercharging only by exhaust energy, but can further perform supercharging by forcibly driving the turbine / compressor 11a by the electric motor 11b. .
[0014]
In addition, by using the exhaust energy, the electric motor 11b is rotated via the turbine / compressor 11a to generate regenerative electric power, and the generated electric power can be collected. The electric motor 11b has, as main components, a rotor fixed to the rotating shaft of the turbine / compressor 11a and a stator arranged around the rotor. On the downstream side of the turbo unit 11 on the intake passage 5, an air-cooled intercooler 12 that lowers the temperature of the intake air whose temperature has increased due to a pressure increase due to supercharging by the turbo unit 11 is arranged. The intercooler 12 lowers the temperature of the intake air to improve the charging efficiency.
[0015]
Downstream of the intercooler 12, a throttle valve 13 for adjusting the amount of intake air is arranged. The throttle valve 13 of the present embodiment is a so-called electronically-controlled throttle valve. The operation amount of an accelerator pedal 14 is detected by an accelerator positioning sensor 15, and the ECU 16 controls the throttle valve 13 based on the detection result and other information amounts. Is determined. The throttle valve 13 is opened and closed by a throttle motor 17 provided in association therewith. In addition to the throttle valve 13, a throttle positioning sensor 18 for detecting the opening degree is also provided.
[0016]
Downstream of the throttle valve 13, a pressure sensor 19 for detecting the pressure (supercharging pressure / intake pressure) in the intake passage 5 is provided. These sensors 15, 18, 19, 27 are connected to the ECU 16 and send the detection results to the ECU 16. The ECU 16 is an electronic control unit including a CPU, a ROM, a RAM, and the like. The above-described injector 2, the ignition plug 7, the electric motor 11b, and the like are connected to the ECU 16, and these are controlled by signals from the ECU 16. In addition, the ECU 16 is also connected to a hydraulic pressure of a variable valve timing mechanism 20 for controlling the opening / closing timing of the intake valve 8, a controller 21 connected to the electric motor 11b, a battery 22, and the like.
[0017]
The controller 21 not only controls the driving of the electric motor 11b, but also has a function as an inverter that performs voltage conversion of the electric power regenerated by the electric motor 11b. The power generated by the regenerative power generation is converted into a voltage by the controller 21 and then charged in the battery 22. On the other hand, on the exhaust passage 6, an air-fuel ratio sensor 28 that detects an exhaust air-fuel ratio is disposed upstream of the turbo unit 11. The air-fuel ratio sensor 28 is connected to the above-described ECU 16, and sends the detection result to the ECU 16. The air-fuel ratio sensor 28 according to the present embodiment is a so-called linear air-fuel ratio sensor capable of linearly detecting the air-fuel ratio from a lean region to a rich region.
[0018]
An exhaust purification catalyst 23 for purifying exhaust gas is attached downstream of the turbo unit 11. The exhaust gas purifying catalyst 23 is a normal three-way catalyst, which is disposed upstream of the exhaust passage 6, and is quickly heated to the activation temperature by the exhaust gas temperature at the time of a cold start, so that the catalytic function is exhibited earlier. Things. On the downstream side of the exhaust purification catalyst 23, an NOx absorption reduction type exhaust purification catalyst (hereinafter, also simply referred to as a NOx storage reduction type catalyst) 29 is disposed. The NOx storage reduction catalyst 29 is a catalyst in which a NOx absorbent is also carried on a three-way catalyst, and has both a function as a normal three-way catalyst and a function as a NOx absorbent. That is, the NOx storage reduction catalyst 29 is also a NOx absorbent.
[0019]
The NOx occlusion reduction type catalyst 29 is provided on a carrier whose surface is coated with a thin film layer of alumina, on an alumina coating layer in addition to a noble metal such as platinum, palladium and rhodium, and on an alumina coating layer. ), An alkaline earth metal (Ba, Ca, etc.) or a rare earth element (La, Y, etc.) are further supported to absorb NOx contained in exhaust gas when the engine is operated at a lean air-fuel ratio. Is made possible. Therefore, as described above, the NOx storage reduction catalyst 29 functions as a normal three-way catalyst, that is, a function of purifying HC, CO, and NOx in the exhaust gas when the fuel is burned near the stoichiometric air-fuel ratio. In addition, NOx not reduced contained in the exhaust gas can be stored.
[0020]
The NOx stored in the NOx storage reduction catalyst 29 is released when burned at a rich air-fuel ratio or a stoichiometric air-fuel ratio (stoichiometric air-fuel ratio), and is reduced and purified by HC and CO in the exhaust gas. At this time, HC and CO are simultaneously oxidized and purified). For this reason, when it is determined that the NOx storage amount of the NOx storage reduction catalyst 29 is almost full, for example, when the operation in the lean burn region is continued, the engine is stored for a short time by operating the engine at the rich air-fuel ratio. In some cases, a so-called rich spike operation for reducing NOx is forcibly performed.
[0021]
Also, an EGR (Exhaust Gas Recirculation) passage 24 for recirculating exhaust gas from the exhaust passage 6 (upstream of the air-fuel ratio sensor 28) to the intake passage 5 (surge tank formed downstream of the pressure sensor 19) is provided. It is arranged. An EGR valve 25 for adjusting the amount of exhaust gas recirculation is mounted on the EGR passage 24. The opening control of the EGR valve 25 is also performed by the ECU 16 described above. A crank positioning sensor 26 that detects the rotational position of the crankshaft is attached near the crankshaft of the engine 1. The crank positioning sensor 26 can also detect the engine speed from the position of the crank position.
[0022]
The control in the above-described internal combustion engine will be described. FIG. 2 shows a flowchart of control in the present embodiment.
[0023]
The control in the flowchart of FIG. 2 is executed in parallel with the air-fuel ratio control and the normal electric motor control. The motor control is executed in such a manner as to interrupt the normal motor control. The normal motor control means that the supercharging assist amount by the electric motor 11b (the amount of current supplied to the electric motor 11b) is determined from the target supercharging pressure and the actual supercharging pressure. This is a control for performing regenerative power generation without power. The electric motor 11b is controlled by the ECU 16 and the controller 21 in cooperation with each other, and these function as electric motor control means.
[0024]
First, it is determined whether a rich spike request has been generated (step 200). The rich spike request is generated in the air-fuel ratio control being executed in parallel. In the air-fuel ratio control, a rich spike may be performed as described above. At this time, a rich spike request is generated, and the fuel injection amount is controlled based on the request. At this time, if necessary, the intake air amount is controlled by the throttle valve 13 or the exhaust gas recirculation amount is controlled by the EGR valve 25. For example, when the operation in the lean burn region is continued, NOx is accumulated in the NOx storage reduction catalyst 29. Therefore, if the operation in the lean burn region continues for several tens of seconds, a rich spike will be separated by a few seconds. From about 1 second.
[0025]
If there is no rich spike request, the control of the flowchart shown in FIG. 2 is finished. However, if there is a rich spike request, first, the electric motor 11b is being driven in order to control the electric motor 11b and reduce the intake air amount. It is determined whether or not (step 210). The state where the electric motor 11b is being driven means that the driving power is being supplied to the electric motor 11b and the supercharging assist by the electric motor 11b is being performed. When step 210 is affirmative, first, the supply of the driving power to the electric motor 11b is stopped to stop the supercharging assist by the electric motor 11b (step 220), and the regenerative power generation is started (step 230).
[0026]
By stopping the supercharging assist and starting the regenerative power generation, resistance occurs in the rotation of the turbine / compressor 11a, and as a result, the intake air amount is reduced. By reducing the amount of intake air during a rich spike, the degree of richness can be increased, and more NOx can be released more reliably and more. In the present embodiment, the NOx released from the NOx storage reduction catalyst 29 is purified by the NOx storage reduction catalyst 29 itself. Further, since the electric motor 11b is controlled to directly reduce the intake air amount, a rich state can be realized earlier, so that the effect of the rich spike can be obtained earlier.
[0027]
On the other hand, if step 210 is denied, then it is determined whether regenerative power generation by the electric motor 11b has already been performed (step 240). If step 240 is denied, that is, if neither supercharging assistance nor regenerative power generation is performed by the electric motor 11b, regenerative power generation is started (step 230) to reduce the amount of intake air. Also in this case, the effect of the rich spike can be obtained more reliably and earlier. If step 240 is affirmed, the regenerative power generation amount is increased (step 250). Although depending on the control, when the regenerative power generation amount is variably controlled by the controller 21, the intake air amount can be reduced by increasing the regenerative power generation amount as in the present embodiment.
[0028]
If the maximum power generation has already been generated, the opening of the throttle valve 13 may be reduced. The regenerative power generation started in step 230 or the regenerative power generation in which the amount of power generation has been increased in step 250 is continued for a predetermined time (step 260). As the predetermined time, for example, a time corresponding to the time of the rich spike can be considered. Note that, if the state is shifted to rich earlier, the situation can be maintained. Therefore, it is sufficient to simply reduce the intake air amount by the electric motor 11b for a predetermined time and shift to the rich state as in this embodiment. can get. The predetermined time is determined in advance by an experiment. Further, the predetermined time may be a fixed value, or may be variably controlled based on the supercharging pressure or the rich degree (the air-fuel ratio at the time of executing the rich spike, the air-fuel ratio before and after the rich spike, etc.).
[0029]
After the intake air amount is reduced for a predetermined time by the electric motor 11b, the operation returns to the normal state (step 270). That is, as described above, the amount of supercharging assist by the electric motor 11b (the amount of power to the electric motor 11b) is determined from the target supercharging pressure and the actual supercharging pressure, and depending on the condition of the engine 1, regeneration is performed instead of supercharging assist. The electric motor 11b is controlled based on the control for generating electric power. Thereafter, when the rich spike is performed again, the control of the above-described flowchart of FIG. 2 is performed. In the present embodiment, the regenerative power generation is started or the regenerative power generation amount is increased with a reduction in the amount of intake air by the electric motor 11b, so that there is also an advantage that energy efficiency can be improved by collecting electric energy. .
[0030]
At the time of a rich spike, a step may occur in the output torque of the engine 1. In particular, if a rich spike is executed during operation in the lean burn region, the air-fuel ratio becomes rich at once from lean, and the torque step tends to be remarkable. Therefore, in the present embodiment, this torque step adjusts the ignition timing (retards) so that the output torque before and after the execution of the rich spike becomes substantially equal.
[0031]
The present invention is not limited to the embodiments described above. For example, in the above-described embodiment, when the rich spike is executed (when the exhaust air-fuel ratio is forcibly made rich and the NOx is released from the NOx absorbent), the electric motor of the turbocharger is being driven (during the supercharging assist). In some cases, the motor was stopped and regenerative power generation by the motor was started. However, simply stopping the motor being driven has the effect of reducing the amount of intake air, so it is only necessary to stop the motor being driven.
[0032]
Further, the NOx absorbent (NOx storage reduction type catalyst) has a property that the sulfur oxide SOx is stored more stably than NOx. For this reason, the sulfur component in the fuel or the engine oil is stored as SOx in the NOx storage reduction catalyst, and so-called SOx poisoning, in which the capacity of storing NOx is reduced, may occur. Although a rich spike can be performed to eliminate this SOx poisoning, NOx is also released at the same time as SOx in the rich spike. In this case, the electric motor is controlled to reduce the intake air amount. It is within the scope of the present invention.
[0033]
【The invention's effect】
According to the control device for an internal combustion engine of the present invention, when the exhaust air-fuel ratio is forcibly made rich and the NOx is released from the NOx absorbent, the amount of intake air is reduced by the electric motor, so that the exhaust air can be more reliably and earlier. The fuel ratio can be shifted to rich, and the effect of releasing NOx can be obtained earlier and more reliably. Here, if the amount of intake air is reduced by reducing the amount of electricity supplied to the electric motor, wasteful consumption of electric energy can be suppressed and energy efficiency can be improved. Here, if the amount of regenerative power generated by the motor is increased, electric energy can be recovered, and energy efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a configuration of an internal combustion engine having one embodiment of a control device of the present invention.
FIG. 2 is a flowchart of electric motor control according to an embodiment of the control device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Injector, 3 ... Cylinder, 4 ... Piston, 5 ... Intake passage, 6 ... Exhaust passage, 7 ... Spark plug, 8 ... Intake valve, 9 ... Exhaust valve, 10 ... Air cleaner, 11 ... Turbo unit, 11a: Turbine, 11b: Electric motor, 12: Intercooler, 13: Air cleaner, 13: Throttle valve, 14: Accelerator pedal, 15: Accelerator positioning sensor, 16: ECU (motor control means), 17: Throttle motor, 18: Throttle positioning Sensor 19 pressure sensor 20 variable valve timing mechanism 21 controller (motor control means) 22 battery 23 exhaust purification catalyst (three-way catalyst) 24 EGR passage 25 EGR valve 26 Crank positioning sensor, 27 ... air flow meter, 2 ... fuel ratio sensor, 29 ... NOx storage reduction catalyst (NOx absorber).

Claims (3)

内燃機関の排気通路上に配設され、流入する排気ガスの排気空燃比がリーンの時に窒素酸化物NOxを吸収し、リッチ又はストイキの時に吸収した窒素酸化物NOxを放出するNOx吸収材と、
内燃機関に付随して配設されたターボチャージャと、
排気流によって該ターボチャージャのタービン/コンプレッサを回転させて過給圧を変更し得ると共に排気エネルギーによって回生発電を行い得る電動機と、
前記電動機の駆動・回生発電制御を行う電動機制御手段とを備え、
前記電動機制御手段が、排気空燃比が強制的にリッチにされて前記NOx吸収材から吸収したNOxが放出される際に、吸入空気量を低減させるように前記電動機を制御することを特徴とする内燃機関の制御装置。
A NOx absorbent disposed on the exhaust passage of the internal combustion engine, absorbing the nitrogen oxides NOx when the exhaust air-fuel ratio of the inflowing exhaust gas is lean, and releasing the nitrogen oxides NOx absorbed when the exhaust gas is rich or stoichiometric;
A turbocharger arranged in association with the internal combustion engine,
An electric motor capable of changing a supercharging pressure by rotating a turbine / compressor of the turbocharger by an exhaust gas flow and performing regenerative power generation by exhaust energy;
Motor control means for performing drive and regenerative power generation control of the motor,
The electric motor control means controls the electric motor to reduce the intake air amount when the exhaust air-fuel ratio is forcibly made rich and the NOx absorbed from the NOx absorbent is released. Control device for internal combustion engine.
前記電動機制御手段が、前記電動機に供給する駆動用通電量を低下させて吸入空気量を低減させることを特徴とする請求項1に記載の内燃機関の制御装置。2. The control device for an internal combustion engine according to claim 1, wherein the electric motor control means reduces an amount of drive air supplied to the electric motor to reduce an intake air amount. 3. 前記電動機制御手段が、前記電動機から回収する回生発電量を増加させて吸入空気量を低減させることを特徴とする請求項1に記載の内燃機関の制御装置。2. The control device for an internal combustion engine according to claim 1, wherein the motor control unit increases the amount of regenerative power generated by the motor to reduce the amount of intake air. 3.
JP2002346281A 2002-11-28 2002-11-28 Control device for internal combustion engine Expired - Fee Related JP4042546B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002346281A JP4042546B2 (en) 2002-11-28 2002-11-28 Control device for internal combustion engine
DE10355621A DE10355621A1 (en) 2002-11-28 2003-11-28 Control unit, for I.C. engine, has electrical motor control unit which is controlled, such that air is prevented from being drawn into engine when exhaust gas-air-fuel ratio is rich

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002346281A JP4042546B2 (en) 2002-11-28 2002-11-28 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004176675A true JP2004176675A (en) 2004-06-24
JP4042546B2 JP4042546B2 (en) 2008-02-06

Family

ID=32376054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002346281A Expired - Fee Related JP4042546B2 (en) 2002-11-28 2002-11-28 Control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4042546B2 (en)
DE (1) DE10355621A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001495A1 (en) * 2004-06-25 2006-01-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
JP2007162550A (en) * 2005-12-13 2007-06-28 Mazda Motor Corp Engine with supercharger
KR20180108063A (en) * 2017-03-24 2018-10-04 현대자동차주식회사 Engine system and cotrol method for the same
DE102008062145B4 (en) * 2007-12-19 2019-04-11 Suzuki Motor Corporation Engine with turbo supercharger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001495A1 (en) * 2004-06-25 2006-01-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
CN100445539C (en) * 2004-06-25 2008-12-24 丰田自动车株式会社 Exhaust gas purification device for internal combustion engine
US7716924B2 (en) 2004-06-25 2010-05-18 Toyota Jidosha Kabushiki Kaisha Device for purifying exhaust gas of an internal combustion engine
JP2007162550A (en) * 2005-12-13 2007-06-28 Mazda Motor Corp Engine with supercharger
JP4600266B2 (en) * 2005-12-13 2010-12-15 マツダ株式会社 Turbocharged engine
DE102008062145B4 (en) * 2007-12-19 2019-04-11 Suzuki Motor Corporation Engine with turbo supercharger
KR20180108063A (en) * 2017-03-24 2018-10-04 현대자동차주식회사 Engine system and cotrol method for the same
KR102187464B1 (en) * 2017-03-24 2020-12-07 현대자동차 주식회사 Engine system and cotrol method for the same

Also Published As

Publication number Publication date
DE10355621A1 (en) 2004-06-24
JP4042546B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
US7178327B2 (en) Internal combustion engine and control method thereof
JP3334597B2 (en) Compression ignition type internal combustion engine
US6672050B2 (en) Exhaust gas purification device of an engine
JP2007529670A (en) Method and apparatus for operating an internal combustion engine having an exhaust gas turbocharger
JP2004169629A (en) Control device for turbocharger with electric motor
EP2165059A1 (en) Internal combustion engine exhaust gas control system and control method of internal combustion engine exhaust gas control system
JP3292198B1 (en) Compression ignition type internal combustion engine
JP3994855B2 (en) Control device for internal combustion engine
JP3334596B2 (en) Compression ignition type internal combustion engine
JP4441973B2 (en) Engine exhaust purification system
JP2006322398A (en) Internal combustion engine
JP2007002813A (en) Exhaust control device for supercharged internal combustion engine
JP4449511B2 (en) Internal combustion engine
JP2008045462A (en) Exhaust emission control device
JP2004208420A (en) Vehicle control device
JP4042546B2 (en) Control device for internal combustion engine
JP3551790B2 (en) Internal combustion engine
JP6699272B2 (en) Engine and control method thereof
JP3551771B2 (en) Internal combustion engine
WO2023007530A1 (en) Catalyst warm-up control method and device for internal combustion engine
JP7477049B2 (en) Hybrid vehicle control method and hybrid vehicle control device
JP4013893B2 (en) Control device for internal combustion engine having supercharger with electric motor
JP2004190579A (en) Control device for internal combustion engine
JP5677666B2 (en) Vehicle control device
JP4597876B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees