JP2004176610A - Fuel control device for cylinder injection type internal combustion engine - Google Patents

Fuel control device for cylinder injection type internal combustion engine Download PDF

Info

Publication number
JP2004176610A
JP2004176610A JP2002342663A JP2002342663A JP2004176610A JP 2004176610 A JP2004176610 A JP 2004176610A JP 2002342663 A JP2002342663 A JP 2002342663A JP 2002342663 A JP2002342663 A JP 2002342663A JP 2004176610 A JP2004176610 A JP 2004176610A
Authority
JP
Japan
Prior art keywords
fuel
injection mode
valve
internal combustion
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002342663A
Other languages
Japanese (ja)
Other versions
JP4200356B2 (en
Inventor
Katsuhiko Miyamoto
勝彦 宮本
Satoshi Yoshikawa
智 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002342663A priority Critical patent/JP4200356B2/en
Publication of JP2004176610A publication Critical patent/JP2004176610A/en
Application granted granted Critical
Publication of JP4200356B2 publication Critical patent/JP4200356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel control device for a cylinder injection type internal combustion engine capable of maintaining combustion stability even to transitive increase of EGR quantity when valve overlap quantity is changed. <P>SOLUTION: This fuel control device for a cylinder injection type internal combustion engine is provided with a fuel injection valve to directly inject fuel into a combustion chamber parted by a piston, and an overlap quantity changing means to change valve overlap quantity by an intake valve to open/close the combustion chamber and an exhaust valve. In a case where the valve overlap quantity is increased to be over a prescribed threshold value (S208 and S209) during homogeneous operation by a fuel injection mode to inject fuel in an intake stroke mainly (S204), the fuel injection mode is changed (S211) by an injection mode changing means to execute a stratified combustion operation in a prescribed period. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、筒内噴射型内燃機関の燃料制御装置に係り、詳しくは、過渡的なEGR量の増加に対して燃焼安定性を確保する筒内噴射型内燃機関の燃料制御装置に関する。
【0002】
【従来の技術】
一般に、排気ガス還流(EGR)は、内燃機関の部分負荷運転条件時に燃費の向上及びNOxの低減を図る方法として利用される。
このEGRを導入する方法としては、気筒の外部に配管及びEGRバルブを設け、このバルブの開閉によりサージタンクに排気の一部を還流させる方法(外部EGR)が従来から一般に行われているが、最近では吸排気弁の開閉タイミングを変更する可変バルブタイミング(VVT)機構を利用して吸気弁及び排気弁がともに開弁状態となるバルブオーバラップ量をある程度大きくすることにより排気の一部を還流させる方法(内部EGR)も用いられる。
【0003】
このVVTによる内部EGRのメリットの一つとしては、EGRの応答性の良さが挙げられる。その理由は、外部EGRでは、サージタンク容量分のEGRが導入される過程や、吸気マニホールド及び吸気ポートに沿って吸入される過程でのEGRの応答遅れが存在するのに対し、直接排気を筒内に還流させる内部EGRでは、応答遅れがほとんどないからである。
【0004】
このように、内部EGRは、外部EGRに比してEGRの応答性の面では良好なものである一方、内部EGRでは、新気の応答遅れが存在する。その理由は、新気量は吸気マニホールドの圧力(マニ圧)で支配されるが、バルブオーバラップ量が拡大してからマニ圧が上昇して安定するまでに時間を要し、新気の導入量が、マニ圧が安定するまでの間、不足するからである。
【0005】
つまり、VVTを利用する内部EGRの場合には、新気の応答性に問題があるものの、逆にEGRの応答性が良いことから、新気の応答遅れ期間には、筒内のEGR量が一時的に過多状態になる。この状態は燃焼変動の増大を招き、燃焼安定性の維持が困難になるという問題がある。
これに対し、VVTによる燃焼安定性の維持を図る筒内噴射型内燃機関の技術が提案されている(例えば、特許文献1参照)。
【0006】
当該技術では、バルブオーバラップ量が拡大されるに伴って燃料噴射時期を遅角側に補正しており、これにより、燃料噴射から点火までの期間を短くし、燃料の拡散を抑えて安定した層状燃焼運転を行っている。
【0007】
【特許文献1】
特開平11−218036号公報(段落番号0026〜0027、図3等)
【0008】
【発明が解決しようとする課題】
ところで、前記特許文献1に記載の従来の技術は、圧縮行程の燃料噴射モードによる層状燃焼運転中に、バルブオーバラップ量が拡大したときには、燃料噴射時期を遅らせて燃焼安定化を図る筒内噴射型内燃機関に関するものである。
しかし、筒内噴射型内燃機関は、圧縮行程の燃料噴射モードによる層状燃焼運転のほか、吸気行程の燃料噴射モードによる均質燃焼運転も行われるものである。ここで、この吸気行程の燃料噴射モードによる均質燃焼運転にて前記従来の技術の如く燃料噴射時期を単に遅らせることは、燃焼の安定に寄与することがないばかりか、却って燃焼が悪化する場合もある。
【0009】
本発明は、このような課題に鑑みてなされたもので、バルブオーバラップ量が変更されるときのEGR量の過渡的な増加に対しても燃焼安定性の維持を図ることができる筒内噴射型内燃機関の燃料制御装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するべく、請求項1記載の本発明の筒内噴射型内燃機関の燃料制御装置は、ピストンで区画される燃焼室内に対して直接的に燃料を噴射する燃料噴射弁と、前記燃焼室を開閉する吸気弁及び排気弁によるバルブオーバラップ量を変更するオーバラップ量変更手段とを備えた筒内噴射型内燃機関の燃料制御装置であって、主として吸気行程で燃料を噴射する燃料噴射モードによる均質燃焼運転中に、前記バルブオーバラップ量が所定のしきい値以上に拡大したとき、所定期間に亘り層状燃焼運転を行うべく前記燃料噴射モードを変更する噴射モード変更手段を備えることを特徴としている。
【0011】
したがって、請求項1記載の筒内噴射型内燃機関の燃料制御装置では、均質燃焼運転中にバルブオーバラップ量の拡大によって新気の応答が遅れてEGR量の過多が生じても、一時的に層状燃焼運転を行っているので、燃焼期間が長くならず、燃焼変動を抑えて燃焼安定性が確保される。さらに、機関の不安定化に由来する未燃HCの増加による燃費の悪化及び排気性能の悪化が防止される。
【0012】
また、請求項2記載の発明では、前記噴射モード変更手段は、前記内燃機関の運転負荷が高いときには前記吸気行程の燃料噴射モードを燃料を分割して噴射する分割噴射モードに変更し、前記運転負荷が低いときには前記吸気行程の燃料噴射モードを主として圧縮行程で燃料を噴射する燃料噴射モードに変更することを特徴としている。
【0013】
これにより、高めの負荷が要求されたときには、EGRの遷移期間だけ吸気行程での燃料噴射モードから分割噴射モードに変更し、一方、低負荷が要求されたときには、EGRの遷移期間だけ圧縮行程での燃料噴射モードに変更し、いずれも層状燃焼運転を行っているので、EGR量の過渡的な増加に対しても燃焼変動を抑えて燃焼安定性を確保させつつ、要求負荷にも的確に対応する。
【0014】
さらに、請求項3記載の発明では、前記所定のしきい値は、前記内燃機関の運転負荷及び回転速度から算出されることを特徴としている。このように、バルブオーバラップ量の拡大判定、すなわち燃料噴射モードの変更の判定を機関の運転条件に対応させるので、機関の要求に応じた燃料制御が可能になる。
また、請求項4記載の発明では、前記オーバラップ量変更手段は、前記吸気弁の開閉タイミング又は前記排気弁の開閉タイミングの少なくともいずれか一方を可変にすることを特徴としている。このように、吸気弁又は排気弁の少なくともいずれかを可変にすることで、多種の内燃機関への対応が可能になる。
【0015】
【発明の実施の形態】
以下、図面により本発明の実施形態について説明する。
図1を参照すると、本発明の一実施形態に係る筒内噴射型内燃機関の燃料制御装置に適用されるシステム構成図が示されており、以下図1に基づき本発明に係る筒内噴射型内燃機関の燃料制御装置の構成を説明する。
【0016】
エンジン1は、図示しない燃焼室内に燃料を直接噴射する火花点火式の筒内噴射エンジンとして構成される。すなわち、エンジン1のシリンダヘッドには、ピストンの往復運動によって区画される燃焼室内に臨んで、インジェクタ(燃料噴射弁)や点火プラグ(ともに図示せず)が配設されているとともに、吸気通路2及び排気通路3が接続されている。なお、点火プラグには点火コイルが接続されている。
【0017】
吸気通路2には、上流側から順にエアクリーナ4及びスロットル弁5が設けられており、さらに下流にはサージタンク6が設けられている。
これにより、外部からの空気は、エアクリーナ4を通過し、スロットル弁5、サージタンク6及び吸気通路2を経て燃焼室内に流入する。この際、吸入空気量がエアフローセンサ7で検出される。また、スロットルポジションセンサ(TPS)8が設けられており、TPS8では、スロットル弁5の開度が検出される。
【0018】
なお、スロットル弁5は、図示しないアクセルペダルに対して電気的に接続された、いわゆるドライブバイワイヤ式のスロットル弁(ETV)であり、ドライバのアクセル踏み込み量以外にもエンジン運転状態に応じてその開度が変更される。
吸気通路2は、吸気マニホールド及び吸気ポートから構成され、この吸気ポートは、気筒毎にシリンダヘッド内にて略直立方向に形成される。吸気ポートの燃焼室側には、吸気ポートと燃焼室との連通及び遮断を行う吸気弁12が設けられている。また、排気通路3は、排気ポート及び排気マニホールドから構成され、この排気ポートは、気筒毎にシリンダヘッド内にて略水平方向に形成される。排気ポートの燃焼室側には、排気ポートと燃焼室との連通及び遮断を行う排気弁13が設けられている。
【0019】
吸気弁12及び排気弁13には、それぞれの開閉時期が油圧調整によって可変にされる可変バルブタイミング機構(オーバラップ量変更手段)が接続されている。可変バルブタイミング機構は、エンジン回転に応じて回転するカムシャフトとカムスプロケットとの結合位相(VVT位相)を所定範囲内で可変とした所謂VVTとして実用化されており、カムシャフトが進角或いは遅角操作されることで、吸気弁のみ、若しくは排気弁のみ、又は吸気弁及び排気弁両方の開閉タイミングを変更できる。なお、リフトとタイミング特性との異なる複数のカムを運転条件に応じて使い分けて開閉タイミングを変更することも可能である。可変バルブタイミング機構によるバルブオーバラップ量の拡大によって、内部EGR量がレスポンス良く増加する。
【0020】
また、入出力装置、メモリ(ROM、RAM、不揮発性RAM等)、CPU等を備えたECU(電子コントロールユニット)10が設けられており、ECU10により、燃料噴射制御を含めたエンジン1の総合的な制御が行われる。
ECU10の入力側には、上述したエアフローセンサ7、TPS8のほか、クランク角信号に基づきエンジン回転速度Neを検出するクランク角センサ9、エンジン1の冷却水温度を検出する水温センサ11、ドライバのアクセル踏み込み量から要求トルクを検出するアクセル開度センサ(図示せず)等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力される。そして、これら各センサ出力からエンジン1の運転状態を得て、吸入空気量、燃料噴射量、燃料噴射時期、並びに点火時期等のエンジン1の主要な操作量が最適に演算される。
【0021】
一方、ECU10の出力側には、上述のインジェクタや点火プラグのほか、可変バルブタイミング機構等の各種出力デバイス類が接続されており、ECU10内で演算された燃料噴射量が開弁パルス信号に変換されてインジェクタに送られ、また、演算された点火時期に基づいて点火プラグ駆動信号が点火コイルに送られる。
【0022】
そして、インジェクタから噴射された燃料は、吸気通路2からの調整された空気と混合されて燃焼室内にて混合気を形成し、該混合気は、所定の点火時期で点火プラグから発生される火花により爆発し、その燃焼圧によってエンジン1が駆動される。なお、爆発後の排気は、排気通路3を経て排気浄化用触媒コンバータ(図示せず)側に送られる。
【0023】
エンジン1は、少なくとも、主として圧縮行程で燃料噴射を行い理論空燃比よりも希薄な空燃比領域で希薄成層燃焼運転(層状燃焼運転)を行うリーン運転モードと、主として吸気行程で燃料噴射を行い理論空燃比近傍でストイキオフィードバック燃焼運転(均質燃焼運転)を行うストイキオ運転モードとを有しており、これらの運転モードが切り替え可能に構成されている。そして、当該エンジン1では、上述した種々のセンサ等からの入力データに基づいてECU10で運転モードの切り替え制御や各種の制御が行われる。
【0024】
特に、本実施形態の燃料制御装置に係るECU10には、バルブオーバラップ量変更時の過渡的な新気量応答遅れに対応させるべく燃料噴射モードを変更する機能を備えている。具体的には、ECU10は、噴射モード変更部10Aを備え、この噴射モード変更部10Aは、上記均質燃焼運転中にバルブオーバラップ量が所定のしきい値以上に拡大したときには、所定期間の層状燃焼運転を行うべく燃料噴射モードを変更する。
【0025】
そして、本実施形態の噴射モード変更部10Aによって、エンジン1の運転負荷要求に応じて、燃料噴射モードは主として圧縮行程で燃料噴射を行う燃料噴射モードと、吸気行程及び圧縮行程で燃料を分割して噴射する燃料噴射モード(分割噴射モード)とに変更されて燃料噴射が行われる。詳しくは、噴射モード変更手段は、エンジン1の運転負荷が高いときには前記吸気行程の燃料噴射モードを分割噴射モードに変更し、エンジン1の運転負荷が低いときには前記吸気行程の燃料噴射モードを前記圧縮行程の燃料噴射モードに変更する。
【0026】
これにより、バルブオーバラップ量の拡大に伴う内部EGR量の過渡的な増加に対しては、層状燃焼運転によって燃焼変動を抑えて燃焼安定性を確保させつつ、要求負荷に対応させる分割噴射モード或いは燃焼期間の短縮化を図る圧縮行程の燃料噴射モードでの燃料噴射を行い、エンジン1の要求に的確に対応させる。
以下、フローチャートに基づいて燃料制御装置の本発明に係る作用について説明する。
【0027】
図2を参照すると、燃料制御装置により実施される燃料噴射モード変更判定制御のフローチャートが示されている。
同図のステップS201ではエンジン回転速度Neを取り込み、ステップS202では運転負荷Lを取り込み、ステップS203では、エンジン回転速度Ne及び運転負荷Lから目標となる吸気弁及び排気弁のVVT位相を決定して制御し、ステップS204に進む。
【0028】
ステップS204では、現在の燃料噴射モードが吸気行程の燃料噴射モードであるか否かを判別し、吸気行程の燃料噴射モードたる均質燃焼運転であると判定された場合、すなわちYESのときには、ステップS205に進んで現在のVVT位相を取り込んでステップS206に進む。一方、ステップS204で均質燃焼運転ではないと判定されたときには、このルーチンを抜ける。
【0029】
ステップS206では、ステップS205の現在のVVT位相から実バルブオーバラップ量RVOLを計算し、ステップS207では、エンジン回転速度Ne及び運転負荷Lに基づいて、燃料噴射モード変更を必要とするかの判定に用いるバルブオーバラップ量(所定のしきい値)HVOLを決定してステップS208に進む。
【0030】
ステップS208では、前回の実バルブオーバラップ量RVOLが所定のしきい値HVOLよりも小さいか否かを判別し、前回の実バルブオーバラップ量RVOLが所定のしきい値HVOLよりも小さいと判定された場合、すなわちYESのときにはステップS209に進み、一方、前回の実バルブオーバラップ量RVOLが所定のしきい値HVOL以上と判定されたときには、このルーチンを抜ける。
【0031】
ステップS209では、今回の実バルブオーバラップ量RVOLが所定のしきい値HVOL以上であるか否かを判別し、今回の実バルブオーバラップ量RVOLが所定のしきい値HVOL以上であると判定された場合、すなわちYESのときにはステップS210に進み、一方、今回の実バルブオーバラップ量RVOLが所定のしきい値HVOLに満たないと判定されたときには、このルーチンを抜ける。つまり、前回の実バルブオーバラップ量及び今回の実バルブオーバラップ量を所定のしきい値HVOLとそれぞれ比較し、今回の実バルブオーバラップ量が初めて所定のしきい値HVOLを超えた場合には、過渡的なEGR量の増加の可能性があることから、ステップS210に進む。
【0032】
ステップS210では、バルブオーバラップ量の拡大によって、均質燃焼運転を行う吸気行程の燃料噴射モードから、層状燃焼運転を行う分割噴射モード或いは圧縮行程の燃料噴射モードへのモード変更実行タイマABTIMERをセットしてステップS211に進み、このルーチンを抜ける。
図3は、図2のステップS211の如く、燃料制御装置の噴射モード変更部10Aにより実施される燃料噴射モード変更制御のフローチャートである。
【0033】
同図のステップS301では、エンジン回転速度Neと運転負荷Lとを取り込んでステップS302に進む。
ステップS302では、モード変更実行タイマABTIMERが0よりも大きいか否かを判別し、モード変更実行タイマABTIMERが0よりも大きいと判定された場合、すなわちYESのときには、ステップS303に進んでモード変更実行タイマABTIMERから1を減算し、ステップS304に進む。
【0034】
一方、ステップS302にて、モード変更実行タイマABTIMERが0以下と判定された場合には、タイマのセットが行われていないので、現在の燃料噴射モードである通常の均質燃焼運転を行うべく、ステップS307に進んで吸気行程の燃料噴射モードを実施してこのルーチンを抜ける。
ステップS304では、運転負荷Lが所定値よりも大きいか否かを判別し、運転負荷Lが所定値よりも大きいと判定された場合、すなわちYESのときにはステップS305に進んで、層状燃焼運転を行うべく分割噴射モードに対するパラメータを決定し、ステップS308にて分割噴射モードを実施する。なお、このモードは中負荷時に対応させるものである。
【0035】
一方、ステップS304にて、運転負荷Lが所定値以下と判定されたときには、ステップS306に進み、層状燃焼運転を行うべく圧縮行程の燃料噴射モードに対するパラメータを決定し、ステップS309にて圧縮行程の燃料噴射モードを実施する。なお、このモードは低負荷時に対応させるものである。
図4を参照すると、噴射モード変更部10Aにおいて上記燃料噴射モード変更制御(ステップS211)を行った場合のタイミングチャートが示されている。
【0036】
同図に示すように、吸気行程の燃料噴射モードによる均質燃焼運転Sto中において、排気弁13の閉時期ECが遅角側に変更され、吸気弁12の開時期IOが進角側に変更されると、バルブオーバラップ量RVOLが拡大する。そして、EGR量の増加に伴ってEGR率が上昇し、次いでマニ圧が正圧側に上昇する。
しかし、内部EGRには、新気の応答遅れが存在することから、EGR率の上昇率に比してマニ圧の上昇率が緩やかになり、その結果、EGR率がオーバシュートする。
【0037】
そこで、燃料制御装置10Aの噴射モード変更手段は、上記の如く均質燃焼運転Sto中に実バルブオーバラップ量RVOLが所定のしきい値以上に拡大したことを判定すると、EGR率が立ち上がる時点からEGR率がオーバシュートして平衡状態に向かう時点まで、すなわちタイマABTIMERが0になるまでの所定期間tに亘り、図中点線で示される均質燃焼運転を続ける従来技術に対して、図中実線で示される本実施形態では、層状燃焼運転Leanを行うべく燃料噴射モードを変更する。そして、この所定時間tの経過後は、EGR率のオーバシュートが治まることから、再び均質燃焼運転Stoに変更する。そして、トルク変動についても、図中点線で示される従来技術に比して、図中実線で示される本実施形態の方が小さくなっていることが分かる。
【0038】
このように、本発明では、噴射モード変更手段が、均質燃焼運転Sto中に実バルブオーバラップ量RVOLの拡大によって新気の応答が遅れても、一時的に層状燃焼運転Leanを行っているので、EGR量の過渡的な増加に対しても燃焼期間が長くならず、燃焼変動を抑えて燃焼安定性を確保することができる。
また、吸気行程の燃料噴射モードにおいて燃料噴射時期を単に遅らせるものではなく、層状燃焼運転Leanを行っていることから、未燃HCの増加による燃費の悪化及び排気性能の悪化を防止することができる。
【0039】
さらに、運転負荷Lに応じて、分割噴射モード或いは圧縮行程の燃料噴射モードを実施しているので、エンジン1の要求に的確に対応させることができる。
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
【0040】
例えば、上記実施形態では、噴射モード変更手段が、分割噴射モードとして、吸気行程と圧縮行程との二回の分割による燃料噴射モードを行っているが、この実施形態に限られるものではなく、圧縮行程での連続した分割噴射モード、又は二回以上の複数回の分割噴射であっても良く、これらの場合には、エンジン1の要求負荷への対応が一層可能になるとの効果を奏する。
【0041】
また、上記実施形態では、オーバラップ量変更手段は、吸気弁12及び排気弁13の開閉タイミングをともに変更しているが、この実施形態のほか、吸気弁の開閉タイミング又は排気弁の開閉タイミングのいずれか一方を可変にするものであっても良く、この場合には、多種のエンジンへの対応が可能になる。
さらに、上記実施形態のエンジン1では、内部EGRを利用する形態であるが、内部EGRと外部EGRとを併用するエンジンであっても良いものである。
【0042】
【発明の効果】
以上の説明から理解できるように、請求項1記載の本発明の筒内噴射型内燃機関の燃料制御装置によれば、均質燃焼運転中にバルブオーバラップ量の拡大によって新気の応答が遅れても一時的に層状燃焼運転を行っているので、EGR量の過渡的な増加に対して燃焼期間が長くならず、燃焼変動を抑えて燃焼安定性を確保することができ、機関の不安定化に由来する未燃HCの増加による燃費の悪化及び排気性能の悪化を防止することができる。
【0043】
また、請求項2記載の発明によれば、高めの負荷が要求されたときには、EGRの遷移期間だけ吸気行程での燃料噴射モードから分割噴射モードに変更し、一方、低負荷が要求されたときには、EGRの遷移期間だけ圧縮行程での燃料噴射モードに変更し、いずれも層状燃焼運転を行っているので、EGR量の過渡的な増加に対しても燃焼変動を抑えて燃焼安定性を確保させつつ、要求負荷にも的確に対応することができる。
【0044】
また、請求項3記載の発明によれば、バルブオーバラップ量の拡大判定、すなわち燃料噴射モード変更の判定を機関の運転条件に対応させるので、機関の要求に応じた燃料制御を行うことができる。
また、請求項4記載の発明によれば、吸気弁又は排気弁の少なくともいずれかを可変にすることで、多種の内燃機関への対応を可能にすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る筒内噴射型内燃機関の燃料制御装置に適用されるシステム構成図である。
【図2】図1の燃料制御装置により実施される燃料噴射モード変更判定の制御ルーチンを示すフローチャートである。
【図3】図1の燃料制御装置により実施される燃料噴射モード変更の制御ルーチンを示すフローチャートである。
【図4】図1の燃料制御装置において燃料噴射モード変更制御を行った場合のタイムチャートである。
【符号の説明】
1 筒内噴射型内燃機関
7 エアフローセンサ
8 TPS
9 クランク角センサ
10 ECU(電子コントロールユニット)
10A 噴射モード変更部(噴射モード変更手段)
11 水温センサ
12 吸気弁
13 排気弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel control device for a direct injection internal combustion engine, and more particularly, to a fuel control device for a direct injection internal combustion engine that ensures combustion stability against a transient increase in the amount of EGR.
[0002]
[Prior art]
Generally, exhaust gas recirculation (EGR) is used as a method for improving fuel efficiency and reducing NOx during partial load operation conditions of an internal combustion engine.
As a method of introducing the EGR, a method of providing a pipe and an EGR valve outside the cylinder and recirculating a part of the exhaust gas to a surge tank by opening and closing the valve (external EGR) has been generally performed. Recently, a part of the exhaust gas is recirculated by using a variable valve timing (VVT) mechanism that changes the opening / closing timing of the intake / exhaust valve and increasing the valve overlap amount in which the intake valve and the exhaust valve are both opened to some extent. (Internal EGR).
[0003]
One of the merits of the internal EGR due to the VVT is a good EGR responsiveness. The reason is that, in the external EGR, there is a response delay of the EGR in the process of introducing the EGR corresponding to the surge tank capacity or in the process of being sucked along the intake manifold and the intake port, whereas the direct exhaust is This is because there is almost no response delay in the internal EGR that is recirculated inside.
[0004]
As described above, the internal EGR has better EGR responsiveness than the external EGR, while the internal EGR has a response delay of fresh air. The reason for this is that the fresh air is dominated by the intake manifold pressure (manifold pressure), but it takes time for the manifold pressure to rise and stabilize after the valve overlap increases, and the fresh air is introduced. This is because the amount is insufficient until the manifold pressure is stabilized.
[0005]
That is, in the case of the internal EGR using the VVT, although there is a problem in the responsiveness of fresh air, the responsiveness of the EGR is good. Temporary excess. This situation causes a problem that combustion fluctuations increase and it becomes difficult to maintain combustion stability.
On the other hand, there has been proposed a technology of a direct injection internal combustion engine for maintaining combustion stability by VVT (for example, see Patent Document 1).
[0006]
In this technology, the fuel injection timing is corrected to the retard side as the valve overlap amount is increased, thereby shortening the period from fuel injection to ignition, suppressing the diffusion of fuel, and stabilizing the fuel. Performs stratified combustion operation.
[0007]
[Patent Document 1]
JP-A-11-218036 (paragraph numbers 0026 to 0027, FIG. 3 and the like)
[0008]
[Problems to be solved by the invention]
By the way, the prior art described in the above-mentioned Patent Document 1 discloses an in-cylinder injection for stabilizing combustion by delaying the fuel injection timing when the valve overlap amount increases during the stratified combustion operation in the fuel injection mode in the compression stroke. The present invention relates to an internal combustion engine.
However, the direct injection internal combustion engine performs not only the stratified combustion operation in the fuel injection mode in the compression stroke but also the homogeneous combustion operation in the fuel injection mode in the intake stroke. Here, simply delaying the fuel injection timing in the homogeneous combustion operation in the fuel injection mode in the intake stroke as in the above-described conventional technique does not not only contribute to the stability of the combustion but also worsens the combustion in some cases. is there.
[0009]
The present invention has been made in view of such a problem, and in-cylinder injection capable of maintaining combustion stability even with a transient increase in the EGR amount when the valve overlap amount is changed. It is an object of the present invention to provide a fuel control device for a type internal combustion engine.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a fuel control device for a direct injection internal combustion engine according to the present invention according to claim 1 includes a fuel injection valve that directly injects fuel into a combustion chamber defined by a piston; A fuel injection control device for an in-cylinder injection type internal combustion engine comprising: an intake valve for opening and closing the combustion chamber; and an overlap amount changing means for changing a valve overlap amount by an exhaust valve, wherein fuel is injected mainly in an intake stroke. Injection mode changing means for changing the fuel injection mode to perform the stratified combustion operation for a predetermined period when the valve overlap amount increases to a predetermined threshold or more during the homogeneous combustion operation in the fuel injection mode. It is characterized by:
[0011]
Therefore, in the fuel control device for a direct injection internal combustion engine according to the first aspect, even if the response of fresh air is delayed due to the expansion of the valve overlap amount during the homogeneous combustion operation and the EGR amount becomes excessive, the EGR amount is temporarily reduced. Since the stratified combustion operation is performed, the combustion period is not prolonged, combustion fluctuations are suppressed, and combustion stability is ensured. Further, deterioration of fuel efficiency and deterioration of exhaust performance due to an increase in unburned HC due to instability of the engine are prevented.
[0012]
In the invention according to claim 2, the injection mode changing means changes the fuel injection mode in the intake stroke to a split injection mode in which fuel is divided and injected when the operating load of the internal combustion engine is high, When the load is low, the fuel injection mode in the intake stroke is changed to the fuel injection mode in which fuel is injected mainly in the compression stroke.
[0013]
Thus, when a higher load is requested, the fuel injection mode in the intake stroke is changed to the split injection mode only during the transition period of EGR, while when a low load is requested, the compression stroke is changed only during the transition period of EGR. The fuel injection mode has been changed to all modes, and all of them perform stratified combustion operation. Therefore, even if the EGR amount is transiently increased, combustion fluctuations are suppressed and combustion stability is ensured, while accurately responding to the required load. I do.
[0014]
Furthermore, the invention according to claim 3 is characterized in that the predetermined threshold value is calculated from an operating load and a rotation speed of the internal combustion engine. As described above, the determination of the expansion of the valve overlap amount, that is, the determination of the change of the fuel injection mode is made to correspond to the operating condition of the engine, so that the fuel control according to the request of the engine becomes possible.
In the invention described in claim 4, the overlap amount changing means changes at least one of the opening / closing timing of the intake valve and the opening / closing timing of the exhaust valve. Thus, by making at least one of the intake valve and the exhaust valve variable, it is possible to cope with various types of internal combustion engines.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Referring to FIG. 1, there is shown a system configuration diagram applied to a fuel control apparatus for a direct injection internal combustion engine according to an embodiment of the present invention. The configuration of the fuel control device for the internal combustion engine will be described.
[0016]
The engine 1 is configured as a spark ignition type in-cylinder injection engine that directly injects fuel into a combustion chamber (not shown). That is, an injector (fuel injection valve) and a spark plug (both not shown) are disposed in the cylinder head of the engine 1 facing the combustion chamber defined by the reciprocating motion of the piston. And the exhaust passage 3 are connected. The ignition plug is connected to an ignition coil.
[0017]
In the intake passage 2, an air cleaner 4 and a throttle valve 5 are provided in order from the upstream side, and a surge tank 6 is further provided downstream.
As a result, air from the outside passes through the air cleaner 4 and flows into the combustion chamber via the throttle valve 5, the surge tank 6, and the intake passage 2. At this time, the intake air amount is detected by the air flow sensor 7. Further, a throttle position sensor (TPS) 8 is provided, and the TPS 8 detects the opening of the throttle valve 5.
[0018]
The throttle valve 5 is a so-called drive-by-wire type throttle valve (ETV) that is electrically connected to an accelerator pedal (not shown). The throttle valve 5 opens according to the engine operating state in addition to the accelerator pedal depression amount of the driver. The degree is changed.
The intake passage 2 includes an intake manifold and an intake port, and the intake port is formed in a substantially upright direction in a cylinder head for each cylinder. On the combustion chamber side of the intake port, there is provided an intake valve 12 for communicating and shutting off the intake port and the combustion chamber. The exhaust passage 3 includes an exhaust port and an exhaust manifold. The exhaust port is formed in a substantially horizontal direction in the cylinder head for each cylinder. On the combustion chamber side of the exhaust port, an exhaust valve 13 is provided for communicating and shutting off the exhaust port and the combustion chamber.
[0019]
The intake valve 12 and the exhaust valve 13 are connected to a variable valve timing mechanism (overlap amount changing means) whose opening / closing timing is made variable by hydraulic pressure adjustment. The variable valve timing mechanism has been put to practical use as a so-called VVT in which a coupling phase (VVT phase) between a camshaft and a cam sprocket rotating according to engine rotation is variable within a predetermined range, and the camshaft is advanced or retarded. By performing the angular operation, the opening / closing timing of only the intake valve, only the exhaust valve, or both the intake valve and the exhaust valve can be changed. In addition, it is also possible to change the opening / closing timing by selectively using a plurality of cams having different lift and timing characteristics according to operating conditions. The internal EGR amount increases with good response due to the expansion of the valve overlap amount by the variable valve timing mechanism.
[0020]
An ECU (electronic control unit) 10 including an input / output device, a memory (ROM, RAM, non-volatile RAM, and the like), a CPU, and the like is provided. The ECU 10 controls the overall operation of the engine 1 including fuel injection control. Control is performed.
On the input side of the ECU 10, in addition to the above-described air flow sensor 7 and TPS 8, a crank angle sensor 9 for detecting an engine rotation speed Ne based on a crank angle signal, a water temperature sensor 11 for detecting a coolant temperature of the engine 1, and a driver accelerator Various sensors such as an accelerator opening sensor (not shown) for detecting a required torque from the amount of depression are connected, and detection information from these sensors is input. Then, the operating state of the engine 1 is obtained from the outputs of these sensors, and the main operation amounts of the engine 1 such as the intake air amount, the fuel injection amount, the fuel injection timing, and the ignition timing are optimally calculated.
[0021]
On the other hand, various output devices such as a variable valve timing mechanism are connected to the output side of the ECU 10 in addition to the above-described injector and spark plug, and the fuel injection amount calculated in the ECU 10 is converted into a valve opening pulse signal. The ignition plug is then sent to the injector, and a spark plug drive signal is sent to the ignition coil based on the calculated ignition timing.
[0022]
The fuel injected from the injector is mixed with the conditioned air from the intake passage 2 to form an air-fuel mixture in the combustion chamber. The air-fuel mixture is generated by a spark generated from a spark plug at a predetermined ignition timing. And the combustion pressure drives the engine 1. Note that the exhaust gas after the explosion is sent to an exhaust purification catalytic converter (not shown) through the exhaust passage 3.
[0023]
The engine 1 performs at least a lean operation mode in which fuel injection is performed mainly in the compression stroke and a lean stratified combustion operation (stratified combustion operation) is performed in an air-fuel ratio region leaner than the stoichiometric air-fuel ratio, and a fuel injection is mainly performed in the intake stroke. A stoichiometric operation mode in which a stoichiometric feedback combustion operation (homogeneous combustion operation) is performed near the air-fuel ratio, and these operation modes are configured to be switchable. Then, in the engine 1, the ECU 10 performs operation mode switching control and various controls based on the input data from the various sensors described above.
[0024]
In particular, the ECU 10 according to the fuel control apparatus of the present embodiment has a function of changing the fuel injection mode in order to cope with a transient new air volume response delay when changing the valve overlap amount. Specifically, the ECU 10 includes an injection mode changing unit 10A. The injection mode changing unit 10A performs stratification for a predetermined period when the valve overlap amount increases to a predetermined threshold value or more during the homogeneous combustion operation. The fuel injection mode is changed to perform the combustion operation.
[0025]
The fuel injection mode is divided into a fuel injection mode in which fuel is injected mainly in the compression stroke and a fuel injection mode in which the fuel is split in the intake stroke and the compression stroke by the injection mode changing unit 10A of the present embodiment in accordance with the operation load request of the engine 1. The fuel injection mode is changed to the fuel injection mode (split injection mode) for performing the fuel injection. More specifically, the injection mode changing means changes the fuel injection mode in the intake stroke to the split injection mode when the operating load of the engine 1 is high, and changes the fuel injection mode in the intake stroke to the compression when the operating load of the engine 1 is low. Change to the fuel injection mode for the stroke.
[0026]
Accordingly, with respect to a transient increase in the internal EGR amount due to an increase in the valve overlap amount, the split injection mode or the split injection mode that corresponds to the required load while ensuring combustion stability by suppressing combustion fluctuations by the stratified combustion operation. The fuel injection in the fuel injection mode in the compression stroke for shortening the combustion period is performed so as to accurately correspond to the request of the engine 1.
Hereinafter, the operation of the fuel control device according to the present invention will be described based on a flowchart.
[0027]
FIG. 2 shows a flowchart of the fuel injection mode change determination control performed by the fuel control device.
In step S201 of FIG. 5, the engine rotation speed Ne is captured. In step S202, the operating load L is captured. In step S203, the target VVT phase of the intake valve and the exhaust valve is determined from the engine rotation speed Ne and the operating load L. The control proceeds to step S204.
[0028]
In step S204, it is determined whether or not the current fuel injection mode is the fuel injection mode in the intake stroke. If it is determined that the fuel injection mode is the homogeneous combustion operation as the fuel injection mode in the intake stroke, that is, if YES, step S205 is performed. To fetch the current VVT phase and go to step S206. On the other hand, when it is determined in step S204 that the operation is not the homogeneous combustion operation, the process exits this routine.
[0029]
In step S206, the actual valve overlap amount RVOL is calculated from the current VVT phase in step S205, and in step S207, it is determined whether the fuel injection mode needs to be changed based on the engine speed Ne and the operating load L. The valve overlap amount (predetermined threshold value) HVOL to be used is determined, and the process proceeds to step S208.
[0030]
In step S208, it is determined whether the previous actual valve overlap amount RVOL is smaller than a predetermined threshold value HVOL, and it is determined that the previous actual valve overlap amount RVOL is smaller than a predetermined threshold value HVOL. If this is the case, that is, if YES, the process proceeds to step S209. On the other hand, if it is determined that the previous actual valve overlap amount RVOL is equal to or greater than the predetermined threshold value HVOL, the routine exits.
[0031]
In step S209, it is determined whether or not the current actual valve overlap amount RVOL is equal to or greater than a predetermined threshold value HVOL, and it is determined that the current actual valve overlap amount RVOL is equal to or greater than the predetermined threshold value HVOL. If this is the case, that is, if YES, the process proceeds to step S210, and if it is determined that the current actual valve overlap amount RVOL is less than the predetermined threshold value HVOL, the routine exits. That is, the previous actual valve overlap amount and the present actual valve overlap amount are respectively compared with the predetermined threshold value HVOL, and when the current actual valve overlap amount exceeds the predetermined threshold value HVOL for the first time, Since there is a possibility that the amount of EGR transiently increases, the process proceeds to step S210.
[0032]
In step S210, the mode change execution timer ABTIMER is set from the fuel injection mode in the intake stroke for performing the homogeneous combustion operation to the split injection mode or the fuel injection mode for the compression stroke in which the stratified combustion operation is performed by increasing the valve overlap amount. To step S211 to exit this routine.
FIG. 3 is a flowchart of the fuel injection mode change control performed by the injection mode changing unit 10A of the fuel control device as in step S211 of FIG.
[0033]
In step S301 of the figure, the engine speed Ne and the operating load L are fetched, and the process proceeds to step S302.
In step S302, it is determined whether or not the mode change execution timer ABTIMER is larger than 0. If it is determined that the mode change execution timer ABTIMER is larger than 0, that is, if YES, the process proceeds to step S303 to execute the mode change execution. Subtract 1 from the timer ABTIMER and proceed to step S304.
[0034]
On the other hand, if it is determined in step S302 that the mode change execution timer ABTIMER is equal to or less than 0, the timer has not been set, and therefore, a step is taken in order to perform normal homogeneous combustion operation, which is the current fuel injection mode. Proceeding to S307, the fuel injection mode of the intake stroke is performed, and the routine exits.
In step S304, it is determined whether or not the operating load L is larger than a predetermined value. If it is determined that the operating load L is larger than the predetermined value, that is, if YES, the process proceeds to step S305 to perform the stratified combustion operation. The parameters for the split injection mode are determined in order to execute the split injection mode in step S308. This mode corresponds to a medium load.
[0035]
On the other hand, when it is determined in step S304 that the operating load L is equal to or smaller than the predetermined value, the process proceeds to step S306, in which a parameter for the fuel injection mode of the compression stroke is determined so as to perform the stratified combustion operation. Execute the fuel injection mode. This mode corresponds to a low load condition.
FIG. 4 shows a timing chart when the fuel injection mode change control (step S211) is performed in the injection mode changing unit 10A.
[0036]
As shown in the figure, during the homogeneous combustion operation Sto in the fuel injection mode in the intake stroke, the closing timing EC of the exhaust valve 13 is changed to the retard side, and the opening timing IO of the intake valve 12 is changed to the advance side. Then, the valve overlap amount RVOL increases. Then, the EGR rate increases with an increase in the EGR amount, and then the manifold pressure increases to the positive pressure side.
However, since there is a response delay of fresh air in the internal EGR, the rate of increase of the manifold pressure becomes slower than the rate of increase of the EGR rate, and as a result, the EGR rate overshoots.
[0037]
Therefore, when the injection mode changing means of the fuel control device 10A determines that the actual valve overlap amount RVOL has increased to a predetermined threshold or more during the homogeneous combustion operation Sto as described above, the EGR rate starts from the time when the EGR rate rises. In contrast to the prior art in which the homogeneous combustion operation indicated by the dotted line in the figure is continued until the rate overshoots toward the equilibrium state, that is, for a predetermined period t until the timer ABTIMER becomes 0, the solid line in the figure indicates In this embodiment, the fuel injection mode is changed to perform the stratified combustion operation lean. Then, after the elapse of the predetermined time t, the overshoot of the EGR rate subsides, and the operation is changed to the homogeneous combustion operation Sto again. Also, it can be seen that the torque fluctuation is smaller in the present embodiment shown by the solid line in the figure than in the conventional technique shown by the dotted line in the figure.
[0038]
As described above, in the present invention, the injection mode changing means temporarily performs the stratified combustion operation lean even when the response of fresh air is delayed due to the expansion of the actual valve overlap amount RVOL during the homogeneous combustion operation Sto. Also, the combustion period is not prolonged even when the EGR amount is transiently increased, and combustion fluctuation can be suppressed to ensure combustion stability.
In addition, in the fuel injection mode in the intake stroke, the fuel injection timing is not simply delayed, but the stratified combustion operation Lean is performed. Therefore, it is possible to prevent deterioration in fuel efficiency and deterioration in exhaust performance due to an increase in unburned HC. .
[0039]
Furthermore, since the split injection mode or the fuel injection mode of the compression stroke is performed according to the operating load L, it is possible to accurately correspond to the request of the engine 1.
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention.
[0040]
For example, in the above embodiment, the injection mode changing unit performs the fuel injection mode by dividing the intake stroke and the compression stroke twice as the split injection mode. However, the present invention is not limited to this embodiment. A continuous split injection mode in the stroke or a multiple split injection of two or more times may be used. In these cases, the effect that the load required by the engine 1 can be further satisfied is achieved.
[0041]
Further, in the above embodiment, the overlap amount changing means changes both the opening and closing timings of the intake valve 12 and the exhaust valve 13. However, in addition to this embodiment, the overlap amount changing unit may adjust the opening and closing timing of the intake valve or the opening and closing timing of the exhaust valve. Either one may be variable, and in this case, it is possible to cope with various types of engines.
Furthermore, although the engine 1 of the above embodiment uses the internal EGR, the engine 1 may use an internal EGR and an external EGR together.
[0042]
【The invention's effect】
As can be understood from the above description, according to the fuel control apparatus for a direct injection internal combustion engine of the present invention described in claim 1, the response of fresh air is delayed due to the expansion of the valve overlap amount during the homogeneous combustion operation. Also temporarily performs the stratified combustion operation, so that the combustion period does not become longer due to the transient increase in the EGR amount, the combustion fluctuation can be suppressed, the combustion stability can be ensured, and the engine becomes unstable. Therefore, it is possible to prevent deterioration of fuel efficiency and deterioration of exhaust performance due to an increase in unburned HC resulting from the above.
[0043]
According to the second aspect of the present invention, when a higher load is required, the fuel injection mode in the intake stroke is changed to the split injection mode only during the transition period of EGR, while when a low load is required. The fuel injection mode is changed to the compression stroke only during the transition period of EGR, and the stratified combustion operation is performed in each case. Therefore, even when the EGR amount is transiently increased, the combustion fluctuation is suppressed and the combustion stability is ensured. In addition, it is possible to appropriately cope with a required load.
[0044]
According to the third aspect of the present invention, the determination of the expansion of the valve overlap amount, that is, the determination of the change of the fuel injection mode is made to correspond to the operating condition of the engine, so that the fuel control according to the request of the engine can be performed. .
According to the fourth aspect of the present invention, by making at least one of the intake valve and the exhaust valve variable, it is possible to cope with various types of internal combustion engines.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram applied to a fuel control device for a direct injection internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a control routine for fuel injection mode change determination executed by the fuel control device of FIG. 1;
FIG. 3 is a flowchart illustrating a control routine for changing a fuel injection mode performed by the fuel control device of FIG. 1;
FIG. 4 is a time chart when the fuel injection mode change control is performed in the fuel control device of FIG. 1;
[Explanation of symbols]
1 In-cylinder injection type internal combustion engine 7 Air flow sensor 8 TPS
9 Crank angle sensor 10 ECU (electronic control unit)
10A Injection mode changing unit (injection mode changing means)
11 Water temperature sensor 12 Intake valve 13 Exhaust valve

Claims (4)

ピストンで区画される燃焼室内に対して直接的に燃料を噴射する燃料噴射弁と、前記燃焼室を開閉する吸気弁及び排気弁によるバルブオーバラップ量を変更するオーバラップ量変更手段とを備えた筒内噴射型内燃機関の燃料制御装置において、
主として吸気行程で燃料を噴射する燃料噴射モードによる均質燃焼運転中に、前記バルブオーバラップ量が所定のしきい値以上に拡大したとき、所定期間に亘り層状燃焼運転を行うべく前記燃料噴射モードを変更する噴射モード変更手段を備えることを特徴とする筒内噴射型内燃機関の燃料制御装置。
A fuel injection valve for directly injecting fuel into a combustion chamber defined by a piston; and an overlap amount changing means for changing a valve overlap amount by an intake valve and an exhaust valve for opening and closing the combustion chamber. In a fuel control device of a direct injection internal combustion engine,
During the homogeneous combustion operation mainly in the fuel injection mode in which fuel is injected in the intake stroke, when the valve overlap amount increases to a predetermined threshold value or more, the fuel injection mode is set to perform the stratified combustion operation for a predetermined period. A fuel control apparatus for a direct injection internal combustion engine, comprising: an injection mode changing means for changing.
前記噴射モード変更手段は、前記内燃機関の運転負荷が高いときには前記吸気行程の燃料噴射モードを燃料を分割して噴射する分割噴射モードに変更し、前記運転負荷が低いときには前記吸気行程の燃料噴射モードを主として圧縮行程で燃料を噴射する燃料噴射モードに変更することを特徴とする請求項1記載の筒内噴射型内燃機関の燃料制御装置。The injection mode changing means changes the fuel injection mode in the intake stroke to a split injection mode in which fuel is divided and injected when the operating load of the internal combustion engine is high, and the fuel injection mode in the intake stroke when the operating load is low. 2. The fuel control system for a direct injection type internal combustion engine according to claim 1, wherein the mode is changed to a fuel injection mode for injecting fuel mainly in a compression stroke. 前記所定のしきい値は、前記内燃機関の運転負荷及び回転速度から算出されることを特徴とする請求項1又は2記載の筒内噴射型内燃機関の燃料制御装置。3. The fuel control device for a direct injection internal combustion engine according to claim 1, wherein the predetermined threshold value is calculated from an operation load and a rotation speed of the internal combustion engine. 前記オーバラップ量変更手段は、前記吸気弁の開閉タイミング又は前記排気弁の開閉タイミングの少なくともいずれか一方を可変にすることを特徴とする請求項1乃至3のいずれかに記載の筒内噴射型内燃機関の燃料制御装置。The in-cylinder injection type according to any one of claims 1 to 3, wherein the overlap amount changing means changes at least one of opening / closing timing of the intake valve and opening / closing timing of the exhaust valve. Fuel control device for internal combustion engine.
JP2002342663A 2002-11-26 2002-11-26 Fuel control apparatus for in-cylinder internal combustion engine Expired - Fee Related JP4200356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342663A JP4200356B2 (en) 2002-11-26 2002-11-26 Fuel control apparatus for in-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342663A JP4200356B2 (en) 2002-11-26 2002-11-26 Fuel control apparatus for in-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004176610A true JP2004176610A (en) 2004-06-24
JP4200356B2 JP4200356B2 (en) 2008-12-24

Family

ID=32704665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342663A Expired - Fee Related JP4200356B2 (en) 2002-11-26 2002-11-26 Fuel control apparatus for in-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP4200356B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009114443A2 (en) * 2008-03-11 2009-09-17 Gm Global Technology Operations, Inc. Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
WO2009114444A2 (en) * 2008-03-11 2009-09-17 Gm Global Technology Operations, Inc. Control strategy for transitioning among combustion modes in an internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009114443A2 (en) * 2008-03-11 2009-09-17 Gm Global Technology Operations, Inc. Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
WO2009114444A2 (en) * 2008-03-11 2009-09-17 Gm Global Technology Operations, Inc. Control strategy for transitioning among combustion modes in an internal combustion engine
WO2009114444A3 (en) * 2008-03-11 2009-12-10 Gm Global Technology Operations, Inc. Control strategy for transitioning among combustion modes in an internal combustion engine
WO2009114443A3 (en) * 2008-03-11 2009-12-10 Gm Global Technology Operations, Inc. Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
CN102027217A (en) * 2008-03-11 2011-04-20 通用汽车环球科技运作公司 Control strategy for transitioning among combustion modes in an internal combustion engine
US7963268B2 (en) 2008-03-11 2011-06-21 GM Global Technology Operations LLC Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
US8036807B2 (en) 2008-03-11 2011-10-11 GM Global Technology Operations LLC Control strategy for transitioning among combustion modes in an internal combustion engine
CN102027218B (en) * 2008-03-11 2013-03-27 通用汽车环球科技运作公司 Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
CN102027217B (en) * 2008-03-11 2013-06-19 通用汽车环球科技运作公司 Control strategy for transitioning among combustion modes in an internal combustion engine

Also Published As

Publication number Publication date
JP4200356B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP4475221B2 (en) engine
US7104249B2 (en) Direct fuel injection/spark ignition engine control device
US6848422B2 (en) Control system and method for internal combustion engine with variable valve mechanism
JP2006322335A (en) Control system of internal combustion engine
JP2007247522A (en) Fuel injection control device for internal combustion engine
JP2005214102A (en) Control device of cylinder injection internal combustion engine
JP3893909B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP4075638B2 (en) Engine valve timing control device
US7063056B2 (en) Valve timing control apparatus for engine
JP2006329012A (en) Fuel injection control device of cylinder injection internal combustion engine
JP5282636B2 (en) Control device for internal combustion engine
JP2002242714A (en) 4-cycle engine for automobile
JP2006307739A (en) Control device of cylinder injection internal combustion engine
JP4200356B2 (en) Fuel control apparatus for in-cylinder internal combustion engine
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2007077842A (en) Control device for internal combustion engine
JP5293640B2 (en) Engine valve timing control device
JP2009216035A (en) Control device of internal combustion engine
JP2004263633A (en) Knocking restraining device for internal combustion engine
JP4069375B2 (en) engine
JP4114201B2 (en) Control device for internal combustion engine
JP2003090249A (en) Spark ignition type direct injection internal combustion engine
JP4697473B2 (en) Control device for internal combustion engine
JP2009209769A (en) Fuel injection device for internal combustion engine
JP2004218490A (en) Control device for cylinder injection type internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080923

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees