JP2004176361A - Repair method of damaged concrete construction - Google Patents

Repair method of damaged concrete construction Download PDF

Info

Publication number
JP2004176361A
JP2004176361A JP2002342639A JP2002342639A JP2004176361A JP 2004176361 A JP2004176361 A JP 2004176361A JP 2002342639 A JP2002342639 A JP 2002342639A JP 2002342639 A JP2002342639 A JP 2002342639A JP 2004176361 A JP2004176361 A JP 2004176361A
Authority
JP
Japan
Prior art keywords
filler
outer shell
damaged
filling
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002342639A
Other languages
Japanese (ja)
Other versions
JP4219156B2 (en
Inventor
Hiromichi Yoshikawa
吉川弘道
Naomichi Hattori
服部尚道
Toshiaki Miyagi
宮城敏明
Yasuhiro Seno
瀬野康弘
Kenji Hayakawa
早川健司
Toshiyuki Kuroiwa
黒岩俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP2002342639A priority Critical patent/JP4219156B2/en
Publication of JP2004176361A publication Critical patent/JP2004176361A/en
Application granted granted Critical
Publication of JP4219156B2 publication Critical patent/JP4219156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a repair method of a damaged concrete construction capable of being implemented with the reduced number of processes and greatly shortening a construction period. <P>SOLUTION: By arranging shell members 2 to the damaged concrete construction 1 at a gap 6, and filling the gap 6 with a filler 3, the method simultaneously performs both the filling of the gap 6 and the filling of a crack in a damaged section. The quality of a material and dimensions of the shell member can be decided by designed shearing proof stress deducting a part of a loading burden in an unrepaired section of an existing concrete construction and a designed toughness factor calculated on the basis thereof. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、地震や車の衝突等によって損傷したコンクリート構造物の改修方法に関するものである。
【0002】
【従来の技術】
兵庫県南部地震においてみられたように、鉄筋コンクリート製の柱や梁等が地震荷重によって著しく損傷する事態が発生する。この場合に、損傷の激しいものは撤去して構築しなおすことになるが、損傷の程度によっては、補修工事や補強工事等の改修工事がおこなわれて復旧される場合も多い。
例えば、コンクリート柱aを対象とした改修工事では、補修工事として注入工法、充填工法、打替工法、吹付け工法、パッチング工法、プレパックド工法などの公知の方法、補強工事としてコンクリート巻立て工法、モルタル吹付け工法、プレキャストパネル巻立て工法、鋼板巻立て工法、FRPシート巻立て工法、FRP吹付け工法などの公知の方法が実施されている。
上記した改修工事の工法は、いずれも補修工事と補強工事を組み合わせた方法である。ここで、一般に補修工事とは、耐力以外(塩害、中性化、凍害など)の機能を回復又は向上することを目的とした工事をいい、補強工事は耐力の回復又は向上を目的とした工事をいう。ただし、土木構造物における補修工事とは、損傷を受ける前の状態に戻すことを目的としていることから、耐力の回復の目的を含んだ工事である。
鋼板巻立て工法を例に説明すると、補修工事は注入器具fをひび割れdの端部に設置して、注入器具fの側方から補修材eが漏出しないようにシール材gでシールしてから、加圧した補修材eをひび割れdに注入する(図6上図又は特許文献1参照)。
そして、補修工事が終了した後に、コンクリート柱aの外周に隙間を隔てて鋼板bを設置し、コンクリート柱aと鋼板bの隙間に無収縮モルタルc等を充填して工事を完了する(図6下図、特許文献2又は特許文献3参照)。
【0003】
【特許文献1】
特許第2920806号明細書
【特許文献2】
特開平9−256327号公報
【特許文献3】
特開平9−184303号公報
【0004】
【発明が解決しようとする課題】
前記した従来の損傷したコンクリート構造物の改修方法においては以下のような課題がある。
<イ>改修工事は、補修工事と補強工事の2つの工事を組み合わせて完結する。特に、補修工事は、ひび割れごとの作業が必要であり、多くの労力と時間を要する。
<ロ>地震によって構造物が損傷し、交通網やライフライン等が寸断されたり、崩壊の危険性に脅かされたりする状態においては、一日でも早い早急な復旧が望まれる。こうした場合に対処するための可能な限り短時間で改修工事がおこなえる方法が求められている。
【0005】
【発明の目的】
本発明は上記したような従来の問題を解決するためになされたもので、少ない工程で実施でき、工期を大幅に短縮できる損傷したコンクリート構造物の改修方法を提供することを目的とする。
また、簡単な方法で目標とする性能を確実に確保できる損傷したコンクリート構造物の改修方法を提供することを目的とする。
本発明は、これらの目的の少なくとも一つを達成するものである。
【0006】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の損傷したコンクリート構造物の改修方法は、損傷したコンクリート構造物と隙間を隔てて外殻部材を配置し、前記隙間に充填材を充填することで、該隙間の充填と損傷部のひび割れの充填を同時におこなう方法である。ここで、前記外殻部材の材質及び寸法は、既存のコンクリート構造物の未補修部の荷重負担分を控除した設計せん断耐力と、それに基づき算出した設計靭性率によって決定することができる。ここで、設計にあたっては、未補修部を例えば既存のコンクリート構造物の帯鉄筋より内側(コア部分)とみなすことができる。
また、外殻部材を型枠として使用する場合は構造部材として機能しないため、外殻部材の材質及び寸法は充填材の充填圧に耐えられるように決定すればよい。この場合は、充填材によって形成される外殻が構造部材となるため、充填材の材質及び充填材を充填する隙間の寸法は、既存のコンクリート構造物の未補修部の荷重負担分を控除した設計せん断耐力と、それに基づき算出した設計靭性率によって決定する。
さらに、上記した損傷したコンクリート構造物の改修方法において、前記未補修部の範囲を前記充填材の材質によって決定することができる。充填材の材質によってひび割れに対する浸透性能が異なるため、未補修部分の範囲も変化するからである。
【0007】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について説明する。
【0008】
<イ>適用条件
本発明を適用するコンクリート構造物1は、鉄筋コンクリート、鉄骨鉄筋コンクリート、プレストレストコンクリート又は無筋コンクリート製の構造物である。
ここで、鉄筋コンクリート構造物を例にして、本発明を適用できる損傷の程度について説明する。
鉄筋コンクリート構造物の損傷には大きく分けて2つの段階がある。せん断損傷段階と曲げ損傷段階である。
ここで、せん断損傷段階に含まれる損傷は、せん断ひび割れの発生や帯鉄筋の降伏などによるせん断損傷(図2参照)や、軸方向鉄筋降伏後のせん断損傷である。ここで、図2(a)は水平ひび割れ51のみが発生した状態であり、図2(b)は斜めひび割れ52が貫通していない状態であり、図2(c)は斜めひび割れ53が貫通している状態を示している。これらのせん断損傷は、本発明の適用範囲である。
これに対して、軸方向鉄筋が座屈したり、破断したりして曲げ損傷が発生した曲げ損傷段階は、本発明の適用範囲外である。例えば、かぶりコンクリートが大幅に剥離したり、鉄筋のはらみ出しが生じていたり、軸方向鉄筋が破断して躯体が傾斜しているような場合には本発明の改修方法は適用しない。
また改修は、損傷した部分及び必要な箇所にのみ限定しておこなうことができる。
【0009】
<ロ>外殻部材
外殻部材2は、改修前のコンクリート構造物1の外周に配置する部材である。外殻部材2は、損傷したコンクリート構造物1と間隔を隔てて設置する。
外殻部材2には、鋼板、コンクリート製のプレキャストパネル、連続繊維シート成型パネル、後述する充填材3との一体性を高めるために鉄筋などを突出させたハーフプレキャストパネル、木製型枠等が使用できる。外殻部材2は、構造断面として機能させる場合と、構造断面として機能させない場合がある。例えば、木製型枠については充填材を充填した後に脱型するので、構造断面として機能させないものである。この場合の外殻部材2の材質及び寸法は、充填材3の充填圧に耐えられるように決定すればよい。
構造断面として機能させる場合は、後述するように既存のコンクリート構造物1の未補修部の荷重負担分を控除した設計せん断耐力と、それに基づき算出した設計靭性率によって外殻部材2の材質及び寸法を決定する。
外殻部材2の断面形状は任意に選択できるが、例えば改修するコンクリート構造物1が断面矩形の柱1aや梁の場合は、断面形状がコの字型の外殻部材2a(図3(a)参照)やL型の外殻部材2b(図3(b)参照)やロの字型の外殻部材(図示せず)が採用できる。また、スラブ付き梁1bの梁部のみを改修する場合は、梁部を外側から覆うような断面コの字型の外殻部材2c(図3(c)参照)が採用できる。さらに、円柱状のコンクリート構造物1を改修する場合は、半円型、円弧型又は円環型の断面形状を有する外殻部材2が使用できる。
【0010】
分離した外殻部材2a,2b間は、公知の接合手段により接合することができる。例えば鋼板製の外殻部材2a,2bを接合するには、公知の溶接方式、ボルト方式、かみ合わせ方式などが採用できる。
また、鉄筋コンクリート製の外殻部材2a,2bを接合するには、外殻部材2a,2bから突出した鉄筋を公知の継手41によって接合し、外殻部材2a,2bの端面間の隙間6にコンクリート等の接合材を打設して接合部4を形成することができる(図3,1参照)。
【0011】
<ハ>充填材
充填材3は、外殻部材2とコンクリート構造物1の隙間6やひび割れに充填する材料である。
充填材3には、樹脂系材料、セメント系材料など充填時に流動性を有し充填後に固化する公知の材料が使用できる。樹脂系材料には、発泡エポキシ樹脂、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂等がある。セメント系材料には、ポリマーセメント系スラリー、超微粒子セメント系スラリー、ポリマーセメントモルタル、無収縮モルタル等がある。
充填材3は、隙間6を充填するのみならず、ひび割れにも浸透させることを目的に充填するため、浸透性や流動性の高い材料を使用するのが好ましい。例えば、発泡エポキシ樹脂は膨張力によりひび割れに浸入していくことができ、アクリル樹脂は流動性が高いためひび割れに充填されやすい。このように充填材3の材質によって浸透性が異なるため、補修範囲も変化する。
外殻部材2を構造断面として機能させない場合は、充填材3によって形成される外殻が構造部材となるため、充填材3の材質及び充填材3を充填する隙間6の寸法は、後述する既存のコンクリート構造物の未補修部の荷重負担分を控除した設計せん断耐力と、それに基づき算出した設計靭性率によって決定する。
充填材3は、上方又は下方の隙間6や注入口等から外殻部材2とコンクリート構造物1の隙間6に充填する。このとき必要に応じて隙間6の上方を塞ぐなどして加圧注入をおこなうこともできる。
【0012】
以下、図面を参照しながら本発明の損傷したコンクリート構造物の改修方法によって改修した構造物の性能に対する実験について説明する。
【0013】
<イ>実験条件
断面500mm×500mm、高さ1550mmの四角柱の鉄筋コンクリート製の供試体に、一定軸力N=19.6kNを与え、正負交番繰返し載荷Pをおこなった。ここで、せん断スパンは1250mm、せん断スパン比は2.5である。また、コンクリートの骨材の最大寸法が10mmの供試体(R10供試体)と、20mmの供試体(R20供試体)の2つの供試体について実験をおこなった。
【0014】
そして、せん断破壊したR10供試体及びR20供試体に対して本発明の改修方法を適用した。
実験に使用した外殻部材2は、軽量モルタル製の厚みが50mmのロの字型断面を有する外殻部材2d,2eである。そして、基盤から20mmの間隔を置いて、径が13mm(D13)の帯鉄筋を50mm間隔で配筋した外殻部材2dを2段、D13の帯鉄筋を100mm間隔で配筋した外殻部材2eを2段配置した。ここで、基盤から20mmの間隔を置いて外殻部材2dを配置したのは、本発明の改修方法はせん断補強、靭性補強を目的としており、曲げ補強は対象としないため、曲げ耐力が向上しないようにしている。
また、充填材3は、損傷したR10供試体には発泡エポキシ樹脂を使用し、損傷したR20供試体にはアクリル樹脂を使用した。
【0015】
<ロ>実験結果
R10供試体に充填した発泡エポキシ樹脂と、R20供試体に充填したアクリル樹脂の充填状況をコア抜きにより確認した結果、発泡エポキシ樹脂は最小0.45mmのひび割れまで、アクリル樹脂は最小0.25mmのひび割れまで充填されていた。しかし、損傷した供試体の主鉄筋より内側のひび割れには充填材3が充填されていない部分(未補修部)があった。そこで、改修後の構造物の設計靭性率を算出する場合は、設計せん断耐力のコンクリート負担分について帯鉄筋より内側のコア部分を未補修部として、その部分のコンクリート負担分を控除して算出をおこなった。
【0016】
図5(a)には、R10供試体について、改修前と改修後の水平変位と水平荷重Pの関係を包絡線で表した比較図を示した。また、図5(b)にはR20供試体について同様の比較図を示した。
図5の結果から、本発明の改修方法によって、改修後の耐力が改修前(損傷前)より向上していることがわかる。また、変形性能についても降伏荷重に到達した後の変形性能が大幅に改善されたことが確認できる。ここで、実験結果を表1に示す。
【0017】
【表1】

Figure 2004176361
【0018】
終局状態の破壊形式は、改修前の供試体についてはいずれもせん断破壊であったのに対し、改修後はいずれも曲げ破壊になった。ここで、破壊形式の判定は、終局時におけるひび割れ状況及び外殻部材2d,2e内に配置した帯鉄筋のひずみにより判定した。
また、改修後の供試体の靭性率は、R10供試体では大幅に設計靭性率を上回り、R20供試体では正側の靭性率が設計靭性率をやや下回ったものの、負側の靭性率は設計靭性率を上回る結果が得られた。
【0019】
本発明の損傷したコンクリート構造物の改修方法は、完全にひび割れを補修する方法ではないが、ひび割れ補修の不確実な部分をあらかじめ控除して設計することにより、目標とする性能を簡単な改修方法で確保することができる。すなわち、充填材3によって充分にひび割れが補修されない部分があると予想される場合は、その部分を控除した設計をおこない、性能が目標を下回る場合は、外殻部材2の材質や寸法、又は充填材3の材質や充填材3を充填する隙間6の寸法を変更することにより強度を上げて、改修後の構造物に要求される耐力を満たすような外殻部材2又は充填材3を選択して設計すればよい。
【0020】
【発明の効果】
本発明の損傷したコンクリート構造物の改修方法は以上説明したようになるから次のような効果を得ることができる。
<イ>従来の補修工程を省略できるので、工期を大幅に短縮することができる。また、充填材の材料費が増加したとしても、工期の短縮による経済効果を得ることができる。
<ロ>補修が充分におこなわれない部分の耐力は計算に入れないで設計をおこなうため、簡単な方法で改修をおこなっても目標とする性能を確実に確保することができる。
【図面の簡単な説明】
【図1】本発明の損傷したコンクリート構造物の改修方法の実施例の説明図。
【図2】せん断損傷の状態を表した説明図。
【図3】外殻部材の実施例の平面図。
【図4】(a)実験に使用した供試体の平面図。(b)実験に使用した供試体の側面図。
【図5】(a)R10供試体の実験結果を表した水平変位と水平荷重の関係図。(a)R20供試体の実験結果を表した水平変位と水平荷重の関係図。
【図6】従来の補修工事及び補強工事の手順を示した説明図。
【符号の説明】
1・・・コンクリート構造物
2・・・外殻部材
3・・・充填材
6・・・隙間[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for repairing a concrete structure damaged by an earthquake, a car collision, or the like.
[0002]
[Prior art]
As seen in the Hyogoken-Nanbu Earthquake, reinforced concrete columns and beams can be significantly damaged by seismic loads. In this case, severely damaged items are removed and rebuilt, but depending on the degree of damage, repair work such as repair work or reinforcement work is often performed, and restoration is often performed.
For example, in the renovation work targeting the concrete column a, as a repair work, a known method such as an injection method, a filling method, a replacement method, a spraying method, a patching method, a prepacked method, a concrete laying method, a mortar as a reinforcing work. Known methods such as a spraying method, a precast panel winding method, a steel sheet winding method, an FRP sheet winding method, and an FRP spraying method have been implemented.
All of the above repair work methods are a combination of repair work and reinforcement work. Here, in general, repair work refers to work aimed at restoring or improving functions other than strength (salt damage, neutralization, frost damage, etc.), and reinforcement work is work aimed at restoring or improving strength. Say. However, repair work on civil engineering structures is a work that includes the purpose of restoring the proof stress because it is intended to return to the state before damage was received.
To explain the steel sheet winding method as an example, in the repair work, the injection device f is installed at the end of the crack d, and the repair material e is sealed with the sealing material g so that the repair material e does not leak from the side of the injection device f. Then, the pressurized repair material e is injected into the crack d (see the upper diagram in FIG. 6 or Patent Document 1).
Then, after the repair work is completed, a steel plate b is installed on the outer periphery of the concrete column a with a gap therebetween, and the gap between the concrete column a and the steel plate b is filled with a non-shrink mortar c or the like to complete the work (FIG. 6). (See the following figure, Patent Document 2 or Patent Document 3).
[0003]
[Patent Document 1]
Japanese Patent No. 2920806 [Patent Document 2]
JP-A-9-256327 [Patent Document 3]
JP-A-9-184303
[Problems to be solved by the invention]
The above-described conventional method for repairing a damaged concrete structure has the following problems.
<B> Renovation work will be completed by combining two works, repair work and reinforcement work. In particular, repair work requires work for each crack, and requires a lot of labor and time.
<B> In a situation where structures are damaged by an earthquake, traffic networks, lifelines, etc. are cut or threatened by the risk of collapse, it is desirable to recover as soon as possible as soon as possible. In order to deal with such cases, there is a need for a method that can perform renovation work in the shortest possible time.
[0005]
[Object of the invention]
The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a method for repairing a damaged concrete structure, which can be performed in a small number of steps and can greatly shorten the construction period.
It is another object of the present invention to provide a method for repairing a damaged concrete structure, which can reliably secure a target performance by a simple method.
The present invention achieves at least one of these objects.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a method for repairing a damaged concrete structure according to the present invention includes disposing an outer shell member with a gap from the damaged concrete structure, and filling the gap with a filler. This is a method for simultaneously filling the gap and filling the crack in the damaged portion. Here, the material and dimensions of the outer shell member can be determined based on the design shear strength, which is obtained by subtracting the load share of the unrepaired portion of the existing concrete structure, and the design toughness calculated based on the shear strength. Here, in the design, the unrepaired portion can be regarded as, for example, the inside (core portion) of the steel bar of the existing concrete structure.
When the outer shell member is used as a mold, it does not function as a structural member. Therefore, the material and dimensions of the outer shell member may be determined so as to withstand the filling pressure of the filler. In this case, since the outer shell formed by the filler is a structural member, the material of the filler and the dimensions of the gap for filling the filler are calculated by subtracting the load burden of the unrepaired portion of the existing concrete structure. Determined by the design shear strength and the design toughness factor calculated based on it.
Further, in the above-mentioned method for repairing a damaged concrete structure, the range of the unrepaired portion can be determined by the material of the filler. This is because the penetration performance for cracks differs depending on the material of the filler, and the range of the unrepaired portion also changes.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0008]
<A> Application conditions The concrete structure 1 to which the present invention is applied is a structure made of reinforced concrete, steel reinforced concrete, prestressed concrete or unreinforced concrete.
Here, the degree of damage to which the present invention can be applied will be described by taking a reinforced concrete structure as an example.
Damage to reinforced concrete structures can be broadly divided into two stages. Shear damage stage and bending damage stage.
Here, the damage included in the shear damage stage is a shear damage (see FIG. 2) due to the occurrence of shear cracks and yielding of the belt reinforcing steel, and a shear damage after the axial reinforcing steel yielding. Here, FIG. 2A shows a state in which only horizontal cracks 51 have occurred, FIG. 2B shows a state in which the diagonal cracks 52 have not penetrated, and FIG. 2C shows a state in which the diagonal cracks 53 have penetrated. It shows the state that it is. These shear damages are within the scope of the present invention.
On the other hand, a bending damage stage in which bending damage occurs due to buckling or breakage of the axial rebar is outside the scope of the present invention. For example, the refining method of the present invention is not applied to the case where the cover concrete is largely separated, the reinforcing bar is protruding, or the axial reinforcing bar is broken and the frame is inclined.
Refurbishment may be limited to damaged parts and necessary parts only.
[0009]
<B> Outer Shell Member The outer shell member 2 is a member arranged on the outer periphery of the concrete structure 1 before the repair. The outer shell member 2 is installed at a distance from the damaged concrete structure 1.
As the outer shell member 2, a steel plate, a precast panel made of concrete, a continuous fiber sheet molded panel, a half precast panel in which a reinforcing bar or the like is projected to enhance the integration with the filler 3 described later, a wooden formwork, and the like are used. it can. The outer shell member 2 may function as a structural section or may not function as a structural section. For example, since a wooden form is released after being filled with a filler, it does not function as a structural section. The material and dimensions of the outer shell member 2 in this case may be determined so as to withstand the filling pressure of the filler 3.
When functioning as a structural section, as described later, the material and dimensions of the outer shell member 2 are determined by the design shear strength, which is obtained by subtracting the load share of the unrepaired portion of the existing concrete structure 1, and the design toughness calculated based on the shear strength. To determine.
The cross-sectional shape of the outer shell member 2 can be arbitrarily selected. For example, when the concrete structure 1 to be renovated is a column 1a or a beam having a rectangular cross-section, the outer shell member 2a having a U-shaped cross-sectional shape (FIG. )), An L-shaped outer shell member 2b (see FIG. 3B), and a square-shaped outer shell member (not shown). When only the beam portion of the beam 1b with slab is to be repaired, an outer shell member 2c having a U-shaped cross section that covers the beam portion from the outside (see FIG. 3C) can be employed. Further, in the case of repairing the columnar concrete structure 1, an outer shell member 2 having a semicircular, arc or annular cross section can be used.
[0010]
The separated outer shell members 2a and 2b can be joined by known joining means. For example, in order to join the outer shell members 2a and 2b made of a steel plate, a known welding method, a bolt method, a meshing method, and the like can be adopted.
In order to join the reinforced concrete outer shell members 2a and 2b, reinforcing bars projecting from the outer shell members 2a and 2b are joined by a known joint 41, and concrete is inserted into the gap 6 between the end faces of the outer shell members 2a and 2b. The joining portion 4 can be formed by casting a joining material such as (see FIGS. 3 and 1).
[0011]
<C> Filler Filler 3 is a material that fills gaps 6 and cracks between outer shell member 2 and concrete structure 1.
As the filler 3, a known material such as a resin-based material and a cement-based material, which has fluidity at the time of filling and solidifies after filling, can be used. Examples of the resin-based material include a foamed epoxy resin, an acrylic resin, an epoxy resin, a polyester resin, a urethane resin, and a silicone resin. The cement-based material includes a polymer cement-based slurry, an ultrafine cement-based slurry, a polymer cement mortar, a non-shrink mortar, and the like.
It is preferable to use a material having high permeability and fluidity, since the filler 3 is used not only to fill the gaps 6 but also to penetrate cracks. For example, foamed epoxy resin can penetrate into cracks due to expansion force, and acrylic resin is easily filled into cracks due to its high fluidity. Since the permeability differs depending on the material of the filler 3, the repair range also changes.
If the outer shell member 2 does not function as a structural cross section, the outer shell formed by the filler 3 is a structural member. Therefore, the material of the filler 3 and the dimensions of the gap 6 for filling the filler 3 will be described later. The design shear strength is calculated by subtracting the load share of the unrepaired part of the concrete structure, and the design toughness calculated based on the shear strength.
The filler 3 fills the gap 6 between the outer shell member 2 and the concrete structure 1 from the upper or lower gap 6 or the inlet. At this time, pressure injection can be performed by closing the space above the gap 6 if necessary.
[0012]
Hereinafter, an experiment on the performance of a structure repaired by the method for repairing a damaged concrete structure according to the present invention will be described with reference to the drawings.
[0013]
<A> Experimental conditions A constant axial force N of 19.6 kN was applied to a square pillar reinforced concrete specimen having a cross section of 500 mm × 500 mm and a height of 1550 mm, and positive and negative alternating loading P was performed. Here, the shear span is 1250 mm, and the shear span ratio is 2.5. In addition, experiments were performed on two specimens, a specimen having a maximum size of concrete aggregate of 10 mm (R10 specimen) and a specimen having a maximum dimension of 20 mm (R20 specimen).
[0014]
Then, the repair method of the present invention was applied to the R10 test piece and the R20 test piece that were subjected to shear failure.
The outer shell members 2 used in the experiment are outer shell members 2d and 2e made of lightweight mortar and having a square cross section with a thickness of 50 mm. An outer shell member 2d in which 13 mm (D13) reinforcing bars are arranged at 50 mm intervals at a distance of 20 mm from the base, and two outer shell members 2d having D13 reinforcing bars arranged at 100 mm intervals. Were arranged in two stages. Here, the outer shell member 2d is arranged at a distance of 20 mm from the base because the repair method of the present invention aims at shear reinforcement and toughness reinforcement and does not target bending reinforcement, so that bending strength is not improved. Like that.
As the filler 3, foamed epoxy resin was used for the damaged R10 specimen, and acrylic resin was used for the damaged R20 specimen.
[0015]
<B> Experimental results As a result of confirming the filling status of the foamed epoxy resin filled in the R10 specimen and the acrylic resin filled in the R20 specimen by coring, the foamed epoxy resin was cracked to a minimum of 0.45 mm. It was filled to a minimum of 0.25 mm of cracks. However, the crack inside the main rebar of the damaged specimen had a portion where the filler 3 was not filled (unrepaired portion). Therefore, when calculating the design toughness factor of the structure after rehabilitation, the concrete portion of the design shear strength is calculated by deducting the concrete portion of the core portion from the core inside the belt rebar as the unrepaired part. I did it.
[0016]
FIG. 5 (a) is a comparison diagram showing the relationship between the horizontal displacement P and the horizontal load P before and after the renovation of the R10 specimen by an envelope. FIG. 5B shows a similar comparison diagram for the R20 specimen.
From the results shown in FIG. 5, it can be seen that the repairing method of the present invention improves the proof stress after the repair compared to before the repair (before the damage). Also, regarding the deformation performance, it can be confirmed that the deformation performance after reaching the yield load was greatly improved. Here, the experimental results are shown in Table 1.
[0017]
[Table 1]
Figure 2004176361
[0018]
The ultimate failure mode was shear failure for all specimens before rehabilitation, but bending failure after rehabilitation. Here, the determination of the type of fracture was made based on the state of cracks at the end of the operation and the strain of the strip reinforcing bars arranged in the outer shell members 2d and 2e.
In addition, the toughness of the specimen after renovation greatly exceeded the design toughness for the R10 specimen, and the toughness on the positive side slightly fell below the design toughness for the R20 specimen, but the toughness on the negative side was The result exceeded the toughness rate.
[0019]
The method for repairing a damaged concrete structure according to the present invention is not a method for completely repairing a crack, but a method for repairing a target performance in a simple manner by designing by previously subtracting an uncertain portion for crack repair. Can be secured. That is, when it is expected that there is a portion where cracks are not sufficiently repaired by the filler 3, design is performed by subtracting the portion, and when the performance is lower than the target, the material and dimensions of the outer shell member 2 or the filling The outer shell member 2 or the filler 3 is selected by increasing the strength by changing the material of the material 3 and the dimensions of the gap 6 filling the filler 3 and satisfying the proof stress required for the reconstructed structure. Design.
[0020]
【The invention's effect】
Since the method for repairing a damaged concrete structure according to the present invention is as described above, the following effects can be obtained.
<A> Since the conventional repair process can be omitted, the construction period can be greatly reduced. Further, even if the material cost of the filler increases, it is possible to obtain an economic effect by shortening the construction period.
<B> Since the design is performed without taking into account the proof stress of the part that is not sufficiently repaired, the target performance can be reliably ensured even if the repair is performed by a simple method.
[Brief description of the drawings]
FIG. 1 is an explanatory view of an embodiment of a method for repairing a damaged concrete structure according to the present invention.
FIG. 2 is an explanatory diagram showing a state of shear damage.
FIG. 3 is a plan view of the embodiment of the outer shell member.
FIG. 4 (a) is a plan view of a test piece used in an experiment. (B) Side view of the test specimen used in the experiment.
FIG. 5 (a) is a graph showing the relationship between horizontal displacement and horizontal load, showing experimental results of an R10 specimen. (A) The relationship diagram between the horizontal displacement and the horizontal load showing the test result of the R20 specimen.
FIG. 6 is an explanatory view showing a procedure of a conventional repair work and a reinforcing work.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Concrete structure 2 ... Outer shell member 3 ... Filler 6 ... Gap

Claims (4)

損傷したコンクリート構造物と隙間を隔てて外殻部材を配置し、
前記隙間に充填材を充填することで、該隙間の充填と損傷部のひび割れの充填を同時におこなう、
損傷したコンクリート構造物の改修方法。
An outer shell member is placed with a gap from the damaged concrete structure,
By filling the gap with a filler, the filling of the gap and the filling of cracks in the damaged portion are simultaneously performed.
How to repair damaged concrete structures.
請求項1に記載した損傷したコンクリート構造物の改修方法において、
前記外殻部材の材質及び寸法は、既存のコンクリート構造物の未補修部の荷重負担分を控除した設計せん断耐力と、それに基づき算出した設計靭性率によって決定することを特徴とする、
損傷したコンクリート構造物の改修方法。
The method for repairing a damaged concrete structure according to claim 1,
The material and dimensions of the outer shell member are determined by a design shear strength and a design toughness factor calculated based on the design shear strength after deducting a load share of an unrepaired part of an existing concrete structure,
How to repair damaged concrete structures.
請求項1又は2に記載した損傷したコンクリート構造物の改修方法において、前記充填材の材質及び充填材を充填する隙間の寸法は、既存のコンクリート構造物の未補修部の荷重負担分を控除した設計せん断耐力と、それに基づき算出した設計靭性率によって決定することを特徴とする、
損傷したコンクリート構造物の改修方法。
In the method for repairing a damaged concrete structure according to claim 1 or 2, the material of the filler and the size of the gap for filling the filler are less the load share of the unrepaired portion of the existing concrete structure. It is determined by the design shear strength and the design toughness factor calculated based on it,
How to repair damaged concrete structures.
請求項2又は3に記載した損傷したコンクリート構造物の改修方法において、前記未補修部の範囲を前記充填材の材質によって決定することを特徴とする、
損傷したコンクリート構造物の改修方法。
The method for repairing a damaged concrete structure according to claim 2 or 3, wherein a range of the unrepaired portion is determined by a material of the filler.
How to repair damaged concrete structures.
JP2002342639A 2002-11-26 2002-11-26 How to repair damaged concrete structures Expired - Fee Related JP4219156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342639A JP4219156B2 (en) 2002-11-26 2002-11-26 How to repair damaged concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342639A JP4219156B2 (en) 2002-11-26 2002-11-26 How to repair damaged concrete structures

Publications (2)

Publication Number Publication Date
JP2004176361A true JP2004176361A (en) 2004-06-24
JP4219156B2 JP4219156B2 (en) 2009-02-04

Family

ID=32704647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342639A Expired - Fee Related JP4219156B2 (en) 2002-11-26 2002-11-26 How to repair damaged concrete structures

Country Status (1)

Country Link
JP (1) JP4219156B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223225A (en) * 2007-03-08 2008-09-25 Kajima Corp Column member, ufc-made precast form and earthquake resisting reinforcement method for column member using the same
JP2008240368A (en) * 2007-03-27 2008-10-09 Eiji Makitani Reinforced concrete column reinforcing structure
CN109208935A (en) * 2018-09-25 2019-01-15 湖南大学 A kind of method and device using pre-constructed unit rapid reinforcement damage RC column

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222845A (en) * 1992-02-12 1993-08-31 Shimizu Corp Crack repairing method for concrete structure
JPH0913693A (en) * 1995-06-29 1997-01-14 Alpha Kogyo Kk Repairing method of column body
JPH10102423A (en) * 1996-09-25 1998-04-21 Fujita Corp Pca form and construction method of pier using the same pca form
JPH10121417A (en) * 1996-10-21 1998-05-12 Fujita Corp Concrete frame, and method for constructing concrete structure using this concrete frame
JPH11131822A (en) * 1997-10-24 1999-05-18 Maeda Corp Joint and concrete structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222845A (en) * 1992-02-12 1993-08-31 Shimizu Corp Crack repairing method for concrete structure
JPH0913693A (en) * 1995-06-29 1997-01-14 Alpha Kogyo Kk Repairing method of column body
JPH10102423A (en) * 1996-09-25 1998-04-21 Fujita Corp Pca form and construction method of pier using the same pca form
JPH10121417A (en) * 1996-10-21 1998-05-12 Fujita Corp Concrete frame, and method for constructing concrete structure using this concrete frame
JPH11131822A (en) * 1997-10-24 1999-05-18 Maeda Corp Joint and concrete structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223225A (en) * 2007-03-08 2008-09-25 Kajima Corp Column member, ufc-made precast form and earthquake resisting reinforcement method for column member using the same
JP2008240368A (en) * 2007-03-27 2008-10-09 Eiji Makitani Reinforced concrete column reinforcing structure
CN109208935A (en) * 2018-09-25 2019-01-15 湖南大学 A kind of method and device using pre-constructed unit rapid reinforcement damage RC column
CN109208935B (en) * 2018-09-25 2024-04-26 湖南大学 Method and device for quickly reinforcing damaged RC column by adopting prefabricated part

Also Published As

Publication number Publication date
JP4219156B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP5373979B2 (en) Construction Method of Steel Composite Girder Bridge {ConstructionMethod SteelCompositeGirderBridge}
US10344480B2 (en) Composite construct and methods and devices for manufacturing the same
JP6370729B2 (en) Road bridge protective fence installation method
Mohammed et al. Experimental and numerical evaluations on the behaviour of structures repaired using prefabricated FRP composites jacket
KR101701089B1 (en) Method of repairing and reinforcing damaged part of concrete structure using assemblable anchor and panel
JP6652754B2 (en) Joint structure of precast concrete slab for rapid construction and its construction method
Nguyen et al. Seismic response of a rocking bridge column using a precast hybrid fiber-reinforced concrete (HyFRC) tube
JP6259807B2 (en) Road bridge guard fence and its installation method
KR100783818B1 (en) Seismic retrofitting method of high-performance fiber reinforced cementitious composites for existing structures
Tena-Colunga et al. Strengthening of reinforced concrete prismatic and haunched beams using light jacketing
KR100432318B1 (en) use a carbon point the existing structure of repair &amp; reinforcement method or construction
KR100635137B1 (en) Bridge slab construction method and lattice bar deck-shaped precast concrete plate applied therein
KR101641657B1 (en) Construction Method for Repairing and Strengthening Structure of Decrepit Facilities
KR101013088B1 (en) Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure
JP4219156B2 (en) How to repair damaged concrete structures
KR100570231B1 (en) Structure section extension equipment and an extension method of construction using ps steel materials and a steel plate
JP2007009556A (en) Segment for shield tunnel and its manufacturing method
EP3158138A1 (en) A joint between beam elements and column elements made of prefabricated reinforced concrete
JP2016044494A (en) Construction method of foundation
JP2007077628A (en) Joint structure of joint and its construction method
Fódi et al. Comparison of shear behavior of masonry walls with and without reinforcement
JP6860381B2 (en) Reinforcement method and structure of steel pipe pile using multiple fine crack type fiber reinforced cement composite material
JP2021107619A (en) Building structure and method for forming building structure
KR940002454A (en) Repair method of concrete structure
JP7455931B1 (en) Precast board manufacturing method and precast board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4219156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees