JP2004175824A - White phosphor - Google Patents

White phosphor Download PDF

Info

Publication number
JP2004175824A
JP2004175824A JP2002340243A JP2002340243A JP2004175824A JP 2004175824 A JP2004175824 A JP 2004175824A JP 2002340243 A JP2002340243 A JP 2002340243A JP 2002340243 A JP2002340243 A JP 2002340243A JP 2004175824 A JP2004175824 A JP 2004175824A
Authority
JP
Japan
Prior art keywords
white
white phosphor
aluminum plate
spectrum
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002340243A
Other languages
Japanese (ja)
Inventor
Koichi Takase
浩一 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2002340243A priority Critical patent/JP2004175824A/en
Publication of JP2004175824A publication Critical patent/JP2004175824A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

<P>PROBLEM TO BE SOLVED: To provide a white phosphor comprised of an inorganic material which permits to inexpensively manufacture a large-area EL element. <P>SOLUTION: An ordinary aluminum plate as pure as possible is electropolished and subsequently the aluminum plate is anodized in an electrolytic solution for 5-20 hr to give a white phosphor 10 having a porous film having micropores, that is, an amorphous porous alumina layer 4 on the surface of the aluminum plate. The white phosphor 10 gives a spectrum having a peak at a wavelength of 410 nm. By applying a yellow color-emitting phosphorescent material on the amorphous porous alumina layer 4 of the white phosphor 10, a white illuminant can be readily produced by spectrum synthesis. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、白色光源とし得る白色系蛍光体に関する。
【0002】
【従来の技術】
照明用光源としては白色光が最適であり、また液晶表示装置等のバックライトには白色光が使用される等々の事情から、白色光源は非常に需要が多い。一方、光源としては、サイズが小さく周辺回路構成等ができるだけ単純、簡易なものであること、寿命が長いこと、発光効率が良いこと、安価であること等が望まれる。現在では半導体発光素子である発光ダイオード(LED)が、これら条件を満たす最適の光源であるというのが一般的な認識であるが、それに代わるものとして、白色EL素子が期待されており、多大な額の市場が見込まれている。また、白色EL素子は大面積が簡単に得られるため、次世代照明器具としても期待されている。
【0003】
【発明が解決しようとする課題】
そのため現在、有機材料を用いたEL発光素子の研究が盛んに行われている。ところが有機EL発光素子の場合、外的環境に対する安定度、耐久性、低コスト性、大面積性の点で解決すべき点が多いとされている。
【0004】
そこで本願発明者は、無機材料を用いてこのような問題を解決できるか否かを鋭意研究した結果、アルミニウムを用いた白色系蛍光体を作り出すことに成功した。
【0005】
【課題を解決するための手段】
本発明に係る白色系蛍光体のうち請求項1に係るものは、上記目的を達成するために、アルミニウム板を電解質溶液中で陽極酸化してなるアモルファス状多孔質アルミナ層を少なくとも表面に有してなることを特徴とする。すなわち本発明は、通常のアルミニウム板を電解質溶液中で陽極酸化し、アモルファス状多孔質アルミナを得ることで白色系蛍光体を得る。
【0006】
【発明の実施の形態及び実施】
以下本発明の施の形態及び実施例図面を参照して説明する。
図1は、本発明に係る色系蛍光体の製造過程を示す図である。まず前処理作業として、通常のアルミニウム板できるだけ高純度のものが好ましい)を電解研磨する。
【0007】
ついで図1に示すように、前処理したアルミニウム板1を電解質溶液2中で陽極酸化する。本願発明者は、電解溶液2にはシュウ酸または硫酸を温度1.4℃程度として用い、電解時間は5〜20時間程度とし、陰極板3はPtとした。この処理により、図2に示すように、アルミニウム板1の表面に微細孔を有するポーラス皮膜、すなわちアモルファス状多孔質アルミナ層4を有する白色系蛍光体10を得た。
【0008】
なお図3は陽極酸化アルミナのSEM写真である。この写真のアルミナには、直径20〜40nmの細孔が存在している。
【0009】
ついで図4に示すように、UV光源5と光ファイバ6を用いて上述のアモルファス状多孔質アルミナ層4を有する白色系蛍光体10のアルミナ生成表面にUV光7を照射し、その反射特性をスペクトル解析した。発光スペクトルは室温で測定した。その結果、白に近い青白色の発光が得られた。そのフォトルミネッセンススペクトルを調べたところ、図5に示すように、波長410nmにピークを有し、約600nmまで裾を引くスペクトルが観測できた。この光は、人間の目には、青白い光としてとらえられる。なお図5(C)のように酸化時間が若干短いと強度が小さい傾向が見られ、また長くしても図5(A、B)からわかるようにあまり変化がないので、酸化時間は5時間程度以上とすればよいであろう。図5(D)はバックグラウンドであるレーザ光のスペクトルである。
【0010】
図6は、陽極酸化後のアルミナ膜を空気中にて熱処理した場合のフォトルミネッセンススペクトルのグラフを示す図である。陽極酸化後のアルミナ膜に対して空気中にて300、400、500℃、5時間の熱処理を行った結果、500℃の試料がもっとも発光することがわかった。また熱処理によって発光強度が3倍近く強くなることがわかった。
【0011】
図7は、同じくアルミナ膜のX線回折パターンを示す図である。熱処理前では、回折ピークは見られないことから、この薄膜はアモルファス状であることがわかる。500℃、5時間の熱処理を行った膜では、弱いながら回折ピークが観測され、結晶化が進んでいることがわかる。
【0012】
また図8は、同じくアルミナ膜のXPS測定(酸素1s)の結果を示す図である。x線光電子分光法により酸素1sピークを調べたところ、熱処理を施していない場合、1sピークは2つに割れており、これらは酸化物とOH基の寄与であることがわかる。熱処理を行うと、OH基のピークはなくなり、酸化物を示す1つのピークだけになる。
【0013】
なお図9は比較例として通常のアルミナボート(A)及びアルミナ板(B)の例を示す。図7(C)は図5(D)と同じくバックグラウンドであるレーザ光のスペクトルである。
【0014】
図5からわかるように、本願発明に係る白色系蛍光体0のスペクトルは、他の青色発光素子のスペクトルと比較すると、半値幅が広く、長波長側までスペクトルが分布することが特徴的である。発光色が白に近いことから、白色EL素子材料に適しているといえる。また、発光値の調整もアモルファス状多孔質アルミナ層4の上に黄色発光の蛍光材料を塗布するだけでスペクトル合成により簡単に白色発光体を生成することが可能である。
熱処理前では、回折ピークは見られないことから、この薄膜はアモルファス状であることがわかる。500℃、5時間の熱処理を行った膜では、弱いながら回折ピークが観測され、結晶化が進んでいることがわかる。
【0015】
【発明の効果】
本発明に係る白色系蛍光体は、以上説明してきたように、アルミニウム板を電解質溶液中で陽極酸化してなるアモルファス状多孔質アルミナ層を少なくとも表面に有してなるので、通常のアルミニウム板を電解質溶液中で陽極酸化してアモルファス状多孔質アルミナ層を生成するだけで青白い光を発光する白色EL素子材料に適している素材を得られ、大面積EL素子の作成に資するものとなる。
【図面の簡単な説明】
【図1】本発明に係る白色系蛍光体の製造過程を示す図である。
【図2】本発明に係る白色系蛍光体の断面図である。
【図3】図3は陽極酸化アルミナの図面代用SEM写真である。
【図4】本発明に係る白色系蛍光体にUV光を照射する実験例を示す図である。
【図5】本発明に係る白色系蛍光体のサンプルの発光スペクトルを示す図である。
【図6】陽極酸化後のアルミナ膜を空気中にて熱処理した場合のフォトルミネッセンススペクトルのグラフを示す図である。
【図7】同アルミナ膜のX線回折パターンを示す図である。
【図8】同アルミナ膜のXPS測定(酸素1s)の結果を示す図である。
【図9】比較例の発光スペクトルを示す図である。
【符号の説明】
1 アルミニウム板
2 電解質溶液
3 陰極板
4 アモルファス状多孔質アルミナ層
5 UV光源
6 光ファイバ
7 UV光
10 白色系蛍光体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a white phosphor that can be used as a white light source.
[0002]
[Prior art]
A white light source is in great demand because white light is optimal as a light source for illumination, and white light is used for a backlight of a liquid crystal display device and the like. On the other hand, it is desired that the light source be as small and small as possible and the peripheral circuit configuration be as simple and simple as possible, have a long life, have a good luminous efficiency, be inexpensive, and the like. At present, it is generally recognized that a light emitting diode (LED), which is a semiconductor light emitting element, is an optimal light source that satisfies these conditions, but a white EL element is expected as an alternative, The market for the amount is expected. Further, since a white EL element can be easily obtained in a large area, it is expected as a next-generation lighting device.
[0003]
[Problems to be solved by the invention]
Therefore, research on EL light-emitting elements using an organic material has been actively conducted. However, in the case of the organic EL light emitting element, it is said that there are many points to be solved in terms of stability against external environments, durability, low cost, and large area.
[0004]
The inventor of the present application has conducted intensive studies on whether or not such a problem can be solved by using an inorganic material, and has succeeded in producing a white phosphor using aluminum.
[0005]
[Means for Solving the Problems]
The white phosphor according to claim 1 of the present invention has at least a surface of an amorphous porous alumina layer formed by anodizing an aluminum plate in an electrolyte solution to achieve the above object. It is characterized by becoming. That is, according to the present invention, a white phosphor is obtained by anodizing a normal aluminum plate in an electrolyte solution to obtain amorphous porous alumina.
[0006]
Embodiments and Embodiments of the Invention
Hereinafter, embodiments and examples of the present invention will be described with reference to the drawings.
FIG. 1 is a view showing a process of manufacturing a color phosphor according to the present invention. First, as a pretreatment operation, a normal aluminum plate having a purity as high as possible is preferable).
[0007]
Next, as shown in FIG. 1, the pretreated aluminum plate 1 is anodized in an electrolyte solution 2. The inventor of the present application used oxalic acid or sulfuric acid for the electrolytic solution 2 at a temperature of about 1.4 ° C., the electrolysis time was about 5 to 20 hours, and the cathode plate 3 was Pt. By this treatment, as shown in FIG. 2, a white phosphor 10 having a porous film having fine pores on the surface of the aluminum plate 1, that is, an amorphous porous alumina layer 4 was obtained.
[0008]
FIG. 3 is an SEM photograph of anodized alumina. The alumina in this photograph has pores having a diameter of 20 to 40 nm.
[0009]
Next, as shown in FIG. 4, UV light 7 is applied to the alumina-producing surface of the white phosphor 10 having the amorphous porous alumina layer 4 by using a UV light source 5 and an optical fiber 6, and its reflection characteristics are measured. The spectrum was analyzed. The emission spectrum was measured at room temperature. As a result, a bluish-white luminescence close to white was obtained. When the photoluminescence spectrum was examined, as shown in FIG. 5, a spectrum having a peak at a wavelength of 410 nm and a tail extending to about 600 nm could be observed. This light is perceived by the human eye as pale light. As shown in FIG. 5 (C), if the oxidation time is slightly short, the strength tends to be small. Even if the oxidation time is long, there is not much change as shown in FIGS. 5 (A, B). It should be more than degree. FIG. 5D shows a spectrum of a laser beam as a background.
[0010]
FIG. 6 is a graph showing a photoluminescence spectrum when the alumina film after anodization is heat-treated in air. As a result of subjecting the alumina film after anodization to heat treatment at 300, 400 and 500 ° C. for 5 hours in air, it was found that the sample at 500 ° C. emitted the most light. It was also found that the heat treatment increased the light emission intensity nearly three times.
[0011]
FIG. 7 is a view showing an X-ray diffraction pattern of the alumina film. Since no diffraction peak is observed before the heat treatment, it can be seen that this thin film is amorphous. In the film subjected to the heat treatment at 500 ° C. for 5 hours, a diffraction peak was observed although it was weak, indicating that crystallization had progressed.
[0012]
FIG. 8 is a graph showing the result of XPS measurement (1 s of oxygen) of the alumina film. Inspection of the oxygen 1s peak by x-ray photoelectron spectroscopy revealed that when no heat treatment was performed, the 1s peak was split into two peaks, which were attributed to oxides and OH groups. When the heat treatment is performed, the peak of the OH group disappears, and only one peak indicating the oxide is present.
[0013]
FIG. 9 shows an example of a normal alumina boat (A) and an alumina plate (B) as comparative examples. FIG. 7C shows the spectrum of the laser beam which is the background as in FIG. 5D.
[0014]
As can be seen from FIG. 5, the spectrum of the white phosphor 0 according to the present invention is characterized in that it has a wider half-width and a spectrum distributed to longer wavelengths compared to the spectra of other blue light emitting devices. . Since the emission color is close to white, it can be said that it is suitable for a white EL element material. In addition, it is possible to easily produce a white light-emitting body by spectral synthesis only by adjusting the emission value by applying a yellow light-emitting fluorescent material on the amorphous porous alumina layer 4.
Since no diffraction peak is observed before the heat treatment, it can be seen that this thin film is amorphous. In the film subjected to the heat treatment at 500 ° C. for 5 hours, a diffraction peak was observed although it was weak, indicating that crystallization had progressed.
[0015]
【The invention's effect】
As described above, the white phosphor according to the present invention has an amorphous porous alumina layer formed by anodizing an aluminum plate in an electrolyte solution on at least the surface thereof. A material suitable for a white EL device material that emits pale light can be obtained only by forming an amorphous porous alumina layer by anodizing in an electrolyte solution, which contributes to the production of a large-area EL device.
[Brief description of the drawings]
FIG. 1 is a view showing a process of manufacturing a white phosphor according to the present invention.
FIG. 2 is a sectional view of a white phosphor according to the present invention.
FIG. 3 is an SEM photograph as a drawing of anodized alumina.
FIG. 4 is a view showing an experimental example in which a white phosphor according to the present invention is irradiated with UV light.
FIG. 5 is a diagram showing an emission spectrum of a sample of a white phosphor according to the present invention.
FIG. 6 is a graph showing a photoluminescence spectrum graph when an alumina film after anodization is heat-treated in air.
FIG. 7 is a view showing an X-ray diffraction pattern of the alumina film.
FIG. 8 is a view showing a result of XPS measurement (1 s of oxygen) of the alumina film.
FIG. 9 is a diagram showing an emission spectrum of a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Aluminum plate 2 Electrolyte solution 3 Cathode plate 4 Amorphous porous alumina layer 5 UV light source 6 Optical fiber 7 UV light 10 White phosphor

Claims (1)

アルミニウム板を電解質溶液中で陽極酸化してなるアモルファス状多孔質アルミナ層を少なくとも表面に有してなることを特徴とする白色系蛍光体。A white phosphor comprising at least a surface of an amorphous porous alumina layer formed by anodizing an aluminum plate in an electrolyte solution.
JP2002340243A 2002-11-25 2002-11-25 White phosphor Pending JP2004175824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340243A JP2004175824A (en) 2002-11-25 2002-11-25 White phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340243A JP2004175824A (en) 2002-11-25 2002-11-25 White phosphor

Publications (1)

Publication Number Publication Date
JP2004175824A true JP2004175824A (en) 2004-06-24

Family

ID=32702920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340243A Pending JP2004175824A (en) 2002-11-25 2002-11-25 White phosphor

Country Status (1)

Country Link
JP (1) JP2004175824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124343A2 (en) * 2007-04-09 2008-10-16 The Board Of Trustees Of The University Of Illinois Variably porous structures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124343A2 (en) * 2007-04-09 2008-10-16 The Board Of Trustees Of The University Of Illinois Variably porous structures
WO2008124343A3 (en) * 2007-04-09 2008-12-18 Univ Illinois Variably porous structures
US7872563B2 (en) 2007-04-09 2011-01-18 The Board Of Trustees Of The University Of Illinois Variably porous structures

Similar Documents

Publication Publication Date Title
JP4814540B2 (en) Method for manufacturing phosphor
JP6081368B2 (en) White light source and white light source system using the same
TWI589034B (en) A phosphor converted light emitting diode, a lamp and a luminaire
WO2012144087A1 (en) White light source and white light source system using same
Guo et al. Aggregation-induced emission enhancement of carbon quantum dots and applications in light emitting devices
WO2012108065A1 (en) White light source and white light source system using same
JP2008521211A (en) LED device including thin-film phosphor having two-dimensional nano-periodic structure
JPWO2008126500A1 (en) M—C—N—O phosphor
US10301541B2 (en) Fluoride phosphor, method of manufacturing the same, and light emitting device
US20150084075A1 (en) Light-Emitting Module and Luminaire
US20140340912A1 (en) Transparent light-emitting sheet and method of manufacturing same
JP2012501365A (en) RED PHOSPHOR FOR SOLID LIGHTING AND METHOD FOR PRODUCING THE SAME {REDPHOSPHORANDITOSING
Liu et al. Vigorous high-efficiency YAGG: Ce phosphor-in-glass film for next-generation laser lighting applications
TWI309257B (en)
JP2008071805A (en) Multi-wavelength light-emitting device for coating not less than two kinds of semiconductor light-emitting elements with a plurality of types of phosphors
JP2015203096A (en) Fluorescent material and illumination apparatus
JP2004175824A (en) White phosphor
JP4309242B2 (en) Red phosphor material, white light emitting diode using red phosphor material, and lighting device using white light emitting diode
JP5774900B2 (en) Light emitting diode element and method for manufacturing the same
CN105670615B (en) A kind of strontium aluminate cage type microballoon luminescent material of divalent europium doping and preparation method thereof
JP5330880B2 (en) Light emitting diode element and method for manufacturing the same
JP5509997B2 (en) Method for producing ceramic composite for light conversion
Wang et al. Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film
Wang et al. Tunable visible emission and warm white photoluminescence of lithium-doped zinc oxide thin films
TW200832741A (en) Light emitting diode structure and manufacturing method of the same