JP2004175755A - COPPER COMPLEX HAVING ASYMMETRIC beta-DIKETONE LIGAND AND METHOD FOR PRODUCING THE SAME - Google Patents

COPPER COMPLEX HAVING ASYMMETRIC beta-DIKETONE LIGAND AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2004175755A
JP2004175755A JP2002346224A JP2002346224A JP2004175755A JP 2004175755 A JP2004175755 A JP 2004175755A JP 2002346224 A JP2002346224 A JP 2002346224A JP 2002346224 A JP2002346224 A JP 2002346224A JP 2004175755 A JP2004175755 A JP 2004175755A
Authority
JP
Japan
Prior art keywords
copper
group
diketone
copper complex
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002346224A
Other languages
Japanese (ja)
Other versions
JP4254218B2 (en
Inventor
Taiji Hara
大治 原
Keisuke Yoshida
圭介 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2002346224A priority Critical patent/JP4254218B2/en
Publication of JP2004175755A publication Critical patent/JP2004175755A/en
Application granted granted Critical
Publication of JP4254218B2 publication Critical patent/JP4254218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper complex for MOCVD (metal organic chemical vapor deposition) produced by using an organic metal complex having high vapor pressure, enabling stable and easy evaporation and forming a copper thin film at a controllable deposition speed. <P>SOLUTION: The copper complex expressed by general formula (1) (R<SP>1</SP>and R<SP>2</SP>are each independently a 1-20C hydrocarbon group; R<SP>f</SP>is a fluorohydrocarbon group containing one or more F atoms; and (n) is an integer of 0-20) can be produced by reacting a silyl-substituted alkene of general formula (2), a β-diketone of general formula (3) and cuprous oxide. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、銅薄膜層の形成に好適な銅錯体及びその製造方法に関するものである。殊に高速高集積回路配線、すなわち、高速演算回路用の銅配線を化学蒸着法により形成させる際に用いるに好適な銅錯体及びその製造方法に関するものである。
【0002】
【従来の技術】
電子産業の集積回路分野の製造技術において、高集積化かつ高速化の要求が高まっている。現在、集積回路の大部分にアルミニウム配線が使用されているが、高集積化及び高速化の要求にともなって、より電気抵抗が低く、マイグレーション耐性のある銅による配線技術が実用化されつつある。
【0003】
銅配線の形成技術については、0価のCuスパッタリング法と二価Cuの溶液メッキ法を組み合わせた方法と主に一価Cuの有機金属錯体を用いた化学蒸着法(以下MOCVD法と記載)とがある。しかしながら、前者のスパッタ法とメッキ法を組み合わせた方法では、0.07μm以下程度の小さい口径を有する深い溝に対する埋め込みが困難である。これを解決する為にMOCVD法が用いられ、高い深さ/口径比(高アスペクト比)の溝や孔及び段差を凹凸が小さく平滑かつ良好な膜質で被覆することが可能となった。
【0004】
上記のMOCVD用銅化合物としては既に種々のものが知られている。例えば、特許文献1では、1,1,1,5,5,5−ヘキサフルオロアセチルアセトナト銅(I)ビニルトリメチルシランを用いることを提案している。本銅化合物は、液状である為、供給量を液体流量計で制御でき、蒸気圧も比較的高く、従来の固体の化合物に比し、MOCVD材料としては、使い易くなっている。
【0005】
しかしながら、ヘキサフルオロアセチルアセトナート銅(I)ビニルトリメチルシランは、気化のための長時間加熱によって徐々に分解し、Cu(O)の析出があったり、トリメチルビニルシランのオリゴマー及びポリマーが生成し、装置内の閉塞原因となる場合があった。更にヘキサフルオロアセチルアセトナート銅(I)ビニルトリメチルシランは、弗素含有量が高いことから、これを用いMOCVDにより、LSI用銅配線を形成した場合、銅配線組成中に弗素が残存し、TaN,TiN等のバリアメタルに対する密着性が、スパッタリング法によるものに比し、極めて劣ることが問題となっている。より、弗素含有量の低い銅化合物が求められている。
【0006】
この問題点を解決する為に本発明者らは、既に、特許文献2及び特許文献3に示される銅化合物を提案している。しかしながら、これら特許文献で提案した銅化合物の蒸気圧は、高成膜速度を実現する為には、不十分であった。より高い蒸気圧を有する安定な銅化合物が求めらている。
【0007】
すなわち、市場からは、常に高性能な銅化合物に対する要求があり、特に弗素含有量が低く、高蒸気圧特性を有し、気化温度範囲内で安定であり、200℃程度の比較的低い温度で分解して、蒸着可能な銅錯体が切望されている。
【0008】
【特許文献1】
特許第2132693号
【特許文献2】
特開2002−193974号公報
【特許文献3】
特開2002−193988号公報
【0009】
【発明が解決しようとする課題】
本発明は上記の課題に鑑みてなされたものであり、その目的は、従来技術の問題を解決すること、すなわち、本発明は、蒸気圧が高く、気化が安定的かつ容易で、その銅薄膜の形成速度が制御可能な低弗素含有量のMOCVD用銅錯体の提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、非対称βジケトン配位子と特定構造のシリル基置換オレフィン配位子との組み合わせを有する銅化合物が熱的に安定であり、蒸気圧が高く、MOCVD材料として良質の銅薄膜を制御可能な速度で形成可能な銅化合物を見出し、本発明を完成させるに至った。
【0011】
すなわち、本発明は、下記一般式(1)
【0012】
【化4】

Figure 2004175755
(式中、R,Rは、炭素数1乃至20の炭化水素基であり、Rは、少なくとも一つの弗素原子を有する弗化炭化水素基である。Rどうし,Rどうしは、同一でも異なってもよい。nは、0乃至20の整数を表わす。)
で示される銅錯体及びその製造方法を提供することにあり、殊に上記一般式(1)で示される銅錯体は、Cu−MOCVD材料として銅薄膜形成に有用である。
【0013】
以下、本発明の詳細について説明する。
【0014】
上記一般式(1)おいてR,Rは、炭素数1乃至20、好ましくは、銅錯体の蒸気圧を上昇させるために炭素数1乃至10の炭化水素基であり、Rどうし、Rどうしは、同一であっても異なっても良い。
【0015】
炭化水素基としては、特に限定されるものではないが、炭素数1〜20、好ましくは炭素数1〜10のアルキル基、アリール基、アリールアルキル基、アルキルアリール基を挙げることができる。
【0016】
具体的には、例えば、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、tert.−ブチル、n−ペンチル、tert.−アミル、n−ヘキシル、シクロヘキシル、フェニル、トルイル基等をあげることができる。
【0017】
は、少なくとも一つの弗素原子を有する炭素数1〜20の弗化炭化水素基である。弗化炭化水素基としては、少なくとも一つの弗素原子を有する炭化水素基であれば特に限定されるものではなく、炭素数1〜20、好ましくは炭素数1〜10の弗化飽和炭化水素基や弗化不飽和炭化水素基等をあげることができる。
【0018】
弗化飽和炭化水素基としては、例えば、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロシクロプロピル基、パーフルオロメチルシクロプロピル基、パーフルオロブチル基、パーフルオロシクロブチル基、パーフルオロペンチル基、パーフルオロシクロペンチル基、パーフルオロメチルシクロペンチル基、パーフルオロヘキシル基、パーフルオロシクロヘキシル基、パーフルオロ−1,2−ジメチルシクロヘキシル基、パーフルオロヘプチル基等のパーフルオロカーボン残基、フルオロメチル基、ジフルオロメチル基、1,1,1−トリフルオロエチル基、2−パーフルオロアルキルエチル基のフルオロハイドロカーボン残基等を挙げることができる。
【0019】
更に弗化不飽和炭化水素基としては、例えば、パーフルオロエテニル基、パーフルオロプロペニル基、パーフルオロ−1,3−ブタジエニル基、シクロブテニル基、パーフルオロ−2−ブチニル基、ペンタフルオロフェニル基、パーフルオロトルイル基、ビス(トリフルオロメチル)フェニル基、パーフルオロナフタレニル基、パーフルオロインデニル基、パーフルオロフルオレニル基等を挙げることができる。
【0020】
nは、0乃至20の整数、好ましくは0乃至10の整数、特に好ましくは0乃至2の整数を表す。
【0021】
続いて、上記一般式(1)の非対称βジケトン配位銅錯体の製造の際に用いることができる原料について説明する。
【0022】
銅(I)原料としては、特に限定されるものではないが、塩化銅(I)、臭化銅(I)、沃化銅(I)等のハロゲン化銅(I)化合物や酸化第一銅を用いることができる。
【0023】
シリル基置換アルケンとしては、下記一般式(2)のシリル基置換アルケンを用いることができる。
【0024】
【化5】
Figure 2004175755
(式中、Rおよびnは、上記に同じ。)
βジケトン成分としては、下記一般式(3)のβジケトン又は下記一般式(4)のβジケトン塩を用いることができる。
【0025】
【化6】
Figure 2004175755
(式中、R、Rは、上記に同じ。))
【0026】
【化7】
Figure 2004175755
(式中、R、Rは、上記に同じ。Mは、アルカリ金属またはアルカリ土類金属を表す
一般式(1)の非対称βジケトン配位銅錯体の製造方法については、特に限定されるものではないが、一般式(2)のシリル基置換アルケンの共存下、一般式(3)のβジケトンに酸化第一銅を反応させることによって製造することができる。
【0027】
この際の量論比については、特に限定されないが、β−ジケトン1molに対し、酸化第一銅が0.01mol乃至100mol、好ましくは、0.5mol乃至50mol、特に好ましくは、0.1mol乃至10molの範囲であり、シリル基置換アルケンが0.01mol乃至500mol、好ましくは、0.5mol乃至250mol、特に好ましくは、0.1mol乃至50molの範囲で添加することができる。この範囲を外れた場合、目的物である非対称βジケトン配位銅錯体の収量が低くなったり、精製が困難となる場合がある。
【0028】
一般式(2)のシリル基置換アルケンの共存下、一般式(3)のβジケトンに酸化第一銅を反応させる場合、副生する水をモレキュラーシーブ、硫酸マグネシウム、硫酸ナトリウム、炭酸ナトリウム等の脱水剤を共存させて除去することが好ましい。脱水剤を共存させることにより、目的物の非対称βジケトン配位銅錯体の収率が向上する場合がある。
【0029】
また、一般式(1)の非対称βジケトン配位銅錯体は、一般式(2)のシリル基置換アルケン共存下、一般式(4)のβ−ジケトン塩にハロゲン化銅(I)化合物を反応させることによっても製造することができる。
【0030】
この際の量論比については、特に限定されないが、βジケトン塩1molに対し、ハロゲン化銅(I)化合物が0.01mol乃至100mol、好ましくは、0.5mol乃至50mol、特に好ましくは、0.1mol乃至10molの範囲であり、シリル基置換アルケンが0.01mol乃至500mol、好ましくは、0.5mol乃至250mol、特に好ましくは、0.1mol乃至50molの範囲で添加することができる。この範囲を外れた場合、目的物である非対称βジケトン配位銅錯体の収量が低くなったり、精製が困難となる場合がある。
【0031】
一般式(4)で示されるβジケトン塩の製造方法としては、βジケトンと水素化ナトリウム、水素化カリウム等の水素化アルカリ金属とを反応させるか、又はβジケトンと水素化カルシウム等の水素化アルカリ土類金属とを反応させることにより製造することができる。また、βジケトンと水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属とを反応させるか、又はβジケトンと水酸化マグネシウム、水酸化カルシウム等の水酸化アルカリ土類金属とを反応させることによっても製造できる。この際、副生する水をモレキュラーシーブ、硫酸マグネシウム、硫酸ナトリウム、炭酸ナトリウム等の脱水剤を共存させて除去することが望ましい。脱水剤を共存させることにより、目的物の非対称βジケトン配位銅錯体の収率が向上する場合がある。
【0032】
Mであるアルカリ金属及びアルカリ土類金属としては、Li、Na、K、Mg、Ca等が挙げられる。
【0033】
非対称βジケトン配位銅錯体を製造する際、溶媒非存在下、又は溶媒存在下で反応を行うことができる。溶媒の種類は、当該技術分野で使用されるものであれば特に限定されるものではない。例えば、n−ペンタン、i−ペンタン、n−ヘキサン、n−ヘプタン、n−デカン等の飽和炭化水素類、トルエン、キシレン、デセン−1等の不飽和炭化水素類、ジエチルエーテル、テトラヒドロフラン、テトラヒドロピラン等のエーテル類、ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類を挙げることができる。
【0034】
しかしながら、溶媒希釈しない製造法を用いることにより、非対称βジケトン配位銅錯体の顕著な収率向上及び反応器当りの収量向上が観られる場合がある。
【0035】
銅錯体を製造する際の反応温度については、特に限定されないが、生成する銅錯体が分解しない様な温度範囲で行うことが好ましい。通常、工業的に使用されている温度である−78〜200℃の範囲、好ましくは、−50〜150℃の範囲で行うことが好ましい。反応の圧力条件は、加圧下、常圧下、減圧下いずれであっても可能である。
【0036】
製造された非対称βジケトン配位銅錯体の精製法については特に限定されないが、減圧蒸留及びシリカ、アルミナ、高分子ゲルを用いたカラム分離精製を使用することができる。この際の操作は、当該有機金属化合物合成分野での方法に従えばよい。すなわち、例えば、脱水及び脱酸素された窒素又はアルゴン雰囲気下で行い、使用する溶媒及び精製用のカラム充填剤等は、予め脱水操作を施しておくことが好ましい。この操作により、生成する銅錯体の収量及び純度が向上する場合がある。
【0037】
以下に実施例を示すが、本発明は、これらの実施例によって何ら限定されるものではない。
【0038】
【実施例】
実施例1
[非対称βジケトンアルカリ金属塩の製造]
窒素気流下、攪拌装置を有する500mlのガラス製反応器に、1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオン28.1g(143mmol)を脱水したテトラヒドロフラン400mlに希釈し、85%純度の水酸化カリウム9.46g(143mmol)及びモレキュラーシーブ200mlを添加し、室温で4時間攪拌し1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオンのカリウム塩溶液を得た。反応後、モレキュラーシーブをガラスフィルターで除去し、得られた濾液からテトラヒドロフランを減圧留去し、n−ペンタンでスラリー化し、ガラスフィルターで目的物である1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオンのカリウム塩20.5g(87.4mmol)を得た。収率は、61.0%であった。
[非対称βジケトン配位銅(I)錯体の製造]
窒素気流下、攪拌装置を有する200mlのシュレンク管に1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオンのカリウム塩7.03g(30.0mmol)、塩化第一銅3.56g(36.0mmol)、ビニルトリメチルシラン15.0g(150mmol)を仕込み、これに乾燥n−ペンタン150mlを加え、反応を開始した。室温で27時間反応させた後、未反応物及び副生物である塩化カリウムをガラスフィルターで除去し、得られた濾液からn−ペンタンを留去し、目的物である(1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオナト)銅(I)ビニルトリメチルシランの濃青色液体8.43g(23.5mol)を得た。収率は、78.3%(カリウム塩基準)に相当した。目的物を室温にて保存したがその分解は無く、安定であった。
【0039】
目的物の元素分析及びH−NMRの結果は以下の通りであった。
1322SiCu (wt%)
測定値(C:43.2,H:6.2,F:16.3,Cu:17.4,Si:7.9,K:検出されず)
計算値(C:43.5,H:6.1,F:15.9,Cu:17.7,Si:7.8,K:0.0)
H−NMR(in C) δ0.096ppm(9H,s,SiCH)、δ1.09ppm(9H,s,Bu(C=O))、δ4.11ppm(3H,m,CHCH−)、δ6.18ppm(1H,s,(C=O)CH(C=O))
隔膜式蒸気圧測定装置により、本錯体の蒸気圧測定を行ったところ、50℃で199Paであり、MOCVD材料として十分な蒸気圧を有していることが判明した。
【0040】
実施例2
実施例1において、ビニルトリメチルシランに変えて、ビニル−tert.−ブチルジメチルシラン21.3g(150mmol)としたこと以外は、実施例1と同様にして、目的物である(1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオナト)銅(I)ビニル−tert.−ブチルジメチルシランの製造を行った。結果は、目的物の濃青色液体を収率69.1%で得た。目的物を室温にて保存したがその分解は無く、安定であった。
【0041】
元素分析及びH−NMRの結果は、以下の通りであった。
1628SiCu (wt%)
測定値(C:47.1,H:6.8,F:14.4,Cu:15.7,Si:7.1,K:検出されず)
計算値(C:47.9,H:7.0,F:14.2,Cu:15.9,Si:7.0,K:0.0)
H−NMR(in C) δ0.095ppm(6H,s,SiCH)、δ0.800ppm(9H,s,SiBu)、δ1.07ppm(9H,s,Bu(C=O))、δ4.10ppm(3H,m,CHCH−)、δ6.17ppm(1H,s,(C=O)CH(C=O))
隔膜式蒸気圧測定装置により、本錯体の蒸気圧測定を行ったところ、50℃で24.7Paであり、MOCVD材料として十分な蒸気圧を有していることが判明した。
【0042】
実施例3
窒素気流下、攪拌装置を有する100mlのシュレンク管に1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオン5.89g(30.0mmol)、酸化第一銅5.15g(36.0mmol)、ビニルトリメチルシラン15.0g(150mmol)、モレキュラーシーブ30mlを仕込み、室温で22時間攪拌反応させた。モレキュラーシーブ及び未反応の酸化第一銅をガラスフィルターで除去し、濾液から、未反応の1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオン及びビニルトリメチルシランを減圧条件下留去し、目的物である1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオナト)銅(I)ビニルトリメチルシランの濃青色液体10.05g(28.0mol)を得た。収率は、93.3%(ヘキサンジオン基準)に相当し、極めて高収率であり、無溶媒での製造の効果が確認された。目的物を室温にて保存したがその分解は無く、安定であった。
【0043】
目的物の元素分析及びH−NMRの結果は以下の通りであった。
1322SiCu (wt%)
測定値(C:43.2,H:6.2,F:16.3,Cu:17.4,Si:7.9)
計算値(C:43.5,H:6.1,F:15.9,Cu:17.7,Si:7.8)
H−NMR(in C) δ0.088ppm(9H,s,SiCH)、δ1.08ppm(9H,s,Bu(C=O))、δ4.10ppm(3H,m,CHCH−)、δ6.16ppm(1H,s,(C=O)CH(C=O))
比較例1
実施例1において、1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオンに変えて、1,1,1−トリフルオロアセチルアセトン用いたこと以外は、実施例1と同様にして1,1,1−トリフルオロアセチルアセトンのカリウム塩を得、目的物である(1,1,1−トリフルオロアセチルアセトナト)銅(I)ビニルトリメチルシランの濃青色液体を得た。収率は、57.3%であった。本濃青色液体のH−NMRは、以下の通りである。
【0044】
H−NMR(in C) δ0.068ppm(9H,s,SiCH)、δ1.74ppm(3H,s,CH(C=O))、δ4.12ppm(3H,broad,CH=CH−)、δ5.73ppm(1H,s,(C=O)CH(C=O))
しかしながら、本1,1,1−トリフルオロアセチルアセトナト)銅(I)ビニルトリメチルシランの濃青色液体を窒素雰囲気下、室温にて3時間放置したところ、緑色固体及び黄金色の金属銅が析出し、目的物の液体がすべて固化した。すなわち、室温で本銅錯体が不安定で分解し易く、MOCVD材料としては不適であることが認められた。
【0045】
比較例2
実施例1において、ビニルトリメチルシランに変えて、ビニルトリエトキシシラン28.5g(150mmol)を用いたこと以外は、実施例1と同様にして非対称βジケトン銅(I)錯体を製造したが、青緑色の固体が得られたのみであった。元素分析を行ったところCu含有量が3.4wt%であった。計算値の14.2wt%とはかけ離れており、目的の錯体が合成されていないことが判明した。
比較例3
実施例1において、1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオンにかえて、1,1,1,5,5,5−ヘキサフルオロアセチルアセトン29.8g(143mmol)とし、ビニルトリメチルシランにかえて、ビニル−tert.−ブチルジメチルシラン21.3g(150mmol)としたこと以外は、実施例1と同様にして、目的物である(1,1,1,5,5,5−ヘキサフルオロアセチルアセトナト)銅(I)ビニル−tert.−ブチルジメチルシランを製造した。結果は、目的物の濃緑色液体を収率83.0%で得た。目的物を室温にて保存したが、その分解は無く、安定であった。
【0046】
元素分析及びH−NMRの結果は、以下の通りであった。
1319SiCu (wt%)
測定値(C:37.4,H:4.6,F:28.0,Cu:15.2,Si:6.7,K検出されず)
計算値(C:37.8,H:4.6,F:27.6,Cu:15.4,Si:6.8,K:0.0)
H−NMR(in C) δ0.092ppm(6H,s,SiCH)、δ0.79ppm(9H,s,Si−tBu)、δ4.20ppm(3H,m,CHCH−)、δ6.21ppm(1H,s,(C=O)CH(C=O))
隔膜式蒸気圧測定装置により、本錯体の蒸気圧測定を行ったところ、50℃で2.2Paであり、実施例1乃至3で製造したCu(I)錯体よりも低い蒸気圧を有していた。
【0047】
【発明の効果】
本発明によれば、以下の顕著な効果が奏される。
【0048】
本発明の第一の効果としては、従来の弗素含有βジケトン銅(I)ビニルシラン錯体よりも弗素含有量が低く、安定であり、蒸気圧が高い新規な銅錯体を提供することが可能となった。殊に本錯体は、銅配線用MOCVD材料として好適である。
【0049】
第二の効果としては、非対称β−ジケトンを配位子として有する銅(I)錯体を製造するにあたり、極めて効率的で、経済的な合成処方を提供することが可能となった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a copper complex suitable for forming a copper thin film layer and a method for producing the same. In particular, the present invention relates to a copper complex suitable for use in forming a high-speed high-integration circuit wiring, that is, a copper wiring for a high-speed arithmetic circuit by a chemical vapor deposition method, and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art In manufacturing technology in the field of integrated circuits in the electronics industry, demands for high integration and high speed are increasing. At present, aluminum wiring is used for most integrated circuits. However, with the demand for higher integration and higher speed, a wiring technique using copper having lower electric resistance and migration resistance is being put to practical use.
[0003]
Regarding the technology for forming copper wiring, there are a method of combining a zero-valent Cu sputtering method and a solution plating method of divalent Cu, and a chemical vapor deposition method (hereinafter, referred to as MOCVD method) mainly using an organometallic complex of monovalent Cu. There is. However, in the former method in which the sputtering method and the plating method are combined, it is difficult to fill a deep groove having a small diameter of about 0.07 μm or less. In order to solve this, the MOCVD method has been used, and it has become possible to coat grooves, holes and steps having a high depth / diameter ratio (high aspect ratio) with small unevenness and smooth and excellent film quality.
[0004]
Various compounds are already known as the copper compound for MOCVD. For example, Patent Document 1 proposes using 1,1,1,5,5,5-hexafluoroacetylacetonato copper (I) vinyltrimethylsilane. Since the present copper compound is liquid, the supply amount can be controlled by a liquid flow meter, the vapor pressure is relatively high, and it is easier to use as a MOCVD material than a conventional solid compound.
[0005]
However, hexafluoroacetylacetonate copper (I) vinyltrimethylsilane is gradually decomposed by prolonged heating for vaporization, Cu (O) is precipitated, and oligomers and polymers of trimethylvinylsilane are generated, and the In some cases could cause obstruction. Further, since hexafluoroacetylacetonate copper (I) vinyltrimethylsilane has a high fluorine content, when MOCVD is used to form copper wiring for LSI, fluorine remains in the copper wiring composition, and TaN, The problem is that the adhesion to a barrier metal such as TiN is extremely inferior to that obtained by a sputtering method. Therefore, a copper compound having a low fluorine content is required.
[0006]
In order to solve this problem, the present inventors have already proposed copper compounds disclosed in Patent Documents 2 and 3. However, the vapor pressure of the copper compound proposed in these patent documents was insufficient for realizing a high film forming rate. There is a need for a stable copper compound having a higher vapor pressure.
[0007]
That is, there is always a demand from the market for a high-performance copper compound, especially a low fluorine content, high vapor pressure characteristics, stable within the vaporization temperature range, and a relatively low temperature of about 200 ° C. There is a long-felt need for a copper complex that can be decomposed and deposited.
[0008]
[Patent Document 1]
Patent No. 2132693 [Patent Document 2]
JP 2002-193974 A [Patent Document 3]
Japanese Patent Application Laid-Open No. 2002-193988
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and an object of the present invention is to solve the problems of the prior art. That is, the present invention has a high vapor pressure, stable and easy vaporization, and a copper thin film. It is an object of the present invention to provide a copper complex for MOCVD having a low fluorine content and capable of controlling the formation rate of the compound.
[0010]
[Means for Solving the Problems]
The present inventors have found that a copper compound having a combination of an asymmetric β-diketone ligand and a silyl group-substituted olefin ligand having a specific structure is thermally stable, has a high vapor pressure, and has a high quality as a MOCVD material. The present inventors have found a copper compound that can be formed at a rate that can control the concentration of the compound, and have completed the present invention.
[0011]
That is, the present invention provides the following general formula (1)
[0012]
Embedded image
Figure 2004175755
(Wherein, R 1, R 2 is a hydrocarbon group having 1 to 20 carbon atoms, R f, and if .R 1 is a fluoride hydrocarbon group having at least one fluorine atom, and if R 2 is May be the same or different. N represents an integer of 0 to 20.)
In particular, the copper complex represented by the general formula (1) is useful as a Cu-MOCVD material for forming a copper thin film.
[0013]
Hereinafter, details of the present invention will be described.
[0014]
The general formula (1) Oite R 1, R 2 is 1 to 20 carbon atoms, preferably a hydrocarbon group having 1 to 10 carbon atoms in order to increase the vapor pressure of copper complex, and if R 1, R 2 may be the same or different.
[0015]
Although it does not specifically limit as a hydrocarbon group, C1-C20, Preferably a C1-C10 alkyl group, an aryl group, an arylalkyl group, and an alkylaryl group can be mentioned.
[0016]
Specifically, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert. -Butyl, n-pentyl, tert. -Amyl, n-hexyl, cyclohexyl, phenyl, toluyl and the like.
[0017]
R f is a C 1-20 fluorinated hydrocarbon group having at least one fluorine atom. The fluorinated hydrocarbon group is not particularly limited as long as it is a hydrocarbon group having at least one fluorine atom, and may be a fluorinated saturated hydrocarbon group having 1 to 20, preferably 1 to 10 carbon atoms. And fluorinated unsaturated hydrocarbon groups.
[0018]
Examples of the fluorinated saturated hydrocarbon group include a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorocyclopropyl group, a perfluoromethylcyclopropyl group, a perfluorobutyl group, a perfluorocyclobutyl group, Perfluorocarbon residues such as perfluoropentyl group, perfluorocyclopentyl group, perfluoromethylcyclopentyl group, perfluorohexyl group, perfluorocyclohexyl group, perfluoro-1,2-dimethylcyclohexyl group, perfluoroheptyl group, fluoromethyl Groups, a difluoromethyl group, a 1,1,1-trifluoroethyl group, a fluorohydrocarbon residue of a 2-perfluoroalkylethyl group, and the like.
[0019]
Further, as a fluorinated unsaturated hydrocarbon group, for example, a perfluoroethenyl group, a perfluoropropenyl group, a perfluoro-1,3-butadienyl group, a cyclobutenyl group, a perfluoro-2-butynyl group, a pentafluorophenyl group, Examples include a perfluorotoluyl group, a bis (trifluoromethyl) phenyl group, a perfluoronaphthalenyl group, a perfluoroindenyl group, and a perfluorofluorenyl group.
[0020]
n represents an integer of 0 to 20, preferably an integer of 0 to 10, and particularly preferably an integer of 0 to 2.
[0021]
Next, the raw materials that can be used in the production of the asymmetric β-diketone-coordinated copper complex represented by the general formula (1) will be described.
[0022]
The copper (I) raw material is not particularly limited, but copper (I) compounds such as copper (I) chloride, copper (I) bromide, and copper (I) iodide, and cuprous oxide Can be used.
[0023]
As the silyl group-substituted alkene, a silyl group-substituted alkene represented by the following general formula (2) can be used.
[0024]
Embedded image
Figure 2004175755
(In the formula, R 2 and n are the same as described above.)
As the β-diketone component, a β-diketone represented by the following general formula (3) or a β-diketone salt represented by the following general formula (4) can be used.
[0025]
Embedded image
Figure 2004175755
(In the formula, R 1 and R f are the same as above.)
[0026]
Embedded image
Figure 2004175755
(Wherein R 1 and R f are the same as above. M represents an alkali metal or an alkaline earth metal. The method for producing the asymmetric β-diketone-coordinated copper complex of the general formula (1) is particularly limited. Although not required, it can be produced by reacting a β-diketone of the general formula (3) with cuprous oxide in the presence of a silyl group-substituted alkene of the general formula (2).
[0027]
The stoichiometric ratio at this time is not particularly limited, but the cuprous oxide is 0.01 mol to 100 mol, preferably 0.5 mol to 50 mol, particularly preferably 0.1 mol to 10 mol, per 1 mol of β-diketone. And the silyl group-substituted alkene can be added in an amount of 0.01 mol to 500 mol, preferably 0.5 mol to 250 mol, particularly preferably 0.1 mol to 50 mol. Outside this range, the yield of the target asymmetric β-diketone-coordinated copper complex may be low, or purification may be difficult.
[0028]
When cuprous oxide is reacted with a β-diketone of the general formula (3) in the presence of a silyl group-substituted alkene of the general formula (2), water produced as a by-product such as molecular sieve, magnesium sulfate, sodium sulfate, and sodium carbonate is used. It is preferable to remove in the presence of a dehydrating agent. The coexistence of a dehydrating agent may improve the yield of the target asymmetric β-diketone-coordinated copper complex.
[0029]
Further, the asymmetric β-diketone-coordinated copper complex of the general formula (1) is obtained by reacting a copper (I) halide compound with a β-diketone salt of the general formula (4) in the presence of a silyl group-substituted alkene of the general formula (2). It can also be manufactured by performing the above.
[0030]
The stoichiometric ratio at this time is not particularly limited, but the amount of the copper (I) halide is 0.01 mol to 100 mol, preferably 0.5 mol to 50 mol, particularly preferably 0.1 mol to 1 mol of the β-diketone salt. It is in the range of 1 mol to 10 mol, and the silyl group-substituted alkene can be added in the range of 0.01 mol to 500 mol, preferably 0.5 mol to 250 mol, particularly preferably 0.1 mol to 50 mol. Outside this range, the yield of the target asymmetric β-diketone-coordinated copper complex may be low, or purification may be difficult.
[0031]
The method for producing the β-diketone salt represented by the general formula (4) includes reacting the β-diketone with an alkali metal hydride such as sodium hydride, potassium hydride, or hydrogenating the β-diketone with calcium hydride or the like. It can be produced by reacting with an alkaline earth metal. Alternatively, by reacting β-diketone with an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, or by reacting β-diketone with an alkaline earth metal hydroxide such as magnesium hydroxide or calcium hydroxide. Can be manufactured. At this time, it is desirable to remove by-product water in the presence of a dehydrating agent such as molecular sieve, magnesium sulfate, sodium sulfate, and sodium carbonate. The coexistence of a dehydrating agent may improve the yield of the target asymmetric β-diketone-coordinated copper complex.
[0032]
Examples of the alkali metal and alkaline earth metal as M include Li, Na, K, Mg, Ca and the like.
[0033]
When producing an asymmetric β-diketone coordinated copper complex, the reaction can be performed in the absence of a solvent or in the presence of a solvent. The type of the solvent is not particularly limited as long as it is used in the art. For example, saturated hydrocarbons such as n-pentane, i-pentane, n-hexane, n-heptane, n-decane, unsaturated hydrocarbons such as toluene, xylene and decene-1, diethyl ether, tetrahydrofuran, tetrahydropyran And halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform and chlorobenzene.
[0034]
However, by using a production method without solvent dilution, a remarkable improvement in the yield of an asymmetric β-diketone-coordinated copper complex and an improvement in the yield per reactor may be observed.
[0035]
The reaction temperature for producing the copper complex is not particularly limited, but it is preferable to carry out the reaction in a temperature range that does not decompose the produced copper complex. Usually, it is preferably carried out in a temperature range of −78 to 200 ° C., which is industrially used, and preferably in a range of −50 to 150 ° C. The pressure condition of the reaction can be any of under pressure, normal pressure and reduced pressure.
[0036]
The method for purifying the produced asymmetric β-diketone-coordinated copper complex is not particularly limited, but distillation under reduced pressure and column separation and purification using silica, alumina, or a polymer gel can be used. The operation at this time may be in accordance with the method in the field of synthesis of the organometallic compound. That is, for example, it is preferable that the dehydration and deoxygenation be performed in a nitrogen or argon atmosphere, and the solvent to be used and the column packing for purification be dehydrated in advance. This operation may improve the yield and purity of the produced copper complex.
[0037]
Examples are shown below, but the present invention is not limited to these examples.
[0038]
【Example】
Example 1
[Production of alkali metal salt of asymmetric β-diketone]
Under a nitrogen stream, 28.1 g (143 mmol) of 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione was diluted with 400 ml of dehydrated tetrahydrofuran in a 500 ml glass reactor having a stirrer. Then, 9.46 g (143 mmol) of potassium hydroxide having a purity of 85% and 200 ml of molecular sieve were added, and the mixture was stirred at room temperature for 4 hours and 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione. Was obtained as a potassium salt solution. After the reaction, the molecular sieve was removed with a glass filter, tetrahydrofuran was distilled off from the obtained filtrate under reduced pressure, and the slurry was slurried with n-pentane, and the target 1,1,1-trifluoro-5,5 was filtered with a glass filter. 20.5 g (87.4 mmol) of potassium salt of -dimethyl-2,4-hexanedione were obtained. The yield was 61.0%.
[Production of asymmetric β-diketone-coordinated copper (I) complex]
Under a nitrogen stream, 7.03 g (30.0 mmol) of potassium salt of 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione was placed in a 200 ml Schlenk tube having a stirrer, and cuprous chloride. 3.56 g (36.0 mmol) and 15.0 g (150 mmol) of vinyltrimethylsilane were charged, and 150 ml of dry n-pentane was added thereto to start the reaction. After reacting at room temperature for 27 hours, unreacted substances and potassium chloride as a by-product were removed by a glass filter, and n-pentane was distilled off from the obtained filtrate to obtain the desired product (1,1,1- 8.43 g (23.5 mol) of a deep blue liquid of trifluoro-5,5-dimethyl-2,4-hexanedionato) copper (I) vinyltrimethylsilane was obtained. The yield corresponded to 78.3% (based on potassium salt). The target product was stored at room temperature, but did not decompose and was stable.
[0039]
The results of elemental analysis and 1 H-NMR of the target product were as follows.
C 13 H 22 O 2 F 3 SiCu (wt%)
Measurement value (C: 43.2, H: 6.2, F: 16.3, Cu: 17.4, Si: 7.9, K: not detected)
Calculated values (C: 43.5, H: 6.1, F: 15.9, Cu: 17.7, Si: 7.8, K: 0.0)
1 H-NMR (in C 6 D 6 ) δ 0.096 ppm (9H, s, SiCH 3 ), δ 1.09 ppm (9 H, s, t Bu (C = O)), δ 4.11 ppm (3H, m, CH 2) CH—), δ 6.18 ppm (1H, s, (C = O) CH (C = O))
When the vapor pressure of the present complex was measured by a diaphragm type vapor pressure measuring device, it was found to be 199 Pa at 50 ° C., which indicates that the complex had a sufficient vapor pressure as an MOCVD material.
[0040]
Example 2
In Example 1, instead of vinyltrimethylsilane, vinyl-tert. In the same manner as in Example 1 except that 21.3 g (150 mmol) of -butyldimethylsilane was used, the target compound (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedioxide) was obtained. Nato) copper (I) vinyl-tert. -Butyldimethylsilane was produced. As a result, the desired deep blue liquid was obtained in a yield of 69.1%. The target product was stored at room temperature, but did not decompose and was stable.
[0041]
The results of elemental analysis and 1 H-NMR were as follows.
C 16 H 28 O 2 F 3 SiCu (wt%)
Measurement value (C: 47.1, H: 6.8, F: 14.4, Cu: 15.7, Si: 7.1, K: not detected)
Calculated values (C: 47.9, H: 7.0, F: 14.2, Cu: 15.9, Si: 7.0, K: 0.0)
1 H-NMR (in C 6 D 6) δ0.095ppm (6H, s, SiCH 3), δ0.800ppm (9H, s, Si t Bu), δ1.07ppm (9H, s, t Bu (C = O )), Δ 4.10 ppm (3H, m, CH 2 CH-), δ 6.17 ppm (1 H, s, (C = O) CH (C = O))
The vapor pressure of the present complex was measured with a diaphragm type vapor pressure measuring apparatus, and it was found that the vapor pressure was 24.7 Pa at 50 ° C., indicating that the complex had a sufficient vapor pressure as an MOCVD material.
[0042]
Example 3
Under a nitrogen stream, 5.89 g (30.0 mmol) of 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione and 5.15 g of cuprous oxide were placed in a 100 ml Schlenk tube having a stirrer. (36.0 mmol), 15.0 g (150 mmol) of vinyltrimethylsilane, and 30 ml of molecular sieve were charged and reacted at room temperature for 22 hours with stirring. The molecular sieve and unreacted cuprous oxide were removed with a glass filter, and unreacted 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione and vinyltrimethylsilane were removed from the filtrate under reduced pressure. Under reduced conditions, 10.05 g of a dark blue liquid of 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionato) copper (I) vinyltrimethylsilane as a target substance (28. 0 mol). The yield was equivalent to 93.3% (based on hexanedione), an extremely high yield, and the effect of the production without solvent was confirmed. The target product was stored at room temperature, but did not decompose and was stable.
[0043]
The results of elemental analysis and 1 H-NMR of the target product were as follows.
C 13 H 22 O 2 F 3 SiCu (wt%)
Measurement value (C: 43.2, H: 6.2, F: 16.3, Cu: 17.4, Si: 7.9)
Calculated values (C: 43.5, H: 6.1, F: 15.9, Cu: 17.7, Si: 7.8)
1 H-NMR (in C 6 D 6 ) δ 0.088 ppm (9H, s, SiCH 3 ), δ 1.08 ppm (9 H, s, t Bu (C = O)), δ 4.10 ppm (3H, m, CH 2) CH-), δ 6.16 ppm (1H, s, (C = O) CH (C = O))
Comparative Example 1
In the same manner as in Example 1 except that 1,1,1-trifluoroacetylacetone was used instead of 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione in Example 1. Thus, a potassium salt of 1,1,1-trifluoroacetylacetone was obtained, and a dark blue liquid of (1,1,1-trifluoroacetylacetonato) copper (I) vinyltrimethylsilane, which was an object, was obtained. The yield was 57.3%. 1 H-NMR of the deep blue liquid is as follows.
[0044]
1 H-NMR (in C 6 D 6 ) δ 0.068 ppm (9H, s, SiCH 3 ), δ 1.74 ppm (3H, s, CH 3 (C = O)), δ 4.12 ppm (3H, broad, CH 2) = CH-), δ 5.73 ppm (1H, s, (C = O) CH (C = O))
However, when the deep blue liquid of the present 1,1,1-trifluoroacetylacetonato) copper (I) vinyltrimethylsilane was left at room temperature for 3 hours under a nitrogen atmosphere, a green solid and golden metallic copper were deposited. As a result, all the target liquids solidified. That is, it was recognized that the present copper complex was unstable and easily decomposed at room temperature, and was unsuitable as a MOCVD material.
[0045]
Comparative Example 2
An asymmetric β-diketone copper (I) complex was produced in the same manner as in Example 1 except that 28.5 g (150 mmol) of vinyltriethoxysilane was used instead of vinyltrimethylsilane. Only a green solid was obtained. Upon elemental analysis, the Cu content was 3.4 wt%. It was far from the calculated value of 14.2 wt%, and it was found that the target complex was not synthesized.
Comparative Example 3
In Example 1, 29.8 g (143 mmol) of 1,1,1,5,5,5-hexafluoroacetylacetone was used instead of 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione. ) And vinyl-tert. In place of vinyltrimethylsilane. In the same manner as in Example 1 except that 21.3 g (150 mmol) of -butyldimethylsilane was used, the target compound (1,1,1,5,5,5-hexafluoroacetylacetonato) copper (I ) Vinyl-tert. -Butyldimethylsilane was prepared. As a result, the desired dark green liquid was obtained in a yield of 83.0%. The target product was stored at room temperature, but was not decomposed and was stable.
[0046]
The results of elemental analysis and 1 H-NMR were as follows.
C 13 H 19 O 2 F 6 SiCu (wt%)
Measurement value (C: 37.4, H: 4.6, F: 28.0, Cu: 15.2, Si: 6.7, K not detected)
Calculated values (C: 37.8, H: 4.6, F: 27.6, Cu: 15.4, Si: 6.8, K: 0.0)
1 H-NMR (in C 6 D 6 ) δ 0.092 ppm (6H, s, SiCH 3 ), δ 0.79 ppm (9 H, s, Si-tBu), δ 4.20 ppm (3H, m, CH 2 CH-), δ 6.21 ppm (1H, s, (C = O) CH (C = O))
When the vapor pressure of the complex was measured by a diaphragm type vapor pressure measuring device, it was 2.2 Pa at 50 ° C., which was lower than that of the Cu (I) complex produced in Examples 1 to 3. Was.
[0047]
【The invention's effect】
According to the present invention, the following remarkable effects are obtained.
[0048]
As a first effect of the present invention, it is possible to provide a novel copper complex which has a lower fluorine content, is more stable and has a higher vapor pressure than a conventional fluorine-containing β-diketone copper (I) vinylsilane complex. Was. In particular, this complex is suitable as an MOCVD material for copper wiring.
[0049]
Second, in producing a copper (I) complex having an asymmetric β-diketone as a ligand, it has become possible to provide an extremely efficient and economical synthesis formulation.

Claims (5)

下記一般式(1)
Figure 2004175755
(式中、R,Rは、炭素数1乃至20の炭化水素基であり、Rは、少なくとも一つの弗素原子を有する弗化炭化水素基である。Rどうし,Rどうしは同一でも異なってもよい。nは、0乃至20の整数を表す。)
で示される銅錯体。
The following general formula (1)
Figure 2004175755
(Wherein, R 1, R 2 is a hydrocarbon group having 1 to 20 carbon atoms, R f, and if .R 1 is a fluoride hydrocarbon group having at least one fluorine atom, and if R 2 is (Then may be the same or different. N represents an integer of 0 to 20.)
A copper complex represented by
、Rがアルキル基であり、かつRが少なくとも一つの弗素原子を有する弗化アルキル基であり、かつnが0又は1である請求項1記載の銅錯体。The copper complex according to claim 1 , wherein R 1 and R 2 are alkyl groups, R f is an alkyl fluoride group having at least one fluorine atom, and n is 0 or 1. がメチル基、Rがメチル基またはターシャリーブチル基であり、かつRがトリフルオロメチル基であり、かつnが0である請求項2記載の銅錯体。The copper complex according to claim 2, wherein R 1 is a methyl group, R 2 is a methyl group or a tertiary butyl group, R f is a trifluoromethyl group, and n is 0. 下記一般式(2)のシリル基置換アルケン共存下、
Figure 2004175755
(式中、Rおよびnは、上記に同じ。)
下記一般式(3)のβジケトンと
Figure 2004175755
(式中、R、Rは、上記に同じ。)
酸化第一銅を反応させることを特徴とする銅錯体の製造方法。
In the presence of a silyl group-substituted alkene of the following general formula (2),
Figure 2004175755
(In the formula, R 2 and n are the same as described above.)
Β diketone of the following general formula (3)
Figure 2004175755
(In the formula, R 1 and R f are the same as above.)
A method for producing a copper complex, comprising reacting cuprous oxide.
溶媒を添加することなしに、シリル基置換アルケン、βジケトン成分及び銅成分を反応させることを特徴とする請求項4記載の銅錯体の製造方法。The method for producing a copper complex according to claim 4, wherein the silyl group-substituted alkene, the β-diketone component, and the copper component are reacted without adding a solvent.
JP2002346224A 2002-11-28 2002-11-28 Copper complex having asymmetric β-diketone ligand and method for producing the same Expired - Fee Related JP4254218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002346224A JP4254218B2 (en) 2002-11-28 2002-11-28 Copper complex having asymmetric β-diketone ligand and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002346224A JP4254218B2 (en) 2002-11-28 2002-11-28 Copper complex having asymmetric β-diketone ligand and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004175755A true JP2004175755A (en) 2004-06-24
JP4254218B2 JP4254218B2 (en) 2009-04-15

Family

ID=32707200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002346224A Expired - Fee Related JP4254218B2 (en) 2002-11-28 2002-11-28 Copper complex having asymmetric β-diketone ligand and method for producing the same

Country Status (1)

Country Link
JP (1) JP4254218B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170852A (en) * 2003-12-11 2005-06-30 Tosoh Corp Copper complex and/or copper complex composition containing polysubstituted vinylsilane compound
US8623590B2 (en) 2010-11-02 2014-01-07 Shin-Etsu Chemical Co., Ltd. Pattern forming process
US8632939B2 (en) 2010-02-26 2014-01-21 Shin-Etsu Chemical Co., Ltd. Polymer, chemically amplified positive resist composition and pattern forming process
US8735046B2 (en) 2010-11-29 2014-05-27 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US9017918B2 (en) 2010-06-01 2015-04-28 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, chemically amplified positive resist composition, and patterning process
US9091914B2 (en) 2011-02-15 2015-07-28 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9360753B2 (en) 2011-07-25 2016-06-07 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170852A (en) * 2003-12-11 2005-06-30 Tosoh Corp Copper complex and/or copper complex composition containing polysubstituted vinylsilane compound
JP4529434B2 (en) * 2003-12-11 2010-08-25 東ソー株式会社 Copper complex and copper complex composition comprising a polysubstituted vinylsilane compound
US8632939B2 (en) 2010-02-26 2014-01-21 Shin-Etsu Chemical Co., Ltd. Polymer, chemically amplified positive resist composition and pattern forming process
US9017918B2 (en) 2010-06-01 2015-04-28 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, chemically amplified positive resist composition, and patterning process
US8623590B2 (en) 2010-11-02 2014-01-07 Shin-Etsu Chemical Co., Ltd. Pattern forming process
US8735046B2 (en) 2010-11-29 2014-05-27 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US9091914B2 (en) 2011-02-15 2015-07-28 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9360753B2 (en) 2011-07-25 2016-06-07 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process

Also Published As

Publication number Publication date
JP4254218B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP3593051B2 (en) Volatile precursors for deposition of metals and metal-containing films
JP4414397B2 (en) Volatile metal β-ketoiminate complex
US6803477B2 (en) Magnesium mediated preparation of fluorinated alkyl silanes
JP4254218B2 (en) Copper complex having asymmetric β-diketone ligand and method for producing the same
JP4660924B2 (en) Stabilized copper complex and method for producing the same
US5453528A (en) Optimized process for inert fluorinated silanes
RU2181725C2 (en) Copper (i)-organic compounds and method of copper film precipitation by their using
JP4363052B2 (en) Copper complex having asymmetric β-diketone ligand and method for producing the same
JP4529434B2 (en) Copper complex and copper complex composition comprising a polysubstituted vinylsilane compound
JP4125728B2 (en) Monovalent copper complex
JP4120925B2 (en) Copper complex and method for producing copper-containing thin film using the same
TW202321268A (en) Synthesis of fluoroalkyl tin precursors
JP4622098B2 (en) Stabilized silicon-containing alkene copper complex and method for producing the same
JP3282392B2 (en) Organocopper compounds for copper thin film formation by metalorganic chemical vapor deposition with high vapor pressure
JP2004059544A (en) Substituted cyclopentadienyl copper complex and method for producing the same
JP6565448B2 (en) Method for producing aluminum oxide film and raw material for producing aluminum oxide film
TWI316970B (en) Dicopper(i) oxalate complexes as precursor substances for the deposition of metallic copper
JP2768250B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
JP2762905B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
JP2004214161A (en) Material for insulating film containing organic silane compound, its manufacturing method, and semiconductor device
CN100415752C (en) Insulating film material containing an organic silane compound, its production method and semiconductor device
JP3284689B2 (en) Organocopper compounds for copper thin film formation by metalorganic chemical vapor deposition with high vapor pressure
WO2023012494A1 (en) Method for the silylation of a c-h bond with a silylated diazene
JP2009023966A (en) Method for producing alkoxy-substituted cyclotrisiloxane compound
JP2001048887A (en) Tetrakis(diaryl-silyl)benzene and production of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees