JP2004175628A - Heating element for microwave firing furnace - Google Patents
Heating element for microwave firing furnace Download PDFInfo
- Publication number
- JP2004175628A JP2004175628A JP2002344942A JP2002344942A JP2004175628A JP 2004175628 A JP2004175628 A JP 2004175628A JP 2002344942 A JP2002344942 A JP 2002344942A JP 2002344942 A JP2002344942 A JP 2002344942A JP 2004175628 A JP2004175628 A JP 2004175628A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- fired
- microwave
- heating
- firing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Constitution Of High-Frequency Heating (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、炉内にマイクロ波を照射することによって陶磁器材料やファインセラミックス材料などの被焼成物を自己発熱させて焼成を行うための発熱体に関するものである。
【0002】
【関連の技術】
従来、前述のような被焼成物の焼成の際には、電気炉やガス炉などが一般的に使用されている。しかしながら、このような外部加熱による焼成の場合には、被焼成物の表面と内部との間で温度差が大きくならないように、炉内温度を緩やかに上昇させることが必要であった。このため、焼成時間が長くなるという問題があった。
【0003】
そこで、この問題解決するために、マイクロ波による被焼成物の焼成法が提案されている(例えば、特開平6−87663号公報)。
【0004】
この方法は、焼成時間の短縮や雰囲気の制御等に優れており、環境負荷低減の観点からも、将来の有力な焼成法として注目を集めている。
【0005】
マイクロ波焼成法は、従来の電気炉やガス炉などの外部加熱による方法とは異なり、被焼成物の誘電損を利用して被焼成物を自己発熱させる焼成方法である。すなわち、マイクロ波を吸収した被焼成物が、それ自身の分子運動によって発熱する。そのため、被焼成物の表面と内部とを区別なく一様に発熱させることができる。
【0006】
もっとも、実際には、被焼成物の表面は熱放散を生じるために、表面よりも内部の方が温度上昇が大きくなる。このような理由から、前記マイクロ波焼成は内部加熱ともいわれる。
【0007】
また、マイクロ波の照射により被焼成物を自己発熱させて焼成する場合、被焼成物と等価なマイクロ波吸収特性を有する耐火断熱材で被焼成物を囲み、それにより、被焼成物の表面からの熱放散により被焼成物の表面と内部との温度勾配が発生することを抑制することによって、被焼成物の均一な焼成が可能であることが報告されている。
【0008】
この方法においては、2.45GHzのマイクロ波を効率よく吸収する陶磁器材料を被焼成物としている。また、陶磁器材料と等価なマイクロ波吸収特性を持つムライト焼結体を発熱体とし、被焼成物を該発熱体で囲み、さらに、発熱体の周囲を断熱材で囲んでマイクロ波焼成炉を構成している。
【0009】
このように被焼成物と発熱体を同時に発熱させることで、均一で緻密な焼成体を得る方法が提案されている(高山定次、水野正敏、平井敏夫、島田忠、佐藤元泰、武藤敬、居田克己、下妻隆、井上徳之、江崎和弘:日本電磁波応用研究会第16回発表資料(2000))。
【0010】
この方法によると、被焼成物と発熱体との間に温度勾配を発生させることなく加熱することができる。その結果、被焼成物の内部と表面との間にも温度勾配が発生せず、従来のマイクロ波焼成技術よりも、より短時間に、均一で、効率の良い被焼成物の加熱を行うことができる。
【0011】
【発明が解決しようとする課題】
しかしながら、上記方法のマイクロ波焼成炉の構成においては、発熱体であるムライト焼結体とそれの外側を囲む断熱材によるマイクロ波の消費割合が大きくなるため、被焼成物によるマイクロ波の消費割合が小さかった。
【0012】
従って、このマイクロ波焼成炉の構成において、限られた一定のマイクロ波出力の条件下では、被焼成物が少量であれば問題ないが、被焼成物の量が多くなると、被焼成物の発熱が不足し、所定の温度まで昇温させることが不可能であった。
【0013】
つまり、上記のマイクロ波焼成炉による構成で一度に焼成することができる被焼成物の処理量を増大させるためには、マイクロ波発振器の数などを増やすなどしてマイクロ波出力を増大させる以外に方法がなく、炉の設計を変更することを余儀なくされていた。
【0014】
また、被焼成物によるマイクロ波の消費割合を大きくするために、即ち、被焼成物以外の部分によるマイクロ波の消費割合を小さくするために、断熱材の厚みを小さくすると、断熱が不十分となり、放散によって外部へと失われる熱量が無視できなくなり、被焼成物とそれを囲んだ発熱体との間に温度勾配が発生してしまうという問題が生じた。
【0015】
更に、上記構成におけるマイクロ波焼成炉を運転すると、短時間での昇温、冷却による熱衝撃によって発熱体が割れてしまい、熱リーク等で炉の運転に支障を来すという問題があった。
【0016】
上記のマイクロ波による焼成方法は、被焼成物の均一焼成および従来の外部加熱による焼成方法と比べた場合の省エネルギー化という点で、既にかなりの水準まで達している。
【0017】
しかしながら、マイクロ波焼成の主たる効果のひとつである省エネルギー化という点では、更なる改良が求められている。即ち、上記のマイクロ波による焼成方法においては、マイクロ波の出力を増大させることなく、限られた一定のマイクロ波出力の条件のもとで、より多くの被焼成物を焼成することが可能となるような、発熱機能と断熱機能を備えた材料が求められる。言い換えると、▲1▼マイクロ波吸収によって被焼成物と等価に発熱しながらも、熱放散によって発生する被焼成物との間の温度勾配をより小さくするような優れた断熱性を有し、▲2▼耐火断熱材としてのマイクロ波の消費割合がより小さく、▲3▼短時間での昇温および冷却という使用環境において優れた耐熱衝撃性を有する耐火断熱材が望まれる。
【0018】
本発明の目的は、マイクロ波の照射によって、自己発熱で被焼成物を焼成するマイクロ波焼成炉に適した、上記特性について、より高性能な発熱体、発熱体を形成するためのコート材、及び耐火断熱材を提供することである。
【0019】
【課題を解決するための手段】
本願発明者は、鋭意研究の結果、マイクロ波焼成炉の構成における発熱体のマイクロ波消費割合を減少させ、発熱体に耐熱衝撃性を付与し、かつ被焼成物と発熱体との間に温度勾配が生じることなく、所定の温度まで昇温することができるようにするため、発熱体を骨材と無機結合材からなる構成とし、骨材は、900℃よりも高い温度で焼成された焼成カオリンとした。さらに該発熱体と、該発熱体の熱放散を抑制する断熱機能を有する基材で耐火断熱材を形成することによって、前記課題を解決することができることを見出し、本発明を完成させた。
【0020】
本発明の解決手段を例示すると、各請求項に記載の発熱体、発熱体を形成するためのコート材および耐火断熱材である。
【0021】
本発明による発熱体は、好適には、骨材および無機結合材からなり、骨材は900℃よりも高い温度で焼成された焼成カオリンであることを特徴とする。
【0022】
また、本発明により提供される耐火断熱材は、好適には、前記発熱体と、無機繊維質材料を主成分とした基材により形成されていることを特徴とする。
【0023】
【発明の実施の形態】
マイクロ波の吸収による発熱は、その物質の誘電損に起因する現象である。
【0024】
一般に、マイクロ波吸収による発熱は、その物質の誘電損失の値に比例して大きくなる。言い換えれば、誘電損失の大きい物質は、マイクロ波を吸収しやすく、発熱しやすい。
【0025】
また、一般に、材料のマイクロ波吸収は、材料の密度に大きく依存する。材料を構成する物質が同じであれば、密度が大きいほどマイクロ波を多く吸収するが、同時にマイクロ波の消費が多くなる。
【0026】
上記従来技術で用いられるムライト焼結体は緻密体であるため、上記のようにマイクロ波を吸収しやすい反面、マイクロ波の消費が多く、さらに短時間での昇温および冷却による熱衝撃に対する抵抗性(耐熱衝撃性)が小さかった。
【0027】
本発明では、骨材と無機結合材により発熱体を構成することにより、発熱体の密度を小さくすることで、マイクロ波焼成炉における、発熱体のマイクロ波消費割合を減少させる効果と、発熱体の耐熱衝撃性を向上させる効果を発現させている。
【0028】
本発明の発熱体の好適な実施態様では、骨材粒子が粒子同士の焼結によって緻密に結合している緻密体ではなく、骨材が無機結合材を介して発熱体自身の密度が小さくなるように結合させたものである。そのため、発熱体は、短時間での昇温および冷却による熱衝撃に対し大きな抵抗力を持つ。
【0029】
上記のムライト焼結体を発熱体とする方法、および本発明においても、被焼成物と発熱体との間に温度勾配が生じることなく加熱することが好ましい。
【0030】
本発明の好適な実施態様では、発熱体を骨材と無機結合材から構成する。この構成において、骨材は、900℃よりも高い温度で焼成された焼成カオリンであることが好ましい。
【0031】
マイクロ波を照射した際に、被焼成物とそれを囲む発熱体の表面温度を実質的に同一にすることを考えれば、発熱体の主成分となる骨材は、被焼成物と同一の材質とすることが適切であると考えることができる。
【0032】
被焼成物である陶磁器材料の原料となるのは、カオリン粘土、長石および石英であり、一般的に、その配合比は、カオリン粘土4、長石3、石英3である。このうち、長石は、誘電特性に影響をおよぼすアルカリ金属酸化物成分を主成分として含んでおり、カオリン粘土、石英に比べて、大きなマイクロ波吸収特性を有すると考えられる。したがって、被焼成物のマイクロ波吸収による発熱は、主として、長石に依存していると考えることができる。
【0033】
したがって、長石成分のマイクロ波吸収に依存して発熱する被焼成物と実質的に等価に発熱する機能が発熱体に要求される。しかしながら、長石は昇温の過程で液相となるため、長石成分を含む陶磁器材料は昇温の過程で軟化する。したがって、陶磁器材料そのものを発熱体として使用することは不可能である。そこで、本発明者は、鋭意検討を重ねた結果、焼成カオリンを発熱材の骨材として使用した場合、焼成カオリンの焼成温度が900℃よりも高い温度になると、得られる発熱体の発熱機能が著しく増大し、得られる発熱体が、長石成分に依存して発熱する陶磁器材料と実質的に等価な発熱機能を発現することを見出した。また、得られる発熱体は、昇温の過程で軟化をせず、発熱体としての使用において耐久性があることを見出したのである。
【0034】
カオリン粘土の主成分はカオリナイトという粘土鉱物である。カオリナイトは、一般的に、表1に示すように加熱にともなう相変化を起こすことが知られている。
【0035】
【表1】
したがって、900℃よりも高い温度で焼成された焼成カオリンを発熱体の骨材とした場合に、その発熱体の発熱機能が著しく増大したのは、加熱による相変化によって、カオリナイトが大きい誘電損失を有する物質に変化したことによるものと考えることができる。すなわち、900℃よりも高い温度で焼成された焼成カオリンを発熱体の骨材とした場合に、その発熱体の発熱機能が著しく増大したのは、表1に示すように、カオリナイトの加熱による相変化によって生成するAl−Siスピネルおよび遷移過程の状態を含むムライトが、カオリナイトよりも大きな誘電損失を有し、より大きなマイクロ波吸収特性を有することによるものと考えることができる。
【0036】
一方、被焼成物の温度が900℃よりも高い温度、特に約980℃よりも高い温度になると、被焼成物のカオリン成分も、同様に、表1に示すように相変化し、より大きなマイクロ波吸収特性を有する物質に変化する。したがって、被焼成物全体としてのマイクロ波吸収による発熱が増大する。このとき、発熱体よりも、被焼成物の発熱が大きくなり、発熱体と被焼成物との間に温度勾配が発生することが懸念される。しかしながら、後述する実施例に示すように、被焼成物は、短時間で均一に焼成することが可能であった。したがって、この場合に発生する温度勾配は、被焼成物の均一焼成という点において支障を来す程度のものではないと判断することができる。
【0037】
一方、発熱体を構成する無機結合材は、ケイ酸ソーダがより好ましい。
【0038】
本発明では、発熱体を骨材と無機結合材から形成し、発熱体の密度を小さくしたことによって、骨材粒子による発熱分は従来技術で使用したような焼結体に比べて不足する。また、焼結体に比べ、骨材粒子の周辺は、無機結合材または空間となりやすく、骨材粒子自身は発熱するものの、熱放散によって冷却されやすい状態となる。
【0039】
もし、ここで、無機結合材のマイクロ波吸収が小さければ、無機結合材を介して結合されている骨材の粒子が、マイクロ波を吸収して発熱しても、一方で、無機結合材による熱放散によって冷却されてしまい、発熱体としての発熱機能を全く発現しなくなる。
【0040】
本発明の好適な実施態様においては、無機結合材として、被焼成物よりも大きいマイクロ波吸収特性を有する物質を用いることによって、発熱体の密度を小さくしたことによる発熱の減少分を無機結合材の発熱によって補い、さらに、骨材粒子の熱放散による冷却を抑制するのである。このようにすれば、被焼成物と発熱体との間に温度勾配が生じることなく、マイクロ波による焼成ができる。
【0041】
また、無機結合材は、高温においても有機結合材のように焼失せず、安定に骨材粒子を結合させる役割を持つ。
【0042】
さらに、補強材として、本発明の発熱体に無機繊維を含ませると、耐熱衝撃性が向上して好ましいが、この場合、無機繊維を含ませることで発熱体の密度はより小さくなり、上記の如く発熱機能が低下するため、その分を被焼成物よりも大きなマイクロ波吸収特性を有する無機結合材で補うことが一層好ましい。
【0043】
上記特性を有する無機結合材として、ケイ酸ソーダを好ましく使用することができる。ケイ酸ソーダは、被焼成物である陶磁器材料よりも誘電損失が大きく、より大きなマイクロ波吸収特性を有する物質である。また、ケイ酸ソーダは、固体粉末の状態での使用の他に、水ガラスと呼ばれる溶液の状態での使用も汎用的であり、骨材粒子と均一に混合することが容易である。従って、ケイ酸ソーダは、マイクロ波吸収によって発熱した骨材の熱放散を抑制すると同時に、発熱体の密度の低下による発熱機能の低下を補うことができる。
【0044】
補強材の役割を果たす無機繊維としては、例えば、アルミナシリカ繊維、アルミナ繊維、ムライト繊維が好ましい。特に、ムライト繊維を好ましく使用することができる。ムライトは陶磁器材料に普遍的に含まれている結晶相のひとつであり、陶磁器材料に近いマイクロ波吸収特性を有する。そのため、補強材として使用する無機繊維もムライト質であることが特に好ましい。
【0045】
本発明の発熱体は、スラリーまたはセメント状の、不定形のコート材によって形成することが好適である。コート材によって発熱体を形成する場合、骨材と無機結合材の他に、増粘剤および水を適宜使用することができる。
【0046】
また、無機繊維質材料を基材とし、その基材の片面に前記発熱体を設けた構造体は、マイクロ波焼成炉用耐火断熱材として好適である。
【0047】
前記の発熱体が設けられる基材は、マイクロ波の透過が可能であり、高い断熱性を有している材料を好ましく使用することができる。マイクロ波が基材に吸収され、基材によるマイクロ波の消費割合が大きくなってしまうと、結果として、被焼成物の焼成に必要なエネルギー量が著しく増大してしまう。
【0048】
また、放射冷却による発熱体の温度降下を抑制するために、基材は高い断熱性を有することが好ましい。さらに、基材は、耐熱衝撃性に優れていることが好ましい。
【0049】
このような特性を満たす基材としては、例えば、アルミナシリカ繊維を主成分とするセラミックファイバボードを挙げることができる。セラミックファイバボードは、マイクロ波の透過が可能であると共に、優れた断熱性および耐熱性と、高い耐熱衝撃性を有しており、好ましく使用することができる。
【0050】
【実施例】
次に、実施例を挙げて本発明を具体的に説明する。
【0051】
所定の温度で焼成した焼成カオリン100重量部、水ガラス4号13重量部、ムライト繊維9重量部、水57重量部、無機増粘剤1重量部を配合し、これをミキサーにて攪拌・混練して発熱体を形成するための不定形のコート材を得た。焼成カオリンの焼成温度は、500〜1500℃の範囲で10種を設定した。焼成カオリンの焼成温度を、コート材の配合組成とあわせて表2に示す。
【0052】
【表2】
まず、得られた発熱体の発熱機能の評価を行った。評価方法を以下に記す。
【0053】
得られたコート材を、肉厚25mmのセラミックファイバボード(東芝モノフラックス株式会社製FMX−16CV)の片面に2mmの厚さで塗布した。その後、それを110℃で3時間乾燥させて、本発明の発熱体を設けた耐火断熱材を得た。ただし、比較例4は、2mm厚のムライト焼結体を発熱体とし、これを前記セラミックファイバボードの片面に設置して耐火断熱材を得た。
【0054】
次に、この耐火断熱材を用いて、発熱体を設けた面を内側にして40×40×25mmの閉空間を作成した。
【0055】
発熱体の発熱機能の評価は、この閉空間内の温度を測定することによって行った。すなわち、この閉空間内の温度を測定するための温度履歴センサーのペレット(JFCC製リファサーモ)を設置し、小型マイクロウェーブオーブンを用いて、出力500Wにて周波数2.45GHzのマイクロ波を90分照射した。
【0056】
温度履歴センサーによって測定された、閉空間内の温度を表2に示す。
【0057】
また、実施例1〜7および比較例1〜4により得られた、発熱体の骨材である焼成カオリンの焼成温度と、マイクロ波照射によって昇温した発熱体で囲まれた閉空間内の温度測定値との関係を図1に示す。
【0058】
図1に示すように、発熱体の骨材である焼成カオリンの焼成温度が900℃以下であると、発熱体で囲まれた閉空間内の温度は600℃未満であり、発熱体としての発熱機能が低かった。しかしながら、発熱体の骨材である焼成カオリンの焼成温度が900℃よりも高い温度であると、発熱体で囲まれた閉空間内の温度は1100℃以上であり、発熱体の発熱機能が高くなった。
【0059】
また、ムライト焼結体を発熱体とした比較例4においても前記条件でマイクロ波照射を行ったが、発熱体に囲まれた閉空間内の温度は、照射時間90分では600℃以下であった。
【0060】
次に、陶土製容器の焼成実験を行った。
【0061】
表2の配合組成によって得られたコート材を、肉厚40mmのセラミックファイバボード(東芝モノフラックス株式会社製FMX−17SR)に2mmの厚さで塗布した。その後、それを110℃で3時間乾燥させ、本発明の発熱体を設けた耐火断熱材を得た。ただし、比較例4は、市販のムライト焼結体を発熱体とし、これを前記セラミックファイバボードに設置して耐火断熱材を得た。
【0062】
次に、この耐火断熱材を用いて、発熱体を内側にして、300×300×150mmの閉空間を作った。
【0063】
次に、被焼成物として、外径85mm、内径75mm、高さ85mmの寸法を有するカップ形状の陶土製容器を用意した。この陶土製容器を、前述の閉空間内に置いて、周波数2.45GHzのマイクロ波を照射した。
【0064】
陶土製容器の焼成実験の結果を表2に示す。陶土製容器の焼成は、○が焼成可能、×が焼成不可能であることを示す。
【0065】
実施例1〜7の発熱体を設けた場合は、発熱体および被焼成物の表面付近の温度は実質的に同一であり、約100分で1300℃まで昇温し、短時間での昇温が可能であった。しかしながら、比較例1〜3の発熱体を設けた場合は、閉空間内が昇温せず、陶土製容器の焼成を行うことができなかった。また、比較例4のムライト焼結体を発熱体とした場合は、陶土製容器の焼成は可能であったものの、1300℃までの昇温に約180分を要し、実施例1〜7の場合よりも、昇温に多くの時間が必要であった。さらに、比較例4の発熱体には、熱衝撃による亀裂の発生が見られた。
【0066】
【発明の効果】
本発明による発熱体やコート材を設けた耐火断熱材をマイクロ波焼成炉に使用すれば、限られた一定のマイクロ波出力の条件下で、より多くの被焼成物を焼成することが可能となると共に、被焼成物と発熱体の表面温度が実質的に同一となり、熱衝撃による被焼成物の割れを発生させることなく、被焼成物を均一に短時間で焼成することが可能となる。さらに、耐火断熱材は、熱衝撃で割れることがないので、炉の運転に支障をきたすことがない。
【図面の簡単な説明】
【図1】発熱体の骨材である焼成カオリンの焼成温度と、マイクロ波照射によって昇温した発熱体で囲まれた閉空間内の温度測定値のとの関係を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating element for performing self-heating of an object to be fired, such as a ceramic material or a fine ceramic material, by irradiating a microwave into a furnace.
[0002]
[Related technologies]
Conventionally, an electric furnace, a gas furnace, or the like is generally used for firing the object to be fired as described above. However, in the case of firing by such external heating, it is necessary to gradually increase the furnace temperature so that the temperature difference between the surface and the inside of the object to be fired does not increase. For this reason, there was a problem that the firing time was prolonged.
[0003]
In order to solve this problem, there has been proposed a method of firing an object to be fired by microwaves (for example, Japanese Patent Application Laid-Open No. 6-87663).
[0004]
This method is excellent in shortening the firing time, controlling the atmosphere, and the like, and also attracts attention as a promising future firing method from the viewpoint of reducing the environmental load.
[0005]
The microwave firing method is different from a conventional method using external heating such as an electric furnace or a gas furnace, and is a firing method in which an object to be fired self-heats using dielectric loss of the object to be fired. That is, the object to be fired that has absorbed microwaves generates heat due to its own molecular motion. Therefore, it is possible to uniformly generate heat without distinction between the surface and the inside of the object to be fired.
[0006]
However, in practice, heat is dissipated on the surface of the object to be fired, so that the temperature rise is larger inside the surface than on the surface. For this reason, the microwave firing is also called internal heating.
[0007]
When the object to be fired is self-heated by microwave irradiation and fired, the object to be fired is surrounded by a refractory heat insulating material having microwave absorption characteristics equivalent to that of the object to be fired. It has been reported that by suppressing generation of a temperature gradient between the surface and the inside of the object to be fired due to heat dissipation, uniform firing of the object to be fired is possible.
[0008]
In this method, a ceramic material that efficiently absorbs microwaves at 2.45 GHz is used as the material to be fired. In addition, a mullite sintered body having microwave absorption characteristics equivalent to ceramic materials is used as a heating element, the object to be fired is surrounded by the heating element, and the heating element is surrounded by a heat insulating material to constitute a microwave firing furnace. are doing.
[0009]
In this way, a method of obtaining a uniform and dense fired body by simultaneously heating the object to be fired and the heating element has been proposed (Sadaji Takayama, Masatoshi Mizuno, Toshio Hirai, Tadashi Shimada, Motoyasu Sato, Takashi Muto) , Katsumi Ida, Takashi Shimozuma, Tokuyuki Inoue, Kazuhiro Ezaki: The 16th presentation of the Japan Electromagnetic Application Society (2000)).
[0010]
According to this method, heating can be performed without generating a temperature gradient between the object to be fired and the heating element. As a result, there is no temperature gradient between the inside and the surface of the object to be fired, and uniform and efficient heating of the object to be fired can be performed in a shorter time than conventional microwave firing technology. Can be.
[0011]
[Problems to be solved by the invention]
However, in the configuration of the microwave firing furnace according to the above method, the rate of microwave consumption by the mullite sintered body that is the heating element and the heat insulating material surrounding the outside thereof increases, so that the rate of microwave consumption by the object to be fired increases. Was small.
[0012]
Therefore, in the configuration of this microwave firing furnace, under the condition of limited and constant microwave output, there is no problem if the amount of the object to be fired is small, but if the amount of the object to be fired is large, the heat generation of the object to be fired is generated. And it was impossible to raise the temperature to a predetermined temperature.
[0013]
In other words, in order to increase the processing amount of the object to be fired that can be fired at a time with the configuration using the microwave firing furnace, in addition to increasing the microwave output by increasing the number of microwave oscillators, etc. There was no way, and the furnace design had to be changed.
[0014]
Further, in order to increase the ratio of microwave consumption by the object to be fired, that is, to reduce the ratio of microwave consumption by parts other than the object to be fired, if the thickness of the heat insulating material is reduced, heat insulation becomes insufficient. In addition, the amount of heat lost to the outside due to heat dissipation cannot be ignored, and there has been a problem that a temperature gradient is generated between the object to be fired and the heating element surrounding the object.
[0015]
Furthermore, when the microwave firing furnace having the above configuration is operated, there is a problem that the heating element is broken by a thermal shock caused by a temperature rise and a cooling in a short time, and the operation of the furnace is hindered by a heat leak or the like.
[0016]
The firing method using microwaves has already reached a considerable level in terms of uniform firing of the object to be fired and energy saving as compared with the conventional firing method using external heating.
[0017]
However, further improvement is required in terms of energy saving, which is one of the main effects of microwave firing. That is, in the above-described firing method using microwaves, it is possible to fire more objects to be fired under the condition of limited constant microwave output without increasing the output of microwaves. Such a material having a heat generation function and a heat insulation function is required. In other words, (1) has excellent heat insulation properties such that the temperature gradient between the object to be fired and the object to be fired generated by heat dissipation is reduced while generating heat equivalent to the object to be fired by microwave absorption. 2) It is desired to provide a fire-resistant heat insulating material which consumes less microwaves as a fire-resistant heat insulating material and which has excellent thermal shock resistance in a use environment of heating and cooling in a short time.
[0018]
The object of the present invention is to apply a microwave material, suitable for a microwave firing furnace for firing the object to be fired by self-heating, for the above characteristics, a heating element with higher performance, a coating material for forming a heating element, And to provide refractory insulation.
[0019]
[Means for Solving the Problems]
As a result of intensive research, the present inventors have reduced the microwave consumption rate of the heating element in the configuration of the microwave firing furnace, imparted thermal shock resistance to the heating element, and set the temperature between the object to be fired and the heating element. In order to raise the temperature to a predetermined temperature without causing a gradient, the heating element is made of an aggregate and an inorganic binder, and the aggregate is fired at a temperature higher than 900 ° C. Kaolin. Furthermore, the present inventors have found that the problem can be solved by forming a refractory heat insulating material using the heat generating element and a base material having a heat insulating function of suppressing heat dissipation of the heat generating element, thereby completing the present invention.
[0020]
Illustrative means of the present invention are a heating element, a coating material for forming the heating element, and a fire-resistant heat insulating material according to the claims.
[0021]
The heating element according to the present invention preferably comprises an aggregate and an inorganic binder, wherein the aggregate is calcined kaolin calcined at a temperature higher than 900 ° C.
[0022]
Further, the refractory heat insulating material provided by the present invention is preferably characterized in that it is formed of the heating element and a base material mainly composed of an inorganic fibrous material.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Heat generation due to microwave absorption is a phenomenon caused by dielectric loss of the substance.
[0024]
Generally, heat generated by microwave absorption increases in proportion to the value of the dielectric loss of the substance. In other words, a substance having a large dielectric loss easily absorbs microwaves and easily generates heat.
[0025]
Also, generally, the microwave absorption of a material greatly depends on the density of the material. If the materials constituting the material are the same, the higher the density, the more microwaves are absorbed, but at the same time, the consumption of microwaves increases.
[0026]
Since the mullite sintered body used in the above prior art is a dense body, it easily absorbs microwaves as described above, but consumes a lot of microwaves, and furthermore, resists thermal shock due to temperature rise and cooling in a short time. Properties (thermal shock resistance) were small.
[0027]
In the present invention, the effect of reducing the microwave consumption rate of the heating element in the microwave firing furnace by reducing the density of the heating element by forming the heating element by the aggregate and the inorganic binder, and Has an effect of improving the thermal shock resistance of the steel.
[0028]
In a preferred embodiment of the heating element of the present invention, the aggregate particles are not a dense body in which the particles are closely bonded by sintering of the particles, but the aggregate has a low density of the heating element itself via the inorganic binder. Are combined as follows. For this reason, the heating element has a large resistance to thermal shock caused by heating and cooling in a short time.
[0029]
In the method of using the above-mentioned mullite sintered body as a heating element, and also in the present invention, it is preferable to heat without generating a temperature gradient between the object to be fired and the heating element.
[0030]
In a preferred embodiment of the present invention, the heating element is composed of an aggregate and an inorganic binder. In this configuration, the aggregate is preferably fired kaolin fired at a temperature higher than 900 ° C.
[0031]
Considering that when the microwave is irradiated, the surface temperature of the object to be fired and the surface temperature of the heating element surrounding the object are substantially the same, the aggregate that is the main component of the heating element is made of the same material as the object to be fired. It can be considered appropriate to do so.
[0032]
The raw materials of the ceramic material to be fired are kaolin clay, feldspar and quartz, and the mixing ratio thereof is generally kaolin clay 4, feldspar 3 and quartz 3. Among them, feldspar contains an alkali metal oxide component that affects the dielectric properties as a main component, and is considered to have larger microwave absorption properties than kaolin clay and quartz. Therefore, it can be considered that heat generation due to microwave absorption of the object to be fired mainly depends on feldspar.
[0033]
Therefore, the heating element is required to have a function of generating heat substantially equivalent to a fired object that generates heat depending on the microwave absorption of the feldspar component. However, since feldspar becomes a liquid phase in the course of heating, the ceramic material containing feldspar components softens in the course of heating. Therefore, it is impossible to use the ceramic material itself as a heating element. Therefore, the present inventor has conducted intensive studies and as a result, when calcined kaolin is used as an aggregate of a heating material, when the calcining temperature of the calcined kaolin is higher than 900 ° C., the heat generating function of the obtained heating element is reduced. It has been found that the heating element is remarkably increased, and the resulting heating element exhibits a heating function substantially equivalent to a ceramic material that generates heat depending on the feldspar component. Further, they have found that the obtained heating element does not soften in the process of raising the temperature and has durability in use as a heating element.
[0034]
The main component of kaolin clay is kaolinite, a clay mineral. It is known that kaolinite generally undergoes a phase change with heating as shown in Table 1.
[0035]
[Table 1]
Therefore, when calcined kaolin calcined at a temperature higher than 900 ° C. was used as an aggregate of the heating element, the heating function of the heating element was significantly increased because kaolinite had a large dielectric loss due to a phase change due to heating. Can be considered to be due to the change to a substance having That is, when calcined kaolin calcined at a temperature higher than 900 ° C. was used as the aggregate of the heating element, the heating function of the heating element was significantly increased, as shown in Table 1, due to the heating of kaolinite. It can be considered that the mullite containing the Al-Si spinel and the state of the transition process generated by the phase change has a larger dielectric loss than kaolinite and has a larger microwave absorption property.
[0036]
On the other hand, when the temperature of the object to be fired is higher than 900 ° C., especially higher than about 980 ° C., the kaolin component of the object to be fired also undergoes a phase change as shown in Table 1 and a larger microscopic component. Changes to a substance having wave absorption characteristics. Therefore, heat generation due to microwave absorption of the entire object to be fired increases. At this time, there is a concern that the material to be fired generates more heat than the heating element, and a temperature gradient is generated between the heating element and the material to be fired. However, as shown in Examples described later, the object to be fired could be uniformly fired in a short time. Therefore, it can be determined that the temperature gradient generated in this case is not such as to hinder the uniform firing of the object to be fired.
[0037]
On the other hand, as the inorganic binder constituting the heating element, sodium silicate is more preferable.
[0038]
In the present invention, since the heating element is formed from the aggregate and the inorganic binder and the density of the heating element is reduced, the heat generated by the aggregate particles is insufficient compared with the sintered body used in the related art. In addition, as compared with the sintered body, the periphery of the aggregate particles is likely to be an inorganic binder or a space, and the aggregate particles themselves generate heat but are easily cooled by heat dissipation.
[0039]
Here, if the microwave absorption of the inorganic binder is small, even if the particles of the aggregate bonded via the inorganic binder absorb microwaves and generate heat, on the other hand, due to the inorganic binder, It is cooled by heat dissipation and does not exhibit any heat generating function as a heat generating element.
[0040]
In a preferred embodiment of the present invention, as the inorganic binder, a substance having microwave absorption characteristics larger than that of the material to be fired is used, so that the decrease in heat generation due to the reduction in the density of the heating element is reduced by the inorganic binder. Of the aggregate, and further suppresses the cooling of the aggregate particles due to the heat dissipation. By doing so, the microwave can be fired without causing a temperature gradient between the object to be fired and the heating element.
[0041]
Further, the inorganic binder does not burn out even at a high temperature like an organic binder, and has a role of stably binding the aggregate particles.
[0042]
Further, as a reinforcing material, it is preferable to include inorganic fibers in the heating element of the present invention because heat shock resistance is improved. In this case, the density of the heating element is reduced by including the inorganic fibers, and Since the heat generation function is reduced as described above, it is more preferable to compensate for the heat generation function with an inorganic binder having microwave absorption characteristics larger than that of the material to be fired.
[0043]
Sodium silicate can be preferably used as the inorganic binder having the above properties. Sodium silicate is a substance having a larger dielectric loss and a greater microwave absorption characteristic than a ceramic material which is an object to be fired. In addition to the use of sodium silicate in the form of solid powder, it is also commonly used in the form of a solution called water glass, and it is easy to uniformly mix it with aggregate particles. Therefore, sodium silicate can suppress the heat dissipation of the aggregate generated by the microwave absorption, and at the same time, can compensate for the decrease in the heat generation function due to the decrease in the density of the heating element.
[0044]
As the inorganic fiber serving as a reinforcing material, for example, alumina silica fiber, alumina fiber, and mullite fiber are preferable. In particular, mullite fibers can be preferably used. Mullite is one of the crystal phases universally contained in ceramic materials, and has microwave absorption characteristics close to those of ceramic materials. Therefore, it is particularly preferable that the inorganic fiber used as the reinforcing material is also mullite.
[0045]
The heating element of the present invention is preferably formed of a slurry or cement-like, amorphous coating material. When the heating element is formed by the coating material, a thickener and water can be appropriately used in addition to the aggregate and the inorganic binder.
[0046]
Further, a structure in which an inorganic fibrous material is used as a base material and the heating element is provided on one surface of the base material is suitable as a refractory heat insulating material for a microwave firing furnace.
[0047]
As the substrate on which the heating element is provided, a material that can transmit microwaves and has high heat insulating properties can be preferably used. When the microwaves are absorbed by the base material and the consumption rate of the microwaves by the base material increases, as a result, the amount of energy required for firing the object to be fired significantly increases.
[0048]
In addition, in order to suppress a temperature drop of the heating element due to radiant cooling, the base material preferably has high heat insulating properties. Further, it is preferable that the substrate has excellent thermal shock resistance.
[0049]
As a base material satisfying such characteristics, for example, a ceramic fiber board containing alumina-silica fibers as a main component can be exemplified. The ceramic fiber board is capable of transmitting microwaves, has excellent heat insulating properties and heat resistance, and has high thermal shock resistance, and can be preferably used.
[0050]
【Example】
Next, the present invention will be specifically described with reference to examples.
[0051]
100 parts by weight of calcined kaolin, 13 parts by weight of water glass No. 4, 9 parts by weight of mullite fiber, 57 parts by weight of water, and 1 part by weight of an inorganic thickener were blended, and the mixture was stirred and kneaded with a mixer. Thus, an irregular-shaped coating material for forming a heating element was obtained. The calcining temperature of calcined kaolin was set to 10 kinds in the range of 500 to 1500 ° C. Table 2 shows the firing temperature of the fired kaolin together with the composition of the coating material.
[0052]
[Table 2]
First, the heating function of the obtained heating element was evaluated. The evaluation method is described below.
[0053]
The obtained coating material was applied with a thickness of 2 mm on one surface of a ceramic fiber board (FMX-16CV manufactured by Toshiba Monoflux Co., Ltd.) having a thickness of 25 mm. Thereafter, it was dried at 110 ° C. for 3 hours to obtain a refractory heat insulating material provided with the heating element of the present invention. However, in Comparative Example 4, a mullite sintered body having a thickness of 2 mm was used as a heating element, and this was installed on one side of the ceramic fiber board to obtain a fire-resistant heat insulating material.
[0054]
Next, a closed space of 40 × 40 × 25 mm was created using the refractory heat insulating material with the surface on which the heating element was provided facing inward.
[0055]
The evaluation of the heating function of the heating element was performed by measuring the temperature in the closed space. That is, a pellet (Referthermo manufactured by JFCC) of a temperature history sensor for measuring the temperature in the closed space is installed, and a microwave having a frequency of 2.45 GHz is radiated at a power of 500 W for 90 minutes using a small microwave oven. did.
[0056]
Table 2 shows the temperature in the closed space measured by the temperature history sensor.
[0057]
In addition, the firing temperature of the fired kaolin, which is the aggregate of the heating element, obtained in Examples 1 to 7 and Comparative Examples 1 to 4, and the temperature in the closed space surrounded by the heating element heated by microwave irradiation FIG. 1 shows the relationship with the measured values.
[0058]
As shown in FIG. 1, when the firing temperature of the fired kaolin, which is the aggregate of the heating element, is 900 ° C. or less, the temperature in the closed space surrounded by the heating element is less than 600 ° C. Function was low. However, if the firing temperature of the fired kaolin, which is the aggregate of the heating element, is higher than 900 ° C., the temperature in the closed space surrounded by the heating element is 1100 ° C. or higher, and the heating function of the heating element is high. became.
[0059]
In Comparative Example 4 using a mullite sintered body as a heating element, microwave irradiation was performed under the above conditions. However, the temperature in a closed space surrounded by the heating element was 600 ° C. or less for an irradiation time of 90 minutes. Was.
[0060]
Next, a firing experiment of a ceramic clay container was performed.
[0061]
The coating material obtained according to the composition shown in Table 2 was applied to a 40 mm-thick ceramic fiber board (FMX-17SR manufactured by Toshiba Monoflux Co., Ltd.) at a thickness of 2 mm. Thereafter, it was dried at 110 ° C. for 3 hours to obtain a refractory heat insulating material provided with the heating element of the present invention. However, in Comparative Example 4, a commercially available mullite sintered body was used as a heating element, and this was installed on the ceramic fiber board to obtain a refractory heat insulating material.
[0062]
Next, a closed space of 300 × 300 × 150 mm was made using this refractory heat insulating material, with the heating element inside.
[0063]
Next, a cup-shaped ceramic container having dimensions of an outer diameter of 85 mm, an inner diameter of 75 mm, and a height of 85 mm was prepared as an object to be fired. The pottery container was placed in the closed space described above and irradiated with microwaves having a frequency of 2.45 GHz.
[0064]
Table 2 shows the results of the firing experiment on the pottery clay container. In the sintering of the pottery clay container, 焼 成 indicates that firing is possible, and X indicates that firing is impossible.
[0065]
When the heating elements of Examples 1 to 7 were provided, the temperatures near the surfaces of the heating elements and the object to be fired were substantially the same, and the temperature was increased to 1300 ° C. in about 100 minutes, and the temperature was increased in a short time. Was possible. However, when the heating elements of Comparative Examples 1 to 3 were provided, the temperature in the closed space did not rise, and the porcelain clay container could not be fired. When the mullite sintered body of Comparative Example 4 was used as the heating element, although it was possible to fire the pottery clay container, it took about 180 minutes to raise the temperature to 1300 ° C. More time was required to raise the temperature than in the case. Further, the heating element of Comparative Example 4 was found to have cracks due to thermal shock.
[0066]
【The invention's effect】
If the refractory heat insulating material provided with the heating element and the coating material according to the present invention is used in a microwave firing furnace, it is possible to fire more objects to be fired under the condition of a limited constant microwave output. At the same time, the surface temperature of the object to be fired and the surface of the heating element become substantially the same, and the object to be fired can be fired uniformly and in a short time without causing cracking of the object to be fired due to thermal shock. Further, the refractory heat insulating material does not break due to thermal shock, and thus does not hinder the operation of the furnace.
[Brief description of the drawings]
FIG. 1 shows the relationship between the firing temperature of fired kaolin, which is an aggregate of a heating element, and a temperature measurement value in a closed space surrounded by a heating element heated by microwave irradiation.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002344942A JP4290968B2 (en) | 2002-11-28 | 2002-11-28 | Microwave firing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002344942A JP4290968B2 (en) | 2002-11-28 | 2002-11-28 | Microwave firing furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004175628A true JP2004175628A (en) | 2004-06-24 |
JP4290968B2 JP4290968B2 (en) | 2009-07-08 |
Family
ID=32706245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002344942A Expired - Lifetime JP4290968B2 (en) | 2002-11-28 | 2002-11-28 | Microwave firing furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4290968B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005332609A (en) * | 2004-05-18 | 2005-12-02 | Saint-Gobain Tm Kk | Heating element for microwave baking furnace |
-
2002
- 2002-11-28 JP JP2002344942A patent/JP4290968B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005332609A (en) * | 2004-05-18 | 2005-12-02 | Saint-Gobain Tm Kk | Heating element for microwave baking furnace |
JP4634743B2 (en) * | 2004-05-18 | 2011-02-16 | サンゴバン・ティーエム株式会社 | Heating element for microwave firing furnace |
Also Published As
Publication number | Publication date |
---|---|
JP4290968B2 (en) | 2009-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fang et al. | Effect of powder reactivity on microwave sintering of alumina | |
WO2006016730A1 (en) | Porous ceramic heating element and method of manufacturing thereof | |
Wang et al. | Synthesis and characterization of borosilicate glass/β-spodumene/Al 2 O 3 composites with low CTE value for LTCC applications | |
Nithyanandam et al. | Development of fly ash cenosphere‐based composite for thermal insulation application | |
JP4793844B2 (en) | Ceramic for absorbing microwave and method for manufacturing the same | |
JP2008100875A (en) | Enamel for microwave-absorbing earthenware, and microwave-absorbing earthenware | |
Si et al. | Preparation of lightweight corundum-mullite thermal insulation materials by microwave sintering | |
JP4273227B2 (en) | Manufacturing method of microwave heating element | |
JPH0492870A (en) | Method for sintering ceramics | |
JP2004175628A (en) | Heating element for microwave firing furnace | |
JP4426384B2 (en) | Coating material and fireproof insulation | |
JP2004142977A (en) | Heating element for microwave kiln | |
JP2006290657A (en) | Refractory and method for producing the same | |
JP3774410B2 (en) | Refractory insulation for microwave firing furnaces | |
CN103804007A (en) | In-situ synthesis mullite whisker-toughened ceramic heat accumulator and preparation method thereof | |
Derling et al. | Microwave sintering of BaTiO3-based ceramics | |
JP4630111B2 (en) | Refractory, manufacturing method thereof, and heating furnace | |
JP2005255474A (en) | Heating element for microwave firing furnace | |
JP4395864B2 (en) | Heating element for microwave firing furnace | |
JP2004138327A (en) | Electromagnetic wave heating device, heating sheath used in the same, and manufacturing method of ceramics by using the same | |
JP2006327842A (en) | Insulating refractory material for microwave firing furnace | |
JP2005154169A (en) | Heating element for microwave kiln | |
JP3839730B2 (en) | Adhesive for microwave sintering furnace | |
JP4634743B2 (en) | Heating element for microwave firing furnace | |
KR960004393B1 (en) | Castable composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080222 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080701 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080724 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20081003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090331 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090402 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140410 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |