JP2004175395A - Method and device for inspecting internal pressure of sealed container - Google Patents

Method and device for inspecting internal pressure of sealed container Download PDF

Info

Publication number
JP2004175395A
JP2004175395A JP2002343149A JP2002343149A JP2004175395A JP 2004175395 A JP2004175395 A JP 2004175395A JP 2002343149 A JP2002343149 A JP 2002343149A JP 2002343149 A JP2002343149 A JP 2002343149A JP 2004175395 A JP2004175395 A JP 2004175395A
Authority
JP
Japan
Prior art keywords
cap
internal pressure
container
top plate
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002343149A
Other languages
Japanese (ja)
Inventor
Yoshimichi Shimoda
義道 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Original Assignee
Daiwa Can Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd filed Critical Daiwa Can Co Ltd
Priority to JP2002343149A priority Critical patent/JP2004175395A/en
Publication of JP2004175395A publication Critical patent/JP2004175395A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bottle-shaped sealed container to be sealed by fitting a cap in which acceptance/rejection of the internal pressure of the container under the positive internal pressure with liquid content filled/sealed can be inspected with excellent accuracy by a top plate part of the cap without pressing a barrel portion by a pushing tool even when the diameter of the top plate part of the cap is small. <P>SOLUTION: In a method for inspecting the internal pressure of a sealed container, a pushing tool 1 having a projection 4a with a tip surface 4b of the diameter 5-15 mm is applied to a cap 11 with the diameter of a top plate part 11a being ≤ 38 mm, a substantially center portion of the top plate part 11a of the cap 11 is pressed by the tip surface 4b of the projection 4a with a predetermined force within 29.4N to 98.1N, and elastically displaced, and the internal pressure of the container is inspected by the measurement of a reaction force based on the displacement. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、キャップの冠着により密封された容器の内部が正内圧(陽圧)となっているボトル型缶やガラス瓶等による密封容器に関し、特に、そのような密封容器について、容器の内圧の適否を判別するための内圧検査方法、および、そのような方法を実施するための内圧検査装置に関する。
【0002】
【従来の技術】
薄肉の胴部を有する金属製の缶を容器として、緑茶,ウーロン茶,紅茶,スポーツ飲料,果汁飲料等を充填・密封する場合に、缶内に内容液を充填してから密封する前に、缶内に液体窒素を添加しておくことで、内容液の酸化による劣化を防止すると共に、密封後の缶内圧が所定の圧力の範囲内で陽圧(大気圧よりも圧力が大)となるようにして、密封後の缶詰の胴部が外圧で容易に変形したりすることがないようにする、ということが従来から一般的に行なわれており、そのような缶詰や炭酸ガス含有飲料缶詰のような正内圧(陽圧)の缶詰について、缶内圧が適正であるか否かを測定するための内圧検査方法が従来から様々に提案され実施されている。
【0003】
すなわち、密封された缶詰の缶内圧が適正であるか否かの検査については、例えば、缶の端板部(蓋板や底板)に対して、打撃した時の打音を測定したり、缶内圧による変形を光学的に測定したり、或いは、周辺部を押圧して変形させた時に中央部に発生する抵抗力を測定したり(米国特許第2648977号明細書)することにより缶内圧を検査するということが従来から提案されており、一方、そのような缶の端板部での測定ができない場合に対応して、缶の胴部を押圧具により押圧して弾性的に変位させ、その変形に対する反力を測定することで缶内圧を検査するということが従来から提案されている(例えば、特公昭63−42732号公報,特公昭63−15538号公報,特公平6−50272号公報等参照)。
【0004】
【発明が解決しようとする課題】
ところで、近年、円筒状の胴部と小径の口頸部が傾斜状の肩部を介して一体的に形成されたボトル型の金属缶が、ネジ付きキャップによりリシール(再密閉)が可能であり、しかも、PETボトルと比べて、資源のリサイクル率や、遮光性や、耐気体透過性や、急速冷却性などの点で優れていることから、各種の飲料を内容物とする飲料缶の市場において多く使用されている。更に、そのようなボトル型缶については、大きさや形状の異なるもの様々なものが現在も開発されていて、例えば、栄養ドリンク剤等を内容液とするための容量が特に小さいものや、お茶,コーヒー,ココア等の飲料を温かいで販売するのに対応して、消費者が缶を握った時に熱く感じないように、缶の胴部に厚い断熱材を被覆したもの等が新たに開発されている。
【0005】
そのようなボトル型缶について、キャップの冠着により密封された缶内の圧力を検査する場合、缶の端板部に対して行なわれる従来の缶内圧検査方法の何れかを、缶の端板部に代えて、ボトル型缶の口頸部に冠着されるキャップの天板部によって行なおうとしても、通常の缶の端板部とボトル型缶のキャップの天板部とでは、その直径が大きく異なる(缶の端板部の直径と比べて、キャップの天板部の直径は非常に小さい)ことから、そのような従来の缶内圧検査方法の何れについても、キャップの天板部に対して適用した場合には、缶内圧の適否を精度良く検査することはできない。
【0006】
一方、缶の胴部を押圧具で押圧するような従来の缶内圧検査方法については、例えば、胴部と肩部と口頸部とが一体成形されたボトル型のアルミ缶(底部は別部材の蓋)であって、口頸部の直径が約28mm、胴部の直径が約66mm、口頸部の高さが約28mm、ドーム状肩部の高さが約35mm、胴部の高さが約60〜約130mm、胴部の厚さが0.13〜0.15mmで、容量が275〜500mlであるような一般的な容量のものでは、弾性的に変形する薄肉の胴部を有していることから、そのような缶内圧検査方法を適用することで缶内圧の適否を正確に判別することができる。
【0007】
しかしながら、例えば、耐圧形状の底部と胴部と肩部と口頸部とが一体成形されたボトル型のアルミ缶であって、口頸部の直径が約28mm、胴部の直径が約45mm、口頸部の高さが23mm、ドーム状肩部の高さが約17mm、胴部の高さが約65mm、胴部の厚さが0.20〜0.22mmで、容量が約100mlであるような容量が特に小さいものでは、成形上の問題から胴部が比較的厚肉となってしまい、胴部が弾性変形し難くなっていることから、上記のような押圧具で胴部を押圧する従来の缶内圧検査方法を適用した場合に、反力の測定値に誤差が多くなり(弾性変形し難い厚肉の胴部を押圧具で押圧しても、押圧力による胴部の変位量が内圧と正比例しないためであると推測される)、その結果、缶内圧の測定誤差が多く検査結果に信用がおけないという問題が起きることとなる。
【0008】
なお、ボトル型缶の容量が小さいほど胴部が厚肉となる理由について詳しく説明すると、ボトル型缶では、缶内に飲料を充填した後の密封工程で、金属製のキャップを冠着する際に、缶の口頸部に対して上方から大きな荷重が掛かるが、その際に口頸部及び口頸部と肩部の連結部分を座屈させないためには、口頸部の肉厚を0.29mm以上にする必要があり、一方、缶の成形工程でシワを発生させることなく絞り成形するためには、所定の絞り比に対して所定以上の肉厚が必要であって、そのため、缶の容量が小さくても、それに応じて材料の金属板の厚さを特に薄くすることはできない(例えば、容量が約100mlのボトル型アルミ缶であっても、容量が275〜500mlのボトル型アルミ缶と同様に、厚さが約0.365mmのアルミニウム合金板を使用している)。
【0009】
そのように材料となる金属板の板厚が略同じである場合に、容量が特に小さいボトル型缶(例えば、容量が約100ml)では、缶の高さ(胴部と肩部と口頸部の合計の高さ)が比較的短く(例えば、約105mm)、また、胴部と口頸部の直径比があまり大きくないことから、胴部でのしごき率をあまり高くすることができず、その結果、必然的に胴部の肉厚が比較的厚くなってしまう。すなわち、口頸部で所定の肉厚(例えば、0.29mm)を確保するためには、材料となる金属板の厚さを特に薄くすることができず、材料の板厚が略同じであるとすれば、胴部の径が小径で高さが低い程、胴部の肉厚が厚くなってしまう。
【0010】
さらに、上記のような容量が特に小さいボトル型缶ではなく、一般的な範囲の容量(275〜500ml)で胴部が比較的薄肉となっているボトル型缶であっても、加熱状態での缶詰製品の販売を考慮して缶の胴部に厚い断熱材を被覆しているようなボトル型缶の場合には、押圧具で胴部を押圧する従来の缶内圧検査方法を適用しても、胴部を押圧して弾性的に変位させた際の反力の伝達が悪くなるために、反力の測定値の誤差が大きくなる虞がある。また、消費者の目を引くデザインとして缶の胴部に凹凸模様を付しているようなボトル型缶の場合には、押圧具で胴部を押圧する従来の缶内圧検査方法を適用すると、凹凸模様に傷付きが発生したり変形が起きたりする虞がある。そのため、そのようなボトル型缶では、たとえ胴部が薄肉で弾性変形し易くても、押圧具で胴部を押圧するような検査方法は行なわないことが望ましい。
【0011】
本発明は、上記のような問題の解消を課題とするものであり、具体的には、キャップの冠着によって密封されるボトル型の密封容器について、キャップの天板部が小径であっても、内容液が充填・密封された状態で正内圧(陽圧)となっている容器の内圧の適否を、押圧具で胴部を押圧することなく、キャップの天板部によって精度良く検査できるようにすることを課題とするものである。
【0012】
【課題を解決するための手段】
本発明は、上記のような課題を解決するために、弾性的に変位可能な金属板製の天板部を有するキャップの冠着によって密封された容器の内部が正内圧となっている密封容器について、天板部の直径が38mm以下であるキャップに対して、直径5〜15mmの先端面を備えた突起を有する押圧具を使用して、該突起の先端面により、29.4N〜98.1Nの範囲内の所定の力で、キャップの天板部の略中央部を押圧して弾性的に変位させ、この変位に基づく反力の測定値によって容器の内圧を検査するようにしたことを特徴とするものである。
【0013】
また、そのような方法を実施するための装置として、底部の側で支持された容器に対して、ハウジング内に荷重センサーと押圧部材を収納した押圧具が、容器の軸線方向で相対的に変移可能で、容器のキャップと接離可能なように配置されており、押圧具のハウジング内では、一方の面をハウジングの内面に当接させた荷重センサーが、その他方の面に形成された圧受部を押圧部材の一方の面に部分的に接触させ、また、押圧部材の他方の面に形成された突起が、ハウジングの壁部を貫通した状態で、その先端面をハウジング外に突出させていると共に、押圧部材の突起の先端面が突出するハウジングの外面には、該突起の先端面を略中央とするように、キャップの外径よりも大きな内径を有するガイド部が形成されていて、底部の側で支持された容器に対し、押圧具を相対的に変移させて両者を接近させることにより、容器のキャップの側壁部が押圧具のガイド部により案内された状態で、押圧具の押圧部材の突起の先端面が、キャップの天板部の略中央部を押圧するように構成されていることを特徴とするものである。
【0014】
上記のような方法によれば、容器内が正内圧(陽圧)となっている密封容器について、キャップの天板部が、直径が38mm以下で、通常の缶の端板部(蓋板や底板)と比べて小径であっても、特定の条件で(即ち、押圧具の突起の直径5〜15mmの先端面により、29.4N〜98.1Nの範囲内の所定の力で)キャップの天板部の略中央部を押圧して、それによるキャップ天板部の弾性的な変位に基づく反力を測定することで、押圧具により胴部を押圧するようなことなく、容器の内圧の適否を精度良く検査することができて、しかも、キャップの天板部には押圧による疵や痕跡が残ることはない。また、上記のような装置によれば、上記のような方法を簡単な構造により効果的に実施することができる。
【0015】
【発明の実施の形態】
以下、本発明の密封容器の内圧検査方法および装置の実施形態について、図面に基づいて詳細に説明する。なお、ボトル型缶の缶内圧検査による本発明の一実施形態について、図1は、缶内圧検査装置の全体を概略的に示し、図2は、缶内圧検査装置の押圧具の具体的な構造を示し、図3は、缶内圧検査方法により測定した反力値と実際の缶内圧との関係をグラフによって示すものである。
【0016】
本実施形態では、図1に示すように、キャップ11が冠着された小径の口頸部12と、ドーム状に傾斜した肩部13と、略円筒状の胴部14と、耐圧形状を備えた底部15とが一体成形されて、胴部14の直径が50mm以下で容量が約100mlであるボトル型缶10を対象として、飲料が充填された後、キャップ11が冠着されて密封された状態で正内圧(陽圧)となっている缶内圧を検査している。なお、ボトル型缶10の口頸部12に冠着されているキャップ11については、詳しく図示していないが、リシールが可能なネジ付きの金属製ピルファープルーフキャップであり、キャップの天板部内面の少なくとも周縁部にシール材が設けられた、従来から一般的に使用されているものである。
【0017】
そのようなボトル型缶の缶内圧を検査するための装置については、支持板17の上に正立状態で載置されたボトル型缶10に対して、その上方に押圧具1を配置したものであり、この押圧具1は、駆動部分18によって上下方向で往復移動可能なように支持されている。このような缶内圧検査装置は、図示していないが、ボトル型缶による飲料缶詰の製造ラインにおいて、充填・密封後のキャップが冠着された缶詰を搬送する搬送経路の途中に設けられた検査用ターンテーブルに対して設置されるものであり、検査用ターンテーブルの各ポケットに保持された状態で円周方向に沿って間欠的又は連続的に移動する各缶詰のキャップに対して、その上方から押圧具を接近させ、キャップの天板部の略中央部を押圧して、それによるキャップ天板部の弾性的な変位に基づく反力を測定することで、缶詰の缶内圧を検査するものである。なお、缶内圧が不良であると判定された缶詰は、検査用ターンテーブルから搬送経路に缶詰を戻すための搬送ターレットに設けられた適宜の排除機構によって搬送経路外に排除されることとなる。
【0018】
缶内圧検査装置の押圧具1の構造については、図2に示すように、ケース部材21とカバー部材22とからなるハウジング2の内部に、荷重センサー(ロードセル)3と押圧部材4とを収納したものであって、上下方向に往復移動する駆動部分18(図1に示す)に対して、ハウジング2のカバー部材22が一体的に連結され、このカバー部材22によりケース部材21が上方から蓋された状態で、ハウジング2のケース部材21とカバー部材22が一体的に結合されていて、ケース部材21には、荷重センサー3に接続する電線3bを通すための切欠部2aが設けられている。なお、本実施形態では、荷重センサー3や押圧部材4を収納するケース部材21の上方をカバー部材22により蓋した状態で、カバー部材22を駆動部分18に連結しているが、ハウジング2の構造については、そのようなものに限らず、例えば、荷重センサーや押圧部材を収納するケース部材の下方をカバー部材により蓋した状態で、ケースー部材を駆動部分に連結するようにしても良い等、適宜の構造にすることが可能なものである。
【0019】
そのような押圧具1のハウジング2内には、その上部に荷重センサー3が収納され、その下部に押圧部材4が収納されていて、下面側に圧受部3aを有する荷重センサー3は、その上面側をハウジング2の内面(カバー部材22の下面)に当接させた状態で、その下面側に形成された圧受部3aを押圧部材4の上面側と部分的に接触させており、下面側に押圧用の突起4aが形成された押圧部材4は、ハウジング2(ケース部材21)の底壁の略中央部に突起4aを貫通させた状態で、突起4aの先端面4bを僅かにハウジング2外に突出させている。なお、押圧部材4の突起4aの先端面4bは、その直径が5〜15mmであって、平坦面、或いは、曲率半径が20mm以上の凸曲面に形成されている(図2に示したもので凸曲面となっている)。
【0020】
また、押圧部材4の突起4aの先端面4bが突出しているハウジング2(ケース部材21)の下面には、該突起4aの先端面4bを略中央とするように、キャップ11の外径よりも大きな内径を有する円筒状のガイド部5が、ハウジング2(ケース部材21)の下面の周辺部から一体的に垂下形成されている。そして、このガイド部5で囲まれているハウジング2(ケース部材21)の下面は、突起4aの先端面4bが突出している中央部に近づくほど大きくえぐられた形状の凹面形状(円錐形状面)となっている。なお、本実施形態では、円筒状のガイド部5をハウジング2の下面から一体的に垂下形成しているが、ガイド部5の構造については、そのようなものに限らず、例えば、別体のガイド部材をハウジングに対して連結固定しても良く、その形状についても、円筒状に限らず、複数個の棒状体を円周方向に沿って配列したようなものでも良い等、適宜の構造にすることが可能なものである。
【0021】
上記のようにキャップ11の外径よりも大きな内径を有するガイド部5がハウジング2の下面に形成されている押圧具1を使用した缶内圧検査装置によれば、支持板17上に載置されたボトル型缶10のキャップ11に対して、押圧具1が下方に移動して両者が接近した時に、キャップ11の側壁部11bの上部がガイド部5により案内された状態で、押圧部材4の突起4aの先端面4bが、キャップ11の天板部11aの略中央部を押圧するようになっている。
【0022】
上記のような装置を使用して実施される本実施形態の缶内圧検査方法では、キャップ11の冠着により密封された状態のボトル型缶10について、支持板17上に缶10を正立させた状態で、押圧具1を下方に移動させて缶10のキャップ11に接近させ、天板部11aの直径が38mm以下のキャップ11に対して、押圧具1の押圧部材4の突起4aの直径が5〜15mmである先端面4bにより、29.4N〜98.1N(好ましくは39.2〜78.4N)の範囲内の所定の力で、キャップ11の天板部11aの略中央部を上方から押圧して、当該部分11aを弾性的に変位させ、この変位に基づく反力を測定して、この測定値に基づいて缶内圧の適否を検査している。
【0023】
なお、具体的には、小径の口頸部とドーム状の肩部と円筒状の胴部と耐圧形状の底部とが一体成形され、口頸部の直径が約28mm、胴部の直径が約45mm、口頸部の高さが23mm、ドーム状肩部の高さが約17mm、胴部の高さが約65mm、胴部の厚さが0.20〜0.22mmで、容量が約100mlであるボトル型アルミ缶で、缶内圧が異なる複数個(38個)の個体のそれぞれについて、本実施形態の缶内圧検査装置を使用し、本実施形態の缶内圧検査方法に従って、押圧具の押圧部材の突起の直径が7mmである先端面により、板厚が0.23mmで直径が約28mmのキャップの天板部(天板部の直径は約20mm)の略中央部を、51Nの加圧力で上方から押圧して、当該部分の弾性的な変位に基づく反力を測定すると共に、その反力値と実際の缶内圧との関係を調べた。その結果、図3に示すように、測定された反力値(デジット)と実際の缶内圧(KPa)との関係については、大きなバラツキがなく略正比例していることが判った。
【0024】
そのような結果から見て、上記のような本実施形態の缶内圧検査方法によれば、キャップ11の冠着により密封された状態で缶内圧が正内圧(陽圧)となっているボトル型缶10について、容量が特に小さく胴部の厚さが比較的厚肉であっても、押圧具により缶の胴部を押圧するようなことなく、押圧具1(押圧部材4の突起4a)の先端面4bによりキャップ11の天板部11aの略中央部を押圧することで、缶内圧の適否を精度良く検査できるということが判る。
【0025】
なお、本実施形態の缶内圧検査方法において、押圧具1の押圧部材4の突起4aの先端面4bによる押圧時の加圧力を、29.4〜98.1N(好ましくは39.2〜78.4N)の範囲としている理由については、29.4N未満の押圧力では、反力の測定値にバラツキが大きくなり過ぎて、検査結果に信用がおけず、一方、98.1Nを超える押圧力では、キャップ11の天板部11aに押圧による疵や痕跡が残る虞があるからである。
【0026】
また、押圧具1の押圧部材4の突起4aの先端面4bの大きさを、直径5〜15mmとしている理由については、5mm未満であると、キャップ11の天板部11aに押圧による痕跡が残り易いためであり、一方、15mmを超えると、キャップの大きさにもよるが、直径約28mmの口頸部に冠着させる小径のピルファープルーフキャップの場合には、内面側にシール材が厚く塗着されている部分を押圧することになり、正確な反力を測定できなくなる虞があるためである。
【0027】
さらに、上記のような本実施形態の缶内圧検査装置によれば、ボトル型缶10のキャップ11に対して相対的に、キャップ11を押圧するための突起11aが形成された押圧部材4だけを移動させることなく、荷重センサー3を含む押圧具1の全体を移動させることとなるため、装置全体の動きを複雑化させることなく、装置の製造コストを低く抑えることができて、本実施形態の缶内圧検査方法を、簡単な構造により効果的に実施することができる。
【0028】
なお、本実施形態の缶内圧検査装置において、押圧具1の押圧部材4の突起4aの先端面4bの形状を、平坦面、或いは、曲率半径が20mm以上の凸曲面としている理由については、曲率半径が20mm未満の凸曲面では、押圧力がキャップ11の天板部11aの中央に集中し過ぎて、キャップ11の天板部11aの中央に押圧による痕跡を残すような虞があり、一方、凹曲面では、先端面の円周部でキャップ11の天板部11aを押圧することになり、やはり押圧による痕跡をキャップ11の天板部11aに円周状に残すような虞がある。
【0029】
また、押圧部材4の突起4aの先端面4bが突出するハウジング2(ケース部材21)の下面のガイド部5によって囲まれた部分を、ガイド部5の基部よりも上方(ハウジング内方)に凹んだ凹面形状としている理由については、ボトル型缶10の缶内圧が正内圧(陽圧)であることにより、缶内圧によってキャップ11の天板部11aの中央部分が上方に膨出(天板部11aの中央が最も膨出)するが、ハウジング2(ケース部材21)の下面が平面形状であると、キャップ11の天板部11aの膨出した部分がハウジング2(ケース部材21)の下面と接触してしまう。そのため、キャップ11の天板部11aがハウジング2の下面と接触した状態で、突起4aの先端面4bによりキャップ11の天板部11aを所定の力で押圧して変位させ反力を測定しても、非接触状態での反力値とは異なってしまって、検査結果が正確ではなくなり、また、ハウジング2の下面との接触によりキャップ11の天板部11aに疵が付くような虞もあるからである。
【0030】
ハウジング2(ケース部材21)の下面のガイド部5によって囲まれた部分の具体的な形状については、キャップ11の天板部11aの缶内圧により上方に膨出した部分が接触しないような形状であれば良いのであって、本実施形態に示したような円錐形状面に限らず、ガイド部5の基部から少し内側から急激に上方向に移行する垂直面(円筒面)となって、それから水平面となるような凹面形状であっても良い。
【0031】
ハウジング2(ケース部材21)の下面における突起4a(先端面4b)の周縁部と、ガイド部5の基部との高低差については、検査するボトル型缶10の缶内圧によって決められるものであり、例えば、果汁飲料が85〜95℃の温度に加熱されて缶内に充填された後、缶内のヘッドスペースに液体窒素が添加され、直ちにキャップ11で密封された直後に、缶内圧を検査するような場合には、良品の飲料缶詰では缶内圧が約196KPa(飲料温度が93℃の場合)程度となり、板厚が0.23mmのアルミ合金製ピルファープルーフキャップでは、キャップ11の天板部11aの中央部は最大約0.36mm上方に膨出するので、そのような場合には、前記の高低差を約0.36〜0.42mm程度にしておく必要がある。
【0032】
一方、上記のように果汁飲料が充填・密封された缶詰について、冷却水を散布して冷却し、缶内の飲料温度を30〜40℃に低下させた後で、缶内圧を検査するような場合には、良品の飲料缶詰では缶内圧が約69〜約186KPa(飲料温度が30℃の場合)となり、キャップ11の天板部11aの中央部の最大膨出量は約0.27mmとなるので、そのような場合には、上記の高低差を約0.27〜0.31mm程度にしておく必要がある。
【0033】
押圧部材4の突起4aのハウジング2(ケース部材21)の貫通孔からの突出量については、少なくとも良品範囲の缶内圧を有する缶詰において、キャップ11の天板部11aの中央部が突起4aの先端面4bにより押圧される位置にまで突出していることが必要であって、ハウジング2の下面の貫通孔周縁部と、ガイド部5の基部との高低差を、約0.27〜0.31mmとした場合には、ガイド部5の基部と、押圧部材4の突起4aの先端面4bとの高低差は、0よりも大きいが、0.24mm以下(好ましくは0.05〜0.10mm)となっている。
【0034】
ところで、ボトル型缶10の缶内圧を検査するためには、缶詰製造ラインの適所で1回行なえば良いのであるが、例えば、上記のように85〜95℃の温度に加熱した飲料を缶内に充填してから、液体窒素を添加して、キャップで密封した直後と、その後、缶詰を冷却水により冷却して、缶内の飲料温度が30〜40℃程度に低下した後とで、缶内圧の検査を2回実施すると、密封不良品を確実に排除することができるだけでなく、液体窒素添加装置の調整不良や、キャッパーの調整不良を直ちにチェックして正常に調整し直すことができるので好ましい。
【0035】
また、レトルト殺菌を行なう缶詰についても、60〜80℃程度の温度の飲料を缶内に充填してから、液体窒素を添加し、キャップで密封した直後と、その後、レトルト加熱殺菌処理を行なってから、缶内の飲料温度を30〜40℃程度に冷却した後とで、2回の缶内圧検査を行なうことが上記のような理由から好ましく、更には、炭酸ガス含有飲料についても、4〜10℃に冷却された炭酸ガス含有飲料を缶内に充填し、キャップで密封した直後と、その後、缶詰に50〜60℃程度の温水をかけて缶内の飲料温度を30〜40℃程度に加温した後とで、2回の缶内圧検査を行なうことが、密封不良品を確実に排除することができ、また、キャッパーの調整不良を直ちにチェックして正常に調整し直すことができるので好ましい。
【0036】
以上、本発明の密封容器の内圧検査方法および装置の実施形態について説明したが、本発明は、上記のような具体的な実施形態に限られるものではなく、例えば、対象となる容器については、容量の特に小さく胴部が比較的厚肉であるボトル型缶に限らず、一般的な容量で胴部が薄肉のボトル型缶であっても、胴部に厚い断熱材が被覆されたボトル型缶や、胴部に凹凸模様が付されていて、胴部を押圧すると凹凸模様を傷付けたり変形させる虞があるようなボトル型缶の場合には効果的に実施できるものであり、更には、ボトル型缶だけではなく、ガラス瓶のような金属缶以外の容器であっても実施することができる。
【0037】
また、内圧を検査する際の容器の姿勢については、容器を正立させた状態で行なうことが実際の缶詰製造ラインで実施するのには好ましいが、場合によっては正立させた状態に限らず、容器を横倒しにした状態で実施することも可能であり、その場合には、押圧具は、容器の上方ではなく側方に配置されることとなる。また、装置の作動状態については、押圧具を容器の方に移動させる場合に限らず、容器を押圧具の方に移動させたり、容器と押圧具の両方を移動させたりすることによっても実施することができる。さらに、装置の細部の具体的な構造については、押圧具のハウジングやガイド部等については既に説明しているが、その他の部分についても適宜に設計変更可能なものであることはいうまでもない。
【0038】
【発明の効果】
以上説明したような本発明の密封容器の内圧検査方法によれば、天板部の直径が38mm以下のキャップが冠着されている密封容器について、内容液が充填・密封された状態で正内圧(陽圧)となっている容器の内圧を、押圧具によりキャップの天板部の略中央部を押圧することで、容器の内圧の適否を精度良く検査することができて、しかも、キャップの天板部に押圧による疵や痕跡を残すようなことはない。また、本発明の密封容器の内圧検査装置によれば、そのような効果を有する本発明の方法を、簡単な構造により効果的に実施することができる。
【図面の簡単な説明】
【図1】本発明の方法を実施するための装置の一実施形態に係るボトル型缶の缶内圧検査装置について、その全体を概略的に示す正面図。
【図2】図1に示した缶内圧検査装置の押圧具の具体的な構造を示す縦断面図。
【図3】本発明の缶内圧検査方法により測定した反力値と実際の缶内圧との関係を示すグラフ。
【符号の説明】
1 押圧具
2 ハウジング
3 荷重センサー
3a (荷重センサーの)圧受部
4 押圧部材
4a (押圧部材の)突起
4b (突起の)先端面
5 ガイド部
10 密封容器(ボトル型缶)
11 キャップ
11a (キャップの)天板部
11b (キャップの)側壁部
12 口頸部
13 肩部
14 胴部
15 底部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sealed container such as a bottle-type can or a glass bottle in which the inside of the container sealed by capping has a positive internal pressure (positive pressure). The present invention relates to an internal pressure inspection method for determining suitability and an internal pressure inspection device for performing such a method.
[0002]
[Prior art]
When filling and sealing green tea, oolong tea, black tea, sports drinks, fruit juice drinks, etc., using a metal can having a thin body as a container, fill the can with the liquid content before sealing. By adding liquid nitrogen to the inside, the deterioration of the content liquid due to oxidation is prevented, and the internal pressure of the can after sealing becomes positive pressure (larger than atmospheric pressure) within a predetermined pressure range. In order to prevent the body of a sealed can from being easily deformed by external pressure, it has been generally performed in the past, and such cans and canned beverages containing carbon dioxide gas have been generally used. With respect to cans having such a positive internal pressure (positive pressure), various internal pressure inspection methods for measuring whether or not the internal pressure of the can is appropriate have been conventionally proposed and implemented.
[0003]
In other words, the inspection of whether the internal pressure of the sealed can is proper or not can be performed, for example, by measuring the tapping sound of the end plate portion (lid plate or bottom plate) of the can when hitting, Inspection of the can internal pressure by optically measuring the deformation due to the internal pressure, or by measuring the resistance generated at the center when the peripheral portion is pressed and deformed (US Pat. No. 2,648,977). In the past, it has been proposed that, in the case where measurement at such an end plate portion of the can cannot be performed, the body portion of the can is pressed by a pressing tool to be elastically displaced. Conventionally, it has been proposed to measure the internal pressure of a can by measuring the reaction force against deformation (for example, Japanese Patent Publication No. 63-42732, Japanese Patent Publication No. 63-15538, Japanese Patent Publication No. 6-50272, etc.). reference).
[0004]
[Problems to be solved by the invention]
By the way, in recent years, a bottle-shaped metal can in which a cylindrical body and a small-diameter mouth and neck are integrally formed via an inclined shoulder can be resealed (resealed) with a screw cap. In addition, the market for beverage cans containing various beverages is superior to PET bottles in terms of resource recycling rate, light-shielding properties, gas-permeability, and rapid cooling. Used in many applications. Further, as for such bottle-shaped cans, various ones having different sizes and shapes are still being developed. For example, those having a particularly small capacity for making an energy drink or the like as a content liquid, tea, In response to selling beverages such as coffee and cocoa warmly, a new body with a thick body of canned insulation has been developed to prevent consumers from feeling hot when holding the can. I have.
[0005]
When inspecting the pressure in the can sealed with the cap attached to such a bottle-type can, any of the conventional can internal pressure inspection methods performed on the end plate of the can can be performed by using the end plate of the can. In place of the part, even if it is attempted to use the top plate part of the cap that is wrapped around the mouth and neck of the bottle-shaped can, the end plate part of the normal can and the top plate part of the cap of the bottle-type can The diameter of the cap is very different (the diameter of the top plate of the cap is very small compared to the diameter of the end plate of the can). When applied to a can, the suitability of the can internal pressure cannot be accurately inspected.
[0006]
On the other hand, a conventional method for testing the internal pressure of a can in which the body of the can is pressed with a pressing tool is described, for example, in a bottle-shaped aluminum can (in which the bottom is a separate member) in which the body, shoulders, and mouth and neck are integrally formed. The diameter of the mouth and neck is about 28 mm, the diameter of the torso is about 66 mm, the height of the mouth and neck is about 28 mm, the height of the dome-shaped shoulder is about 35 mm, and the height of the torso Is about 60 to about 130 mm, the thickness of the trunk is 0.13 to 0.15 mm, and the general volume is 275 to 500 ml. Therefore, by applying such a method for inspecting the internal pressure of a can, it is possible to accurately determine the suitability of the internal pressure of the can.
[0007]
However, for example, it is a bottle-shaped aluminum can in which the bottom, the torso, the shoulder, and the mouth and neck of the pressure-resistant shape are integrally formed, the diameter of the mouth and neck is about 28 mm, the diameter of the body is about 45 mm, The height of the mouth and neck is 23 mm, the height of the dome-shaped shoulder is about 17 mm, the height of the torso is about 65 mm, the thickness of the torso is 0.20 to 0.22 mm, and the capacity is about 100 ml. If the capacity is particularly small, the body becomes relatively thick due to molding problems, and the body is less likely to be elastically deformed. When the conventional method for inspecting the internal pressure of the can is applied, the error in the measured value of the reaction force increases (the amount of displacement of the body due to the pressing force, even if the thick body that is difficult to elastically deform is pressed by the pressing tool) Is not directly proportional to the internal pressure), and as a result, there are many measurement errors in the internal pressure of the can. So that the problem of credit is not put in the result occurs.
[0008]
In addition, the reason why the body becomes thicker as the capacity of the bottle-shaped can becomes smaller will be described in detail.In the bottle-shaped can, in the sealing step after filling the beverage in the can, a metal cap is put on. In addition, a large load is applied to the mouth and neck of the can from above, but in this case, the thickness of the mouth and neck is set to 0 in order not to buckle the mouth and neck and the joint between the mouth and neck and the shoulder. On the other hand, in order to form by drawing without generating wrinkles in the step of forming a can, a predetermined thickness or more is required for a predetermined drawing ratio. Even if the capacity of the bottle is small, it is not possible to make the thickness of the metal plate of the material correspondingly small (for example, even if the bottle-shaped aluminum can has a capacity of about 100 ml, the bottle-shaped aluminum can has a capacity of 275 to 500 ml). Similar to a can, an approximately 0.365 mm thick It is using the Miniumu alloy plate).
[0009]
In the case where the thickness of the metal plate as the material is substantially the same, the height of the can (the body, the shoulder, the mouth and neck, etc.) is particularly small in a bottle-type can (for example, the capacity is about 100 ml). Is relatively short (for example, about 105 mm), and the diameter ratio of the torso to the mouth and neck is not so large, so that the ironing rate at the torso cannot be increased so much. As a result, the thickness of the trunk is inevitably relatively thick. That is, in order to secure a predetermined thickness (for example, 0.29 mm) at the mouth and neck, the thickness of the metal plate as the material cannot be particularly reduced, and the thickness of the material is substantially the same. In this case, as the diameter of the trunk is smaller and the height is lower, the thickness of the trunk becomes thicker.
[0010]
Furthermore, even in the case of a bottle type can having a relatively small thickness in a general range of volume (275 to 500 ml) instead of a bottle type can having a particularly small capacity as described above, the heating state is not sufficient. In the case of bottle-type cans where the body of the can is coated with a thick insulating material in consideration of the sale of canned products, even if the conventional can pressure test method of pressing the body with a pressing tool is applied. However, since the transmission of the reaction force when the body portion is pressed and elastically displaced becomes poor, there is a possibility that the error of the measured value of the reaction force becomes large. In addition, in the case of a bottle-shaped can having an irregular pattern on the body of the can as a design that attracts the eyes of consumers, applying a conventional can pressure test method in which the body is pressed with a pressing tool, There is a possibility that the uneven pattern may be scratched or deformed. For this reason, in such a bottle-shaped can, it is desirable that even if the body is thin and easily deformed elastically, an inspection method of pressing the body with a pressing tool is not performed.
[0011]
An object of the present invention is to solve the above-described problems. Specifically, for a bottle-type sealed container that is hermetically sealed by cap capping, even if the top plate of the cap has a small diameter. It is possible to accurately check the suitability of the internal pressure of the container, which has a positive internal pressure (positive pressure) when the content liquid is filled and sealed, by pressing the top plate of the cap without pressing the body with the pressing tool. The task is to make
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a sealed container in which the inside of a container sealed by mounting a cap having a top plate portion made of an elastically displaceable metal plate has a positive internal pressure. For a cap having a top plate having a diameter of 38 mm or less, a pressing tool having a projection having a tip surface with a diameter of 5 to 15 mm is used. With a predetermined force in the range of 1N, the cap substantially presses the central portion of the top plate portion to be elastically displaced, and the internal pressure of the container is inspected by the measured value of the reaction force based on this displacement. It is a feature.
[0013]
Further, as an apparatus for carrying out such a method, a pressing tool housing a load sensor and a pressing member in a housing is relatively displaced in the axial direction of the container with respect to the container supported on the bottom side. The load sensor is arranged so as to be able to contact and separate from the cap of the container, and in the housing of the pressing device, a load sensor having one surface abutting against the inner surface of the housing is provided with a pressure sensor formed on the other surface. Part is brought into partial contact with one surface of the pressing member, and a projection formed on the other surface of the pressing member penetrates the wall portion of the housing, and the distal end surface is projected outside the housing. At the same time, a guide portion having an inner diameter larger than the outer diameter of the cap is formed on the outer surface of the housing from which the distal end surface of the projection of the pressing member projects, so that the distal end surface of the projection is substantially at the center, Supported on bottom side When the side wall of the cap of the container is guided by the guide of the pressing tool, the tip of the protrusion of the pressing member of the pressing tool is moved by moving the pressing tool relatively to the closed container and bringing them closer to each other. The surface is configured to press a substantially central portion of a top plate portion of the cap.
[0014]
According to the method as described above, for a sealed container in which the inside of the container is at a positive internal pressure (positive pressure), the top plate of the cap has a diameter of 38 mm or less, and the end plate of a normal can (a lid plate or Even if the diameter of the cap is smaller than that of the bottom plate, the cap is pressed under specific conditions (i.e., with a predetermined force in the range of 29.4 N to 98.1 N by the tip of the protrusion of the pressing tool having a diameter of 5 to 15 mm). By pressing the approximate center of the top plate and measuring the reaction force based on the elastic displacement of the cap top plate, the internal pressure of the container is reduced without pressing the body with the pressing tool. Compliance can be checked with good accuracy, and no flaws or traces due to pressing remain on the top plate of the cap. Further, according to the above-described apparatus, the above-described method can be effectively performed with a simple structure.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a method and an apparatus for inspecting the internal pressure of a sealed container of the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows an entire can internal pressure inspection device according to an embodiment of the present invention based on a can internal pressure inspection of a bottle type can, and FIG. 2 shows a specific structure of a pressing tool of the can internal pressure inspection device. FIG. 3 is a graph showing the relationship between the reaction force value measured by the can internal pressure inspection method and the actual can internal pressure.
[0016]
In the present embodiment, as shown in FIG. 1, a small-diameter mouth and neck portion 12 on which a cap 11 is mounted, a shoulder portion 13 inclined in a dome shape, a substantially cylindrical body portion 14, and a pressure-resistant shape are provided. The bottom portion 15 is integrally formed, and the bottle type can 10 having a body portion 14 having a diameter of 50 mm or less and a capacity of about 100 ml is filled with a beverage, and then the cap 11 is crowned and sealed. Inspection of the can internal pressure, which is positive internal pressure (positive pressure) in this state. Although not shown in detail, the cap 11 attached to the mouth and neck portion 12 of the bottle can 10 is a metal pill fur proof cap with a resealable screw, and a top plate portion of the cap. This is a conventional and generally used one in which a sealing material is provided on at least a peripheral portion of the inner surface.
[0017]
An apparatus for inspecting the internal pressure of such a bottle-shaped can is a bottle-shaped can 10 placed upright on a support plate 17 and a pressing tool 1 disposed above the bottle-shaped can 10. The pressing tool 1 is supported by the driving portion 18 so as to be able to reciprocate in the vertical direction. Although not shown, such a can internal pressure inspection device is an inspection device provided in the middle of a transport path for transporting cans with a cap after filling and sealing in a production line for beverage cans using bottle-type cans. Installed on the turntable for inspection, and above each canned cap that moves intermittently or continuously along the circumferential direction while being held in each pocket of the inspection turntable. Inspecting the can internal pressure of a can by measuring the reaction force based on the elastic displacement of the cap top plate by pressing the pressing tool close to and pressing the approximate center of the top plate of the cap. It is. It should be noted that the can that is determined to have a poor internal pressure is removed from the transport path by an appropriate removing mechanism provided in a transport turret for returning the can from the inspection turntable to the transport path.
[0018]
As for the structure of the pressing tool 1 of the can internal pressure inspection apparatus, as shown in FIG. 2, a load sensor (load cell) 3 and a pressing member 4 are housed inside a housing 2 including a case member 21 and a cover member 22. A cover member 22 of the housing 2 is integrally connected to a driving portion 18 (shown in FIG. 1) which reciprocates in a vertical direction, and the case member 21 is covered by the cover member 22 from above. In this state, the case member 21 and the cover member 22 of the housing 2 are integrally connected, and the case member 21 is provided with a cutout portion 2a for passing an electric wire 3b connected to the load sensor 3. In the present embodiment, the cover member 22 is connected to the driving portion 18 in a state where the upper part of the case member 21 that houses the load sensor 3 and the pressing member 4 is covered by the cover member 22. Is not limited to such a case.For example, the case member may be connected to the driving portion while the lower part of the case member that stores the load sensor and the pressing member is covered with a cover member. It is possible to have a structure of
[0019]
In the housing 2 of such a pressing tool 1, a load sensor 3 is stored in an upper part thereof, and a pressing member 4 is stored in a lower part thereof. In a state where the side is in contact with the inner surface of the housing 2 (the lower surface of the cover member 22), the pressure receiving portion 3a formed on the lower surface side is partially in contact with the upper surface side of the pressing member 4, and The pressing member 4 having the pressing protrusion 4a formed thereon has the distal end surface 4b of the protrusion 4a slightly outside the housing 2 with the protrusion 4a penetrating substantially at the center of the bottom wall of the housing 2 (case member 21). To protrude. The tip end surface 4b of the projection 4a of the pressing member 4 has a diameter of 5 to 15 mm and is formed as a flat surface or a convex curved surface having a radius of curvature of 20 mm or more (see FIG. 2). It has a convex surface).
[0020]
In addition, on the lower surface of the housing 2 (case member 21) from which the distal end surface 4b of the projection 4a of the pressing member 4 projects, the outer diameter of the cap 11 is set smaller than the outer diameter of the cap 11 so that the distal end surface 4b of the projection 4a is substantially at the center. A cylindrical guide portion 5 having a large inner diameter is integrally formed so as to hang down from a peripheral portion of a lower surface of the housing 2 (the case member 21). The lower surface of the housing 2 (the case member 21) surrounded by the guide portion 5 has a concave shape (a conical surface) having a shape that is larger as it approaches the central portion where the distal end surface 4b of the projection 4a protrudes. It has become. In the present embodiment, the cylindrical guide portion 5 is integrally formed so as to hang down from the lower surface of the housing 2. However, the structure of the guide portion 5 is not limited to such a structure. The guide member may be connected and fixed to the housing, and the shape thereof is not limited to a cylindrical shape, but may be a structure in which a plurality of rods are arranged along the circumferential direction. It is possible to do.
[0021]
According to the internal pressure inspection device using the pressing tool 1 in which the guide portion 5 having an inner diameter larger than the outer diameter of the cap 11 is formed on the lower surface of the housing 2 as described above, the guide portion 5 is placed on the support plate 17. When the pressing tool 1 moves downward and approaches the cap 11 of the bottle-shaped can 10, the upper part of the side wall 11 b of the cap 11 is guided by the guide 5, and the pressing member 4 The distal end surface 4b of the projection 4a presses a substantially central portion of the top plate 11a of the cap 11.
[0022]
In the method for inspecting the internal pressure of a can according to the present embodiment, which is performed using the above-described apparatus, the can 10 is erected on the support plate 17 with respect to the bottle-shaped can 10 sealed by capping the cap 11. In this state, the pressing tool 1 is moved downward to approach the cap 11 of the can 10, and the diameter of the projection 4 a of the pressing member 4 of the pressing tool 1 is adjusted with respect to the cap 11 whose top plate 11 a has a diameter of 38 mm or less. Of the top plate portion 11a of the cap 11 with a predetermined force in the range of 29.4N to 98.1N (preferably 39.2 to 78.4N) by the distal end surface 4b having a length of 5 to 15 mm. The portion 11a is elastically displaced by pressing from above, the reaction force based on this displacement is measured, and the suitability of the can internal pressure is inspected based on the measured value.
[0023]
Note that, specifically, a small-diameter mouth and neck, a dome-shaped shoulder, a cylindrical body and a pressure-resistant bottom are integrally formed, and the diameter of the mouth and neck is about 28 mm, and the diameter of the body is about 45mm, the height of the mouth and neck is 23mm, the height of the dome-shaped shoulder is about 17mm, the height of the torso is about 65mm, the thickness of the torso is 0.20 to 0.22mm, and the capacity is about 100ml For each of a plurality (38) of individual bottle-shaped aluminum cans having different can internal pressures, the pressing device is pressed by using the can internal pressure inspection device of the present embodiment according to the can internal pressure inspection method of the present embodiment. The approximately center portion of the top plate portion of the cap having a plate thickness of approximately 28 mm and a diameter of approximately 28 mm (the diameter of the top plate portion is approximately 20 mm) is pressed with a pressing force of 51 N by the front end surface of the member having a projection having a diameter of 7 mm. Press from above to measure the reaction force based on the elastic displacement of the part To examined the relationship between the actual can internal pressure and the reaction force value. As a result, as shown in FIG. 3, it was found that the relationship between the measured reaction force value (digit) and the actual can pressure (KPa) was substantially directly proportional without large variation.
[0024]
In view of such a result, according to the method for testing the internal pressure of a can of the present embodiment as described above, the bottle type in which the internal pressure of the can is a positive internal pressure (positive pressure) in a state where the can is sealed by capping the cap 11. Regarding the can 10, even if the capacity is particularly small and the thickness of the body is relatively thick, the pressing tool 1 (the protrusion 4 a of the pressing member 4) can be used without pressing the body of the can with the pressing tool. It can be seen that by pressing the substantially central portion of the top plate portion 11a of the cap 11 with the tip end surface 4b, the suitability of the can internal pressure can be accurately inspected.
[0025]
In addition, in the can internal pressure inspection method of this embodiment, the pressing force at the time of pressing by the tip end surface 4b of the projection 4a of the pressing member 4 of the pressing tool 1 is set to 29.4 to 98.1N (preferably 39.2 to 78.N). 4N), the reason is that if the pressing force is less than 29.4 N, the measured value of the reaction force becomes too large and the test result is not reliable, while if the pressing force exceeds 98.1 N, This is because a flaw or a trace may be left on the top plate 11a of the cap 11 due to the pressing.
[0026]
Further, the reason why the size of the tip end surface 4b of the protrusion 4a of the pressing member 4 of the pressing member 1 is 5 to 15 mm is that if it is less than 5 mm, a trace due to pressing remains on the top plate 11a of the cap 11. On the other hand, if it exceeds 15 mm, depending on the size of the cap, in the case of a small-diameter pill fur proof cap to be crowned on the mouth and neck with a diameter of about 28 mm, the sealing material is thick on the inner surface side. This is because the coated part is pressed, and there is a possibility that an accurate reaction force cannot be measured.
[0027]
Further, according to the can internal pressure inspection device of the present embodiment as described above, only the pressing member 4 on which the projection 11a for pressing the cap 11 is formed relatively to the cap 11 of the bottle-shaped can 10. Since the entire pressing tool 1 including the load sensor 3 is moved without being moved, the manufacturing cost of the apparatus can be reduced without complicating the movement of the entire apparatus. The can pressure test method can be effectively implemented with a simple structure.
[0028]
The reason why the shape of the tip end surface 4b of the projection 4a of the pressing member 4 of the pressing tool 1 is a flat surface or a convex curved surface having a radius of curvature of 20 mm or more in the can internal pressure inspection device of the present embodiment is as follows. On a convex curved surface having a radius of less than 20 mm, the pressing force may be excessively concentrated at the center of the top plate 11a of the cap 11, leaving a trace due to the pressing at the center of the top plate 11a of the cap 11, In the concave curved surface, the top plate portion 11a of the cap 11 is pressed by the circumferential portion of the distal end surface, and there is a possibility that a trace due to the pressing may be left on the top plate portion 11a of the cap 11 in a circumferential shape.
[0029]
Further, a portion of the lower surface of the housing 2 (the case member 21) surrounded by the guide portion 5 from which the distal end surface 4 b of the protrusion 4 a of the pressing member 4 projects is recessed above the base of the guide portion 5 (inward of the housing). The reason for the concave shape is that the inner pressure of the bottle-shaped can 10 is a positive internal pressure (positive pressure), so that the central portion of the top plate portion 11a of the cap 11 bulges upward due to the inner pressure of the can (top plate portion). 11a swells the most), but if the lower surface of the housing 2 (the case member 21) has a planar shape, the swelling portion of the top plate 11a of the cap 11 is in contact with the lower surface of the housing 2 (the case member 21). Contact. Therefore, in a state where the top plate 11a of the cap 11 is in contact with the lower surface of the housing 2, the top plate 11a of the cap 11 is pressed with a predetermined force by the tip end surface 4b of the projection 4a and displaced to measure the reaction force. In addition, the reaction force value in the non-contact state may be different, and the inspection result may not be accurate, and the top plate portion 11a of the cap 11 may be flawed due to contact with the lower surface of the housing 2. Because.
[0030]
The specific shape of the portion surrounded by the guide portion 5 on the lower surface of the housing 2 (case member 21) is such that the portion of the top plate portion 11 a of the cap 11 swelling upward due to the internal pressure of the can does not come into contact. The vertical plane (cylindrical plane) is not limited to the conical surface as shown in the present embodiment, but is a vertical plane (cylindrical plane) that transitions from the base of the guide part 5 slightly upward from a little inside. The concave shape may be such that
[0031]
The height difference between the peripheral portion of the projection 4a (tip surface 4b) on the lower surface of the housing 2 (case member 21) and the base of the guide portion 5 is determined by the internal pressure of the bottle type can 10 to be inspected. For example, after the fruit juice beverage is heated to a temperature of 85 to 95 ° C. and filled in the can, liquid nitrogen is added to the head space in the can and immediately after being sealed with the cap 11, the can pressure is inspected. In such a case, the internal pressure of the can is approximately 196 KPa (when the beverage temperature is 93 ° C.) for a good beverage can, and the top plate portion of the cap 11 is used for the aluminum alloy pill fur proof cap having a plate thickness of 0.23 mm. Since the central portion of 11a bulges up to about 0.36 mm at the maximum, in such a case, it is necessary to keep the above-mentioned height difference at about 0.36 to 0.42 mm.
[0032]
On the other hand, for canned fruit juice drinks filled and sealed as described above, cooling water is sprayed and cooled, the beverage temperature in the can is reduced to 30 to 40 ° C., and then the internal pressure of the can is inspected. In this case, in a good-quality beverage can, the can internal pressure is about 69 to about 186 KPa (when the beverage temperature is 30 ° C.), and the maximum swelling amount of the central portion of the top plate 11 a of the cap 11 is about 0.27 mm. Therefore, in such a case, it is necessary to make the above-mentioned height difference about 0.27 to 0.31 mm.
[0033]
Regarding the protrusion amount of the protrusion 4a of the pressing member 4 from the through hole of the housing 2 (the case member 21), the center of the top plate portion 11a of the cap 11 is the tip of the protrusion 4a at least in a can having an internal pressure of a good product range. It is necessary to protrude to the position pressed by the surface 4b, and the height difference between the periphery of the through hole on the lower surface of the housing 2 and the base of the guide portion 5 is about 0.27 to 0.31 mm. In this case, the height difference between the base of the guide portion 5 and the tip end surface 4b of the projection 4a of the pressing member 4 is larger than 0, but 0.24 mm or less (preferably 0.05 to 0.10 mm). Has become.
[0034]
By the way, in order to inspect the internal pressure of the bottle-shaped can 10, it is sufficient to carry out once at an appropriate place in the canned production line. For example, as described above, the beverage heated to a temperature of 85 to 95 ° C. , After adding liquid nitrogen and sealing with a cap, and then after cooling the can with cooling water to reduce the beverage temperature in the can to about 30 to 40 ° C. If the internal pressure inspection is performed twice, not only can the defective sealing be eliminated, but also the adjustment of the liquid nitrogen addition device and the adjustment of the capper can be immediately checked and adjusted properly. preferable.
[0035]
In addition, for canning to perform retort sterilization, after filling a beverage at a temperature of about 60 to 80 ° C. in a can, liquid nitrogen is added, immediately after sealing with a cap, and thereafter, retort heat sterilization is performed. Therefore, it is preferable to perform the can internal pressure test twice after cooling the beverage temperature in the can to about 30 to 40 ° C. for the above-described reason. Fill a can with carbon dioxide-containing beverage cooled to 10 ° C, immediately after sealing with a cap, and then apply hot water of about 50 to 60 ° C to the can to raise the beverage temperature in the can to about 30 to 40 ° C. Performing the can pressure test twice after heating can surely eliminate defective seals, and can immediately check for misalignment of the capper and adjust it properly. preferable.
[0036]
As mentioned above, although the embodiment of the internal pressure inspection method and device of the sealed container of the present invention has been described, the present invention is not limited to the specific embodiment as described above, for example, for the target container, It is not limited to bottle-type cans with a particularly small capacity and a relatively thick body, but even a bottle-type can with a general capacity and a thin body, a bottle with a thick heat-insulating material coated on the body. In the case of a can or a bottle-shaped can that has an uneven pattern on the body, and there is a risk of damaging or deforming the uneven pattern when the body is pressed, it can be effectively implemented. The present invention can be applied not only to bottle-type cans but also to containers other than metal cans such as glass bottles.
[0037]
Also, regarding the posture of the container when inspecting the internal pressure, it is preferable to perform the operation in an upright state of the container in an actual canned production line, but in some cases, it is not limited to the upright state. It is also possible to carry out the operation with the container lying down, in which case the pressing tool will be arranged on the side rather than above the container. Further, the operation state of the device is not limited to the case where the pressing tool is moved toward the container, and is also performed by moving the container toward the pressing tool or by moving both the container and the pressing tool. be able to. Furthermore, as for the specific structure of the details of the device, the housing and the guide portion of the pressing tool have already been described, but it goes without saying that the other parts can be appropriately designed and changed. .
[0038]
【The invention's effect】
According to the method for testing the internal pressure of a sealed container according to the present invention as described above, a sealed container having a cap with a top plate having a diameter of 38 mm or less is fitted with a positive internal pressure in a state where the content liquid is filled and sealed. The inner pressure of the container (positive pressure) is pressed by a pressing tool at the approximate center of the top plate of the cap, so that the appropriateness of the inner pressure of the container can be inspected with high accuracy. There is no flaw or trace left on the top plate due to pressing. Further, according to the internal pressure inspection apparatus for a sealed container of the present invention, the method of the present invention having such an effect can be effectively implemented with a simple structure.
[Brief description of the drawings]
FIG. 1 is a front view schematically showing an entire apparatus for inspecting the internal pressure of a bottle-type can according to an embodiment of an apparatus for carrying out the method of the present invention.
FIG. 2 is a longitudinal sectional view showing a specific structure of a pressing tool of the can internal pressure inspection device shown in FIG.
FIG. 3 is a graph showing a relationship between a reaction force value measured by the can internal pressure inspection method of the present invention and an actual can internal pressure.
[Explanation of symbols]
1 pressing tool
2 Housing
3 Load sensor
3a Pressure receiving part (of load sensor)
4 Pressing member
4a Projection (of pressing member)
4b Tip surface (of protrusion)
5 Guide part
10. Sealed container (bottle type can)
11 cap
11a Top plate (of cap)
11b Side wall (of cap)
12 mouth and neck
13 Shoulder
14 torso
15 Bottom

Claims (5)

弾性的に変位可能な金属板製の天板部を有するキャップの冠着によって密封された容器の内部が正内圧となっている密封容器について、天板部の直径が38mm以下であるキャップに対して、直径5〜15mmの先端面を備えた突起を有する押圧具を使用して、該突起の先端面により、29.4N〜98.1Nの範囲内の所定の力で、キャップの天板部の略中央部を押圧して弾性的に変位させ、この変位に基づく反力の測定値によって容器の内圧を検査するようにしたことを特徴とする密封容器の内圧検査方法。For a sealed container in which the inside of the container sealed by capping with a cap having a top plate made of an elastically displaceable metal plate has a positive internal pressure, for a cap having a top plate having a diameter of 38 mm or less. Then, using a pressing tool having a projection having a tip surface having a diameter of 5 to 15 mm, the top plate portion of the cap is applied with a predetermined force in the range of 29.4N to 98.1N by the tip surface of the projection. A method for testing the internal pressure of a sealed container, characterized in that a substantially central portion of the container is pressed and elastically displaced, and the internal pressure of the container is inspected by a measured value of a reaction force based on the displacement. 密封容器が、小径の口頸部と傾斜状の肩部と略円筒状の胴部と耐圧形状の底部とが一体成形された、胴部の直径が50mm以下のボトル型缶であり、キャップが、天板部内面の少なくとも周縁部にシール材を設けた金属製のピルファープルーフキャップであることを特徴とする請求項1に記載の密封容器の内圧検査方法。The sealed container is a bottle can having a diameter of 50 mm or less, in which a small-diameter mouth and neck, an inclined shoulder, a substantially cylindrical body, and a pressure-resistant bottom are integrally formed. 2. The method for testing the internal pressure of a sealed container according to claim 1, wherein the metal pill fur proof cap is provided with a sealing material at least on a peripheral portion of the inner surface of the top plate. 上記の請求項1に記載した内圧検査方法を、密封容器内の内容液の温度が20℃以上異なる条件で、一つの密封容器に対して2回実施するようにしたことを特徴とする請求項1又は2に記載の密封容器の内圧検査方法。The method according to claim 1, wherein the method is performed twice for one sealed container under the condition that the temperature of the liquid in the sealed container is different by 20 ° C. or more. 3. The method for inspecting internal pressure of a sealed container according to 1 or 2. 上記の請求項1乃至3の何れかに記載した方法を実施するための装置として、底部の側で支持された容器に対して、ハウジング内に荷重センサーと押圧部材を収納した押圧具が、容器の軸線方向で相対的に変移可能で、容器のキャップと接離可能なように配置されており、押圧具のハウジング内では、一方の面をハウジングの内面に当接させた荷重センサーが、その他方の面に形成された圧受部を押圧部材の一方の面に部分的に接触させ、また、押圧部材の他方の面に形成された突起が、ハウジングの壁部を貫通した状態で、その先端面をハウジング外に突出させていると共に、押圧部材の突起の先端面が突出するハウジングの外面には、該突起の先端面を略中央とするように、キャップの外径よりも大きな内径を有するガイド部が形成されていて、底部の側で支持された容器に対し、押圧具を相対的に変移させて両者を接近させることにより、容器のキャップの側壁部が押圧具のガイド部により案内された状態で、押圧具の押圧部材の突起の先端面が、キャップの天板部の略中央部を押圧するように構成されていることを特徴とする密封容器の内圧検査装置。A device for carrying out the method according to any one of claims 1 to 3, wherein a pressing tool containing a load sensor and a pressing member in a housing is provided for the container supported on the bottom side. Is relatively displaceable in the axial direction of the container, and is disposed so as to be able to contact and separate from the cap of the container. In the housing of the pressing tool, a load sensor having one surface abutting against the inner surface of the housing is provided by a load sensor. The pressure receiving portion formed on one side is partially brought into contact with one surface of the pressing member, and the protrusion formed on the other surface of the pressing member penetrates through the wall of the housing, and its tip is The outer surface of the housing has a larger inner diameter than the outer diameter of the cap so that the surface protrudes out of the housing and the front end surface of the projection of the pressing member projects substantially in the center. Guide part is formed The pressing tool is relatively displaced with respect to the container supported on the bottom side to bring them closer to each other, so that the side wall of the cap of the container is guided by the guide section of the pressing tool. Wherein the distal end surface of the projection of the pressing member presses a substantially central portion of the top plate of the cap. 押圧部材の突起の先端面が突出するハウジングの外面のガイド部によって囲まれた部分が、ガイド部の基部よりもハウジング内方に凹んだ凹面形状となっており、押圧部材の突起の直径5〜15mmの先端面が、平坦面、或いは、曲率半径が20mm以上の凸曲面に形成されていることを特徴とする請求項4に記載の密封容器の内圧検査装置。The portion surrounded by the guide portion on the outer surface of the housing from which the distal end surface of the protrusion of the pressing member protrudes has a concave shape recessed inward of the housing from the base of the guide portion, and the diameter of the protrusion of the pressing member is 5 to 5. The internal pressure inspection device for a sealed container according to claim 4, wherein the tip surface of 15 mm is formed as a flat surface or a convex curved surface having a radius of curvature of 20 mm or more.
JP2002343149A 2002-11-27 2002-11-27 Method and device for inspecting internal pressure of sealed container Withdrawn JP2004175395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343149A JP2004175395A (en) 2002-11-27 2002-11-27 Method and device for inspecting internal pressure of sealed container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343149A JP2004175395A (en) 2002-11-27 2002-11-27 Method and device for inspecting internal pressure of sealed container

Publications (1)

Publication Number Publication Date
JP2004175395A true JP2004175395A (en) 2004-06-24

Family

ID=32704994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343149A Withdrawn JP2004175395A (en) 2002-11-27 2002-11-27 Method and device for inspecting internal pressure of sealed container

Country Status (1)

Country Link
JP (1) JP2004175395A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039056A (en) * 2005-08-01 2007-02-15 Universal Seikan Kk Method for reducing opening torque of capped bottle can
DE102007042218A1 (en) * 2007-09-05 2009-03-12 Robert Bosch Gmbh Method and device for sterile or aseptic handling of containers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039056A (en) * 2005-08-01 2007-02-15 Universal Seikan Kk Method for reducing opening torque of capped bottle can
DE102007042218A1 (en) * 2007-09-05 2009-03-12 Robert Bosch Gmbh Method and device for sterile or aseptic handling of containers

Similar Documents

Publication Publication Date Title
JP4924745B2 (en) Sealed container sealing inspection method and inspection apparatus
JP5085411B2 (en) Retort compatible small capacity screw can
JP2004175395A (en) Method and device for inspecting internal pressure of sealed container
JP5673513B2 (en) Sealed container sealing inspection method and inspection apparatus
JPH11193016A (en) Low positive pressure canned goods and can body thereof having internal pressure inspection bearability
JPH01316626A (en) Method for inspecting sealing performance of plastic container
GB2317882A (en) A container for a pressurised food or drink product
JPS6312582B2 (en)
JP7155423B2 (en) leak detection
JPS6273135A (en) Method and apparatus for inspecting airtightness of mouth tube of synthetic resin bottle container
JPH0772033A (en) Method and apparatus for leakage test for container
JP5034076B2 (en) Method and apparatus for inspecting bottom of synthetic resin bottle
US7325440B2 (en) Hole inspection system for a pierced container
JP2895411B2 (en) Apparatus for measuring electric resistance of coating on coated metal sheet
TWI571426B (en) Method and apparatus for manufacturing carbonated beverage for preventing burst deformation of process vessel
CN117399299A (en) Method for detecting tightness of beverage bottle and detection and rejection method
RU2777612C1 (en) Leak detection
JPS6135059B2 (en)
US20080041853A1 (en) Method for testing can ends
JP2978702B2 (en) Method for testing the content of fluid containing small specific gravity in sealed flexible packaging
EP1052493A2 (en) Container seal inspection method
JPH02290526A (en) Inspecting method for inside pressure of hermetically sealed container prevented from permanent deformation
JP3593874B2 (en) Quick inspection method for sealing of packaged food
WO2021122244A1 (en) Method and device for inspecting welding strength of packaging container cap
CN105460401B (en) Wine storage method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207