JP2004175269A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2004175269A
JP2004175269A JP2002345369A JP2002345369A JP2004175269A JP 2004175269 A JP2004175269 A JP 2004175269A JP 2002345369 A JP2002345369 A JP 2002345369A JP 2002345369 A JP2002345369 A JP 2002345369A JP 2004175269 A JP2004175269 A JP 2004175269A
Authority
JP
Japan
Prior art keywords
air
heat
heat exchanger
temperature
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002345369A
Other languages
Japanese (ja)
Other versions
JP4082192B2 (en
Inventor
Koji Nonoyama
浩司 野々山
Koji Ito
伊藤  功治
Hirohide Shindo
進藤  寛英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002345369A priority Critical patent/JP4082192B2/en
Publication of JP2004175269A publication Critical patent/JP2004175269A/en
Application granted granted Critical
Publication of JP4082192B2 publication Critical patent/JP4082192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize an air conditioner. <P>SOLUTION: In the case of the maximum cooling operation, two heat exchangers 3, 4 are used as cooling heat exchangers for cooling both of the heat exchangers 3, 4 by air by supplying cold water to them. In the case of a temperature control mode, the first heat exchanger 3 only is used as the cooling heat exchanger. Thus, the maximum cooling ability is achieved by means of the two heat exchangers. Therefore, the heat exchanger can be miniaturized compared with the case that the maximum cooling ability is achieved by only one heat exchanger, and the air conditioner can be miniaturized. In addition, in the case of the temperature control mode, the cooling ability which can make dehumidification possible is enough, therefore, a lack of cooling ability hardly occurs in the case of the temperature control mode. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、空調装置に関するもので、車両用空調装置に適用して有効である。
【0002】
【従来の技術及び発明が解決しようとする課題】
通常、車両用空調装置は、室内に吹き出す空気を冷却する冷却専用の熱交換器、及び室内に吹き出す空気を加熱する加熱専用の熱交換器を有し、冷却専用熱交換器を加熱専用熱交換器より空気流れ上流側に配置して、冷却専用熱交換器を通過して加熱専用熱交換器を迂回して流れる冷風と冷却専用熱交換器及び加熱専用熱交換器を通過する温風との風量割合を調節することにより車室内に吹き出す空気の温度を制御するエアミックス方式が採用されている。
【0003】
なお、他の温度制御方式としては、冷却専用熱交換器を通過した空気の全量を加熱専用熱交換器を通過させるとともに、加熱専用熱交換器の加熱能力を調節することにより車室内に吹き出す空気の温度を制御するリヒート方式がある。
【0004】
ところで、冷却専用熱交換器の能力は、急速冷房運転(クールダウン運転)時において必要とされる冷房能力によって決定される。ここで、急速冷房運転とは、夏の炎天下に長時間放置されて40℃〜50℃以上となった車室内空気を約25℃程度まで短時間に低下させる運転であるので、冷却専用熱交換器は、非常に大きな能力を必要とする。
【0005】
このため、冷却専用熱交換器が大型になってしまい、車両用空調装置の小型化を図る上で大きな障害となっていた。
【0006】
本発明は、上記点に鑑み、第1には、従来と異なる新規な空調装置を提供し、第2には、空調装置の小型化を図ることを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、室内に吹き出す空気が流れる空調ケーシング(1)と、空調ケーシング(1)内に収納され、室内に吹き出す空気と熱媒体とを熱交換する、少なくとも2台の熱交換器(3、4)と、2台の熱交換器(3、4)に空調ケーシング(1)内に導入された導入空気の温度より低い温度の熱媒体又は導入空気より高い温度の熱媒体を供給するフルモードと、2台の熱交換器(3、4)のうちいずれか一方の熱交換器に導入空気より高い温度の熱媒体を供給し、他方の熱交換器に導入空気より低い温度の熱媒体を供給する温度コントロールモードとを切り替える切り替え制御手段とを備えることを特徴とする。
【0008】
これにより、例えば最大冷房運転時には、2つの熱交換器(3、4)を共に空気冷却する冷却用熱交換器として機能させ、温度コントロールモード時には例えば第1熱交換器(3)のみを冷却用熱交換器として機能させることが可能となる。
【0009】
したがって、例えば最大冷房能力を2つの熱交換器で発揮することとなるので、1つの熱交換器にて最大冷房能力を発揮させる場合に比べて熱交換器を小型にすることができ、空調装置の小型化を図ることができる。
【0010】
請求項2に記載の発明では、2台の熱交換器(3、4)に供給される熱媒体は、同一種類の流体であることを特徴とするものである。
【0011】
請求項3に記載の発明では、2台の熱交換器(3、4)に供給される熱媒体は、水であることを特徴とするものである。
【0012】
請求項4に記載の発明では、導入空気より低い温度の熱媒体は、吸着剤が気相冷媒を吸着する作用を利用して冷媒を蒸発させ、その蒸発潜熱により冷凍能力を発揮する吸着式冷凍機により生成されることを特徴とするものである。
【0013】
請求項5に記載の発明では、請求項1ないし3のいずれか1つに記載の空調装置にて構成された車両用空調装置であって、導入空気より高い温度の熱媒体は、車両で発生する廃熱により生成されることを特徴とする。
【0014】
これにより、請求項1に述べたように、空調装置の小型化を図ることができる。
【0015】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0016】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る空調装置を車両用空調装置に適用したものであって、図1、2は本実施形態に係る空調装置(空調ユニット)の模式図である。
【0017】
図1中、空調ケーシング1は室内に吹き出される空気が流れるダクト手段であり、空気流れ最上流側には、室内又は室外から空気を吸引して室内に空気を送風する遠心式の送風機2が設けられている。
【0018】
なお、本実施形態では、空調ケーシング1(空調ユニット)は、車両床下又はシート下に搭載されている。
【0019】
また、空調ケーシング1の空気流れ最下流側は、乗員の上半身側に向けて空気を吹き出すフェイス吹出口、乗員の下半身側に向けて空気を吹き出すフット吹出口、及び窓ガラスに向けて空気を吹き出すデフロスタ吹出口等に連通しているとともに、吹出モード、つまり空気を吹き出させる吹出口を切り替える吹出モード切換装置が設けられている。
【0020】
また、空調ケーシング1内のうち、送風機2より空気流れ下流側であって、吹出モード切換装置より上流側には、室内に吹き出す空気と熱媒体とを熱交換する第1、2熱交換器3、4が収納されており、空気流れ上流側に収納された第1熱交換器3は、室内に吹き出す空気を冷却する冷却専用の熱交換器であり、空気流れ下流側に収納された第2熱交換器4は、室内に吹き出す空気を冷却又は加熱する熱交換器である。
【0021】
そして、室内に吹き出す空気を冷却するときには、吸着式冷凍機により生成(冷却)された熱媒体を第2熱交換器4及び第1熱交換器3に供給する。なお、吸着式冷凍機とは、吸着剤が気相冷媒を吸着する作用を利用して冷媒を蒸発させ、その蒸発潜熱により冷凍能力を発揮するもので、詳細は後述する。
【0022】
ここで、熱媒体は水(エチレングリコール等の不凍液が混合されたものも含む。)であり、走行用駆動源をなすエンジン(内燃機関)を冷却するエンジン冷却水と同じ流体である。そして、第2熱交換器4にて室内に吹き出す空気を加熱する場合には、エンジン冷却水、つまりエンジンにて過熱された熱媒体を第2熱交換器4に供給する。
【0023】
エアミックスドア5は、第1熱交換器3を通過した空気のうち第2熱交換器4を通過する空気量を調節する風量割合調節手段であり、冷風バイパスドア6は、第1熱交換器3を迂回させて第2熱交換器4側に空気を流す冷風バイパス通路6aを開閉するドア手段である。
【0024】
次に、吸着式冷凍機10について図3を用いて述べる。
【0025】
吸着剤は、吸着剤の関係湿度、つまり吸着剤表面の相対湿度に応じた量の冷媒(本実施形態では、水)を吸着するものである。このため、吸着剤を加熱すると関係湿度が低下するため吸着していた冷媒を脱離放出し、冷却する関係湿度が上昇するため雰囲気中の冷媒を吸着する。
【0026】
なお、吸着剤が冷媒(水蒸気)を吸着する際には、凝縮熱相当の吸着熱が発生するので、吸着剤の吸着能力を維持するには、吸着剤を冷却しながら冷媒を吸着させる必要がある。
【0027】
因みに、本実施形態では、吸着剤としてシリカゲルを用いていたが、活性アルミナ、活性炭、ゼオライト、モレキュラーシービングカーボン等を用いてもよいことは言うまでもない。
【0028】
室外熱交換器11は吸着器12内を循環した熱媒体と室外空気とを熱交換する熱交換器であり、吸着していた冷媒を脱離放出させる際には、エンジン等の車両で発生した熱(本実施形態では、エンジン冷却水)を吸着器12内に循環させる。なお、切換弁V1〜V4は熱媒体の循環経路を切り換えるである。
【0029】
また、吸着器12は、内部が略真空に保たれた状態で冷媒(本実施形態では、水)が封入されたステンレス(本実施形態では、SUS304)製のケーシング12a、熱媒体とケーシング12a内の冷媒との間で熱交換を行う蒸発/凝縮コアをなす第1熱交換器12b、及び吸着剤を冷却又は加熱する吸着コアをなす第2熱交換器12cから等から構成されている。
【0030】
なお、吸着式冷凍機で生成された温度の低い(例えば、約5℃)熱媒体を第2熱交換器4に供給する場合と、エンジンにて加熱された温度の高い(例えば、90℃)熱媒体を第2熱交換器4に供給する場合とは切替弁V5にて切り替える。
【0031】
次に、吸着式冷凍機10の概略作動を述べる。なお、以下の説明を容易にするため、第1熱交換器3と第2熱交換器4とを合わせて室内熱交換器3、4と表記する。
【0032】
先ず、切換弁V1〜V4を図3の実線に示すように作動させて、第1吸着器12の第1熱交換器12bと室内熱交換器3、4との間、第1吸着器12の第2熱交換器12cと室外熱交換器11との間、並びに第2吸着器12の第1熱交換器と室外熱交換器11との間、第2吸着器12の第2熱交換器12cとエンジンとの間に熱媒体を循環させる。
【0033】
これにより、第1吸着器12が吸着工程となり、第2吸着器12が脱離工程となるので、第1吸着器12で発生した冷凍能力により室内に吹き出す空気が冷却され、第2吸着器12にて吸着剤の再生が行われる。
【0034】
つまり、この状態(以下、第1状態と呼ぶ。)では、第1吸着器12の第1熱交換器12bは液相冷媒を蒸発させて冷凍能力を発生させる蒸発器として機能し、第1吸着器12の第2熱交換器12cは吸着剤を冷却する冷却器として機能し、第2吸着器12の第1熱交換器12bは吸着剤から脱離した水蒸気を冷却する凝縮器として機能し、第2吸着器12の第2熱交換器12cは吸着剤を加熱する加熱器として機能する。
【0035】
そして、第1状態で所定時間(本実施形態では、60秒〜100秒)が経過したときに、切換弁V1〜V4を図3の破線に示すように作動させて、第2吸着器12の第1熱交換器12bと室内熱交換器3、4との間、第2吸着器12の第2熱交換器12cと室外熱交換器11との間、並びに第1吸着器12の第1熱交換器と室外熱交換器11との間、第1吸着器12の第2熱交換器12cとエンジンとの間に熱媒体を循環させる。
【0036】
これにより、第2吸着器12が吸着工程となり、第1吸着器12が脱離工程となるので、第2吸着器12で発生した冷凍能力により室内に吹き出す空気が冷却され、第1吸着器12にて吸着剤の再生が行われる。
【0037】
つまり、この状態(以下、第2状態と呼ぶ。)では、第2吸着器12の第1熱交換器12bは液相冷媒を蒸発させて冷凍能力を発生させる蒸発器として機能し、第2吸着器12の第2熱交換器12cは吸着剤を冷却する冷却器として機能し、第1吸着器12の第1熱交換器12bは吸着剤から脱離した水蒸気を冷却する凝縮器として機能し、第1吸着器12の第2熱交換器12cは吸着剤を加熱する加熱器として機能する。
【0038】
そして、第2状態で所定時間が経過したとき、切換弁V1〜V4作動させて再び第1状態とする。このように、第1状態及び第2状態を所定時間毎に交互に繰り返して、空調装置を連続的に稼働させる。
【0039】
なお、所定時間は、ケーシング12a内に存在する液相冷媒の残量や吸着剤の吸着能力等に基づいて適宜選定されるものである。
【0040】
次に、本実施形態に係る空調装置の特徴的作動を述べる。
【0041】
1.最大冷房運転(フルモード)
目標吹出温度TAOが所定値より小さくなったとき、又は乗員が手動操作にて最大冷房運転を選択したときには、第1、2熱交換器3、4に吸着式冷凍機で生成された温度の低い熱媒体を供給するとともに、図4に示すように、冷風バイパスドア6を開いて第2熱交換器4に第1熱交換器3を通過していない空気を供給し、第1、2熱交換器3、4の両者で室内に吹き出す空気を冷却する。
【0042】
なお、本実施形態では、エアミックスドア5は、第1熱交換器3を通過した空気が第2熱交換器4を通過しないような開度位置となっているが、本実施形態では、第1、2熱交換器3、4に供給される熱媒体の温度は略同一であるので、第1熱交換器3を通過した空気が第2熱交換器4を通過するような開度位置としてもよい。
【0043】
因みに、目標吹出温度TAOとは、乗員が設定した希望室内温度や室内温度などに基づいて決定される制御パラメータを成すもので、目標吹出温度TAOが小さくなるほど大きな冷房能力が必要であるとみなされ、逆に目標吹出温度TAOが大きくなるほど大きな暖房能力が必要であるとみなされる。
【0044】
そして、本実形態では、目標吹出温度TAOに基づいて最大冷房運転(クールダウン)や温度コントロール運転等の運転モード、エアミックスドア5の開度及び吹出モード等が自動制御される。
【0045】
2.温度コントロールモード
目標吹出温度TAOが所定値より大きくなったとき、又は乗員が手動操作にて希望する室内温度を上昇させたときには、図5に示すように、第1熱交換器3に吸着式冷凍機で生成された温度の低い熱媒体を供給し、第2熱交換器4にはエンジンにて昇温された熱媒体を供給するとともに、冷風バイパスドア6を閉じた状態でエアミックスドア5開度、つまり第1熱交換器3を通過して第2熱交換器4を流れる風量を調節して、実際に車室内吹き出す空気の温度が目標吹出温度TAOに近づくようにする。
【0046】
次に、本実施形態の作用効果を述べる。
【0047】
前述のごとく、本実施形態では、最大冷房運転時には、2つの熱交換器3、4が共に空気冷却する冷却用熱交換器として機能し、温度コントロールモード時には第1熱交換器3のみが冷却用熱交換器として機能する。
【0048】
したがって、最大冷房能力を2つの熱交換器で発揮することとなるので、1つの熱交換器にて最大冷房能力を発揮させる場合に比べて熱交換器を小型にすることができ、空調装置の小型化を図ることができる。
【0049】
なお、温度コントロールモード時においては、除湿できる程度の冷却能力があればよいので、温度コントロールモード時において冷房能力が不足することは殆ど発生しない。
【0050】
また、第2熱交換器4に供給される熱媒体は、冷却時及び加熱時を問わず、同一の熱媒体が供給されるので、吸着式冷凍機で生成された温度の低い(例えば、約5℃)熱媒体を第2熱交換器4に供給する場合と、エンジンにて加熱された温度の高い(例えば、90℃)熱媒体を第2熱交換器4に供給する場合とを容易に切り替えることができ、空調装置構造の簡素化及び製造原価低減を図ることができる。
【0051】
(第2実施形態)
第1実施形態は、本発明をエアミックス方式に適用したものであったが、本実施形態は、図6に示すように、リヒート方式に本発明を適用したものであある。
【0052】
なお、本実施形態では、温度コントロールモード時においては、流量調整弁にて第2熱交換器4に供給する温水量を調節している。また、両熱交換器3、4の外形寸法のうち空気の流通方向における寸法を第1実施形態より小さくして超薄型とすることにより空調装置の小型化を更に進めている。
【0053】
(その他の実施形態)
上述の実施形態では、冷房用の冷水を吸着式冷凍機により生成したが、本発明はこれに限定されるものではなく、例えば蒸気圧縮式冷凍機にて生成してもよい。
【0054】
また、蒸気圧縮式冷凍機にて冷房能力を生成する際には、第1、2熱交換器3、4に直接、フロン等の冷媒を循環させてもよい。なお、この場合、温度コントロールモード時においては、蒸気圧縮式冷凍機の高圧冷媒を第2熱交換器4に供給して空気を加熱することが望ましい。
【0055】
また、上述の実施形態では、車両で発生する廃熱として、エンジン冷却水を用いたが、本発明はこれに限定されるものではなく、例えば燃料電池自動車等電気自動車では、燃料電池又は電動モータから発生する廃熱により室内に吹き出す空気を加熱する、又は吸着式冷凍機を稼動させる等してもよい。
【0056】
また、最大暖房運転(フルモード)時には、両熱交換器3、4に温水を供給してもよい。
【0057】
また、上述の実施形態では、空調ケーシング1を床下等に搭載したが、本発明はこれに限定されるものではなく、トランクルームや計器盤下方側等に搭載してもよいことは言うまでもない。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る空調装置(空調ユニット)の模式図である。
【図2】本発明の第1実施形態に係る空調装置(空調ユニット)の模式図である。
【図3】本発明の第1実施形態に係る吸着式冷凍機の模式図である。
【図4】本発明の第1実施形態に係る空調装置の作動説明図である。
【図5】本発明の第1実施形態に係る空調装置の作動説明図である。
【図6】本発明の第2実施形態に係る空調装置(空調ユニット)の模式図である。
【符号の説明】
1…空調ケーシング、2…送風機、3…第1熱交換器、4…第2熱交換器、
5…エアミックスドア、6…冷風バイパスドア。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner, and is effective when applied to a vehicle air conditioner.
[0002]
Problems to be solved by the prior art and the invention
Usually, an air conditioner for a vehicle has a heat exchanger exclusively for cooling for cooling air blown into a room and a heat exchanger exclusively for heating to heat air blown into a room. Between the cool air that passes through the cooling heat exchanger and bypasses the heating heat exchanger and the hot air that passes through the cooling heat exchanger and the heating heat exchanger. An air mix method is employed in which the temperature of air blown into a vehicle compartment is controlled by adjusting the air volume ratio.
[0003]
As another temperature control method, the entire amount of air that has passed through the cooling heat exchanger is passed through the heating heat exchanger, and the air that is blown into the vehicle interior by adjusting the heating capacity of the heating heat exchanger. There is a reheat method for controlling the temperature of the reheat.
[0004]
By the way, the capacity of the cooling only heat exchanger is determined by the cooling capacity required during the rapid cooling operation (cool down operation). Here, the rapid cooling operation is an operation in which the vehicle interior air that has been left under the summer sunshine for a long time and has reached 40 ° C. to 50 ° C. or more has been reduced to about 25 ° C. in a short time, so that cooling-only heat exchange is performed. Vessels require very large capacities.
[0005]
For this reason, the heat exchanger exclusively used for cooling becomes large, which has been a major obstacle in reducing the size of the vehicle air conditioner.
[0006]
In view of the above points, the present invention firstly aims at providing a new air conditioner different from the conventional one, and secondly, aims at miniaturization of the air conditioner.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, an air-conditioning casing (1) through which air blown into a room flows, and air and heat stored in the air-conditioning casing (1) and blown into a room. At least two heat exchangers (3, 4) for exchanging heat with the medium, and a temperature lower than the temperature of the introduced air introduced into the air conditioning casing (1) to the two heat exchangers (3, 4). Full mode for supplying a heat medium at a higher temperature than the inlet air or a heat medium at a temperature higher than the inlet air to one of the two heat exchangers (3, 4) And a switching control unit for switching between a temperature control mode for supplying a heat medium having a lower temperature than the introduced air to the other heat exchanger.
[0008]
Thus, for example, during the maximum cooling operation, the two heat exchangers (3, 4) are made to function as cooling heat exchangers for air cooling. In the temperature control mode, for example, only the first heat exchanger (3) is used for cooling. It becomes possible to function as a heat exchanger.
[0009]
Therefore, for example, since the maximum cooling capacity is exhibited by the two heat exchangers, the size of the heat exchanger can be reduced as compared with the case where the maximum cooling capacity is exhibited by one heat exchanger, and the air conditioner Can be reduced in size.
[0010]
The invention according to claim 2 is characterized in that the heat medium supplied to the two heat exchangers (3, 4) is the same type of fluid.
[0011]
According to a third aspect of the present invention, the heat medium supplied to the two heat exchangers (3, 4) is water.
[0012]
According to the fourth aspect of the present invention, the heat medium having a temperature lower than that of the introduced air evaporates the refrigerant by utilizing the effect of the adsorbent adsorbing the gas-phase refrigerant, and exhibits a refrigerating ability by the latent heat of evaporation. Machine.
[0013]
According to a fifth aspect of the present invention, there is provided a vehicle air conditioner including the air conditioner according to any one of the first to third aspects, wherein the heat medium having a higher temperature than the introduced air is generated in the vehicle. It is characterized by being generated by waste heat.
[0014]
Thereby, as described in claim 1, the size of the air conditioner can be reduced.
[0015]
Incidentally, reference numerals in parentheses of the above-mentioned units are examples showing the correspondence with specific units described in the embodiments described later.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
In the present embodiment, the air conditioner according to the present invention is applied to a vehicle air conditioner, and FIGS. 1 and 2 are schematic diagrams of the air conditioner (air conditioner unit) according to the present embodiment.
[0017]
In FIG. 1, an air-conditioning casing 1 is a duct means through which air blown into a room flows, and a centrifugal blower 2 for sucking air from a room or outside and blowing air into the room is provided at the most upstream side of the air flow. Is provided.
[0018]
In this embodiment, the air-conditioning casing 1 (air-conditioning unit) is mounted under the vehicle floor or under the seat.
[0019]
In addition, the most downstream side of the airflow of the air-conditioning casing 1 is a face outlet that blows air toward the upper body of the occupant, a foot outlet that blows air toward the lower body of the occupant, and blows air toward the window glass. A blow mode switching device is provided which communicates with a defroster blow port and the like, and switches a blow mode, that is, a blow port for blowing air.
[0020]
In the air-conditioning casing 1, a first and second heat exchangers 3 that exchange heat between the air blown into the room and the heat medium are provided on the downstream side of the air flow from the blower 2 and on the upstream side of the blowout mode switching device. , 4 are housed, and the first heat exchanger 3 housed on the upstream side of the air flow is a heat exchanger dedicated to cooling the air blown into the room, and the second heat exchanger 3 housed on the downstream side of the air flow. The heat exchanger 4 is a heat exchanger that cools or heats air blown into a room.
[0021]
When cooling the air blown into the room, the heat medium generated (cooled) by the adsorption refrigerator is supplied to the second heat exchanger 4 and the first heat exchanger 3. Note that the adsorption refrigerator is a device that evaporates a refrigerant by using an adsorbent to adsorb a gas-phase refrigerant and exerts a refrigerating ability by latent heat of evaporation, and will be described in detail later.
[0022]
Here, the heat medium is water (including one in which an antifreeze such as ethylene glycol is mixed), and is the same fluid as engine cooling water that cools an engine (internal combustion engine) serving as a driving source for traveling. When the air blown into the room is heated by the second heat exchanger 4, the engine cooling water, that is, the heat medium overheated by the engine is supplied to the second heat exchanger 4.
[0023]
The air mix door 5 is an air volume ratio adjusting unit that adjusts the amount of air that passes through the second heat exchanger 4 among the air that has passed through the first heat exchanger 3, and the cool air bypass door 6 is provided with a first heat exchanger Door means for opening / closing a cold air bypass passage 6a which bypasses 3 to flow air to the second heat exchanger 4 side.
[0024]
Next, the adsorption refrigerator 10 will be described with reference to FIG.
[0025]
The adsorbent adsorbs refrigerant (water in the present embodiment) in an amount corresponding to the relative humidity of the adsorbent, that is, the relative humidity of the adsorbent surface. For this reason, when the adsorbent is heated, the relative humidity decreases, so that the adsorbed refrigerant is desorbed and released, and the relative humidity for cooling increases, so that the refrigerant in the atmosphere is adsorbed.
[0026]
When the adsorbent adsorbs the refrigerant (water vapor), heat of adsorption corresponding to the heat of condensation is generated. Therefore, in order to maintain the adsorbent's adsorption ability, it is necessary to adsorb the refrigerant while cooling the adsorbent. is there.
[0027]
Incidentally, in this embodiment, silica gel is used as the adsorbent, but it goes without saying that activated alumina, activated carbon, zeolite, molecular sieving carbon, or the like may be used.
[0028]
The outdoor heat exchanger 11 is a heat exchanger that exchanges heat between the heat medium circulating in the adsorber 12 and the outdoor air, and is generated in a vehicle such as an engine when the adsorbed refrigerant is desorbed and released. Heat (in the present embodiment, engine cooling water) is circulated in the adsorber 12. The switching valves V1 to V4 switch the circulation path of the heat medium.
[0029]
In addition, the adsorber 12 has a casing 12a made of stainless steel (SUS304 in this embodiment) in which a refrigerant (water in this embodiment) is sealed while the inside is kept substantially in a vacuum, and a heat medium and the casing 12a. And a second heat exchanger 12c serving as an adsorption core that cools or heats the adsorbent, and the like.
[0030]
A low-temperature (for example, about 5 ° C.) heat medium generated by the adsorption refrigerator is supplied to the second heat exchanger 4, and a high-temperature (for example, 90 ° C.) heated by the engine is used. Switching with the case where the heat medium is supplied to the second heat exchanger 4 is performed by the switching valve V5.
[0031]
Next, the general operation of the adsorption refrigerator 10 will be described. In addition, in order to facilitate the following description, the first heat exchanger 3 and the second heat exchanger 4 are collectively referred to as indoor heat exchangers 3 and 4.
[0032]
First, the switching valves V1 to V4 are operated as shown by the solid lines in FIG. 3, and between the first heat exchanger 12 b of the first adsorber 12 and the indoor heat exchangers 3 and 4, Between the second heat exchanger 12c and the outdoor heat exchanger 11, between the first heat exchanger of the second adsorber 12 and the outdoor heat exchanger 11, the second heat exchanger 12c of the second adsorber 12 Circulate the heat medium between the engine and the engine.
[0033]
As a result, the first adsorber 12 is in the adsorption step and the second adsorber 12 is in the desorption step, so that the air discharged into the room is cooled by the refrigerating capacity generated in the first adsorber 12, and the second adsorber 12 is cooled. The regeneration of the adsorbent is performed.
[0034]
That is, in this state (hereinafter, referred to as a first state), the first heat exchanger 12b of the first adsorber 12 functions as an evaporator that evaporates the liquid-phase refrigerant to generate a refrigerating capacity, and performs the first adsorption. The second heat exchanger 12c of the heat exchanger 12 functions as a cooler for cooling the adsorbent, the first heat exchanger 12b of the second adsorber 12 functions as a condenser for cooling water vapor desorbed from the adsorbent, The second heat exchanger 12c of the second adsorber 12 functions as a heater for heating the adsorbent.
[0035]
When a predetermined time (60 seconds to 100 seconds in the present embodiment) elapses in the first state, the switching valves V1 to V4 are operated as shown by the broken lines in FIG. Between the first heat exchanger 12b and the indoor heat exchangers 3 and 4, between the second heat exchanger 12c of the second adsorber 12 and the outdoor heat exchanger 11, and the first heat of the first adsorber 12 The heat medium is circulated between the exchanger and the outdoor heat exchanger 11, and between the second heat exchanger 12c of the first adsorber 12 and the engine.
[0036]
As a result, the second adsorber 12 is in the adsorption step, and the first adsorber 12 is in the desorption step, so that the air blown into the room is cooled by the refrigerating capacity generated in the second adsorber 12, and the first adsorber 12 is cooled. The regeneration of the adsorbent is performed.
[0037]
That is, in this state (hereinafter, referred to as a second state), the first heat exchanger 12b of the second adsorber 12 functions as an evaporator that evaporates the liquid-phase refrigerant to generate a refrigerating ability, and The second heat exchanger 12c of the heat exchanger 12 functions as a cooler for cooling the adsorbent, the first heat exchanger 12b of the first adsorber 12 functions as a condenser for cooling water vapor desorbed from the adsorbent, The second heat exchanger 12c of the first adsorber 12 functions as a heater for heating the adsorbent.
[0038]
Then, when a predetermined time has elapsed in the second state, the switching valves V1 to V4 are operated to return to the first state. Thus, the first state and the second state are alternately repeated at predetermined time intervals, and the air conditioner is continuously operated.
[0039]
The predetermined time is appropriately selected based on the remaining amount of the liquid refrigerant present in the casing 12a, the adsorbing capacity of the adsorbent, and the like.
[0040]
Next, the characteristic operation of the air conditioner according to the present embodiment will be described.
[0041]
1. Maximum cooling operation (full mode)
When the target outlet temperature TAO becomes lower than a predetermined value, or when the occupant manually selects the maximum cooling operation, the first and second heat exchangers 3 and 4 have a low temperature generated by the adsorption refrigerator. In addition to supplying the heat medium, as shown in FIG. 4, the cool air bypass door 6 is opened to supply the second heat exchanger 4 with air that has not passed through the first heat exchanger 3, and the first and second heat exchanges are performed. The air blown into the room is cooled by both the units 3 and 4.
[0042]
In the present embodiment, the air mixing door 5 is at the opening position such that the air that has passed through the first heat exchanger 3 does not pass through the second heat exchanger 4. Since the temperatures of the heat medium supplied to the first and second heat exchangers 3 and 4 are substantially the same, the opening position is set so that the air that has passed through the first heat exchanger 3 passes through the second heat exchanger 4. Is also good.
[0043]
Incidentally, the target outlet temperature TAO constitutes a control parameter determined based on a desired indoor temperature, an indoor temperature, and the like set by an occupant, and it is considered that a larger cooling capacity is required as the target outlet temperature TAO decreases. Conversely, it is considered that a larger heating capacity is required as the target outlet temperature TAO increases.
[0044]
Then, in the present embodiment, operation modes such as a maximum cooling operation (cool down) and a temperature control operation, an opening degree of the air mix door 5 and a blowing mode are automatically controlled based on the target blowing temperature TAO.
[0045]
2. Temperature control mode When the target outlet temperature TAO exceeds a predetermined value, or when the occupant manually raises the desired indoor temperature, as shown in FIG. A low-temperature heat medium generated by the heat exchanger is supplied, a heat medium heated by the engine is supplied to the second heat exchanger 4, and the air mix door 5 is opened with the cold air bypass door 6 closed. Degree, that is, the amount of air flowing through the second heat exchanger 4 after passing through the first heat exchanger 3 is adjusted so that the temperature of the air actually blown out in the vehicle compartment approaches the target blowout temperature TAO.
[0046]
Next, the operation and effect of the present embodiment will be described.
[0047]
As described above, in the present embodiment, during the maximum cooling operation, both of the two heat exchangers 3 and 4 function as cooling heat exchangers for air cooling, and only the first heat exchanger 3 during the temperature control mode. Functions as a heat exchanger.
[0048]
Therefore, since the maximum cooling capacity is exhibited by the two heat exchangers, the heat exchanger can be downsized compared to the case where the maximum cooling capacity is exhibited by one heat exchanger, and the air conditioner can be used. The size can be reduced.
[0049]
In the temperature control mode, it is sufficient that the cooling capacity is sufficient to be able to dehumidify, so that the cooling capacity is scarcely insufficient in the temperature control mode.
[0050]
Further, the same heat medium is supplied to the heat medium supplied to the second heat exchanger 4 irrespective of the time of cooling and the time of heating, so that the temperature generated by the adsorption refrigerator is low (for example, about The case where the heat medium is supplied to the second heat exchanger 4 and the case where the heat medium having a high temperature (for example, 90 ° C.) heated by the engine is supplied to the second heat exchanger 4 are easily performed. Switching can be performed, so that the structure of the air conditioner can be simplified and the manufacturing cost can be reduced.
[0051]
(2nd Embodiment)
In the first embodiment, the present invention is applied to an air mix method, but in the present embodiment, as shown in FIG. 6, the present invention is applied to a reheat method.
[0052]
In the present embodiment, in the temperature control mode, the amount of hot water supplied to the second heat exchanger 4 is adjusted by the flow control valve. In addition, the size of the air conditioner is further reduced by making the outer dimensions of the heat exchangers 3 and 4 in the direction of air flow smaller than that of the first embodiment to make them ultra-thin.
[0053]
(Other embodiments)
In the above embodiment, the cooling water for cooling is generated by the adsorption refrigerator, but the present invention is not limited to this. For example, the cooling water may be generated by a vapor compression refrigerator.
[0054]
When the cooling capacity is generated by the vapor compression refrigerator, a refrigerant such as Freon may be circulated directly to the first and second heat exchangers 3 and 4. In this case, in the temperature control mode, it is desirable to supply the high-pressure refrigerant of the vapor compression refrigerator to the second heat exchanger 4 to heat the air.
[0055]
In the above-described embodiment, the engine cooling water is used as the waste heat generated in the vehicle. However, the present invention is not limited to this. For example, in an electric vehicle such as a fuel cell vehicle, a fuel cell or an electric motor is used. The air blown into the room may be heated by the waste heat generated from the air, or the adsorption refrigerator may be operated.
[0056]
During the maximum heating operation (full mode), hot water may be supplied to both heat exchangers 3 and 4.
[0057]
Further, in the above-described embodiment, the air-conditioning casing 1 is mounted under the floor or the like. However, the present invention is not limited to this, and it goes without saying that the air-conditioning casing 1 may be mounted in a trunk room or below the instrument panel.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an air conditioner (air conditioning unit) according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram of an air conditioner (air conditioning unit) according to the first embodiment of the present invention.
FIG. 3 is a schematic diagram of the adsorption refrigerator according to the first embodiment of the present invention.
FIG. 4 is an operation explanatory view of the air conditioner according to the first embodiment of the present invention.
FIG. 5 is an operation explanatory view of the air conditioner according to the first embodiment of the present invention.
FIG. 6 is a schematic diagram of an air conditioner (air conditioning unit) according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Air-conditioning casing, 2 ... Blower, 3 ... 1st heat exchanger, 4 ... 2nd heat exchanger,
5 ... Air mix door, 6 ... Cool air bypass door.

Claims (5)

室内に吹き出す空気が流れる空調ケーシング(1)と、
前記空調ケーシング(1)内に収納され、室内に吹き出す空気と熱媒体とを熱交換する、少なくとも2台の熱交換器(3、4)と、
前記2台の熱交換器(3、4)に前記空調ケーシング(1)内に導入された導入空気の温度より低い温度の熱媒体又は前記導入空気より高い温度の熱媒体を供給するフルモードと、前記2台の熱交換器(3、4)のうちいずれか一方の熱交換器に前記導入空気より高い温度の熱媒体を供給し、他方の熱交換器に前記導入空気より低い温度の熱媒体を供給する温度コントロールモードとを切り替える切り替え制御手段とを備えることを特徴とする空調装置。
An air-conditioning casing (1) through which air blown into the room flows,
At least two heat exchangers (3, 4) housed in the air conditioning casing (1) and exchanging heat between air and a heat medium blown into the room;
A full mode in which the two heat exchangers (3, 4) are supplied with a heat medium at a temperature lower than the temperature of the introduced air introduced into the air-conditioning casing (1) or a heat medium at a temperature higher than the introduced air; A heat medium having a higher temperature than the introduced air is supplied to one of the two heat exchangers (3, 4), and a heat medium having a lower temperature than the introduced air is supplied to the other heat exchanger. An air conditioner comprising: switching control means for switching between a temperature control mode for supplying a medium and a temperature control mode.
前記2台の熱交換器(3、4)に供給される熱媒体は、同一種類の流体であることを特徴とする請求項1に記載の空調装置。The air conditioner according to claim 1, wherein the heat medium supplied to the two heat exchangers (3, 4) is the same type of fluid. 前記2台の熱交換器(3、4)に供給される熱媒体は、水であることを特徴とする請求項1に記載の空調装置。The air conditioner according to claim 1, wherein the heat medium supplied to the two heat exchangers (3, 4) is water. 前記導入空気より低い温度の熱媒体は、吸着剤が気相冷媒を吸着する作用を利用して冷媒を蒸発させ、その蒸発潜熱により冷凍能力を発揮する吸着式冷凍機により生成されることを特徴とする請求項1ないし3のいずれか1つに記載の空調装置。The heat medium having a temperature lower than that of the introduced air is generated by an adsorption refrigerator in which an adsorbent evaporates a refrigerant by using an action of adsorbing a gas-phase refrigerant and exerts a refrigerating ability by latent heat of evaporation. The air conditioner according to any one of claims 1 to 3, wherein 請求項1ないし3のいずれか1つに記載の空調装置にて構成された車両用空調装置であって、
前記導入空気より高い温度の熱媒体は、車両で発生する廃熱により生成されることを特徴とする車両用空調装置。
A vehicle air conditioner comprising the air conditioner according to any one of claims 1 to 3,
The heating medium having a higher temperature than the introduced air is generated by waste heat generated in a vehicle.
JP2002345369A 2002-11-28 2002-11-28 Air conditioner Expired - Fee Related JP4082192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345369A JP4082192B2 (en) 2002-11-28 2002-11-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345369A JP4082192B2 (en) 2002-11-28 2002-11-28 Air conditioner

Publications (2)

Publication Number Publication Date
JP2004175269A true JP2004175269A (en) 2004-06-24
JP4082192B2 JP4082192B2 (en) 2008-04-30

Family

ID=32706562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345369A Expired - Fee Related JP4082192B2 (en) 2002-11-28 2002-11-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP4082192B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006020377A1 (en) * 2006-04-28 2007-10-31 Behr Gmbh & Co. Kg Vehicle air conditioner with heater and evaporator contained in air guidance casing, inclines them at acute angle to horizontal plane, with optional partial overlap
JP2008518835A (en) * 2004-11-05 2008-06-05 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Automotive air conditioner with absorption heat pump
WO2015040787A1 (en) * 2013-09-20 2015-03-26 株式会社デンソー Air conditioning unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518835A (en) * 2004-11-05 2008-06-05 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Automotive air conditioner with absorption heat pump
US8099969B2 (en) 2004-11-05 2012-01-24 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Passenger car air-conditioning systems with adsorption heat pumps
KR101238692B1 (en) * 2004-11-05 2013-03-04 쇼르테크 아게 Passenger car air conditioning system with adsorption heat pumps
DE102006020377A1 (en) * 2006-04-28 2007-10-31 Behr Gmbh & Co. Kg Vehicle air conditioner with heater and evaporator contained in air guidance casing, inclines them at acute angle to horizontal plane, with optional partial overlap
US9238397B2 (en) 2006-04-28 2016-01-19 Mahle International Gmbh Motor vehicle air conditioning arrangement
WO2015040787A1 (en) * 2013-09-20 2015-03-26 株式会社デンソー Air conditioning unit

Also Published As

Publication number Publication date
JP4082192B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP4232463B2 (en) Air conditioner
JP3864982B2 (en) Air conditioning system
JP3145757B2 (en) Automotive air conditioners
JP4538846B2 (en) Air conditioner
JP2004131033A (en) Air-conditioner
JP5772479B2 (en) Air conditioner
JPH11198638A (en) Vehicular air conditioner
JP4082192B2 (en) Air conditioner
WO2022163712A1 (en) Temperature control system
JP3941638B2 (en) Air conditioner for vehicles
JP2998115B2 (en) Automotive air conditioners
JP4206817B2 (en) Adsorption refrigerator and vehicle air conditioner
JP2004106799A (en) Air conditioner for vehicle
JP4082191B2 (en) Air conditioner
JP2001030743A (en) Heat pump air conditioner for electric vehicle
JP3458612B2 (en) Brine air conditioner
JP4341091B2 (en) Adsorption air conditioner for vehicles
JP2000177374A (en) Adsorption refrigerator for vehicle
JP2008096069A (en) Dehumidification air conditioner
JPH07132728A (en) Air conditioner for automobile
JP4158235B2 (en) Air conditioner for vehicles
JP2020006865A (en) Humidified air supply device
JP2004284432A (en) Vehicular adsorption type air-conditioner
WO2022163194A1 (en) Temperature control system
JP2018070038A (en) Air conditioner for vehicle having adsorption-type heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees