JP2004173409A - Method and apparatus for controlling flow of liquid film utilizing interference of surface acoustic wave - Google Patents

Method and apparatus for controlling flow of liquid film utilizing interference of surface acoustic wave Download PDF

Info

Publication number
JP2004173409A
JP2004173409A JP2002335923A JP2002335923A JP2004173409A JP 2004173409 A JP2004173409 A JP 2004173409A JP 2002335923 A JP2002335923 A JP 2002335923A JP 2002335923 A JP2002335923 A JP 2002335923A JP 2004173409 A JP2004173409 A JP 2004173409A
Authority
JP
Japan
Prior art keywords
liquid film
surface acoustic
acoustic wave
substrate
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002335923A
Other languages
Japanese (ja)
Inventor
Jun Yamada
山田  純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamanashi TLO Co Ltd
Original Assignee
Yamanashi TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanashi TLO Co Ltd filed Critical Yamanashi TLO Co Ltd
Priority to JP2002335923A priority Critical patent/JP2004173409A/en
Publication of JP2004173409A publication Critical patent/JP2004173409A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for efficiently driving a liquid film on the surface of a solid utilizing the interference of surface acoustic waves. <P>SOLUTION: A pair of surface acoustic wave generation sources, different in oscillation frequency, are disposed in positions opposed to each other with a liquid film to be driven on a substrate. Then, the liquid film is driven by a beat progressive wave produced by the interference of the surface acoustic wave from both the generation sources. At this time, Δf (= f1-f2) is set to 0.2 to 100Hz, where f1 is the oscillation frequency of the upstream generation source in the direction of driving of liquid film; f2 is the oscillation frequency of the downstream generation source, and Δf is the difference between them. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体表面を伝播する弾性表面波の干渉を利用して、液膜の流動を制御する方法と装置に関する。
【0002】
【従来の技術】
弾性表面波は、弾性体(固体)の表面に沿って伝播する弾性波で、工業的には、
主に電子情報通信機器における広帯域フィルターなどの弾性表面波デバイスに応用されている。
一方、弾性表面波の力学的作用に関する研究も広く行われている。弾性表面波モータはその成果の一つで、これに関する提案も多い(例えば、特開平7−231685号公報など)。弾性表面波モータは、弾性表面波の伝播により(伝播方向とは逆方向に)生じる固体表面の局所的楕円運動を利用して、その表面に加圧接触される移動体を摩擦力により駆動するものである。
【0003】
このように固体を駆動する弾性表面波モータは現在広く利用されているが、弾性表面波により液体を駆動しようとする試みも提案されている。例えば、特開平10−327590号公報には、固体(例えば圧電基板)表面を伝播する弾性表面波のうちレーリー波は、固体表面の液体中に縦波を放射することから、そのエネルギーにより液滴を弾性表面波の進行方向に駆動しようとする弾性表面波アクチュエータが開示されている。
【0004】
【発明が解決しようとする課題】
固体表面に形成された液膜を、弾性表面波により効率良く駆動することが可能であれば、塗料等の液膜の流動性の改善や液膜中の微小物質のハンドリングの手段として、非常に有用であると考えられる。
とくに、近年バイオテクノロジーの分野で、マイクロマニピュレーションの必要性が高まっており、各種のマイクロアクチュエータやレーザーピンセットなどが開発・実用化されている。したがって、上述のように弾性表面波による液膜の駆動が可能であれば、液体中の微小生体物質のハンドリングに新たな要素技術を加えるものとして、その期待は大きい。
【0005】
固体表面を弾性表面波が伝播するとき、表面波の振幅に対応する微小な凹凸が固体表面に生じ、それが波とともに移動する。その微小な凹凸が表面に接する液体に何らかの作用を及ぼすことが考えられる。しかしながら、弾性表面波の伝播速度はきわめて速いため、固体表面の変化に液体が追随できない可能性が大きい。
すなわち、単一モードの弾性表面波では、表面波と液体の間に見掛け上何の相互作用も現われないか、相互作用があっても、駆動の効率はきわめて低いものになることが予想される。
そこで本発明は、固体表面に形成された液膜を、弾性表面波の干渉を利用して効率良く駆動する手段を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するための本発明は、
中央付近に駆動対象の液膜が形成された基板の該液膜を挟んで対向する位置に、相互に発振周波数の異なる一対の弾性表面波発生源を配し、両発生源からの弾性表面波の干渉により生じるうなりの進行波により、前記液膜を特定方向へ流動させることを特徴とする液膜の流動制御方法である。
【0007】
二つの波の干渉により生じるうなりの波の周期は、もとの波の周期より大幅に長い。したがって、単一モードの弾性表面波では、固体表面の変化に液体が追随できないのに対して、相互に周波数の異なる弾性表面波の干渉によるうなりの進行波を利用すれば、固体表面の変化に液体が追随できるようになり、液膜を波の進行方向に駆動することが可能となる。
【0008】
また、二つの波の周波数の差が小さいほど、うなりの波の周波数が小さくなり、
進行速度が遅くなるため、固体表面の変化に液体が追随し易くなる。その反面、周波数差が小さくなりすぎるど、液体を駆動する力も弱くなると考えられる。
【0009】
したがって、本発明においては、二つの表面弾性波の周波数差を適切に選択することが重要となる。すなわち、上記一対の弾性表面波発生源の発振周波数の差Δf=f−f(ここで、fは液膜の駆動方向上流側発生源の周波数、fは下流側発生源の周波数である)を0.2〜100Hzの範囲内にすることが好ましく、より好ましくは、この値を0.2〜10Hzの範囲内とする。
【0010】
また、本発明は、上記の方法に用いられる装置であって、中央付近に駆動対象の液膜が形成された基板と、該液膜を挟んで対向する位置に配された相互に発振周波数の異なる一対の弾性表面波発生源を有する液膜の流動制御装置を含む。上記の装置は、さらに前記弾性表面波発生源のいずれか一方又は双方の発振周波数を可変に制御する手段を有するものであってもよい。
【0011】
本発明において、上記の弾性表面波発生源は、(a)圧電材料の基板にすだれ状電極(IDF,Interdigital Transducer )を設ける方法、(b)非圧電材料に圧電材料を被覆し、これにIDFを設ける方法、(c)非圧電材料の基板を用い、これと独立な超音波発生源で加振(縦波を入射)して、弾性表面波にモード変換する方法などのいずれによるものであってもよい。
【0012】
【発明の実施の形態および実施例】
以下、実施例に基づいて本発明の実施の形態および効果について説明する。本実施例において、弾性表面波の発生は、非圧電材料の基板に振動子から超音波を入射し、いわゆるくさび形変換器により縦波を弾性表面波にモード変換する方法によった。
【0013】
図1は、本実施例で用いた実験装置の構成を示す図である。同図において、1は基板、2a,2bは超音波発振の振動子、3a,3bは変換器、4a,4bは増幅器、5は波形電圧発生装置、6は液膜、7は液膜の水槽、8は観察用のディジタルビデオ(DV)カメラである。
【0014】
基板1は、アルミニウムの板で、その形状・寸法を図2に示す。振動子2a,2bには、20×50mmの大きさの圧電セラミックスの板(冨士セラミックス社製、材質C−213)を用い、エポキシ系接着剤で基板1に接着した。この振動子に高周波電圧を印加すれば、圧電セラミックス板の厚み方向の振動により、基板1に超音波振動が付与される。
【0015】
変換器3a,3bは、振動子2a,2bに対応する位置において基板1の上面に形成された、断面が鋸歯状で、基板1の幅方向に延在する多数の溝からなっている。溝の側面の一方(基板の端部側の壁面)は垂直で、反対側の壁面が45度の傾斜になっている。なお、溝の幅は約1波長に相当する長さとし、それぞれ10波長分の溝を形成した。基板に入射された超音波の縦波は、この変換器で基板の中央方向に伝播する弾性表面波にモード変換される。
【0016】
本実施例において、超音波の周波数は圧電セラミックスの共振周波数に近い1.
098MHzとした。この装置で発生する弾性表面波の音速を実測したところ、2.64km/sであった。この値は文献値の約2.85km/sに近いことから、弾性表面波が発生していることが確認された。
【0017】
増幅器4a,4bには、市販の広帯域高周波電力増幅器を用いた。これは0.1から30MHzの周波数において、10W以上の出力を得ることができるものである。また、波形電圧発生装置(ファンクションジェネレーター)5には、横河電機(株)製のFG120を用いた。これは、二つの出力をもち、二つの発信信号の位相差を設定することができ、どんな状態から発信させても信号の位相差がずれないという特徴をもつものである。これを用いることにより、二つの振動子2a,2bの発振周波数の差を、きわめて高い精度で設定することが可能であった。
【0018】
本実施例においては、実験の再現性を高めるため、液膜の状態を一定にする手段として、水槽7を用いた。すなわち、図3に示すように、内側の寸法が40×6mm、高さ2mmのシリコンラバーからなる底面の無い枠(水は直接基板に接触)を基板に貼り付け、その中の水の流動を観察した。実験開始時の液膜6の厚みを一定にするため、メスピペットで正確に計量した水690mm(0.69CC)を水槽に供給した。弾性表面波により基板表面の液膜が駆動されれば、図3の矢印で示すように、水槽7内に循環流が生じることになる。
【0019】
液膜の流動状態を定量評価するため、図3に示すように、水性の絵具9をあらかじめ水槽7の中央付近の基板1の表面に付着させ、溶け出す絵具の移動をDVカメラ8で撮影した。図4は、実験(弾性表面波による液膜の駆動)開始前後の絵具の状態を示す模式図で、図4に示す測定距離をもって、絵具の移動距離とした。
上記のような方法で、液膜流動の様子を観察するとともに、対向する弾性表面波発生源の発振周波数の差が液膜の流動に与える影響を調べた。なお、実験の再現性を確認するために、それぞれの条件下で繰り返し3回の実験を行なった。
【0020】
図5に、絵具の流動方向を調べた結果の例を示す。二つの弾性表面波発生源の発振周波数の差が1Hzの場合で、周波数が高い方から低い方への絵具の流動をCh1→Ch2で表し、その逆方向への流動をCh1←Ch2で表している。図に見られるように、Ch1←Ch2の方向の流動はほとんどなく(静止時の拡散程度)、60秒の間にCh1→Ch2の方向に7〜12mm程度流動することが分かる。二つの弾性表面波の干渉により生じるうなりの進行方向は、Ch1→Ch2の方向であるから、上記の結果は、液膜がうなりの進行波により駆動されることを支持するものである。
【0021】
図6に、絵具の流動距離に及ぼす周波数差の影響を調べた結果の例を示す。同図は、60秒後の絵具の移動距離を周波数差に対してプロットしたものである。両発生源の周波数差が無い時、絵具はほとんど移動しない。周波数差が大きくなるにつれて、絵具の移動距離は大きくなり、約1Hzの時に最大となったのち、徐々に小さくなっているのが分かる。
【0022】
上記のような結果になる理由を考察してみると、周波数差が比較的小さいとき(1.0Hz以下)、周波数差が大きくなるに従いうねりの伝播速度も速くなるが、そのうなりに駆動される流動も大きくなるためと考えられる。しかし、周波数差がさらに大きくなると、液体の流動速度がうなりの伝播速度に追随できなくなり、流動が起こりにくくなったものと考えられる。
【0023】
以上の結果から、弾性表面波の干渉を利用しなければ(単一モードの弾性表面波では)液膜の流動を引き起こすのが難しいこと、および両発生源の周波数差を変えることで、液膜の流動を制御し得る可能性が確認された。なお、本実施例では、周波数fが約1MHzのとき、好ましい周波数差Δfは0.2〜100Hz(より好ましくは0.2〜10Hz)であった。
【0024】
本発明において、弾性表面波の発生源は、本実施例以外の方法、例えば圧電体の基板又は圧電体を被覆した基板に、一対のIDFを設けて弾性表面波を発生させるような方法であってもよい。また、非圧電体の基板に超音波を入射する場合の、超音波発生手段、加振手段、縦波を弾性表面波にモード変換させる手段(変換器の構造、形状)等も、本実施例の方法に限定されるものではない。また、非圧電体の基板材料としては、超音波が伝わる固体(例えば、アルミ、鉄などの通常の金属、ガラスなどのセラミックスその他の無機材料等)のいずれであってもよい。
【0025】
さらに、弾性表面波の周波数も、基板や振動子の特性を考慮して、弾性表面波の発生が容易な周波数範囲を選択すればよい。また、駆動対象の液膜と弾性表面波の発生源との位置関係も、両発生源の間で干渉波が生成する範囲内であれば、とくに限定を要しない。
【0026】
【発明の効果】
本発明により、固体表面に形成された液膜を、弾性表面波の干渉を利用して効率良く駆動することが可能となった。本発明は、液膜の流動性の改善や液膜中の微小物質(とくに微小生体物質)のハンドリング等に、非常に有用な手段を与えるものである。
【図面の簡単な説明】
【図1】本実施例で用いた実験装置の構成を示す図である。
【図2】本実施例で用いた基板の形状寸法を示す図である。
【図3】本実施例における液膜の形成方法の説明図である。
【図4】本実施例における液膜の移動距離の測定方法の説明図である。
【図5】絵具の流動方向を調べた結果の例を示す図である。
【図6】絵具の流動距離に及ぼす周波数差の影響を調べた結果の例を示す図である。
【符号の説明】
1:基板
2a,2b:振動子
3a,3b:変換器
4a,4b:増幅器
5:波形電圧発生装置
6:液膜
7:水槽
8:DVカメラ
9:絵具
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for controlling the flow of a liquid film using interference of surface acoustic waves propagating on a solid surface.
[0002]
[Prior art]
A surface acoustic wave is an acoustic wave that propagates along the surface of an elastic body (solid).
It is mainly applied to surface acoustic wave devices such as broadband filters in electronic information and communication equipment.
On the other hand, research on the mechanical action of surface acoustic waves has been widely conducted. The surface acoustic wave motor is one of the results, and there have been many proposals regarding this (for example, Japanese Patent Application Laid-Open No. Hei 7-231885). A surface acoustic wave motor uses a local elliptical motion of a solid surface caused by the propagation of a surface acoustic wave (in a direction opposite to the direction of propagation) to drive a moving body pressed against the surface by frictional force. Things.
[0003]
As described above, the surface acoustic wave motor for driving a solid is widely used at present, but an attempt to drive a liquid by a surface acoustic wave has been proposed. For example, Japanese Unexamined Patent Publication No. Hei 10-327590 discloses that among surface acoustic waves propagating on the surface of a solid (for example, a piezoelectric substrate), a Rayleigh wave radiates a longitudinal wave into a liquid on the surface of a solid. A surface acoustic wave actuator which attempts to drive the surface acoustic wave in the traveling direction of the surface acoustic wave is disclosed.
[0004]
[Problems to be solved by the invention]
If a liquid film formed on a solid surface can be efficiently driven by a surface acoustic wave, it can be very useful as a means for improving the fluidity of a liquid film such as a paint and handling small substances in the liquid film. Deemed useful.
In particular, in recent years, the need for micromanipulation has increased in the field of biotechnology, and various microactuators and laser tweezers have been developed and put into practical use. Therefore, if the liquid film can be driven by the surface acoustic waves as described above, the expectation is high as a new elemental technology is added to the handling of the minute biological material in the liquid.
[0005]
When a surface acoustic wave propagates on a solid surface, minute irregularities corresponding to the amplitude of the surface wave are generated on the solid surface, and move with the wave. It is conceivable that the minute irregularities have some effect on the liquid in contact with the surface. However, since the propagation speed of the surface acoustic wave is extremely high, there is a high possibility that the liquid cannot follow the change of the solid surface.
In other words, in a single-mode surface acoustic wave, no apparent interaction appears between the surface wave and the liquid, or even if there is an interaction, the driving efficiency is expected to be extremely low. .
Accordingly, an object of the present invention is to provide a means for efficiently driving a liquid film formed on a solid surface by utilizing the interference of surface acoustic waves.
[0006]
[Means for Solving the Problems]
The present invention for solving the above problems,
A pair of surface acoustic wave generation sources having different oscillation frequencies are arranged at positions opposed to each other across the liquid film on a substrate on which a liquid film to be driven is formed near the center, and surface acoustic waves from both generation sources are arranged. A flow control method for a liquid film, characterized in that the liquid film is caused to flow in a specific direction by a beat traveling wave generated by the interference of the liquid film.
[0007]
The period of the beat wave caused by the interference of the two waves is much longer than the period of the original wave. Therefore, in a single mode surface acoustic wave, the liquid cannot follow the change in the surface of the solid.On the other hand, if a beat traveling wave caused by the interference of surface acoustic waves with different frequencies is used, the change in the surface of the solid can be prevented. The liquid can follow, and the liquid film can be driven in the traveling direction of the wave.
[0008]
Also, the smaller the difference between the frequencies of the two waves, the lower the frequency of the beat wave,
Since the traveling speed is slow, the liquid can easily follow the change of the solid surface. On the other hand, if the frequency difference is too small, the driving force of the liquid is considered to be weak.
[0009]
Therefore, in the present invention, it is important to appropriately select the frequency difference between the two surface acoustic waves. That is, the difference Δf = f 1 −f 2 between the oscillation frequencies of the pair of surface acoustic wave sources (where f 1 is the frequency of the upstream source in the liquid film driving direction, and f 2 is the frequency of the downstream source) Is preferably in the range of 0.2 to 100 Hz, and more preferably in the range of 0.2 to 10 Hz.
[0010]
Further, the present invention is an apparatus used in the above method, wherein a substrate having a liquid film to be driven formed in the vicinity of the center and a mutual oscillation frequency arranged at positions facing each other with the liquid film interposed therebetween. A liquid film flow control device having a pair of different surface acoustic wave generation sources is included. The above device may further include a means for variably controlling the oscillation frequency of one or both of the surface acoustic wave sources.
[0011]
In the present invention, the surface acoustic wave generation source includes (a) a method of providing an IDF (Interdigital Transducer) on a substrate of a piezoelectric material, and (b) a non-piezoelectric material coated with a piezoelectric material, and an IDF. And (c) using a substrate made of a non-piezoelectric material and applying a vibration (longitudinal wave) by an independent ultrasonic wave source to convert the mode into a surface acoustic wave. You may.
[0012]
Embodiments and Examples of the Invention
Hereinafter, embodiments and effects of the present invention will be described based on examples. In the present embodiment, the generation of the surface acoustic wave is performed by a method in which ultrasonic waves are applied from a vibrator to a substrate made of a non-piezoelectric material, and a mode is converted from a longitudinal wave into a surface acoustic wave by a so-called wedge converter.
[0013]
FIG. 1 is a diagram showing the configuration of the experimental apparatus used in this example. In the figure, 1 is a substrate, 2a and 2b are ultrasonic oscillators, 3a and 3b are converters, 4a and 4b are amplifiers, 5 is a waveform voltage generator, 6 is a liquid film, and 7 is a liquid film tank. , 8 are digital video (DV) cameras for observation.
[0014]
The substrate 1 is an aluminum plate whose shape and dimensions are shown in FIG. As the vibrators 2a and 2b, piezoelectric ceramic plates (manufactured by Fuji Ceramics Co., Ltd., material C-213) having a size of 20 × 50 mm were bonded to the substrate 1 with an epoxy-based adhesive. When a high frequency voltage is applied to the vibrator, ultrasonic vibration is applied to the substrate 1 by vibration in the thickness direction of the piezoelectric ceramic plate.
[0015]
The transducers 3a and 3b are formed on the upper surface of the substrate 1 at positions corresponding to the vibrators 2a and 2b, and are formed of a large number of grooves having a sawtooth cross section and extending in the width direction of the substrate 1. One of the side surfaces of the groove (the wall surface on the end side of the substrate) is vertical, and the opposite wall surface is inclined at 45 degrees. The width of the groove was set to a length corresponding to about one wavelength, and grooves for ten wavelengths were formed. The longitudinal wave of the ultrasonic wave incident on the substrate is mode-converted into a surface acoustic wave propagating toward the center of the substrate by the converter.
[0016]
In this embodiment, the frequency of the ultrasonic wave is close to the resonance frequency of the piezoelectric ceramic.
098 MHz. The sound velocity of the surface acoustic wave generated by this device was measured and found to be 2.64 km / s. Since this value is close to the literature value of about 2.85 km / s, it was confirmed that a surface acoustic wave was generated.
[0017]
Commercially available broadband high-frequency power amplifiers were used as the amplifiers 4a and 4b. This can provide an output of 10 W or more at a frequency of 0.1 to 30 MHz. As the waveform voltage generator (function generator) 5, FG120 manufactured by Yokogawa Electric Corporation was used. This has a feature that it has two outputs, can set the phase difference between two transmission signals, and does not shift the phase difference of the signal regardless of the state of transmission. By using this, it was possible to set the difference between the oscillation frequencies of the two vibrators 2a and 2b with extremely high accuracy.
[0018]
In this embodiment, the water tank 7 was used as a means for keeping the state of the liquid film constant in order to enhance the reproducibility of the experiment. That is, as shown in FIG. 3, a bottomless frame made of silicon rubber having an inner dimension of 40 × 6 mm and a height of 2 mm (water is in direct contact with the substrate) is attached to the substrate, and the flow of water therein is reduced. Observed. In order to make the thickness of the liquid film 6 at the start of the experiment constant, 690 mm 3 (0.69 CC) of water accurately measured with a female pipette was supplied to the water tank. When the liquid film on the substrate surface is driven by the surface acoustic waves, a circulating flow is generated in the water tank 7 as shown by the arrow in FIG.
[0019]
In order to quantitatively evaluate the flow state of the liquid film, as shown in FIG. 3, an aqueous paint 9 was previously attached to the surface of the substrate 1 near the center of the water tank 7, and the movement of the paint that melted was photographed with a DV camera 8. . FIG. 4 is a schematic diagram showing the state of the paint before and after the start of the experiment (driving of the liquid film by the surface acoustic wave). The measured distance shown in FIG.
Using the method described above, the state of the liquid film flow was observed, and the effect of the difference in the oscillation frequency of the facing surface acoustic wave generation source on the liquid film flow was examined. In addition, in order to confirm the reproducibility of the experiment, three experiments were repeated under each condition.
[0020]
FIG. 5 shows an example of the result of examining the flow direction of the paint. When the difference between the oscillation frequencies of the two surface acoustic wave sources is 1 Hz, the flow of the paint from the higher frequency to the lower frequency is represented by Ch1 → Ch2, and the flow in the opposite direction is represented by Ch1 ← Ch2. I have. As can be seen from the figure, there is almost no flow in the direction of Ch1 ← Ch2 (diffusion at rest), and it can be seen that it flows about 7 to 12 mm in the direction of Ch1 → Ch2 in 60 seconds. Since the traveling direction of the beat generated by the interference between the two surface acoustic waves is from Ch1 to Ch2, the above result supports that the liquid film is driven by the traveling wave.
[0021]
FIG. 6 shows an example of the result of examining the effect of the frequency difference on the flow distance of the paint. In the figure, the moving distance of the paint after 60 seconds is plotted against the frequency difference. When there is no frequency difference between the two sources, the paint hardly moves. As the frequency difference increases, the moving distance of the paint increases, reaches a maximum at about 1 Hz, and then gradually decreases.
[0022]
Considering the reason for the above result, when the frequency difference is relatively small (1.0 Hz or less), the swell propagation speed increases as the frequency difference increases, but the undulation is driven. It is considered that the flow also increased. However, it is considered that when the frequency difference is further increased, the flow speed of the liquid cannot follow the propagation speed of the beat, and the flow becomes difficult to occur.
[0023]
From the above results, it is difficult to cause the flow of the liquid film without using the surface acoustic wave interference (in the case of the single mode surface acoustic wave), and by changing the frequency difference between the two sources, the liquid film The possibility of controlling the flow of the water was confirmed. In this embodiment, when the frequency f is about 1 MHz, the preferable frequency difference Δf is 0.2 to 100 Hz (more preferably, 0.2 to 10 Hz).
[0024]
In the present invention, the source of the surface acoustic wave is a method other than the present embodiment, for example, a method of generating a surface acoustic wave by providing a pair of IDFs on a piezoelectric substrate or a substrate coated with a piezoelectric body. You may. Further, in the case where ultrasonic waves are incident on a non-piezoelectric substrate, ultrasonic wave generating means, vibrating means, means for mode-converting longitudinal waves into surface acoustic waves (structure and shape of a transducer), and the like are also provided in this embodiment. However, the present invention is not limited to this method. The non-piezoelectric substrate material may be any of solids (for example, ordinary metals such as aluminum and iron, ceramics and other inorganic materials such as glass, etc.) to which ultrasonic waves are transmitted.
[0025]
Furthermore, the frequency of the surface acoustic wave may be selected in consideration of the characteristics of the substrate and the vibrator in a frequency range in which the surface acoustic wave can be easily generated. Further, the positional relationship between the liquid film to be driven and the generation source of the surface acoustic wave is not particularly limited as long as it is within a range in which an interference wave is generated between the two generation sources.
[0026]
【The invention's effect】
According to the present invention, a liquid film formed on a solid surface can be efficiently driven by utilizing the interference of surface acoustic waves. The present invention provides a very useful means for improving the fluidity of a liquid film and for handling a minute substance (particularly, a minute biological substance) in the liquid film.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an experimental apparatus used in this example.
FIG. 2 is a view showing the shape and dimensions of a substrate used in the present embodiment.
FIG. 3 is an explanatory diagram of a method of forming a liquid film in the present embodiment.
FIG. 4 is an explanatory diagram of a method of measuring a moving distance of a liquid film in the present embodiment.
FIG. 5 is a diagram illustrating an example of a result obtained by examining a flowing direction of a paint.
FIG. 6 is a diagram illustrating an example of a result obtained by examining an effect of a frequency difference on a flow distance of a paint.
[Explanation of symbols]
1: substrates 2a, 2b: transducers 3a, 3b: converters 4a, 4b: amplifier 5: waveform voltage generator 6: liquid film 7: water tank 8: DV camera 9: paint

Claims (4)

中央付近に駆動対象の液膜が形成された基板の該液膜を挟んで対向する位置に、相互に発振周波数の異なる一対の弾性表面波発生源を配し、両発生源からの弾性表面波の干渉により生じるうなりの進行波により、前記液膜を特定方向へ流動させることを特徴とする液膜の流動制御方法。A pair of surface acoustic wave generation sources having different oscillation frequencies are arranged at positions opposite to each other across the liquid film on the substrate on which the liquid film to be driven is formed near the center, and the surface acoustic waves from both sources are arranged. A flow control method for a liquid film, wherein the liquid film flows in a specific direction by a beat traveling wave generated by interference of the liquid film. 前記一対の弾性表面波発生源の発振周波数の差Δf=f−f(ここで、fは液膜の駆動方向上流側発生源の周波数、fは下流側発生源の周波数である)を0.2〜100Hzの範囲内にすることを特徴とする請求項1記載の液膜の流動制御方法。The difference between the oscillation frequencies of the pair of surface acoustic wave sources Δf = f 1 −f 2 (where f 1 is the frequency of the upstream source in the liquid film driving direction, and f 2 is the frequency of the downstream source. 2. The flow control method for a liquid film according to claim 1, wherein (2) is set in the range of 0.2 to 100 Hz. 請求項1又は2記載の方法に用いられる装置であって、中央付近に駆動対象の液膜が形成された基板と、該液膜を挟んで対向する位置に配された相互に発振周波数の異なる一対の弾性表面波発生源を有する液膜の流動制御装置。3. An apparatus used in the method according to claim 1, wherein a substrate on which a liquid film to be driven is formed in the vicinity of the center, and a substrate having an oscillation frequency different from each other are arranged at positions facing each other with the liquid film interposed therebetween. A liquid film flow control device having a pair of surface acoustic wave generation sources. 請求項3の構成に加えて、さらに前記弾性表面波発生源のいずれか一方又は双方の発振周波数を可変に制御する手段を有する液膜の流動制御装置。4. The liquid film flow control device according to claim 3, further comprising: means for variably controlling the oscillation frequency of one or both of the surface acoustic wave generation sources.
JP2002335923A 2002-11-20 2002-11-20 Method and apparatus for controlling flow of liquid film utilizing interference of surface acoustic wave Pending JP2004173409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335923A JP2004173409A (en) 2002-11-20 2002-11-20 Method and apparatus for controlling flow of liquid film utilizing interference of surface acoustic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335923A JP2004173409A (en) 2002-11-20 2002-11-20 Method and apparatus for controlling flow of liquid film utilizing interference of surface acoustic wave

Publications (1)

Publication Number Publication Date
JP2004173409A true JP2004173409A (en) 2004-06-17

Family

ID=32699892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335923A Pending JP2004173409A (en) 2002-11-20 2002-11-20 Method and apparatus for controlling flow of liquid film utilizing interference of surface acoustic wave

Country Status (1)

Country Link
JP (1) JP2004173409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031290A1 (en) * 2007-09-03 2009-03-12 National University Corporation Shizuoka University Acoustic wave device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880076A (en) * 1994-08-31 1996-03-22 Nikon Corp Equipment with built in actuator
JPH0880075A (en) * 1994-08-31 1996-03-22 Nikon Corp Equipment with built in actuator
JPH10327590A (en) * 1997-05-22 1998-12-08 Yoshikazu Matsui Surface acoustic wave actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880076A (en) * 1994-08-31 1996-03-22 Nikon Corp Equipment with built in actuator
JPH0880075A (en) * 1994-08-31 1996-03-22 Nikon Corp Equipment with built in actuator
JPH10327590A (en) * 1997-05-22 1998-12-08 Yoshikazu Matsui Surface acoustic wave actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031290A1 (en) * 2007-09-03 2009-03-12 National University Corporation Shizuoka University Acoustic wave device
US8118156B2 (en) 2007-09-03 2012-02-21 National University Corporation Shizuoka University Acoustic wave device

Similar Documents

Publication Publication Date Title
US6307302B1 (en) Ultrasonic transducer having impedance matching layer
JP4682333B2 (en) Surface acoustic wave excitation device
JPH09193055A (en) Noncontact micromanipulation method using ultrasonic wave
Zhang et al. Acoustic streaming and microparticle enrichment within a microliter droplet using a Lamb-wave resonator array
Kurosawa et al. Surface acoustic wave atomizer with pumping effect
Kurosawa et al. Friction drive surface acoustic wave motor
JP2004173409A (en) Method and apparatus for controlling flow of liquid film utilizing interference of surface acoustic wave
JP2001514455A (en) Acoustic transducer
CN113826229A (en) Deep subwavelength acoustic manipulation of arbitrary shapes for microparticle and cell patterning
JPS6022478A (en) Stator of surface wave linear motor
JP5192270B2 (en) Method and apparatus for driving ultrasonic transducer
JP2008212916A (en) Apparatus for generating ultrasonic complex vibration
JP3466690B2 (en) Surface acoustic wave linear motor
JP4469974B2 (en) Trace liquid sorting device and trace liquid sorting method
JP3708226B2 (en) Flow velocity measuring device
JP3309749B2 (en) Ultrasonic cleaning equipment
JPH0223070A (en) Linear type ultrasonic motor
JPS6091874A (en) Supersonic motor
Yamada et al. Rayleigh wave excitation with an elliptical reflector for high-power ultrasound
Yamada et al. 1P4-6 Surface acoustic wave excitation by an elliptical reflector transducer
JP4547580B2 (en) Ultrasonic irradiation device
SU1392474A1 (en) Method and device for determining melting point of materials
Zhang Designs of Surface Acoustic Waves for Micro/Nano-scale Particles/Fluid Manipulation
Alzuaga et al. Displacement of droplets on a surface using ultrasonic vibration
JP4356101B2 (en) Ultrasonic signal irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027