JP2004173053A - Super-directional microphone device - Google Patents

Super-directional microphone device Download PDF

Info

Publication number
JP2004173053A
JP2004173053A JP2002337933A JP2002337933A JP2004173053A JP 2004173053 A JP2004173053 A JP 2004173053A JP 2002337933 A JP2002337933 A JP 2002337933A JP 2002337933 A JP2002337933 A JP 2002337933A JP 2004173053 A JP2004173053 A JP 2004173053A
Authority
JP
Japan
Prior art keywords
microphone
circuit
signal
output signal
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002337933A
Other languages
Japanese (ja)
Inventor
Osamu Kasuya
修 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002337933A priority Critical patent/JP2004173053A/en
Publication of JP2004173053A publication Critical patent/JP2004173053A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a super-directional microphone device for collecting the natural sounds of a high sound quality, which is small-sized and has sharp directivity over all the bands. <P>SOLUTION: The super-directional microphone device has three unidirectional microphone cells (10, 11, and 12) arranged in the longitudinal direction with prescribed spacing and calculates a difference signal extracted from the output signals of the two microphone cells (10 and 12), the difference signal extracted from the output signals of the two microphone cells (11 and 12), and the difference signal between both difference signals and takes out a frequency signal higher than a prescribed frequency with a high-pass filter 16. A frequency signal lower than the frequency is taken out from the difference signal extracted from the output signals of the two microphone cells (10 and 12) with a low-pass filter 18. Phases in the vicinities of the band boundaries of the output signals of the filters (16 and 18) are matched, and corrected output signals are obtained with an equalizer circuit 20. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、音源に対する指向性の向上を図った超指向性マイクロフォン装置に関し、具体的には、小型で、全帯域に渡ってより鋭い指向性を有し、音質を重視した自然な音を収音するビデオカメラ等に使われて好適である。
【0002】
【従来の技術】
従来より、超指向性マイクロフォン装置として、図5に示すような構造のものが広く知られている。特性の揃った二つの単一指向性マイクロフォン(1次音圧傾度型マイクロフォン)1および2を前後方向に所定の間隔を隔てて配置し、マイクロフォン1の出力信号を反転回路3で反転させた反転信号と、マイクロフォン2の出力信号をミックス回路4でミックス処理することによって両信号の差分信号を抽出する。
【0003】
この差分信号は、横方向から入射する音に関しては同位相・同振幅信号の差成分となるため理論的にはゼロとなり、前方向から入射する音に関しては前方に配置されたマイクロフォン1と後方に配置されたマイクロフォン2の間隔を伝播する時間差分の位相差に応じた差成分が得られる(マイクロフォン間隔が音の波長の1/2に相当する時に最大出力が得られる)。
【0004】
尚、後方向から入射する音に関しては単一指向性マイクロフォンの指向特性上からそれぞれのマイクロフォン出力の信号成分がゼロであるためその差成分もゼロである。イコライザ5は、差分信号の周波数特性をフラットに補正するのが目的の回路である。
従って、マイクロフォン1と2の差分信号を周波数補正したマイクロフォン出力は前方向に鋭い指向性を有するマイクロフォン装置(2次音圧傾度型マイクロフォン)として機能する。
【0005】
また、特許文献1の技術は、音源に対して集音面を同一方向に向け、且つ指向性の主軸と直交する方向に所定の距離を隔てて配された、少なくとも3個の単一指向性マイクロフォン素子と、各マイクロフォン素子からの出力信号を加算する加算器とを備え、鋭い指向性を得るマイクロフォン装置を提案している。
【0006】
【特許文献1】
国際公開第96/25018号パンフレット
【0007】
【発明が解決しようとする課題】
上述の従来の技術を用いた2次音圧傾度型マイクロフォンは、周囲の雑音をカットして正面の目的音を収音し易くするため、望遠マイクロフォンとしての効果を得ることができる。
この2次音圧傾度型マイクロフォンと一般的なステレオマイクロフォン(またはモノラルマイクロフォン)を組み合わせ、両信号のミックス比を連続的に可変させればズームマイクロフォンとして機能することは一般に知られている。
これは、例えば民生用ビデオカメラのズームレンズと連動させることによって映像と音声が一緒にズームしているような効果を得ることができ、このような処理を行なった2次音圧傾度型マイクロフォンには、原理的に下記の課題が発生する。
【0008】
(1) 高域の帯域が狭くなる。
(2) 低域感度が不足する。
(3) 低域信号のS/Nが悪い。
【0009】
原理的に、前後に配置するマイクロフォンの間隔によって確保し得る高域の帯域が制限される(確保できる高域の帯域は、マイクロフォン間隔が通過する音の波長の1/2に相当する周波数までである)。間隔を狭めれば高域の帯域は拡がるが、逆に低域感度が確保できなくなる。低域感度を確保するためにマイクロフォン間隔を広げると高域の帯域がますます狭くなる。
【0010】
現実的には、この処理を行なった2次音圧傾度型マイクロフォンは、その鋭い指向性と引き換えに、確保できる周波数帯域が高域・低域共に不足したものとなり、音質的には満足いくものとはなり難い。
特に、前記のようなズームマイクロフォンとして機能させる場合、組合せるステレオマイクロフォン(またはモノラルマイクロフォン)側の周波数帯域はかなり広く確保できているために、特性をステレオマイクロフォン側(ワイド側)から2次音圧傾度型マイクロフォン側(テレ側)に変化させた時の音質差が際立ち、大きな違和感を与えるという問題がある。
【0011】
また、より強いズーム感を得るためには、テレ側の特性を受け持っている超指向性マイクロフォン装置の指向性を更に鋭くする必要があるが、そのために音圧傾度の次数を更に上げるような処理を行なうと低域感度が益々不足し実用になり難いという課題がある。
【0012】
また、特許文献1のマイクロフォン装置は、その主目的を音声認識装置の音声入力手段に置いているため、中音域でのみ鋭い指向性が得られるものである。対象方向からの人間の声のみを効率的に取り込む目的にはよいが、低域から高域までのすべての帯域の音を収音目的とするような一般的な用途には、周辺雑音の中音域成分のみがカットされた極めて不自然な音となり不向きである。
【0013】
本発明は、上述の実情を考慮してなされたものであって、単一指向性マイクロフォンセルの前後方向配置を3個に増やし、中高域の指向性を更にアップさせると同時に低域の感度も改善する、または中低域のS/Nを同等に確保した上で高域の帯域を広げることができる、音質を重視した自然な音の収音用に、小型で、全帯域に渡ってより指向性の鋭い超指向性マイクロフォン装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記の課題を解決するために、本発明の請求項1の超指向性マイクロフォン装置は、3個の単一指向性マイクロフォンセルを前後方向に所定の間隔を隔てて配置(配置順に、第1マイクロフォンセル、第2マイクロフォンセル、第3マイクロフォンセルとする)し、第1マイクロフォンセルと第2マイクロフォンセルの出力信号から抽出した差分信号と、第2マイクロフォンセルと第3マイクロフォンセルの出力信号から抽出した差分信号とから、これらの両差分信号間の差分信号を抽出して、所定の周波数より高い周波数信号を第1フィルタ(HPF:高域通過フィルタ)で取り出す。
また、第1マイクロフォンセルと第3マイクロフォンセルの出力信号から抽出した差分信号から、所定の周波数より低い周波数信号を第2フィルタ(LPF:低域通過フィルタ)で取り出す。
これらの第1フィルタと第2フィルタの出力信号の帯域境界付近の位相を合わせて、その合成出力信号の周波数特性をイコライザ回路でフラット化して、鋭い指向性を実現する出力信号を得る。
【0015】
以上の構成により、高域側の指向特性を更に鋭くしつつ低域感度を改善したり、中低域感度を劣化させること無く高域側帯域を広げる(しかも広げた帯域の指向性は非常に鋭いものとなる)ことが可能となる。
【0016】
【発明の実施の形態】
以下、図面を参照して本発明に係る超指向性マイクロフォン装置の好適な実施形態について説明する。
図1は、本発明に係る超指向性マイクロフォン装置の実施形態の構成を示すブロック図であり、図1(A)は3個の単一指向性マイクロフォンセルの配置を示し、図1(B)は全体の構成を示している。
図1(A)に示すように、本実施形態では、特性の揃った3個の単一指向性マイクロフォンセル(第1マイクロフォンセル10、第2マイクロフォンセル11、第3マイクロフォンセル12)が前後方向に等間隔で指向性の主軸が同一方向を向くように直列に配置されている。
【0017】
図1(B)に示すように、本実施形態は、第1マイクロフォンセル10と第2マイクロフォンセル11の出力信号の差分信号を抽出する第1差分回路13、第2マイクロフォンセル11と第3マイクロフォンセル12の出力信号の差分信号を抽出する第2差分回路14、第1差分回路13と第2差分回路14の出力信号同士の差分信号を抽出する第3差分回路15、第3差分回路15の出力信号から所定の周波数より高い周波数帯域信号を抽出する第1フィルタ(HPF:高域通過フィルタ)16、第1マイクロフォンセル10と第3マイクロフォンセル12の出力信号の差分信号を抽出する第4差分回路17、第4差分回路17の出力信号から所定の周波数より低い周波数帯域信号を抽出する第2フィルタ(LPF:低域通過フィルタ)18、第2フィルタ18からの出力信号の位相を第1フィルタ16からの出力信号の位相に合わせた信号と第1フィルタ16の出力信号を加算する加算回路19、加算回路19の出力信号の周波数特性を補正するイコライザ回路(EQ)20とから構成される。
【0018】
上記のように構成した超指向性マイクロフォン装置では、まず、同じ間隔dを隔てて前後方向に配置された第1マイクロフォンセル10と第2マイクロフォンセル11間、および第2マイクロフォンセル11と第3マイクロフォンセル12間で従来行なわれてきた2次音圧傾度型マイクロフォン処理(差分信号抽出処理)を行なう。
本実施形態では、図1(C)に示すように、各差分回路(13,14,15,17)は、前方に配置されている側のマイクロフォンセルの出力信号(信号a)に位相を反転させる位相反転回路31を入れ、後方に配置されている側のマイクロフォンセルの出力信号(信号b)とミックス処理するミックス回路32を入れて差分信号c(2次音圧傾度型信号)を抽出する。
【0019】
更に、それぞれ第1差分回路13と第2差分回路14で抽出された差分信号(2次音圧傾度型信号)同士の差分信号を第3差分回路15で抽出する。この第3差分回路15からの出力信号は、4次音圧傾度相当の鋭い指向性を有する信号(S1)となり、従来の2次音圧傾度型よりも更に鋭い指向性を実現できる(図2参照)。
【0020】
しかし、イコライザ処理を加える前の2次音圧傾度型の周波数特性が最大出力周波数fに向かって6dB/octの傾斜であるのに対し、上述の処理を加えた4次音圧傾度相当の周波数特性は最大出力周波数fに向かって12dB/octの傾斜になるため低域の感度は非常に低くなってしまい、そのままでの実用は難しい。そこで、低域感度を次のようにして確保する。
【0021】
本実施形態において、第1マイクロフォンセル10と第3マイクロフォンセル12の間隔が2dであるから、第1マイクロフォンセル10と第3マイクロフォンセル12間の差分信号を第4差分回路17で抽出することによって、最大出力周波数をf/2とした2次音圧傾度型の出力信号(S2)を得ることができる。
この出力信号は、f/2以下の周波数帯域では、マイクロフォンセル間隔がdの時の2次音圧傾度型信号に比べて6dB高い感度を有する。
【0022】
更に、f/2より低い所定の周波数f0をカットオフ周波数とする第1フィルタ16(HPF:高域通過フィルタ)に4次音圧傾度相当信号(S1)を通し、同じくf0をカットオフ周波数とする第2フィルタ18(LPF:低域通過フィルタ)に2次音圧傾度型信号(S2)を通して、加算回路19でミックス処理することによって、f0より高い周波数帯域では4次音圧傾度相当の非常に高い指向性を備え、且つ、f0より低い周波数帯域では2次音圧傾度相当の指向性ながら低域感度が高い出力信号を得ることができる。
【0023】
この加算回路19は、図1(D)に示すように、第2フィルタ18からの出力信号(信号e)の位相を第1フィルタ16の出力信号(信号f)の位相に合わせた信号を出力する移相回路41、移相回路41からの出力信号と信号fとをミックスした信号gを出力するミックス回路42から構成される。
【0024】
最終的に、加算回路19からの出力信号をイコライザ回路20にて周波数特性全体のフラット化が行なわれ、中高域指向性に優れ、中低域S/Nの良好な出力信号を実現できる。
【0025】
また、本実施形態のマイクロフォンセルの間隔をd/2に設定した場合、マイクロフォンセルの間隔が1/2になることによって、4次音圧傾度相当信号(S1)の高域側の帯域は2倍となるが、帯域が伸びた分、低域感度は益々低くなるが、2次音圧傾度型の出力信号(S2)としては、マイクロフォンセル間隔dの現状2次音圧傾度型の出力信号そのままを得る。
【0026】
従って、本実施形態の出力信号は、現状同等の中低域特性を保持した上で、高域は4次音圧傾度相当の鋭い指向性を実現し、且つ帯域を2倍に拡大した出力信号を得ることが可能となる。
【0027】
<実施例1>
まず、実施例1としてマイクロフォンセルの間隔dを34mmに設定した場合について説明する。
一対のマイクロフォンセル間で差分信号抽出処理を行なった後の正面方向入力音信号の周波数特性は、次の式1で表すことができる。
【0028】
Eo=E√{(1−cosα)+sinα} … 式1
ここで α= (2πfd)/c
c≒340 [m/s]:(音速)
f: 周波数 [Hz]
d: マイクロフォンセル間隔 [m]
E: マイクロフォン出力レベル
Eo: 差分信号レベル
【0029】
この式1に、d=34mmを適用すると、差分信号の周波数特性は図3の曲線aになる。この差分信号同士で更に差分信号を取った4次音圧傾度相当信号(S1)の周波数特性は、図3の曲線bとなる。
また、マイクロフォンセル間隔が2d=68mmとなる第1マイクロフォンセル10と第3マイクロフォンセル12間の差分信号(S2)の周波数特性は、図3の曲線cとなる。
図3の曲線aと曲線bの最大出力が得られる周波数は、5kHzであり、1.65kHzより高い周波数帯域においては、曲線bの方が高い感度を得ることができることを示している。
【0030】
一方、図3の曲線cの最大出力が得られる周波数は、2.5kHzであるが、それより低い周波数帯域では常に曲線aより6dB高い感度が得られることを示している。
【0031】
従って、本実施例1で第1フィルタ16と第2フィルタ18のカットオフ周波数f0を1.65kHz付近に設定すれば、全帯域に渡って従来技術による周波数特性aよりも高い感度が確保できることになる。
また、f0よりも高い周波数帯域においては、従来技術によるよりも更に鋭い指向特性が得られる。
【0032】
<実施例2>
次に、実施例2としてマイクロフォンセル間隔dを17mmに設定した場合について説明する。
上述の式1にd=17mmを適用すると、差分信号の周波数特性は図4の曲線aとなり、この差分信号同士で更に差分信号を取った4次音圧傾度相当信号(S1)の周波数特性は、図4の曲線bとなる。
また、マイクロフォンセル間隔が2d=34mmとなる第1マイクロフォンセル10と第3マイクロフォンセル12間の差分信号(S2)の周波数特性は図4の曲線cとなる。
【0033】
図4の曲線aと曲線bの最大出力が得られる周波数は10kHzであり、3.35kHzより高い周波数帯域においては曲線bの方が高い感度を得ることができることを示している。
一方、図4の曲線cの最大出力が得られる周波数は5kHzであり、これは従来技術による2次音圧傾度型の特性そのものである。
【0034】
従って、本実施例2の第1フィルタ16と第2フィルタ18のカットオフ周波数f0を5kHz付近に設定すれば、5kHz以下の帯域で従来特性を維持したままで高域側帯域を10kHzまで伸ばすことが可能となる。
また、伸びた高域側の指向性は4次音圧傾度相当の非常に鋭いものとなる。
【0035】
【発明の効果】
以上説明したように本発明によると、高域側の指向特性を更に鋭くしつつ低域感度を改善したり、中低域感度を劣化させること無く高域側帯域を広げる(しかも広げた帯域の指向性は非常に鋭いものとなる)ことが可能となる。
【図面の簡単な説明】
【図1】本発明に係る超指向性マイクロフォン装置の実施形態の構成を示すブロック図であり、(A)は3個の単一指向性マイクロフォンセルの配置を示し、(B)は全体の構成を示すブロック図である。
【図2】本発明の実施形態を説明する指向特性図である。
【図3】実施例1を説明する周波数特性図である。
【図4】実施例2を説明する周波数特性図である。
【図5】従来の指向性マイクロフォン装置の構成を示すブロック図である。
【符号の説明】
1,2…マイクロフォン、3…反転回路、4…ミックス回路、5…イコライザ、10…第1マイクロフォンセル、11…第2マイクロフォンセル、12…第3マイクロフォンセル、13…第1差分回路、14…第2差分回路、15…第3差分回路、16…第1フィルタ(HPF:高域通過フィルタ)、17…第4差分回路、18…第2フィルタ(LPF:低域通過フィルタ)、19…加算回路、20…イコライザ回路、31…位相反転回路、32,42…ミックス回路、41…移相回路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a super-directional microphone device that improves directivity with respect to a sound source, and specifically, is small in size, has sharp directivity over the entire band, and collects natural sound with emphasis on sound quality. It is suitable for use in video cameras that make sound.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a superdirective microphone device having a structure as shown in FIG. 5 has been widely known. Two unidirectional microphones (primary sound pressure gradient type microphones) 1 and 2 having uniform characteristics are arranged at a predetermined interval in the front-rear direction, and the output signal of the microphone 1 is inverted by an inversion circuit 3. The signal and the output signal of the microphone 2 are mixed by a mixing circuit 4 to extract a difference signal between the two signals.
[0003]
This difference signal is theoretically zero for a sound incident from the lateral direction because it is a difference component between the same phase and the same amplitude signal. For a sound incident from the front direction, the microphone 1 arranged in front and the microphone 1 arranged rearward A difference component corresponding to the phase difference of the time difference propagating in the interval between the arranged microphones 2 is obtained (the maximum output is obtained when the microphone interval corresponds to half the wavelength of the sound).
[0004]
In addition, regarding the sound incident from the rear direction, the signal component of each microphone output is zero because of the directivity characteristics of the unidirectional microphone, so that the difference component thereof is also zero. The equalizer 5 is a circuit whose purpose is to correct the frequency characteristics of the difference signal flat.
Accordingly, the microphone output obtained by frequency-correcting the difference signal between the microphones 1 and 2 functions as a microphone device (secondary sound pressure gradient type microphone) having sharp directivity in the forward direction.
[0005]
In addition, the technique disclosed in Patent Document 1 discloses that at least three unidirectional light sources are arranged at a predetermined distance in a direction orthogonal to a main axis of directivity, with a sound collection surface oriented in the same direction with respect to a sound source. A microphone device that includes a microphone element and an adder that adds output signals from the microphone elements and obtains sharp directivity has been proposed.
[0006]
[Patent Document 1]
WO 96/25018 pamphlet [0007]
[Problems to be solved by the invention]
The secondary sound pressure gradient type microphone using the above-described conventional technology can obtain the effect as a telephoto microphone because the surrounding noise is cut to easily collect the target sound in front.
It is generally known that the secondary sound pressure gradient type microphone is combined with a general stereo microphone (or monaural microphone) and functions as a zoom microphone if the mix ratio of both signals is continuously varied.
For example, it is possible to obtain an effect that video and audio are zoomed together by linking with a zoom lens of a consumer video camera, and a secondary sound pressure gradient type microphone that performs such processing can be obtained. In principle, the following problems occur.
[0008]
(1) The high frequency band becomes narrow.
(2) Low sensitivity is insufficient.
(3) The S / N of the low-frequency signal is poor.
[0009]
In principle, the high-frequency band that can be secured is limited by the spacing between the microphones arranged before and after (the high-frequency bandwidth that can be secured is up to a frequency corresponding to half the wavelength of the sound passing through the microphone spacing). is there). If the interval is narrowed, the high frequency band is widened, but low frequency sensitivity cannot be ensured. Increasing the microphone spacing to ensure low-frequency sensitivity will further narrow the high-frequency band.
[0010]
Realistically, the secondary sound pressure gradient type microphone that has performed this processing has insufficient frequency bands for both high and low frequencies in exchange for its sharp directivity, and is satisfactory in sound quality. It is hard to be.
In particular, when functioning as a zoom microphone as described above, since the frequency band on the side of the stereo microphone (or monaural microphone) to be combined can be assured considerably wide, the characteristic is changed from the stereo microphone side (wide side) to the secondary sound pressure. There is a problem that a difference in sound quality when changing to the gradient microphone side (tele side) stands out, giving a great sense of discomfort.
[0011]
Also, in order to obtain a stronger zoom feeling, it is necessary to further sharpen the directivity of the super-directional microphone device that is responsible for the characteristics on the telephoto side. In this case, there is a problem that the low-frequency sensitivity is increasingly insufficient and it is difficult to be practical.
[0012]
Further, the microphone device disclosed in Patent Literature 1 has its main purpose in the voice input means of the voice recognition device, and thus can obtain sharp directivity only in the middle sound range. It is good for efficiently capturing only human voices from the target direction, but for general use where sound in all bands from low to high is to be collected, there is no This is an extremely unnatural sound with only the treble component cut off, and is not suitable.
[0013]
The present invention has been made in consideration of the above-described circumstances, and the number of unidirectional microphone cells has been increased to three in the front-rear direction, thereby further improving the directivity in the middle and high ranges and simultaneously improving the sensitivity in the low range. Improves or expands the high frequency band while securing the S / N of the middle and low frequency range. It is an object of the present invention to provide a super-directional microphone device having sharp directivity.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a super directional microphone device according to claim 1 of the present invention arranges three unidirectional microphone cells at predetermined intervals in the front-rear direction (in the arrangement order, the first microphone). Cell, a second microphone cell, and a third microphone cell), a differential signal extracted from the output signals of the first and second microphone cells, and an output signal of the second and third microphone cells. A difference signal between these two difference signals is extracted from the difference signal, and a frequency signal higher than a predetermined frequency is extracted by a first filter (HPF: high-pass filter).
Further, a frequency signal lower than a predetermined frequency is extracted by a second filter (LPF: low-pass filter) from a difference signal extracted from output signals of the first microphone cell and the third microphone cell.
The output signals of the first filter and the second filter are matched in phase near the band boundary, and the frequency characteristics of the combined output signal are flattened by an equalizer circuit to obtain an output signal realizing sharp directivity.
[0015]
With the above configuration, the low-pass sensitivity is improved while sharpening the directional characteristics on the high-pass side, and the high-pass band is expanded without deteriorating the mid-low-pass sensitivity (and the directivity of the widened band is very high). Sharp).
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of a super-directional microphone device according to the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of an embodiment of a super-directional microphone device according to the present invention. FIG. 1A shows an arrangement of three unidirectional microphone cells, and FIG. Indicates the entire configuration.
As shown in FIG. 1A, in the present embodiment, three unidirectional microphone cells (first microphone cell 10, second microphone cell 11, and third microphone cell 12) having uniform characteristics are arranged in the front-rear direction. Are arranged in series at equal intervals so that the main axes of directivity face the same direction.
[0017]
As shown in FIG. 1B, in the present embodiment, a first difference circuit 13 that extracts a difference signal between output signals of a first microphone cell 10 and a second microphone cell 11, a second microphone cell 11, and a third microphone A second difference circuit 14 for extracting a difference signal of the output signal of the cell 12, a third difference circuit 15 for extracting a difference signal between the output signals of the first difference circuit 13 and the second difference circuit 14, and a third difference circuit 15 A first filter (HPF: high-pass filter) 16 for extracting a frequency band signal higher than a predetermined frequency from the output signal, and a fourth difference for extracting a difference signal between the output signals of the first microphone cell 10 and the third microphone cell 12 A second filter (LPF: low-pass filter) 1 for extracting a frequency band signal lower than a predetermined frequency from an output signal of the circuit 17 and the fourth difference circuit 17 An addition circuit 19 for adding a signal obtained by matching the phase of the output signal from the second filter 18 with the phase of the output signal from the first filter 16 and the output signal of the first filter 16, and the frequency characteristic of the output signal of the addition circuit 19 And an equalizer circuit (EQ) 20 that corrects
[0018]
In the super-directional microphone device configured as described above, first, between the first microphone cell 10 and the second microphone cell 11 and the second microphone cell 11 and the third microphone arranged in the front-rear direction at the same interval d. The secondary sound pressure gradient type microphone processing (difference signal extraction processing) conventionally performed between the cells 12 is performed.
In the present embodiment, as shown in FIG. 1C, each of the difference circuits (13, 14, 15, 17) inverts the phase of the output signal (signal a) of the microphone cell disposed on the front side. A phase inverting circuit 31 is provided, and an output signal (signal b) of the microphone cell disposed on the rear side is provided with a mix circuit 32 for performing mixing processing, thereby extracting a difference signal c (secondary sound pressure gradient type signal). .
[0019]
Further, a third difference circuit 15 extracts a difference signal between the difference signals (secondary sound pressure gradient type signals) extracted by the first difference circuit 13 and the second difference circuit 14, respectively. The output signal from the third difference circuit 15 is a signal (S1) having a sharp directivity equivalent to the fourth sound pressure gradient, and can realize a sharper directivity than the conventional secondary sound pressure gradient type (FIG. 2). reference).
[0020]
However, while the frequency characteristic of the secondary sound pressure gradient type before the equalizer processing is applied has a slope of 6 dB / oct toward the maximum output frequency f, the frequency corresponding to the fourth sound pressure gradient subjected to the above processing is applied. Since the characteristics have a slope of 12 dB / oct toward the maximum output frequency f, the sensitivity in the low frequency range is extremely low, and practical use as it is is difficult. Therefore, low-frequency sensitivity is ensured as follows.
[0021]
In the present embodiment, since the distance between the first microphone cell 10 and the third microphone cell 12 is 2d, the difference signal between the first microphone cell 10 and the third microphone cell 12 is extracted by the fourth difference circuit 17. Thus, a secondary sound pressure gradient type output signal (S2) having a maximum output frequency of f / 2 can be obtained.
This output signal has a sensitivity 6 dB higher in the frequency band of f / 2 or less than the secondary sound pressure gradient signal when the microphone cell interval is d.
[0022]
Further, a fourth-order sound pressure gradient equivalent signal (S1) is passed through a first filter 16 (HPF: high-pass filter) having a predetermined frequency f0 lower than f / 2 as a cutoff frequency, and f0 is also set as a cutoff frequency. The second sound pressure gradient type signal (S2) is passed through a second filter 18 (LPF: low-pass filter) to be mixed by an adder circuit 19, so that in a frequency band higher than f0, an extremely high frequency sound pressure gradient corresponding to the fourth sound pressure gradient is obtained. In a frequency band lower than f0, it is possible to obtain an output signal with high low-frequency sensitivity while having directivity corresponding to the secondary sound pressure gradient.
[0023]
The adder circuit 19 outputs a signal in which the phase of the output signal (signal e) from the second filter 18 matches the phase of the output signal (signal f) of the first filter 16 as shown in FIG. And a mix circuit 42 that outputs a signal g obtained by mixing the output signal from the phase shift circuit 41 and the signal f.
[0024]
Finally, the output signal from the adder circuit 19 is flattened in the entire frequency characteristics by the equalizer circuit 20, so that an output signal that is excellent in directivity in the middle and high ranges and has a good S / N in the middle and low ranges can be realized.
[0025]
Further, when the interval between the microphone cells of the present embodiment is set to d / 2, the interval between the microphone cells becomes に よ っ て, so that the band on the high frequency side of the fourth-order sound pressure gradient equivalent signal (S1) becomes 2 Although the low frequency sensitivity becomes lower as much as the band is extended, the secondary sound pressure gradient type output signal (S2) is the current secondary sound pressure gradient type output signal with the microphone cell interval d. Get it as is.
[0026]
Therefore, the output signal of this embodiment realizes a sharp directivity equivalent to the fourth-order sound pressure gradient in the high frequency range while maintaining the same mid-low frequency characteristics as it is currently, and an output signal in which the band is doubled. Can be obtained.
[0027]
<Example 1>
First, a case where the distance d between the microphone cells is set to 34 mm will be described as a first embodiment.
The frequency characteristic of the front-direction input sound signal after performing the difference signal extraction processing between the pair of microphone cells can be expressed by the following equation 1.
[0028]
Eo = E {(1−cos α) 2 + sin 2 α} Equation 1
Where α = (2πfd) / c
c ≒ 340 [m / s]: (Sound speed)
f: Frequency [Hz]
d: Microphone cell interval [m]
E: microphone output level Eo: differential signal level
When d = 34 mm is applied to the equation 1, the frequency characteristic of the difference signal becomes a curve a in FIG. The frequency characteristic of the fourth-order sound pressure gradient equivalent signal (S1) obtained by further taking a difference signal between the difference signals is a curve b in FIG.
Further, the frequency characteristic of the difference signal (S2) between the first microphone cell 10 and the third microphone cell 12 in which the microphone cell interval is 2d = 68 mm is a curve c in FIG.
The frequency at which the maximum output of the curves a and b in FIG. 3 is obtained is 5 kHz, and shows that the curve b can obtain higher sensitivity in a frequency band higher than 1.65 kHz.
[0030]
On the other hand, the frequency at which the maximum output of the curve c in FIG. 3 is obtained is 2.5 kHz, but shows that sensitivity 6 dB higher than that of the curve a is always obtained in a lower frequency band.
[0031]
Therefore, in the first embodiment, if the cutoff frequency f0 of the first filter 16 and the second filter 18 is set to around 1.65 kHz, a higher sensitivity than the frequency characteristic a according to the related art can be secured over the entire band. Become.
Further, in a frequency band higher than f0, a sharper directional characteristic can be obtained as compared with the related art.
[0032]
<Example 2>
Next, a case where the microphone cell interval d is set to 17 mm will be described as a second embodiment.
When d = 17 mm is applied to the above equation 1, the frequency characteristic of the differential signal becomes curve a in FIG. 4, and the frequency characteristic of the fourth-order sound pressure gradient equivalent signal (S1) obtained by further taking the differential signal between the differential signals is 4 becomes the curve b in FIG.
In addition, the frequency characteristic of the difference signal (S2) between the first microphone cell 10 and the third microphone cell 12 where the microphone cell interval is 2d = 34 mm is a curve c in FIG.
[0033]
The frequency at which the maximum output of the curves a and b in FIG. 4 is obtained is 10 kHz, and the curve b shows that higher sensitivity can be obtained in a frequency band higher than 3.35 kHz.
On the other hand, the frequency at which the maximum output of the curve c in FIG. 4 is obtained is 5 kHz, which is the characteristic itself of the secondary sound pressure gradient type according to the prior art.
[0034]
Therefore, if the cutoff frequency f0 of the first filter 16 and the second filter 18 of the second embodiment is set to around 5 kHz, the high-frequency band can be extended to 10 kHz while maintaining the conventional characteristics in the band of 5 kHz or less. Becomes possible.
Also, the extended directivity on the high frequency side becomes very sharp, equivalent to the fourth sound pressure gradient.
[0035]
【The invention's effect】
As described above, according to the present invention, the low-pass sensitivity is improved while sharpening the directional characteristics on the high-pass side, or the high-pass band is expanded without deteriorating the middle-low-pass sensitivity (and the expanded The directivity can be very sharp).
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment of a super-directional microphone device according to the present invention, wherein (A) shows an arrangement of three unidirectional microphone cells, and (B) shows an overall configuration. FIG.
FIG. 2 is a directional characteristic diagram illustrating an embodiment of the present invention.
FIG. 3 is a frequency characteristic diagram for explaining the first embodiment;
FIG. 4 is a frequency characteristic diagram illustrating the second embodiment.
FIG. 5 is a block diagram showing a configuration of a conventional directional microphone device.
[Explanation of symbols]
1, 2,... Microphone 3, inverting circuit 4, mixing circuit 5, equalizer 10, first microphone cell 11, second microphone cell 12, third microphone cell 13, first difference circuit 14, Second difference circuit, 15: third difference circuit, 16: first filter (HPF: high-pass filter), 17: fourth difference circuit, 18: second filter (LPF: low-pass filter), 19: addition Circuit, 20: equalizer circuit, 31: phase inversion circuit, 32, 42: mix circuit, 41: phase shift circuit.

Claims (4)

単一指向性マイクロフォンセルを配置して、前方向に指向性を持つマイクロフォン装置において、3個の単一指向性マイクロフォンセルを前後方向に所定の間隔を隔てて配置(以下、配置順に第1マイクロフォンセル、第2マイクロフォンセル、第3マイクロフォンセルという)し、前記第1マイクロフォンセルと前記第2マイクロフォンセルの出力信号の差分信号を抽出する第1差分回路と、前記第2マイクロフォンセルと前記第3マイクロフォンセルの出力信号の差分信号を抽出する第2差分回路と、前記第1差分回路と前記第2差分回路の出力信号同士の差分信号を抽出する第3差分回路と、前記第3差分回路の出力信号から所定の周波数より高い周波数帯域信号を抽出する第1フィルタと、前記第1マイクロフォンセルと前記第3マイクロフォンセルの出力信号の差分信号を抽出する第4差分回路と、前記第4差分回路の出力信号から所定の周波数より低い周波数帯域信号を抽出する第2フィルタと、前記第1フィルタの出力信号と前記第2フィルタの出力信号の帯域境界付近の位相を合わせてミックス処理する加算回路と、前記加算回路の出力信号の周波数特性を補正するイコライザ回路とを有することを特徴とする超指向性マイクロフォン装置。In a microphone device having unidirectional microphone cells arranged therein and having directivity in the forward direction, three unidirectional microphone cells are arranged at predetermined intervals in the front-rear direction (hereinafter, the first microphone is arranged in the order of arrangement). Cell, a second microphone cell, and a third microphone cell), a first difference circuit for extracting a difference signal between the output signals of the first microphone cell and the second microphone cell, the second microphone cell and the third microphone cell. A second differential circuit for extracting a differential signal of the output signal of the microphone cell; a third differential circuit for extracting a differential signal between the output signals of the first differential circuit and the second differential circuit; A first filter for extracting a frequency band signal higher than a predetermined frequency from an output signal; the first microphone cell and the third filter; A fourth difference circuit for extracting a difference signal of the output signal of the crophone cell, a second filter for extracting a frequency band signal lower than a predetermined frequency from the output signal of the fourth difference circuit, and an output signal of the first filter A super-directional microphone, comprising: an adder circuit for performing a mixing process by adjusting a phase near a band boundary of an output signal of the second filter, and an equalizer circuit for correcting a frequency characteristic of an output signal of the adder circuit. apparatus. 請求項1に記載の超指向性マイクロフォン装置において、各前記差分回路は、前方に配置されている側のマイクロフォンセルの出力信号の位相を反転させる位相反転回路と、後方に配置されている側のマイクロフォンセルの出力信号と前記位相反転回路からの出力信号とをミックス処理するミックス回路を有することを特徴とする超指向性マイクロフォン装置。2. The super-directional microphone device according to claim 1, wherein each of the difference circuits includes a phase inversion circuit for inverting a phase of an output signal of a microphone cell on a front side and a phase inversion circuit on a rear side. A super directional microphone device comprising a mix circuit that mixes an output signal of a microphone cell and an output signal from the phase inversion circuit. 請求項1に記載の超指向性マイクロフォン装置において、前記加算回路は、前記第2フィルタからの出力信号の位相を前記第1フィルタの出力信号の位相に合わせた信号を出力する移相回路と、この移相回路からの出力信号と前記第1フィルタからの出力信号とをミックス処理するミックス回路とを有することを特徴とする超指向性マイクロフォン装置。2. The superdirective microphone device according to claim 1, wherein the adding circuit outputs a signal in which a phase of an output signal from the second filter matches a phase of an output signal of the first filter, and A super directional microphone device comprising: a mix circuit that mixes an output signal from the phase shift circuit and an output signal from the first filter. 3個の単一指向性マイクロフォンセルを前後方向に所定の間隔を隔てて配置し、隣接するマイクロフォンセルの2次音圧傾度信号を2つ求め、これらの2次音圧傾度信号から求めた4次音圧傾度相当信号に高域通過フィルタを通し、先頭のマイクロフォンセルと最後尾のマイクロフォンセルの2次音圧傾度信号を求めて低域通過フィルタを通し、これら2つのフィルタからの出力信号の帯域境界付近の位相を合わせてミックス処理して、周波数特性を補正するイコライザ処理をすることを特徴とする超指向性マイクロフォン装置。Three unidirectional microphone cells are arranged at predetermined intervals in the front-rear direction, two secondary sound pressure gradient signals of adjacent microphone cells are obtained, and 4 secondary sound pressure gradient signals are obtained from these secondary sound pressure gradient signals. The signal corresponding to the next sound pressure gradient is passed through a high-pass filter, the secondary sound pressure gradient signals of the first microphone cell and the last microphone cell are obtained and passed through a low-pass filter, and the output signals of these two filters are output. A super directional microphone device that performs an equalizer process for correcting a frequency characteristic by performing a mixing process by adjusting a phase near a band boundary.
JP2002337933A 2002-11-21 2002-11-21 Super-directional microphone device Pending JP2004173053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337933A JP2004173053A (en) 2002-11-21 2002-11-21 Super-directional microphone device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337933A JP2004173053A (en) 2002-11-21 2002-11-21 Super-directional microphone device

Publications (1)

Publication Number Publication Date
JP2004173053A true JP2004173053A (en) 2004-06-17

Family

ID=32701299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337933A Pending JP2004173053A (en) 2002-11-21 2002-11-21 Super-directional microphone device

Country Status (1)

Country Link
JP (1) JP2004173053A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062849A1 (en) * 2006-11-22 2008-05-29 Funai Electric Advanced Applied Technology Research Institute Inc. Integrated circuit device, voice input device and information processing system
WO2008062850A1 (en) * 2006-11-22 2008-05-29 Funai Electric Advanced Applied Technology Research Institute Inc. Voice input device, its manufacturing method and information processing system
WO2008062848A1 (en) * 2006-11-22 2008-05-29 Funai Electric Advanced Applied Technology Research Institute Inc. Voice input device, its manufacturing method and information processing system
US10212502B2 (en) 2016-12-13 2019-02-19 Hyundai Motor Company Microphone having a sound delay filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062849A1 (en) * 2006-11-22 2008-05-29 Funai Electric Advanced Applied Technology Research Institute Inc. Integrated circuit device, voice input device and information processing system
WO2008062850A1 (en) * 2006-11-22 2008-05-29 Funai Electric Advanced Applied Technology Research Institute Inc. Voice input device, its manufacturing method and information processing system
WO2008062848A1 (en) * 2006-11-22 2008-05-29 Funai Electric Advanced Applied Technology Research Institute Inc. Voice input device, its manufacturing method and information processing system
US8638955B2 (en) 2006-11-22 2014-01-28 Funai Electric Advanced Applied Technology Research Institute Inc. Voice input device, method of producing the same, and information processing system
US8731693B2 (en) 2006-11-22 2014-05-20 Funai Electric Advanced Applied Technology Research Institute Inc. Voice input device, method of producing the same, and information processing system
US9025794B2 (en) 2006-11-22 2015-05-05 Funai Electric Co., Ltd. Integrated circuit device, voice input device and information processing system
US10212502B2 (en) 2016-12-13 2019-02-19 Hyundai Motor Company Microphone having a sound delay filter

Similar Documents

Publication Publication Date Title
EP0932325B1 (en) Apparatus and method for localizing sound image
TWI743812B (en) System for processing an input audio signal, non-transitory computer readable medium, and method of processing an input audio signal
KR101524463B1 (en) Method and apparatus for focusing the sound through the array speaker
CN108632714A (en) Sound processing method, device and the mobile terminal of loud speaker
US20230362532A1 (en) Sound generator wearable on the head, signal processor and method for operating a sound generator or a signal processor
JP2002218583A (en) Sound field synthesis arithmetic method and device
TWI747252B (en) Systems, methods, and devices for audio processing
JP2004173053A (en) Super-directional microphone device
JPWO2009113333A1 (en) Signal processing apparatus and signal processing method
JP4371622B2 (en) Pseudo stereo circuit
US8019086B2 (en) Stereo synthesizer using comb filters and intra-aural differences
Gerzon Applications of Blumlein shuffling to stereo microphone techniques
TW200524271A (en) Sound quality enhancement circuit for audio signals and audio amplifier circuit using the same
JP3153912B2 (en) Microphone device
JP3620133B2 (en) Stereo microphone device
JP2001326990A (en) Acoustic signal processor and its processing method
JP3368835B2 (en) Sound signal processing circuit
TWI315159B (en) The frequency response shaping analog hearing aid
TWI843046B (en) Head-mounted sound generator, signal processor and method for operating a sound generator or a signal processor
JP2001008285A (en) Method and apparatus for voice band signal processing
JPH11187478A (en) Microphone system
JPS58190199A (en) Pseudo stereo system
US20060182284A1 (en) System and method for processing audio data for narrow geometry speakers
JPH0764582A (en) On-vehicle sound field correcting device
US9204237B2 (en) Method of generating left and right surround signals from a stereo sound signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401