JP2004172997A - Two-band shared patch antenna - Google Patents

Two-band shared patch antenna Download PDF

Info

Publication number
JP2004172997A
JP2004172997A JP2002337021A JP2002337021A JP2004172997A JP 2004172997 A JP2004172997 A JP 2004172997A JP 2002337021 A JP2002337021 A JP 2002337021A JP 2002337021 A JP2002337021 A JP 2002337021A JP 2004172997 A JP2004172997 A JP 2004172997A
Authority
JP
Japan
Prior art keywords
patch
patch electrode
window
antenna
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002337021A
Other languages
Japanese (ja)
Inventor
Genshu To
元珠 竇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2002337021A priority Critical patent/JP2004172997A/en
Publication of JP2004172997A publication Critical patent/JP2004172997A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-band common patch antenna which is capable of transmitting/receiving signal waves from two kinds of frequency bands and which is easy to be miniaturized and thinned. <P>SOLUTION: The patch antenna 10 comprises a patch electrode 12 having a window 13 which has no conductor, a dielectric board 11 with the patch electrode 12 laid on one side thereof, and a ground conductor 14 provided at least at the opposite position to the patch electrode 12 through the dielectric board 11. The patch electrode 12 is fed selectively with a first high-frequency signal for resonating the entire patch electrode 12 and a second high-frequency signal higher than the first high-frequency signal for resonating the window 13. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、2種類の周波数帯域(バンド)の信号波の送信や受信が可能で、無線LANカード等に実装して好適な2バンド共用パッチアンテナに関する。
【0002】
【従来の技術】
近年、有線ケ−ブルを使わずに、所定周波数帯域(例えば2.4GHz帯域)の信号波の送受信で情報交換が行える無線LANが普及しつつある。パソコン等の電子機器を無線LANに対応させる際には、送受信機能を備えた無線LANカードを装填することが多く、かかる無線LANカードには、無線LANで使用される直線偏波の信号波を送受信するためのアンテナや、送信回路、受信回路等が実装されている。
【0003】
この種の無線LANカードに実装されるアンテナにはかなりの小型化が要求されるため、従来より、図7に示すようなパッチアンテナが広く採用されている。同図に示すパッチアンテナ1は、誘電体基板2の片面に銅箔等からなるパッチ電極3を設け、このパッチ電極3を誘電体基板2を介して接地導体4と対向させると共に、マイクロストリップライン5等によってパッチ電極3に所定の高周波信号を給電するという構成になっている。ここで、接地導体4は例えば誘電体基板2の裏面のほぼ全面に設けられており、マイクロストリップライン5は図示せぬアンテナ回路に接続されている。
【0004】
このように概略構成されたパッチアンテナ1においては、パッチ電極3を励振して前記高周波信号に対応した電界を生じさせることにより、パッチ電極3からその電極面に対して垂直な前方へ信号波を放射させることができる。なお、図7では外形が矩形のパッチ電極3にマイクロストリップライン5が接続されているが、パッチ電極3の外形は円形等であってもよく、また、給電ピンやスルーホールによってパッチ電極3に給電してもよい。
【0005】
ところで、現在は無線LANシステムに2.4GHz帯域の信号波が広く使用されているが、将来的には、より高周波な別の帯域(例えば5.2GHz帯域)の信号波を使用する送受信システムも普及するものと考えられている。そうなると、高低2種類の周波数帯域の信号波が送受信可能な小型アンテナの必要性が高まる。
【0006】
このように2バンドで共用できる比較的小型のアンテナとしては、従来、上面にパッチ電極が設けられた第1の誘電体基板と、上面に別のパッチ電極が設けられ裏面全面に接地導体が設けられた第2の誘電体基板と、裏面に複数のマイクロストリップラインが設けられた第3の誘電体基板とを重ね合わせて構成される2パッチ積層型のアンテナが提案されている(例えば、特許文献1参照)。このものは、上から順に第1、第2、第3の誘電体基板が積層されており、上下の各パッチ電極に対する給電は、それぞれ、接地導体の複数箇所に形成されたスリットを介して異なるマイクロストリップラインから行われるようになっている。そして、各パッチ電極の形状や大きさが異なるため、第1の誘電体基板上のパッチ電極に所定の高周波信号を給電して共振させることにより第1の共振周波数の信号波を放射させることができ、また、第2の誘電体基板上のパッチ電極に別の高周波信号を給電して共振させることにより第2の共振周波数の信号波を放射させることができる。
【0007】
【特許文献1】
特開平7−249933号公報(第4〜6頁、図1)
【0008】
【発明が解決しようとする課題】
しかしながら、前述した従来の2パッチ積層型アンテナは、2種類のパッチ電極を上下に分けて配設する構成なので、誘電体基板を含めた全体の厚さ寸法が大きくなってしまい、無線LANカード等に実装するうえで必要な薄型化が困難であるという問題があった。そこで、薄型化を図るために2種類のパッチ電極を同一の誘電体基板上に並設するという構成も考えられるが、この方式では全体の面積が不所望に増大してしまうため、無線LANカード等に実装するうえで必要な小型化が実現できないという別の問題があった。。
【0009】
本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、2種類の周波数帯域の信号波を送受信可能で小型薄型化が容易な2バンド共用パッチアンテナを提供することにある。
【0010】
【課題を解決するための手段】
上述した目的を達成するために、本発明の2バンド共用パッチアンテナでは、導体の存しない窓部を有するパッチ電極と、このパッチ電極が片面に設けられた誘電体基板と、この誘電体基板を介して少なくとも前記パッチ電極と対向する位置に設けられた接地導体とを備え、前記パッチ電極に対して、該パッチ電極全体を共振させるための第1の高周波信号と、この第1の高周波信号よりも高い周波数で前記窓部を共振させるための第2の高周波信号とが選択的に給電されるように構成した。
【0011】
このように構成されたアンテナは、パッチ電極に給電すると該パッチ電極内に開設されている窓部を横切る電界が生じるので、該窓部の形状や大きさを適宜選択して所定の高周波信号を給電することにより、パッチ電極全体を励振するときの共振長よりも短い共振長で該窓部を共振させることができる。したがって、パッチ電極の数は一つだけであるが、第1の高周波信号を給電してパッチ電極全体を共振させれば第1の共振周波数の信号波が放射され、第2の高周波信号を給電して窓部を共振させれば第2の共振周波数の信号波が放射されることになって、高低2種類の周波数帯域の信号波が送受信可能となり、小型で薄型の2バンド共用パッチアンテナが得られる。
【0012】
また、かかる構成において、窓部の形状を細長い略長方形にしておけば、該窓部をスロットアンテナのように効率よく動作させることが可能となる。この場合、パッチ電極の外縁の辺に対する窓部の傾きによってインピーダンスが変化するので、窓部をパッチ電極の外縁の辺に対して適宜角度だけ傾けることにより、給電点におけるインピーダンスのマッチングが図りやすくなる。
【0013】
【発明の実施の形態】
発明の実施の形態について図面を参照して説明すると、図1は本発明の実施形態例に係る2バンド共用パッチアンテナの平面図、図2は該パッチアンテナが接続されているアンテナ回路の構成図、図3は該パッチアンテナのSパラメータ(散乱パラメータ)を示す共振特性図である。
【0014】
図1に示すパッチアンテナ10は、外形が正方形状のパッチ電極12内に導体の存しない領域である小さな正方形状の窓部13を形成しておき、パッチ電極12の全体が共振する周波数よりも高い周波数で窓部13を共振させるようにしたアンテナである。銅箔等からなるパッチ電極12は誘電体基板11の片面に設けられており、誘電体基板11の他面(裏面)にはほぼ全面に接地導体14が設けられている。また、パッチ電極12の所定位置には、インピーダンスを整合させた状態でマイクロストリップライン15が接続されている。このマイクロストリップライン15は、図2に示す2.45GHz用のアンテナ回路16と5.2GHz用のアンテナ回路17とに接続されている。つまり、このパッチアンテナ10は、マイクロストリップライン15を介してパッチ電極12に対し、2.45GHz帯域の第1の高周波信号と5.2GHz帯域の第2の高周波信号とが選択的に給電できるようになっている。
【0015】
なお、アンテナ回路16には、2.45GHz帯域の信号を通過させるバンドパスフィルタ16aと、送信モードと受信モードを切り換える回路16bと、2.45GHz帯域の信号を送信する回路16cと、2.45GHz帯域の信号を受信する回路16dとが具備されている。同様に、アンテナ回路17には、5.2GHz帯域の信号を通過させるバンドパスフィルタ17aと、送信モードと受信モードを切り換える回路17bと、5.2GHz帯域の信号を送信する回路17cと、5.2GHz帯域の信号を受信する回路17dとが具備されている。
【0016】
かかる構成のパッチアンテナ10は、パッチ電極12に給電する高周波信号の周波数に応じて、給電点のSパラメータ(いわゆるS11)が図3に示すように変化し、2.45GHzと5.2GHzという異なる周波数帯域で共振するデュアルバンド対応のアンテナとなっている。具体的には、パッチ電極12にアンテナ回路16から2.45GHz帯域の信号を給電すれば、パッチ電極12の全体を共振させることができ、そのときの共振長をλとすると、パッチ電極12の外縁の一辺の長さは約(λ/2)となる。ここで、共振長をλは2.45GHzの信号波の波長λlow(≒120mm)に誘電体基板11による波長短縮率を乗じた値であり、誘電体の比誘電率をεとすると、λ=λlow/√εとなる。本実施形態例においては、誘電体としてε≒9の材料を使用しているためλ≒40mmとなり、パッチ電極12の外縁の一辺の長さが約20mmに設定してある。
【0017】
また、パッチ電極12にアンテナ回路17から5.2GHz帯域の信号を給電すれば、窓部13を横切る電界が生じて、パッチ電極12の全体ではなく窓部13を共振させることができ、そのときの共振長をλとすると、窓部13の幅寸法wは約(λ/2)となる。ここで、共振長をλは5.2GHzの信号波の波長λhigh(≒60mm)に誘電体基板11による波長短縮率を乗じた値であり、λ=λhigh/√εとなるため、本実施形態例においては、λ≒20mmとなり、窓部13の幅寸法wが約10mmに設定してある。
【0018】
このように本実施形態例に係るパッチアンテナ10にはパッチ電極12が一つだけしかなく、複数のパッチ電極を積層したり並設したりする構成にはなっていないが、パッチ電極12内に設けた窓部13を活用することによって、2.45GHzと5.2GHzという高低2種類の周波数帯域の信号波を送受信することができる。それゆえ、このパッチアンテナ10は小型で薄型の2バンド共用アンテナとして使用することができ、無線LANカード等にも容易に実装することが可能となる。
【0019】
なお、パッチ電極12の外形や窓部13の形状は正方形に限定されるものではなく、例えば外形が円形のパッチ電極内に矩形や円形の窓部を設けてもよい。また、パッチ電極12に対する給電を、マイクロストリップライン15ではなく給電ピンやスルーホールによって行ってもよい。
【0020】
図4は本発明の他の実施形態例に係る2バンド共用パッチアンテナの平面図であり、図1に対応する部分には同一符号を付してある。
【0021】
図4に示すパッチアンテナ20は、窓部13を細長い略長方形にした点が前述した実施形態例と相違している。このような形状の窓部13は、スロットアンテナのように効率よく動作させやすいという利点がある。
【0022】
また、図5に示すパッチアンテナ30は、マイクロストリップラインではなく給電ピン18によってパッチ電極12に対する給電を行うというもので、給電方法だけが図4に示すパッチアンテナ20と相違している。
【0023】
図6は本発明のさらに他の実施形態例に係る2バンド共用パッチアンテナの平面図であり、図4に対応する部分には同一符号を付してある。
【0024】
図6に示すパッチアンテナ40は、窓部13を斜めに傾けた点が、図4に示すパッチアンテナ20と相違している。つまり、パッチ電極12の外縁の辺に対する窓部13の傾きによってインピーダンスが変化するので、窓部13をパッチ電極12の外縁の辺に対して適宜角度だけ傾けることにより、給電点におけるインピーダンスのマッチングが図りやすくなる。
【0025】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0026】
パッチ電極内に設ける窓部の形状や大きさを適宜選択して所定の高周波信号を給電することにより、パッチ電極全体を励振するときの共振長よりも短い共振長で該窓部を共振させることができるので、複数のパッチ電極を配設しなくても高低2種類の周波数帯域の信号波が送受信可能となり、小型で薄型の2バンド共用パッチアンテナを実現することができる。
【図面の簡単な説明】
【図1】本発明の実施形態例に係る2バンド共用パッチアンテナの平面図である。
【図2】該パッチアンテナが接続されているアンテナ回路の構成図である。
【図3】該パッチアンテナのSパラメータを示す共振特性図である。
【図4】本発明の他の実施形態例に係る2バンド共用パッチアンテナの平面図である。
【図5】本発明のさらに他の実施形態例に係る2バンド共用パッチアンテナの平面図である。
【図6】本発明のさらに他の実施形態例に係る2バンド共用パッチアンテナの平面図である。
【図7】従来の一般的なパッチアンテナの構成を示す平面図である。
【符号の説明】
10,20,30,40 パッチアンテナ
11 誘電体基板
12 パッチ電極
13 窓部
14 接地導体
15 マイクロストリップライン
16,17 アンテナ回路
18 給電ピン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a two-band shared patch antenna capable of transmitting and receiving signal waves of two kinds of frequency bands, and suitable for being mounted on a wireless LAN card or the like.
[0002]
[Prior art]
In recent years, wireless LANs that can exchange information by transmitting and receiving signal waves in a predetermined frequency band (for example, a 2.4 GHz band) without using a wired cable are becoming widespread. When an electronic device such as a personal computer or the like is compatible with a wireless LAN, a wireless LAN card having a transmission / reception function is often mounted. The wireless LAN card has a linearly polarized signal wave used in the wireless LAN. An antenna for transmitting and receiving, a transmitting circuit, a receiving circuit, and the like are mounted.
[0003]
Since an antenna mounted on this type of wireless LAN card requires a considerable reduction in size, a patch antenna as shown in FIG. 7 has been widely used. The patch antenna 1 shown in FIG. 1 is provided with a patch electrode 3 made of copper foil or the like on one surface of a dielectric substrate 2, this patch electrode 3 is opposed to a ground conductor 4 via the dielectric substrate 2, and a microstrip line is provided. 5 and the like, a predetermined high-frequency signal is supplied to the patch electrode 3. Here, the ground conductor 4 is provided, for example, on substantially the entire back surface of the dielectric substrate 2, and the microstrip line 5 is connected to an antenna circuit (not shown).
[0004]
In the patch antenna 1 having such a schematic configuration, by exciting the patch electrode 3 to generate an electric field corresponding to the high-frequency signal, a signal wave is generated from the patch electrode 3 to the front perpendicular to the electrode surface. Can be radiated. In FIG. 7, the microstrip line 5 is connected to the patch electrode 3 having a rectangular outer shape. However, the outer shape of the patch electrode 3 may be circular or the like. Power may be supplied.
[0005]
By the way, a 2.4 GHz band signal wave is widely used in a wireless LAN system at present, but a transmission / reception system using another higher frequency band (for example, a 5.2 GHz band) signal wave will be used in the future. It is considered to be widespread. In this case, the need for a small antenna capable of transmitting and receiving signal waves in two different frequency bands, high and low, increases.
[0006]
Conventionally, a relatively small antenna that can be shared by two bands as described above includes a first dielectric substrate having a patch electrode provided on the upper surface and another patch electrode provided on the upper surface and a ground conductor provided on the entire back surface. There has been proposed a two-patch stacked antenna in which a second dielectric substrate provided and a third dielectric substrate provided with a plurality of microstrip lines on the back surface are overlapped (for example, see Patent Reference 1). In this device, first, second, and third dielectric substrates are stacked in order from the top, and power supply to each of the upper and lower patch electrodes differs through slits formed at a plurality of locations of the ground conductor. It is performed from a microstrip line. Since the shape and size of each patch electrode are different, a predetermined high-frequency signal is fed to the patch electrode on the first dielectric substrate to resonate, thereby emitting a signal wave of the first resonance frequency. In addition, by feeding another high-frequency signal to the patch electrode on the second dielectric substrate and causing it to resonate, a signal wave of the second resonance frequency can be emitted.
[0007]
[Patent Document 1]
JP-A-7-249933 (pages 4 to 6, FIG. 1)
[0008]
[Problems to be solved by the invention]
However, the above-described conventional two-patch stacked antenna has a configuration in which two types of patch electrodes are separately arranged at the top and bottom, so that the entire thickness dimension including the dielectric substrate becomes large, and a wireless LAN card or the like is used. There is a problem that it is difficult to reduce the thickness required for mounting on a semiconductor device. In order to reduce the thickness of the wireless LAN card, it is conceivable to arrange two types of patch electrodes side by side on the same dielectric substrate. However, this method undesirably increases the entire area. There is another problem that the required miniaturization for mounting on a device cannot be realized. .
[0009]
The present invention has been made in view of such circumstances of the related art, and an object of the present invention is to provide a two-band shared patch antenna that can transmit and receive signal waves in two kinds of frequency bands and that can be easily reduced in size and thickness. It is in.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a two-band shared patch antenna according to the present invention includes a patch electrode having a window having no conductor, a dielectric substrate provided with the patch electrode on one surface, and a dielectric substrate provided with the patch electrode. A first high-frequency signal for causing the entire patch electrode to resonate with the patch electrode, and a first high-frequency signal for causing the entire patch electrode to resonate with the patch electrode. The second high-frequency signal for causing the window to resonate at a high frequency is selectively supplied with power.
[0011]
The antenna configured as described above generates an electric field across the window formed in the patch electrode when power is supplied to the patch electrode. Therefore, the shape and size of the window are appropriately selected to generate a predetermined high-frequency signal. By supplying power, the window portion can resonate with a resonance length shorter than the resonance length when the entire patch electrode is excited. Therefore, although the number of patch electrodes is only one, if the first high-frequency signal is supplied to resonate the entire patch electrode, a signal wave of the first resonance frequency is radiated, and the second high-frequency signal is supplied. When the window portion is resonated, a signal wave of the second resonance frequency is radiated, and signal waves of two kinds of high and low frequency bands can be transmitted and received. can get.
[0012]
In such a configuration, if the shape of the window is elongated and substantially rectangular, the window can be operated efficiently like a slot antenna. In this case, since the impedance changes depending on the inclination of the window with respect to the outer edge of the patch electrode, the window can be inclined at an appropriate angle with respect to the outer edge of the patch electrode, so that impedance matching at the feeding point can be easily performed. .
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a plan view of a two-band shared patch antenna according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of an antenna circuit to which the patch antenna is connected. FIG. 3 is a resonance characteristic diagram showing S parameters (scattering parameters) of the patch antenna.
[0014]
In the patch antenna 10 shown in FIG. 1, a small square window 13 which is a region where a conductor does not exist is formed in a patch electrode 12 having a square outer shape, and a frequency higher than a frequency at which the entire patch electrode 12 resonates is formed. This is an antenna that resonates the window 13 at a high frequency. The patch electrode 12 made of copper foil or the like is provided on one surface of the dielectric substrate 11, and a ground conductor 14 is provided on almost the entire other surface (back surface) of the dielectric substrate 11. A microstrip line 15 is connected to a predetermined position of the patch electrode 12 in a state where the impedance is matched. The microstrip line 15 is connected to an antenna circuit 16 for 2.45 GHz and an antenna circuit 17 for 5.2 GHz shown in FIG. In other words, the patch antenna 10 can selectively feed the first high-frequency signal in the 2.45 GHz band and the second high-frequency signal in the 5.2 GHz band to the patch electrode 12 via the microstrip line 15. It has become.
[0015]
The antenna circuit 16 includes a band-pass filter 16a for passing a signal in a 2.45 GHz band, a circuit 16b for switching between a transmission mode and a reception mode, a circuit 16c for transmitting a signal in a 2.45 GHz band, and a 2.45 GHz band. And a circuit 16d for receiving a band signal. Similarly, the antenna circuit 17 includes a band-pass filter 17a that passes a signal in the 5.2 GHz band, a circuit 17b that switches between the transmission mode and the reception mode, a circuit 17c that transmits a signal in the 5.2 GHz band, and And a circuit 17d for receiving a signal in the 2 GHz band.
[0016]
In the patch antenna 10 having such a configuration, the S-parameter (so-called S11) of the feeding point changes as shown in FIG. 3 according to the frequency of the high-frequency signal fed to the patch electrode 12, and is different between 2.45 GHz and 5.2 GHz. It is a dual-band compatible antenna that resonates in the frequency band. Specifically, if power supply signals 2.45GHz band from the antenna circuit 16 to the patch electrode 12, it is possible to resonate the whole patch electrode 12, when the resonant length of time the lambda 1, the patch electrode 12 the length of the outer edge of one side is about (λ 1/2). Here, the resonance length λ 1 is a value obtained by multiplying the wavelength λ low (≒ 120 mm) of the signal wave of 2.45 GHz by the wavelength shortening rate by the dielectric substrate 11, and the relative dielectric constant of the dielectric is ε. λ 1 = λ low / √ε. In the present embodiment, λ 1 ≒ 40 mm because the material of ε ≒ 9 is used as the dielectric, and the length of one side of the outer edge of the patch electrode 12 is set to about 20 mm.
[0017]
If a signal in the 5.2 GHz band is fed from the antenna circuit 17 to the patch electrode 12, an electric field crossing the window 13 is generated, and the window 13 can be resonated instead of the entire patch electrode 12. When the resonance length is referred to as lambda 2, the width w of the window 13 is about (λ 2/2). Here, the resonance length λ 2 is a value obtained by multiplying the wavelength λ high (≒ 60 mm) of the 5.2 GHz signal wave by the wavelength shortening rate of the dielectric substrate 11, and λ 2 = λ high / √ε. In this embodiment, λ 2 ≒ 20 mm, and the width dimension w of the window 13 is set to about 10 mm.
[0018]
As described above, the patch antenna 10 according to the present embodiment has only one patch electrode 12, and is not configured to stack or arrange a plurality of patch electrodes. By utilizing the window 13 provided, it is possible to transmit and receive signal waves in two kinds of high and low frequency bands of 2.45 GHz and 5.2 GHz. Therefore, the patch antenna 10 can be used as a small and thin two-band shared antenna, and can be easily mounted on a wireless LAN card or the like.
[0019]
The outer shape of the patch electrode 12 and the shape of the window 13 are not limited to a square. For example, a rectangular or circular window may be provided in a patch electrode having a circular outer shape. The power supply to the patch electrode 12 may be performed by a power supply pin or a through hole instead of the microstrip line 15.
[0020]
FIG. 4 is a plan view of a two-band shared patch antenna according to another embodiment of the present invention, and portions corresponding to FIG. 1 are denoted by the same reference numerals.
[0021]
The patch antenna 20 shown in FIG. 4 is different from the above-described embodiment in that the window 13 is formed in a slender and substantially rectangular shape. The window 13 having such a shape has an advantage that it can be easily operated efficiently like a slot antenna.
[0022]
The patch antenna 30 shown in FIG. 5 is different from the patch antenna 20 shown in FIG. 4 only in the power supply method, in that the power is supplied to the patch electrode 12 by the power supply pin 18 instead of the microstrip line.
[0023]
FIG. 6 is a plan view of a two-band shared patch antenna according to still another embodiment of the present invention, and portions corresponding to FIG. 4 are denoted by the same reference numerals.
[0024]
The patch antenna 40 shown in FIG. 6 differs from the patch antenna 20 shown in FIG. 4 in that the window 13 is inclined obliquely. That is, since the impedance changes depending on the inclination of the window 13 with respect to the outer edge of the patch electrode 12, the impedance matching at the feeding point can be performed by tilting the window 13 by an appropriate angle with respect to the outer edge of the patch electrode 12. It will be easier to plan.
[0025]
【The invention's effect】
The present invention is implemented in the form described above, and has the following effects.
[0026]
By appropriately selecting the shape and size of the window provided in the patch electrode and feeding a predetermined high-frequency signal, the window resonates with a resonance length shorter than the resonance length when the entire patch electrode is excited. Therefore, signal waves in two different frequency bands, high and low, can be transmitted and received without providing a plurality of patch electrodes, and a small and thin two-band shared patch antenna can be realized.
[Brief description of the drawings]
FIG. 1 is a plan view of a two-band shared patch antenna according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of an antenna circuit to which the patch antenna is connected.
FIG. 3 is a resonance characteristic diagram showing S parameters of the patch antenna.
FIG. 4 is a plan view of a two-band shared patch antenna according to another embodiment of the present invention.
FIG. 5 is a plan view of a two-band shared patch antenna according to still another embodiment of the present invention.
FIG. 6 is a plan view of a two-band shared patch antenna according to still another embodiment of the present invention.
FIG. 7 is a plan view showing a configuration of a conventional general patch antenna.
[Explanation of symbols]
10, 20, 30, 40 Patch antenna 11 Dielectric substrate 12 Patch electrode 13 Window 14 Ground conductor 15 Microstrip line 16, 17 Antenna circuit 18 Feeding pin

Claims (3)

導体の存しない窓部を有するパッチ電極と、このパッチ電極が片面に設けられた誘電体基板と、この誘電体基板を介して少なくとも前記パッチ電極と対向する位置に設けられた接地導体とを備え、
前記パッチ電極に対して、該パッチ電極全体を共振させるための第1の高周波信号と、この第1の高周波信号よりも高い周波数で前記窓部を共振させるための第2の高周波信号とが選択的に給電されるように構成したことを特徴とする2バンド共用パッチアンテナ。
A patch electrode having a window portion without a conductor, a dielectric substrate provided with the patch electrode on one side, and a ground conductor provided at least at a position facing the patch electrode via the dielectric substrate. ,
A first high-frequency signal for causing the entire patch electrode to resonate with the patch electrode and a second high-frequency signal for resonating the window at a frequency higher than the first high-frequency signal are selected. A two-band shared patch antenna characterized in that it is configured to be electrically fed.
請求項1の記載において、前記窓部の形状が細長い略長方形であることを特徴とする2バンド共用パッチアンテナ。2. The two-band shared patch antenna according to claim 1, wherein the shape of the window is an elongated and substantially rectangular shape. 請求項2の記載において、前記窓部を前記パッチ電極の外縁の辺に対して傾けたことを特徴とする2バンド共用パッチアンテナ。3. The two-band shared patch antenna according to claim 2, wherein the window is inclined with respect to an outer edge of the patch electrode.
JP2002337021A 2002-11-20 2002-11-20 Two-band shared patch antenna Withdrawn JP2004172997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337021A JP2004172997A (en) 2002-11-20 2002-11-20 Two-band shared patch antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337021A JP2004172997A (en) 2002-11-20 2002-11-20 Two-band shared patch antenna

Publications (1)

Publication Number Publication Date
JP2004172997A true JP2004172997A (en) 2004-06-17

Family

ID=32700689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337021A Withdrawn JP2004172997A (en) 2002-11-20 2002-11-20 Two-band shared patch antenna

Country Status (1)

Country Link
JP (1) JP2004172997A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014265A (en) * 2004-05-27 2006-01-12 Nissei Electric Co Ltd Wideband element and wideband antenna including its element
JP2007012710A (en) * 2005-06-28 2007-01-18 Tdk Corp Generator with built-in antenna
JP2010056683A (en) * 2008-08-26 2010-03-11 Nitta Ind Corp Wireless ic tag and wireless communication system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122104A (en) * 1990-09-13 1992-04-22 Mitsubishi Electric Corp Two-frequency shaped antenna
JPH0685487B2 (en) * 1985-05-18 1994-10-26 日本電装株式会社 Dual antenna for dual frequency
JPH09326628A (en) * 1996-06-07 1997-12-16 Mitsubishi Electric Corp Antenna system
JPH1093332A (en) * 1996-09-13 1998-04-10 Nippon Antenna Co Ltd Dual resonance inverted-f shape antenna
JPH10276034A (en) * 1997-02-03 1998-10-13 Tdk Corp Printed antenna and resonance frequency adjustment method therefor
WO1999038227A1 (en) * 1998-01-27 1999-07-29 Kabushiki Kaisha Toshiba Multifrequency antenna
JPH11251825A (en) * 1998-03-03 1999-09-17 Kenwood Corp Multi-ple frequency resonance-type inverted f-type antenna
JP2002223114A (en) * 2000-11-22 2002-08-09 Matsushita Electric Ind Co Ltd Antenna and radio equipment using it
JP2002271133A (en) * 2001-03-09 2002-09-20 Sharp Corp High-frequency antenna and high-frequency communications equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685487B2 (en) * 1985-05-18 1994-10-26 日本電装株式会社 Dual antenna for dual frequency
JPH04122104A (en) * 1990-09-13 1992-04-22 Mitsubishi Electric Corp Two-frequency shaped antenna
JPH09326628A (en) * 1996-06-07 1997-12-16 Mitsubishi Electric Corp Antenna system
JPH1093332A (en) * 1996-09-13 1998-04-10 Nippon Antenna Co Ltd Dual resonance inverted-f shape antenna
JPH10276034A (en) * 1997-02-03 1998-10-13 Tdk Corp Printed antenna and resonance frequency adjustment method therefor
WO1999038227A1 (en) * 1998-01-27 1999-07-29 Kabushiki Kaisha Toshiba Multifrequency antenna
JPH11214917A (en) * 1998-01-27 1999-08-06 Toshiba Corp Multiple frequency antenna
JPH11251825A (en) * 1998-03-03 1999-09-17 Kenwood Corp Multi-ple frequency resonance-type inverted f-type antenna
JP2002223114A (en) * 2000-11-22 2002-08-09 Matsushita Electric Ind Co Ltd Antenna and radio equipment using it
JP2002271133A (en) * 2001-03-09 2002-09-20 Sharp Corp High-frequency antenna and high-frequency communications equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014265A (en) * 2004-05-27 2006-01-12 Nissei Electric Co Ltd Wideband element and wideband antenna including its element
JP2007012710A (en) * 2005-06-28 2007-01-18 Tdk Corp Generator with built-in antenna
JP2010056683A (en) * 2008-08-26 2010-03-11 Nitta Ind Corp Wireless ic tag and wireless communication system

Similar Documents

Publication Publication Date Title
JP4263820B2 (en) Flat antenna for circular polarization
US6741212B2 (en) Low profile dielectrically loaded meanderline antenna
JP2004007559A (en) Multiple-resonance antenna, antenna module, and radio device using the multiple-resonance antenna
US7339531B2 (en) Multi frequency magnetic dipole antenna structures and method of reusing the volume of an antenna
US20060232474A1 (en) Antenna system
JP2003309418A (en) Dipole antenna
US20020024473A1 (en) Low profile, high gain frequency tunable variable impedance transmission line loaded antenna
TW201010182A (en) Multiband monopole slot antenna
JP2005508099A (en) Multiband antenna for mobile equipment
JP2008219627A (en) Microstrip antenna
JP2007142876A (en) Polarization-common patch antenna
KR20050062082A (en) Internal antenna for mobile communication terminal
JP2002344238A (en) Polarized wave shared planar antenna
JP2005167730A (en) Multifrequency antenna and information terminal device equipped with the same
JP2004172997A (en) Two-band shared patch antenna
JP2004208226A (en) Two-band patch antenna
JP4155092B2 (en) Diversity antenna device and communication device including the same
JP2004208225A (en) Two-band patch antenna
JPH10247807A (en) Dielectric antenna
WO2011080904A1 (en) Antenna device
JP2004228982A (en) Dual band antenna
JP2004208224A (en) Two-band patch antenna
JP2006157845A (en) Antenna device
JP2004172996A (en) Two-band shared patch antenna
JP2004112652A (en) Flat antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060927