JP2004172991A - Surface wave instrument and its manufacturing method - Google Patents

Surface wave instrument and its manufacturing method Download PDF

Info

Publication number
JP2004172991A
JP2004172991A JP2002336941A JP2002336941A JP2004172991A JP 2004172991 A JP2004172991 A JP 2004172991A JP 2002336941 A JP2002336941 A JP 2002336941A JP 2002336941 A JP2002336941 A JP 2002336941A JP 2004172991 A JP2004172991 A JP 2004172991A
Authority
JP
Japan
Prior art keywords
film
idt
sio
tantalum
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002336941A
Other languages
Japanese (ja)
Inventor
Michio Kadota
道雄 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002336941A priority Critical patent/JP2004172991A/en
Publication of JP2004172991A publication Critical patent/JP2004172991A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface wave instrument of excellent frequency temperature characteristics, a large electromechanical coupling coefficient and small propagation loss. <P>SOLUTION: The surface wave device 1 is provided with a piezoelectric substrate 2 composed of 17°-58°rotated Y plate X propagation LiTaO<SB>3</SB>, an IDT 3 formed on the piezoelectric substrate 2 and composed of tantalum, for which a standard film thickness H/λ is in the range of 0.004-0.055 when defining a film thickness as H and the wavelength of surface waves as λ, and an SiO<SB>2</SB>film formed on the piezoelectric substrate 2 so as to cover the IDT 3, for which the standard film thickness Hs/λ is in the range of 0.10-0.40. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば表面波フィルタなどに用いられる表面波装置に関し、より詳細には、LiTaO基板を用いた表面波装置に関する。
【0002】
【従来の技術】
従来、帯域フィルタとして、40°〜42°回転Y板X伝搬LiTaO基板を用いた表面波装置が知られている(例えば、下記の非特許文献1)。RF帯の帯域フィルタでは、上記40°〜42°回転Y板X伝搬LiTaO基板上に、波長λで規格化された膜厚H/λが0.08〜0.10の厚みのAl膜によりIDTが形成されていた。
【0003】
上記のように、40°〜42°回転Y板X伝搬LiTaO基板を用いた従来の表面波装置では、周波数温度特性TCFが−33ppm/℃と比較的大きいため、より一層温度特性が良好である仕様を十分に満たすことができなかった。なお、従来、表面波装置の温度特性TCFを改善する方法として、LiTaO基板上にAlからなるIDTを形成した後に、SiO層を形成する方法が知られている(下記の特許文献1)。
【0004】
【非特許文献1】
1997年電子情報通信学会総合大会論文集:SA−10−6、P.500−501
【特許文献1】
特開平2−295212号公報
【0005】
【発明が解決しようとする課題】
しかしながら、AlからなるIDTを用いた共振子やフィルタを形成する場合、大きな電気機械結合係数Ksawや反射係数を得るには、後述の図4や図12に示すように、IDTの電極膜厚H/λ(Hは膜厚、λは表面波の波長)は、0.08〜0.10とかなり厚くしなければならない。このように、AlからなるIDTがかなり厚くされているため、図13(a)に示されているIDTが形成されている部分において、周波数温度特性を改善するためにSiO膜がその上に形成されると、図13(b),(c)に示すように、SiO膜において大きな段差が生じ、SiO膜にクラックが生じることがあった。そのため、クラックの発生により、弾性表面波フィルタのフィルタ特性が悪化しがちであった。
【0006】
加えて、AlからなるIDTの電極膜厚が厚いため、SiO膜の形成によるIDTの電極表面の凹凸を被覆する効果が十分でなく、それによって、温度特性が十分に改善されないことがあった。
【0007】
本発明の目的は、上述した従来技術の現状に鑑み、回転Y板X伝搬のLiTaO基板を用いた弾性表面波装置において、SiO膜の形成により周波数温度特性を改善し得るだけでなく、IDTの電極膜厚を薄くすることにより、SiO膜におけるクラックを防止することができると共に減衰定数も大幅に低減でき、従って、目的とするフィルタ特性などの電気的特性を得ることができ、かつIDTにおける電気機械結合係数及び反射係数が十分な大きさとされる、弾性表面波装置及びその製造方法を提供することにある
【0008】
【課題を解決するための手段】
本発明に係る表面波装置は、17°〜58°回転Y板X伝搬LiTaOからなる圧電基板と、前記圧電基板上に形成されており、膜厚をH、表面波の波長をλとしたときに、規格化膜厚H/λが0.004〜0.055であるタンタルよりなるIDTと、前記IDTを覆うように前記圧電基板上に形成されており、表面波の波長で規格化された膜厚Hs/λが0.10〜0.40であるSiO膜とを備える。
【0009】
本発明に係る表面波装置のある特定の局面では、上記IDTの規格化膜厚H/λは、0.01〜0.55の範囲、より好ましくは0.016〜0.045の範囲とされる。
【0010】
本発明に係る表面波装置の別の特定の局面では、上記圧電基板は、21°〜53°回転Y板X伝搬のLiTaO基板により構成される。
本発明においては、タンタル電極を用いることにより、Alを用いた場合に比べ、図4,図12に示すように、薄い電極膜厚で大きな電気機械結合係数と反射係数が得られる。
【0011】
本発明に係る弾性表面波装置のさらに他の特定の局面では、IDTの上面と、SiO膜との間に密着層が形成され、それによってSiO膜の膜剥がれを制御することができる。この場合、密着層は、IDTの上面だけでなく、LiTaO基板とSiO膜の界面にも形成されてもよい。また、上記密着層は、IDTの上面だけでなく、IDTとSiO膜の界面のほぼ全領域に形成されてもよい。すなわち、IDTの側面にも密着層が形成されていてもよい。
【0012】
本発明に係る弾性表面波装置のさらに別の特定の局面では、LiTaO基板上に、IDT以外の、少なくともバスバー及び外部との接続用電極パッドを含む複数の電極がさら形成されており、該複数の電極が、タンタルからなる下地電極層と、下地電極層上に形成されており、AlまたはAl合金からなる上層金属層とを有する下地金属層が、IDTと同じ工程で形成されることができ、さらに上層金属層がAlまたはAl合金からなるため、SiO膜の密着強度が高められるとともに、上記電極のコストを低減することができる。さらに、Alによるウェッジボンド性も高められる。
【0013】
本発明に係る弾性表面波装置では、好ましくは、表面波として漏洩弾性表面波が用いられ、本発明に従って、周波数温度特性に優れ、電気機械結合係数及び反射係数の大きなIDTを有する、伝搬定数の小さい漏洩弾性表面波を利用した弾性表面波装置を提供することができる。
【0014】
本発明の弾性表面波装置の製造方法は、17°〜58°回転Y板X伝搬のLiTaO基板を用意する工程と、前記LiTaO基板上に少なくとも1つのIDTを、タンタルを主成分とする金属を用いて形成する工程と、前記IDTを形成した後に、周波数調整を行う工程と、前記周波数調整後に、前記IDTを被覆するように前記LiTaO基板上にSiO膜を形成する工程とを備えることを特徴とする。タンタルを主成分とする金属とは、タンタルまたはタンタルを主成分とする合金の他、タンタル層と他の金属の積層構造であってタンタル層が主たる層の場合も含むものとする。
【0015】
本発明の製造方法の特定の局面では、上記IDTは、密度が7100kg/m以上の金属からなる電極と、タンタル電極とが積層されている構造を有する。
タンタルは、Alに比べて密度が高く、薄い電極膜厚で電気機械結合係数が大きくかつ反射係数が大きなIDTを容易に構成することができるため、SiO膜のクラックを防止することができる。さらに、SiO膜によって減衰定数を小さくすることができる。
【0016】
【発明の実施の形態】
以下、図面を参照しつつ、本発明の具体的な実施例を説明することにより、本発明を詳細に説明する。
【0017】
図1は、本発明の一実施形態に係る表面波装置の略図的断面図である。表面波装置1は、縦結合共振子型表面波フィルタであり、17°〜58°回転Y板LiTaOからなる圧電基板2を有する。圧電基板2上に、タンタル膜(Ta膜)よりなるIDT3a,3b及び反射器5a,5bが形成されている。IDT3a,3bの規格化膜厚H/λ(HはIDTの厚み、λは中心周波数における波長を示す)は0.004〜0.055の範囲とされている。また、IDT3a,3bを覆うように、圧電基板2上に、SiO膜4が形成されている。SiO膜4の規格化膜厚Hs/λ(HsはSiO膜の厚み、λは中心周波数における表面波の波長)は0.10〜0.40の範囲とされている。
【0018】
本実施例では上記のように、17°〜58°回転Y板X伝搬LiTaOからなる圧電基板2と、H/λ=0.004〜0.055であるタンタルよりなるIDT3a,3bと、Hs/λ=0.10〜0.40の範囲にあるSiO膜4とを用いているため、周波数温度係数TCFが小さく、電気機械結合係数Kが大きく、かつ伝搬損失が小さい表面波装置を提供することができる。これを、以下の具体的な実験例に基づき説明する。
【0019】
LiTaO基板を伝搬する表面波としては、レイリー波の他に、漏洩弾性表面波が存在する。漏洩弾性表面波は、レイリー波に比べて音速が速く、電気機械結合係数が大きい。しかしながら、漏洩弾性表面波は、エネルギーを基板内部に放射しながら伝搬する波である。従って、漏洩弾性表面波は、伝搬損失の原因となる減衰定数を有する。
【0020】
図2は、回転Y板X伝搬LiTaOにおけるオイラー角(0,θ,0)のθと、基板表面が電気的に短絡された場合の減衰定数(伝搬損失)αとの関係を示す。なお、回転角=θ−90度の関係である。
【0021】
図2から明らかなように、オイラー角のθが124°〜126°の範囲で減衰定数は小さい。この範囲を外れると、減衰定数は大きくなる。
また、比較的膜厚が厚いAlからなるIDTを形成した場合には、θ=130°〜132°で減衰定数が小さくなることが知られている(例えば、上記非特許文献1)。従って、従来、AlからなるIDTと、LiTaO基板とを組み合わせた構成では、θ=130°〜132°の回転Y板X伝搬のLiTaO基板が用いられていた。
【0022】
図3は、回転Y板X伝搬LiTaO基板におけるオイラー角(0,θ,0)のθと電気機械結合係数Kとの関係を示す。オイラー角のθが100°〜120°の範囲で大きな電気機械結合係数Kが得られることがわかる。しかしながら、θ=100°〜120°の範囲では、前述の図2から明らかなように減衰定数が大きい。従って、このようなオイラー角のLiTaO基板を用いることはできないことがわかる。
【0023】
図4は、36°回転Y板X伝搬[オイラー角で(0°,126°,0°)]のLiTaO基板上に、タンタル膜を形成した場合のタンタル膜の規格化膜厚H/λ(Hは膜厚を、λは表面波装置の中心周波数における波長を示す)と、電気機械結合係数Kとの関係を示す。規格化膜厚H/λ=0.004〜0.08の範囲では、電気機械結合係数Kは、H/λ=0(成膜しなかった場合)の場合の電気機械結合係数の1.3倍以上となり、H/λ=0.01〜0.055では、1.5倍以上となり、H/λ=0.016〜0.045では、1.75倍以上となることがわかる。
【0024】
従って、H/λ=0.004〜0.08とすることにより、電気機械結合係数Kを高めることができることがわかる。
なお、タンタル膜の規格化膜厚が0.055を超えると、タンタルから得られるIDTの作製が困難となることがある。従って、好ましくは、タンタル膜の規格化膜厚H/λは、0.004〜0.055、より好ましくは0.012〜0.055、さらに好ましくは0.016〜0.045であることがわかる。
【0025】
次に、SiO膜をLiTaO基板上に形成した場合の周波数温度係数TCFの改善効果を説明する。図5は、θ=113°、126°及び129°の(0,θ,0)の各LiTaO基板上にSiO膜を成膜した場合の周波数温度係数TCFの変化を示す図である。
【0026】
図5から明らかなように、θが113°,126°及び129°のいずれの場合においても、SiOの規格化膜厚Hs/λ(HsはSiO膜の膜厚を、λは表面波装置の中心周波数における波長を示す)が0.10〜0.45の範囲において、TCFが−24〜+17ppm/℃の範囲にはいることがわかる。もっとも、SiO膜の成膜には時間を要するため、SiO膜の膜厚Hs/λは0.40以下であることが望ましい。従って、好ましくは、SiO膜の膜厚Hs/λは、0.10〜0.40の範囲であり、それによって、短時間で成膜でき、かつTCFを−20〜+17ppm/℃の範囲とすることができる。
【0027】
従来、LiTaO基板上に、AlからなるIDTを形成した構造において、さらにSiO膜を形成することにより、レイリー波などのTCFが改善されるという報告がいくつか存在する(例えば、上記特許文献1など)。しかしながら、LiTaO基板−タンタルからなる電極−SiO膜の積層構造において、電極の膜厚や漏洩弾性表面波の減衰定数を考慮にいれて実験が行われた報告は存在しない。
【0028】
図6及び図7は、オイラー角(0°,120°,0°)と、(0°,140°,0°)の各LiTaO基板上に、種々の膜厚のタンタルからなるIDTと、種々の膜厚のSiO膜とを形成した場合の減衰定数を示す図である。
【0029】
図6から明らかなように、θ=120°では、SiOの膜厚Hs/λが0.1〜0.40かつタンタルよりなる電極の規格化膜厚H/λが0.0〜0.10の範囲において、減衰定数が小さいことがわかる。他方、図7から明らかなように、θ=140°では、タンタルからなる電極の規格化膜厚H/λが0.0〜0.06の範囲では、SiO膜の膜厚の如何に係わらず、減衰定数が大きくなっていることがわかる。
【0030】
すなわち、TCFの絶対値を小さくし、大きな電気機械結合係数を得、かつ減衰定数を小さくするには、LiTaO基板のカット角、SiO膜の厚み及びタンタルからなる電極の膜厚の3つの条件を考慮しなければならないことがわかる。
【0031】
図8〜図11は、SiO膜の規格化膜厚Hs/λ及びタンタルからなる電極膜の規格化膜厚H/λを変化させた場合の、θと減衰定数との関係を示す。
図8〜図11から明らかなように、タンタルからなる電極の規格化膜厚H/λが0.01〜0.055及び0.016〜0.045において、SiO膜の膜厚と、最適なθとの関係は、下記の表1及び表2に示す通りとなる。なお、この最適θは、タンタル電極の電極指幅のばらつきや単結晶基板のばらつきにより−2°〜+4°程度ばらつくことがある。
【0032】
【表1】

Figure 2004172991
【0033】
【表2】
Figure 2004172991
【0034】
すなわち、表1及び表2から明らかなように、タンタルよりなる電極の膜厚H/λが、0.01〜0.055の場合、温度特性を改善するために、SiO膜の規格化膜厚を0.1〜0.4の範囲とした場合、LiTaOのオイラー角におけるθは、107°〜148°の範囲、すなわち、回転角で17°〜58°の範囲、より好ましくは、SiOの膜厚に応じて表1に示すオイラー角を選択すればよいことがわかる。
【0035】
同様に、表2から明らかなように、タンタル膜からなる電極の規格化膜厚が0.016〜0.045であり、周波数温度特性を改善するために、SiO膜の膜厚を0.1〜0.4の範囲とした場合には、LiTaO基板のオイラー角は109°〜144°の範囲とすればよく、より好ましくはSiO膜の膜厚に応じて表2のオイラー角を選択すればよいことがわかる。
【0036】
LiTaOのオイラー角の範囲は、減衰定数が0.05以下の範囲を規定したものである。また、表1及び表2におけるLiTaOのオイラー角のより好ましい範囲は、減衰定数が0.025以下に規定したものである。また、タンタルからなる電極膜の規格化膜厚が0.012、0.015、0.042、0.053である場合のSiO膜の膜厚とオイラー角の関係は、図8〜図11に示すタンタルからなる電極膜の規格化膜厚から換算して求めて、表1及び表2のSiO膜の膜厚とオイラー角の値を求めている。
【0037】
また、図14(a),(b),(c)は、上記実施例の弾性表面波フィルタにおける表面の走査型電子顕微鏡写真である。ここでは、H/λ=0.025の規格化膜厚のタンタルからなるIDT上に、規格化膜厚Hs/λ=0.3のSiO膜が形成されている前後の場合の結果が示されている。図14(b)の成膜後の写真から明らかなように、SiO膜の表面にクラックは見られず、従って、クラックによる特性の劣化も生じ難いことがわかる。Al電極に比べ、タンタル電極は薄い膜厚で大きな電気機械結合係数と反射係数が得られる。そのため、薄いタンタル電極の上にSiOが成膜されても図14(b),(c)に示すようにSiOに大きな段差やクラックが生じないという利点がある。
【0038】
本発明に係る弾性表面波装置の製造に際しては、回転Y板X伝搬LiTaO基板上にタンタルを主成分とする金属からなるIDTを形成した後、その状態において周波数調整を行い、しかる後減衰定数αを小さくし得る範囲の膜厚のSiO膜を成膜することが望ましい。これを、図15及び図16を参照して説明する。図15は、オイラー角(0°,126°,0°)の回転Y板X伝搬LiTaO基板上に、タンタルからなるIDT及びSiO膜を形成した場合の、タンタルの規格化膜厚H/λと、SiO膜の規格化膜厚Hs/λと、漏洩弾性表面波の音速との関係を示す。また、図16は、同じオイラー角のLiTaO基板上に、種々の膜厚のタンタルからなるIDTを形成し、その上に形成されるSiO膜の規格化膜厚を変化させた場合の漏洩弾性表面波の音速の変化を示す。図15と図16を比較すれば明らかなように、タンタルの膜厚を変化させた場合の方が、SiO膜の膜厚を変化させた場合よりも表面波の音速の変化がはるかに大きい。従って、SiO膜の形成に先立ち、周波数調整が、行われることが望ましく、例えば、レーザーエッチングやイオンエッチングなどによりタンタルからなるIDTを形成した後に周波数調整を行うことが望ましい。
【0039】
なお、本発明は、上記のように、17°〜58°回転Y板X伝搬LiTaOからなる圧電基板、H/λ=0.004〜0.055であるタンタルよりなるIDTと、Hs/λ=0.10〜0.40であるSiO膜とを有することを特徴とするものであり、従って、IDTの数及び構造等については特に限定されない。すなわち、本発明は、図1に示した表面波装置だけでなく、上記条件を満たす限り、様々な表面波共振子や表面波フィルタ等に適用することができる。
【0040】
タンタルを主成分という意味は、タンタルと他の電極と積層された場合、厚みの比をいうのではなく、密度と厚みを乗じた重量比で半分以上という意味である。なお、タンタルの上あるいは下に7100kg/m以上の密度をもつW、Au、Pt、Cu、Ag、Cr等の金属からなる電極と同じ程度の割合で積層してもタンタル電極単層と同じ効果をもつことはいうまでもない。
【0041】
【発明の効果】
本発明に係る表面波装置では、17°〜58°回転Y板X伝搬LiTaOからなる圧電基板上に、規格化膜厚H/λが0.004〜0.055であり、かつタンタルよりなるIDTが形成されており、IDTを覆うように、Hs/λ=0.10〜0.40のSiO膜が形成されている、SiO膜により周波数温度係数TCFが改善され、タンタル膜よりなるIDTの膜厚H/λが上記特定の範囲とされているため、電気機械結合係数と反射係数が大きく、さらにLiTaO基板の回転角が上記特定の範囲とされているため、減衰定数が小さくされる。よって、周波数温度特性に優れ、大きな電気機械結合係数を有し、かつ伝搬損失が少ない表面波装置を提供することが可能となる。
【0042】
特に、IDTの膜厚H/λが0.10〜0.55の範囲、より好ましくは0.016〜0.045の範囲にある場合には、電気機械結合係数を効果的に高めることができる。
【0043】
また、上記LiTaOからなる圧電基板の回転角が21°〜53°の範囲である場合には、減衰定数をより一層小さくすることができる。
また、タンタル電極が薄いため、このタンタル電極IDT上にSiOが成膜されてもSiOに大きな段差やクラックができないため、Al電極の場合に生じるそれらに起因した挿入損失等の特性の劣化もない。
【図面の簡単な説明】
【図1】本発明の一実施例に係る表面波装置を示す模式的平面図。
【図2】オイラー角(0,θ,0)のLiTaO基板のθと、減衰定数αとの関係を示す図。
【図3】オイラー角(0,θ,0)のLiTaO基板におけるθと電気機械結合係数Kとの関係を示す図。
【図4】オイラー角(0°,126°,0°)のLiTaO基板上にタンタルからなる電極膜を形成した構造における電極膜の規格化膜厚H/λと、電気機械結合係数Kとの関係を示す図。
【図5】オイラー角(0°,113°,0°)、(0°,126°,0°)及び(0°,129°0,0°)の各LiTaO基板上にSiO膜を形成した場合のSiO膜の規格化膜厚Hs/λと、周波数温度係数TCFとの関係を示す図。
【図6】オイラー角(0°,120°,0°)のLiTaO基板上に、様々な厚みのSiO膜及び様々な厚みのタンタルからなるIDTを形成した構造における減衰定数αの変化を示す図。
【図7】オイラー角(0°,140°,0°)のLiTaO基板上に、様々な厚みのSiO膜及び様々な厚みのタンタルからなるIDTを形成した構造における減衰定数αの変化を示す図。
【図8】オイラー角(0°,θ,0°)のLiTaO基板上に、様々な厚みのタンタルよりなる電極膜を形成し、さらに規格化膜厚Hs/λ=0.1のSiO膜を形成した表面波装置におけるθと、タンタルよりなる電極膜の規格化厚みH/λと、減衰定数αとの関係を示す図。
【図9】オイラー角(0°,θ,0°)のLiTaO基板上に、様々な厚みのタンタルよりなる電極膜を形成し、さらに規格化膜厚Hs/λ=0.2のSiO膜を形成した表面波装置におけるθと、タンタルよりなる電極膜の規格化厚みH/λと、減衰定数αとの関係を示す図。
【図10】オイラー角(0°,θ,0°)のLiTaO基板上に、様々な厚みのタンタルよりなる電極膜を形成し、さらに規格化膜厚Hs/λ=0.3のSiO膜を形成した表面波装置におけるθと、タンタルよりなる電極膜の規格化厚みH/λと、減衰定数αとの関係を示す図。
【図11】オイラー角(0°,θ,0°)のLiTaO基板上に、様々な厚みのタンタルよりなる電極膜を形成し、さらに規格化膜厚Hs/λ=0.4のSiO膜を形成した表面波装置におけるθと、タンタルよりなる電極膜の規格化厚みH/λと、減衰定数αとの関係を示す図。
【図12】オイラー角(0°,126°,0°)のLiTaO基板上に、様々な厚みのタンタルまたはアルミニウムよりなる電極を形成した場合の電極の膜厚と電極指の反射係数との関係を示す図。
【図13】(a)は、オイラー角(0°,126°,0°)のLiTaO基板上に、膜厚H/λ=0.08のアルミニウム電極からなるIDTが形成された表面を、(b)は、その上に厚みHs/λ=0.3のSiOが成膜された表面を、(c)はその断面を示す各走査型電子顕微鏡写真を示す図。
【図14】(a)は、オイラー角(0°,126°,0°)のLiTaO基板上に、厚みH/λ=0.025のタンタルからなるIDTが形成された表面を、(b)は、その上に厚みHs/λ=0.3のSiOが成膜された表面を、(c)はその断面を示す各走査型電子顕微鏡写真を示す図。
【図15】オイラー角(0°,126°,0°)のLiTaO基板上にタンタルからなるIDTを形成し、その上にSiO膜を形成した構造における、タンタルの規格化膜厚と、SiOの規格化膜厚と、音速との関係を示す図。
【図16】オイラー角(0°,126°,0°)のLiTaO基板上にタンタルからなるIDTが形成されており、その上にSiO膜が形成された構造における、タンタルの規格化膜厚と、SiOの規格化膜厚と、音速との関係を示す図。
【符号の説明】
1…表面波装置
2…圧電基板
3a,3b…IDT
4…SiO
5a,5b…反射器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface acoustic wave device used for, for example, a surface acoustic wave filter, and more particularly, to a surface acoustic wave device using a LiTaO 3 substrate.
[0002]
[Prior art]
Conventionally, a surface wave device using a 40 ° to 42 ° rotating Y-plate X-propagation LiTaO 3 substrate has been known as a bandpass filter (for example, the following Non-Patent Document 1). In the band filter of the RF band, an Al film having a thickness H / λ standardized by the wavelength λ of 0.08 to 0.10 is formed on the 40 ° to 42 ° rotation Y plate X-propagation LiTaO 3 substrate. An IDT was formed.
[0003]
As described above, in the conventional surface acoustic wave device using the 40 ° to 42 ° rotating Y-plate X-propagation LiTaO 3 substrate, the frequency-temperature characteristic TCF is relatively large at −33 ppm / ° C., so that the temperature characteristic is further improved. Certain specifications could not be fully met. Conventionally, as a method of improving the temperature characteristic TCF of the surface acoustic wave device, there is known a method of forming an SiO 2 layer after forming an IDT made of Al on a LiTaO 3 substrate (Patent Document 1 below). .
[0004]
[Non-patent document 1]
Proceedings of the 1997 IEICE General Conference: SA-10-6; 500-501
[Patent Document 1]
JP-A-2-295212
[Problems to be solved by the invention]
However, when forming a resonator or a filter using an IDT made of Al, in order to obtain a large electromechanical coupling coefficient K saw and a reflection coefficient, as shown in FIGS. H / λ (H is the film thickness, λ is the wavelength of the surface wave) must be considerably thick, 0.08 to 0.10. As described above, since the IDT made of Al is considerably thick, an SiO 2 film is formed on the portion where the IDT shown in FIG. 13A is formed in order to improve the frequency-temperature characteristics. Once formed, as shown in FIG. 13 (b), (c) , a large step in the SiO 2 film occurs, there is a crack occurs in the SiO 2 film. For this reason, the filter characteristics of the surface acoustic wave filter tend to deteriorate due to the occurrence of cracks.
[0006]
In addition, since the thickness of the electrode of the IDT made of Al is large, the effect of covering the irregularities on the electrode surface of the IDT due to the formation of the SiO 2 film is not sufficient, and the temperature characteristics may not be sufficiently improved. .
[0007]
An object of the present invention is to provide a surface acoustic wave device using a rotating Y-plate X-propagation LiTaO 3 substrate in view of the above-mentioned state of the art, and not only to improve the frequency-temperature characteristics by forming a SiO 2 film, By reducing the thickness of the electrode of the IDT, cracks in the SiO 2 film can be prevented and the attenuation constant can be significantly reduced, so that the intended electrical characteristics such as filter characteristics can be obtained. It is an object of the present invention to provide a surface acoustic wave device and a method of manufacturing the same in which the electromechanical coupling coefficient and the reflection coefficient in the IDT are sufficiently large.
[Means for Solving the Problems]
The surface acoustic wave device according to the present invention is formed on a piezoelectric substrate made of 17 ° to 58 ° rotated Y-plate X-propagation LiTaO 3 and on the piezoelectric substrate, and has a film thickness of H and a surface wave wavelength of λ. Sometimes, an IDT made of tantalum having a normalized film thickness H / λ of 0.004 to 0.055, and the IDT is formed on the piezoelectric substrate so as to cover the IDT, and is normalized by the wavelength of the surface wave. And a SiO 2 film having a thickness Hs / λ of 0.10 to 0.40.
[0009]
In a specific aspect of the surface acoustic wave device according to the present invention, the normalized film thickness H / λ of the IDT is in a range of 0.01 to 0.55, more preferably in a range of 0.016 to 0.045. You.
[0010]
In another specific aspect of the surface acoustic wave device according to the present invention, the piezoelectric substrate is formed of a 21 ° -53 ° rotated Y-plate X-propagation LiTaO 3 substrate.
In the present invention, by using a tantalum electrode, a large electromechanical coupling coefficient and a large reflection coefficient can be obtained with a thin electrode film thickness as shown in FIGS.
[0011]
In still another specific aspect of the surface acoustic wave device according to the present invention, an adhesion layer is formed between the upper surface of the IDT and the SiO 2 film, so that peeling of the SiO 2 film can be controlled. In this case, the adhesion layer may be formed not only on the upper surface of the IDT but also on the interface between the LiTaO 3 substrate and the SiO 2 film. The adhesion layer may be formed not only on the upper surface of the IDT but also on almost the entire region of the interface between the IDT and the SiO 2 film. That is, the adhesion layer may be formed on the side surface of the IDT.
[0012]
In still another specific aspect of the surface acoustic wave device according to the present invention, a plurality of electrodes other than the IDT, including at least a bus bar and an electrode pad for connection to the outside, are further formed on the LiTaO 3 substrate, A plurality of electrodes may be formed on the base electrode layer made of tantalum and the base electrode layer, and the base metal layer having an upper metal layer made of Al or an Al alloy may be formed in the same step as the IDT. Since the upper metal layer is made of Al or an Al alloy, the adhesion strength of the SiO 2 film can be increased and the cost of the electrode can be reduced. Furthermore, the wedge bonding property by Al is also improved.
[0013]
In the surface acoustic wave device according to the present invention, preferably, a leaky surface acoustic wave is used as the surface wave, and according to the present invention, it has excellent frequency-temperature characteristics, and has an IDT having a large electromechanical coupling coefficient and a large reflection coefficient. A surface acoustic wave device utilizing a small leaky surface acoustic wave can be provided.
[0014]
In the method of manufacturing a surface acoustic wave device according to the present invention, a step of preparing a LiTaO 3 substrate of 17 ° to 58 ° rotation Y plate X propagation, and at least one IDT on the LiTaO 3 substrate, mainly containing tantalum Forming a step using a metal, adjusting the frequency after forming the IDT, and forming an SiO 2 film on the LiTaO 3 substrate so as to cover the IDT after the frequency adjustment. It is characterized by having. The metal containing tantalum as a main component includes, in addition to tantalum or an alloy containing tantalum as a main component, a case where a tantalum layer is a main layer having a laminated structure of a tantalum layer and another metal.
[0015]
In a specific aspect of the production method of the present invention, the IDT has a structure in which an electrode made of a metal having a density of 7100 kg / m 3 or more and a tantalum electrode are stacked.
Tantalum has a higher density than Al, and can easily form an IDT having a small electrode film thickness, a large electromechanical coupling coefficient, and a large reflection coefficient, so that cracks in the SiO 2 film can be prevented. Further, the attenuation constant can be reduced by the SiO 2 film.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail by describing specific embodiments of the present invention with reference to the drawings.
[0017]
FIG. 1 is a schematic sectional view of a surface acoustic wave device according to an embodiment of the present invention. The surface acoustic wave device 1 is a longitudinally coupled resonator type surface acoustic wave filter, and has a piezoelectric substrate 2 made of a 17 ° to 58 ° rotated Y plate LiTaO 3 . On the piezoelectric substrate 2, IDTs 3a and 3b made of a tantalum film (Ta film) and reflectors 5a and 5b are formed. The normalized film thickness H / λ (H denotes the thickness of the IDT and λ denotes the wavelength at the center frequency) of the IDTs 3a and 3b is in the range of 0.004 to 0.055. Further, an SiO 2 film 4 is formed on the piezoelectric substrate 2 so as to cover the IDTs 3a and 3b. The normalized thickness Hs / λ (Hs is the thickness of the SiO 2 film, λ is the wavelength of the surface wave at the center frequency) of the SiO 2 film 4 is in the range of 0.10 to 0.40.
[0018]
In this embodiment, as described above, the piezoelectric substrate 2 made of 17 ° to 58 ° rotated Y-plate X-propagation LiTaO 3 , the IDTs 3a and 3b made of tantalum with H / λ = 0.004 to 0.055, and Hs due to the use of the SiO 2 film 4 is in the range of /Ramuda=0.10~0.40, temperature coefficient of frequency TCF is small, the electromechanical coupling coefficient K 2 is increased, and the propagation loss is small surface acoustic wave device Can be provided. This will be described based on the following specific experimental examples.
[0019]
As surface waves propagating through the LiTaO 3 substrate, there are leaky surface acoustic waves in addition to Rayleigh waves. Leaky surface acoustic waves have a higher sound speed and a larger electromechanical coupling coefficient than Rayleigh waves. However, leaky surface acoustic waves are waves that propagate while radiating energy into the interior of the substrate. Therefore, the leaky surface acoustic wave has an attenuation constant that causes a propagation loss.
[0020]
FIG. 2 shows the relationship between θ of the Euler angles (0, θ, 0) in the rotating Y plate X-propagation LiTaO 3 and the attenuation constant (propagation loss) α when the substrate surface is electrically short-circuited. It should be noted that the rotation angle has a relationship of θ-90 degrees.
[0021]
As is clear from FIG. 2, the attenuation constant is small when the Euler angle θ is in the range of 124 ° to 126 °. Outside this range, the damping constant increases.
It is known that when an IDT made of Al having a relatively large film thickness is formed, the attenuation constant decreases when θ = 130 ° to 132 ° (for example, Non-Patent Document 1). Thus, conventionally, the IDT composed of Al, the structure of a combination of a LiTaO 3 substrate, LiTaO 3 substrate of rotated Y-plate X-propagation of θ = 130 ° ~132 ° has been used.
[0022]
FIG. 3 shows the relationship between the Euler angle (0, θ, 0) θ and the electromechanical coupling coefficient K 2 in the rotating Y-plate X-propagation LiTaO 3 substrate. Euler angle θ is understood that a large electromechanical coupling coefficient K 2 can be obtained in the range of 100 ° to 120 °. However, in the range of θ = 100 ° to 120 °, the attenuation constant is large as is apparent from FIG. Therefore, it is understood that a LiTaO 3 substrate having such an Euler angle cannot be used.
[0023]
FIG. 4 shows a normalized thickness H / λ of a tantalum film when a tantalum film is formed on a LiTaO 3 substrate having a 36 ° rotation Y-plate X propagation [Euler angle (0 °, 126 °, 0 °)]. (H is the film thickness, lambda denotes the wavelength at the center frequency of the surface acoustic wave device) and shows the relationship between the electromechanical coupling coefficient K 2. The range of normalized thickness H / λ = 0.004~0.08, electromechanical coefficient K 2, 1 of the electromechanical coupling coefficient when the H / λ = 0 (if not deposited). It can be seen that the ratio becomes 3 times or more, when H / λ = 0.01 to 0.055, the ratio becomes 1.5 times or more, and when H / λ = 0.016 to 0.045, the ratio becomes 1.75 times or more.
[0024]
Therefore, by setting the H / λ = 0.004~0.08, it is understood that it is possible to increase the electromechanical coupling coefficient K 2.
If the normalized thickness of the tantalum film exceeds 0.055, it may be difficult to produce an IDT obtained from tantalum. Therefore, the normalized thickness H / λ of the tantalum film is preferably 0.004 to 0.055, more preferably 0.012 to 0.055, and still more preferably 0.016 to 0.045. Understand.
[0025]
Next, the effect of improving the frequency temperature coefficient TCF when the SiO 2 film is formed on the LiTaO 3 substrate will be described. FIG. 5 is a diagram showing changes in the frequency temperature coefficient TCF when an SiO 2 film is formed on each (0, θ, 0) LiTaO 3 substrate at θ = 113 °, 126 °, and 129 °.
[0026]
As apparent from FIG. 5, theta is 113 °, in either case of 126 ° and 129 °, the film thickness of the SiO 2 normalized thickness Hs / λ (Hs is SiO 2 film, lambda surface waves It can be seen that the TCF falls within the range of −24 to +17 ppm / ° C. when the wavelength at the center frequency of the device is 0.10 to 0.45. However, since the formation of the SiO 2 film it takes time, it is desirable that the thickness Hs / lambda of the SiO 2 film is 0.40 or less. Therefore, preferably, the thickness Hs / λ of the SiO 2 film is in the range of 0.10 to 0.40, whereby the film can be formed in a short time, and the TCF is in the range of −20 to +17 ppm / ° C. can do.
[0027]
Heretofore, there have been some reports that TCF such as Rayleigh wave is improved by forming an SiO 2 film in a structure in which an IDT made of Al is formed on a LiTaO 3 substrate (for example, the above patent document) 1 etc.). However, there is no report that an experiment was conducted in a laminated structure of an LiTaO 3 substrate, an electrode composed of tantalum and an SiO 2 film in consideration of the thickness of the electrode and the attenuation constant of leaky surface acoustic waves.
[0028]
6 and 7 show an Euler angle (0 °, 120 °, 0 °), an IDT made of tantalum of various thicknesses on each LiTaO 3 substrate at (0 °, 140 °, 0 °), FIG. 3 is a diagram showing attenuation constants when SiO 2 films having various thicknesses are formed.
[0029]
As is clear from FIG. 6, when θ = 120 °, the thickness Hs / λ of SiO 2 is 0.1 to 0.40 and the normalized thickness H / λ of the electrode made of tantalum is 0.0 to 0. It can be seen that the attenuation constant is small in the range of 10. On the other hand, as is clear from FIG. 7, when θ = 140 °, the normalized thickness H / λ of the electrode made of tantalum is in the range of 0.0 to 0.06 regardless of the thickness of the SiO 2 film. It can be seen that the damping constant is large.
[0030]
That is, in order to reduce the absolute value of TCF, obtain a large electromechanical coupling coefficient, and reduce the damping constant, the three angles of the cut angle of the LiTaO 3 substrate, the thickness of the SiO 2 film, and the thickness of the electrode made of tantalum are used. It turns out that conditions must be considered.
[0031]
8 to 11 show the relationship between θ and the damping constant when the normalized thickness Hs / λ of the SiO 2 film and the normalized thickness H / λ of the electrode film made of tantalum are changed.
As is clear from FIGS. 8 to 11, when the normalized thickness H / λ of the electrode made of tantalum is 0.01 to 0.055 and 0.016 to 0.045, the thickness of the SiO 2 film is optimized. The relationship with θ is as shown in Tables 1 and 2 below. The optimum θ may vary from about −2 ° to + 4 ° due to variations in the electrode finger width of the tantalum electrode and variations in the single crystal substrate.
[0032]
[Table 1]
Figure 2004172991
[0033]
[Table 2]
Figure 2004172991
[0034]
That is, as is clear from Tables 1 and 2, when the thickness H / λ of the electrode made of tantalum is 0.01 to 0.055, in order to improve the temperature characteristics, the normalized film of the SiO 2 film is used. When the thickness is in the range of 0.1 to 0.4, θ at the Euler angle of LiTaO 3 is in the range of 107 ° to 148 °, that is, in the range of 17 ° to 58 ° in rotation angle, more preferably, SiO 2. It can be seen that the Euler angles shown in Table 1 should be selected according to the film thickness of No. 2 .
[0035]
Similarly, as is clear from Table 2, the normalized thickness of the electrode made of the tantalum film is 0.016 to 0.045, and the thickness of the SiO 2 film is set to 0.1 to improve the frequency temperature characteristics. In the case where the Euler angle is in the range of 1 to 0.4, the Euler angle of the LiTaO 3 substrate may be in the range of 109 ° to 144 °. More preferably, the Euler angle in Table 2 is set according to the thickness of the SiO 2 film. It turns out that you have to choose.
[0036]
The range of the Euler angle of LiTaO 3 is a range in which the attenuation constant is 0.05 or less. Further, a more preferable range of the Euler angle of LiTaO 3 in Tables 1 and 2 is one in which the attenuation constant is specified to be 0.025 or less. When the normalized thickness of the electrode film made of tantalum is 0.012, 0.015, 0.042, and 0.053, the relationship between the thickness of the SiO 2 film and the Euler angle is shown in FIGS. The values of the film thickness and the Euler angle of the SiO 2 films in Tables 1 and 2 are obtained by converting from the normalized film thickness of the electrode film made of tantalum shown in FIG.
[0037]
FIGS. 14A, 14B and 14C are scanning electron micrographs of the surface of the surface acoustic wave filter of the above embodiment. Here, the results before and after the SiO 2 film having the normalized thickness Hs / λ = 0.3 is formed on the IDT made of tantalum having the normalized thickness H / λ = 0.025 are shown. Have been. As is clear from the photograph after the film formation in FIG. 14B, no crack is observed on the surface of the SiO 2 film, and therefore, it is understood that deterioration of the characteristics due to the crack hardly occurs. Compared with the Al electrode, the tantalum electrode has a large electromechanical coupling coefficient and a large reflection coefficient with a thin film thickness. Therefore, even if SiO 2 is formed on the thin tantalum electrode, there is an advantage that large steps and cracks do not occur in SiO 2 as shown in FIGS. 14B and 14C.
[0038]
In manufacturing the surface acoustic wave device according to the present invention, an IDT made of a metal containing tantalum as a main component is formed on a rotating Y-plate X-propagation LiTaO 3 substrate, the frequency is adjusted in that state, and then the attenuation constant is set. It is desirable to form a SiO 2 film having a thickness in a range where α can be reduced. This will be described with reference to FIGS. FIG. 15 shows a normalized thickness H / of tantalum when an IDT and SiO 2 films made of tantalum are formed on a rotating Y plate X-propagation LiTaO 3 substrate having Euler angles (0 °, 126 °, 0 °). The relationship between λ, the normalized thickness Hs / λ of the SiO 2 film, and the sound velocity of the leaky surface acoustic wave is shown. FIG. 16 shows leakage when the IDT made of tantalum of various thicknesses is formed on a LiTaO 3 substrate having the same Euler angle, and the normalized thickness of the SiO 2 film formed thereon is changed. 3 shows a change in the speed of sound of a surface acoustic wave. As is apparent from a comparison between FIG. 15 and FIG. 16, the change in the sound speed of the surface wave is much larger when the thickness of the tantalum is changed than when the thickness of the SiO 2 film is changed. . Therefore, it is desirable to adjust the frequency before forming the SiO 2 film. For example, it is preferable to adjust the frequency after forming an IDT made of tantalum by laser etching or ion etching.
[0039]
Note that, as described above, the present invention provides a piezoelectric substrate made of 17 ° to 58 ° rotated Y plate X-propagation LiTaO 3 , an IDT made of tantalum with H / λ = 0.004 to 0.055, and Hs / λ. = which is characterized by having a SiO 2 film is 0.10 to 0.40, thus, there is no particular limitation on such IDT of number and structure. That is, the present invention can be applied not only to the surface acoustic wave device shown in FIG. 1 but also to various surface acoustic wave resonators and surface acoustic wave filters as long as the above conditions are satisfied.
[0040]
When tantalum is used as a main component, when tantalum and another electrode are stacked, the weight ratio multiplied by the density and the thickness is not less than half, not the thickness ratio. It should be noted that even if laminated at the same ratio as an electrode made of a metal such as W, Au, Pt, Cu, Ag, or Cr having a density of 7100 kg / m 3 or more above or below tantalum, it is the same as a tantalum electrode single layer. Needless to say, it has an effect.
[0041]
【The invention's effect】
In the surface acoustic wave device according to the present invention, the normalized film thickness H / λ is 0.004 to 0.055 and is made of tantalum on the piezoelectric substrate made of 17 ° to 58 ° rotated Y plate X-propagation LiTaO 3. An IDT is formed, and an SiO 2 film of Hs / λ = 0.10 to 0.40 is formed so as to cover the IDT. The frequency temperature coefficient TCF is improved by the SiO 2 film, and the IDT is formed of a tantalum film. Since the film thickness H / λ of the IDT is in the above specific range, the electromechanical coupling coefficient and the reflection coefficient are large, and the rotation angle of the LiTaO 3 substrate is in the above specific range, so that the attenuation constant is small. Is done. Therefore, it is possible to provide a surface acoustic wave device having excellent frequency-temperature characteristics, a large electromechanical coupling coefficient, and a small propagation loss.
[0042]
In particular, when the thickness H / λ of the IDT is in the range of 0.10 to 0.55, more preferably in the range of 0.016 to 0.045, the electromechanical coupling coefficient can be effectively increased. .
[0043]
When the rotation angle of the piezoelectric substrate made of LiTaO 3 is in the range of 21 ° to 53 °, the damping constant can be further reduced.
Further, since the thin tantalum electrodes, deterioration of the characteristics of this for SiO 2 can not be a large step or cracks SiO 2 be deposited tantalum electrodes IDT on, insertion loss or the like due to their occurring when the Al electrode Nor.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a surface acoustic wave device according to one embodiment of the present invention.
FIG. 2 is a diagram showing a relationship between θ of a LiTaO 3 substrate having an Euler angle (0, θ, 0) and an attenuation constant α.
[3] Euler angles (0, θ, 0) shows the relationship between the LiTaO 3 and the theta in the substrate electromechanical coefficient K 2 of.
FIG. 4 shows a normalized thickness H / λ of the electrode film and an electromechanical coupling coefficient K 2 in a structure in which an electrode film made of tantalum is formed on a LiTaO 3 substrate having Euler angles (0 °, 126 °, 0 °). FIG.
FIG. 5 shows a SiO 2 film on each LiTaO 3 substrate having Euler angles (0 °, 113 °, 0 °), (0 °, 126 °, 0 °) and (0 °, 129 ° 0, 0 °). shows the normalized thickness Hs / lambda of the SiO 2 film in the case of forming, the relation between the temperature coefficient of frequency TCF.
FIG. 6 shows a change in attenuation constant α in a structure in which an IDT made of various thicknesses of SiO 2 films and various thicknesses of tantalum is formed on a LiTaO 3 substrate having Euler angles (0 °, 120 °, 0 °). FIG.
FIG. 7 shows a change in attenuation constant α in a structure in which an IDT made of various thicknesses of SiO 2 films and various thicknesses of tantalum is formed on a LiTaO 3 substrate having Euler angles (0 °, 140 °, 0 °). FIG.
FIG. 8 shows an example in which electrode films made of tantalum having various thicknesses are formed on a LiTaO 3 substrate having Euler angles (0 °, θ, 0 °), and SiO 2 having a normalized film thickness Hs / λ = 0.1. FIG. 6 is a diagram showing a relationship between θ in a surface acoustic wave device having a film formed thereon, a normalized thickness H / λ of an electrode film made of tantalum, and an attenuation constant α.
FIG. 9 shows an example in which electrode films made of tantalum of various thicknesses are formed on a LiTaO 3 substrate having Euler angles (0 °, θ, 0 °), and SiO 2 having a normalized film thickness Hs / λ = 0.2. FIG. 6 is a diagram showing a relationship between θ in a surface acoustic wave device having a film formed thereon, a normalized thickness H / λ of an electrode film made of tantalum, and an attenuation constant α.
FIG. 10 shows an example in which electrode films made of tantalum of various thicknesses are formed on a LiTaO 3 substrate having Euler angles (0 °, θ, 0 °), and SiO 2 having a normalized thickness Hs / λ = 0.3. FIG. 6 is a diagram showing a relationship between θ in a surface acoustic wave device having a film formed thereon, a normalized thickness H / λ of an electrode film made of tantalum, and an attenuation constant α.
FIG. 11 shows that an electrode film made of tantalum of various thicknesses is formed on a LiTaO 3 substrate having Euler angles (0 °, θ, 0 °), and SiO 2 having a normalized film thickness Hs / λ = 0.4. FIG. 6 is a diagram showing a relationship between θ in a surface acoustic wave device having a film formed thereon, a normalized thickness H / λ of an electrode film made of tantalum, and an attenuation constant α.
FIG. 12 is a graph showing the relationship between the electrode film thickness and the reflection coefficient of an electrode finger when electrodes made of tantalum or aluminum having various thicknesses are formed on a LiTaO 3 substrate having Euler angles (0 °, 126 °, 0 °). The figure which shows a relationship.
FIG. 13A shows a surface on which an IDT made of an aluminum electrode having a film thickness of H / λ = 0.08 is formed on a LiTaO 3 substrate having an Euler angle (0 °, 126 °, 0 °). (B) is a view showing a scanning electron microscope photograph showing a surface on which a SiO 2 film having a thickness of Hs / λ = 0.3 is formed, and (c) is a cross-sectional view thereof.
FIG. 14 (a) shows the surface of a LiTaO 3 substrate having Euler angles (0 °, 126 °, 0 °) on which an IDT made of tantalum having a thickness of H / λ = 0.025 is formed, as shown in FIG. () Shows a scanning electron microscope photograph showing a surface on which a SiO 2 film having a thickness of Hs / λ = 0.3 is formed, and (c) shows a cross section thereof.
FIG. 15 shows a normalized film thickness of tantalum in a structure in which an IDT made of tantalum is formed on a LiTaO 3 substrate having Euler angles (0 °, 126 °, 0 °) and a SiO 2 film is formed thereon; shows the normalized thickness of the SiO 2, the relationship between the speed of sound.
FIG. 16 shows a standardized film of tantalum in a structure in which an IDT made of tantalum is formed on a LiTaO 3 substrate having Euler angles (0 °, 126 °, 0 °) and a SiO 2 film is formed thereon. shows the thickness, and the normalized thickness of the SiO 2, the relationship between the speed of sound.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Surface wave device 2 ... Piezoelectric substrates 3a, 3b ... IDT
4. SiO 2 films 5a, 5b reflector

Claims (6)

17°〜58°回転Y板X伝搬LiTaOからなる圧電基板と、
前記圧電基板上に形成されており、膜厚をH、表面波の波長をλとしたときに、規格化膜厚H/λが0.004〜0.055であるタンタルよりなるIDTと、
前記IDTを覆うように前記圧電基板上に形成されており、表面波の波長で規格化された膜厚Hs/λが0.10〜0.40であるSiO膜とを備える、表面波装置。
A piezoelectric substrate made of 17 ° to 58 ° rotated Y plate X-propagation LiTaO 3 ,
An IDT made of tantalum formed on the piezoelectric substrate and having a normalized thickness H / λ of 0.004 to 0.055 when the thickness is H and the wavelength of the surface wave is λ;
A surface acoustic wave device comprising: a SiO 2 film formed on the piezoelectric substrate so as to cover the IDT and having a thickness Hs / λ normalized to the wavelength of the surface wave of 0.10 to 0.40. .
前記IDTの規格化膜厚H/λが、0.01〜0.055の範囲にある、請求項1に記載の表面波装置。The surface acoustic wave device according to claim 1, wherein the normalized film thickness H / λ of the IDT is in a range of 0.01 to 0.055. 前記IDTの規格化膜厚H/λが、0.016〜0.045の範囲にある、請求項2に記載の表面波装置。The surface acoustic wave device according to claim 2, wherein the normalized thickness H / λ of the IDT is in a range of 0.016 to 0.045. 前記圧電基板が、21°〜53°回転Y板X伝搬LiTaO基板である、請求項1または2に記載の表面波装置。The surface acoustic wave device according to claim 1, wherein the piezoelectric substrate is a 21 ° -53 ° rotated Y-plate X-propagation LiTaO 3 substrate. 17°〜58°回転Y板X伝搬のLiTaO基板を用意する工程と、前記LiTaO基板上に少なくとも1つのIDTを、タンタルを主成分とする金属を用いて形成する工程と、前記IDTを形成した後に、周波数調整を行う工程と、前記周波数調整後に、前記IDTを被覆するように前記LiTaO基板上にSiO膜を形成する工程とを備えることを特徴とする請求項1〜4のいずれかに記載の表面波装置の製造方法。Preparing a LiTaO 3 substrate of 17 ° to 58 ° rotation Y plate X propagation, at least one IDT in the LiTaO 3 substrate, forming a metal composed mainly of tantalum, the IDT 5. The method according to claim 1, further comprising: performing a frequency adjustment after the formation, and forming a SiO 2 film on the LiTaO 3 substrate so as to cover the IDT after the frequency adjustment. A method for manufacturing the surface acoustic wave device according to any one of the above. 前記IDTが、密度が7100kg/m以上の金属からなる電極と、タンタル電極とが積層されている構造を有する請求項5に記載の表面波装置の製造方法。The IDT method of producing a surface acoustic wave device according to claim 5 having an electrode density of from 7100kg / m 3 or more metals, a structure in which a tantalum electrodes are stacked.
JP2002336941A 2002-11-20 2002-11-20 Surface wave instrument and its manufacturing method Pending JP2004172991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336941A JP2004172991A (en) 2002-11-20 2002-11-20 Surface wave instrument and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336941A JP2004172991A (en) 2002-11-20 2002-11-20 Surface wave instrument and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008029469A Division JP2008125130A (en) 2008-02-08 2008-02-08 Surface acoustic wave device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004172991A true JP2004172991A (en) 2004-06-17

Family

ID=32700629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336941A Pending JP2004172991A (en) 2002-11-20 2002-11-20 Surface wave instrument and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004172991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203839A (en) * 2005-01-23 2006-08-03 Kazuhiko Yamanouchi Surface acoustic wave substrate having temperature highly stable diaphragm structure and surface acoustic wave function element using the substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203839A (en) * 2005-01-23 2006-08-03 Kazuhiko Yamanouchi Surface acoustic wave substrate having temperature highly stable diaphragm structure and surface acoustic wave function element using the substrate

Similar Documents

Publication Publication Date Title
JP3945363B2 (en) Surface acoustic wave device
KR100681692B1 (en) Surface acoustic wave apparatus and manufacturing method therefor
KR101623099B1 (en) Elastic wave device and production method thereof
JP4279271B2 (en) Surface acoustic wave device and manufacturing method thereof
JP5187444B2 (en) Surface acoustic wave device
US8680744B2 (en) Surface acoustic wave device
WO2006114930A1 (en) Boundary acoustic wave device
WO2009139108A1 (en) Boundary elastic wave device
JP3979279B2 (en) Surface acoustic wave device
JP3780947B2 (en) Surface acoustic wave device
JP5874738B2 (en) Surface acoustic wave device
JP5110091B2 (en) Surface acoustic wave device
JP4297137B2 (en) Surface acoustic wave device and manufacturing method thereof
JP2009194895A (en) Surface acoustic wave device
JPWO2009090715A1 (en) Surface acoustic wave device
JP2004172990A (en) Surface acoustic wave device
JP4363443B2 (en) Surface acoustic wave device
JP2008136238A (en) Surface wave instrument and its manufacturing method
JP3975924B2 (en) Surface wave device and manufacturing method thereof
JP2004172991A (en) Surface wave instrument and its manufacturing method
JP2003198323A (en) Surface acoustic wave device
JP2008125130A (en) Surface acoustic wave device and its manufacturing method
JP2004228985A (en) Surface wave device and manufacturing method therefor
JP2006094567A (en) Surface acoustic wave device
JP3945504B2 (en) Manufacturing method of surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Effective date: 20070831

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20080215

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20080307

Free format text: JAPANESE INTERMEDIATE CODE: A912