JP2004172719A - Wireless communication relaying apparatus, and wireless communication system - Google Patents

Wireless communication relaying apparatus, and wireless communication system Download PDF

Info

Publication number
JP2004172719A
JP2004172719A JP2002333433A JP2002333433A JP2004172719A JP 2004172719 A JP2004172719 A JP 2004172719A JP 2002333433 A JP2002333433 A JP 2002333433A JP 2002333433 A JP2002333433 A JP 2002333433A JP 2004172719 A JP2004172719 A JP 2004172719A
Authority
JP
Japan
Prior art keywords
communication
wireless communication
base station
terminal
relay device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002333433A
Other languages
Japanese (ja)
Other versions
JP3940062B2 (en
Inventor
Hideo Ikeda
英生 池田
Takuya Kusaka
卓也 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002333433A priority Critical patent/JP3940062B2/en
Publication of JP2004172719A publication Critical patent/JP2004172719A/en
Application granted granted Critical
Publication of JP3940062B2 publication Critical patent/JP3940062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To extend a communication area without deteriorating communication efficiency in the case of performing one-to-multi two-way wireless communication between a base station apparatus and a plurality of terminals. <P>SOLUTION: The wireless communication system is provided with: a terminal side communication section 32 acting like one terminal 40 to make communication with a wireless access point 20 or the other wireless relaying apparatus 30; and a wireless relaying apparatus 30 acting like the wireless access point 20 to make communication with the terminal 40 existing in a prescribed communication area to substantially extend the communication area of the wireless access point 20. Further, a communication band assigned to each terminal 40 is uniformized by providing a function for allocating a communication band to the terminals 40 and the wireless relaying apparatus 30 in the communication area to the wireless access point 20 and the wireless relaying apparatus 30. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は,例えば無線LANを構成するアクセスポイント等の所定の基地局装置と複数の端末との間で行われる1対多の無線通信を中継する無線通信中継装置及び該無線通信中継装置を用いた無線通信システムに関するものである。
【0002】
【従来の技術】
複数の利用者それぞれが使用する端末(パーソナルコンピュータやPDA等の情報端末)により必要になったその場で構成される無線ネットワーク,即ちアドホックネットワークには,分散型アドホックネットワークと集中型ホアドホックネットワークとがある。
分散型アドホックネットワークでは,各端末はそれぞれ他の端末にアクセスする機能(メディアアクセス制御(MAC)機能等)を有し,それぞれ自律的にネットワークを構成する。これに対し,集中型アドホックネットワークでは,ネットワーク内に基地局となるマスターノード(基地局装置)が存在し,該マスターノードがネットワーク内の全ての通信を制御する。即ち,集中型アドホックネットワークでは,マスターノード(基地局装置)と各端末との間で1対多(マスター・スレーブ型)の双方向無線通信が行われる。
集中型アドホックネットワークでは,マスターノードが全ての通信を管理するため,多数の端末がネットワークに参加して各端末の通信要求が度々輻輳するような場合でも適切にネットワークを維持することができ,さらに端末ごとに通信帯域等のサービス品質(QoS)を設定することが容易となることが利点である。集中型アドホックネットワークの例としては,IEEE802.11bとして規定される無線LANのインフラストラクチャーモードやBlueTooth等が挙げられる。一般に,駅や空港の待合場所等に設置されるホットスポット等のようにモバイル情報端末に対して音楽や映像,ニュース等のコンテンツを配信するサービスやインターネットへの接続サービス等を提供する無線通信システムでは,集中型アドホックネットワークが採用され,常にマスターノードとして機能する基地局装置と該基地局装置の無線通信エリア内に存在する1又は複数の端末との間で1対多の双方向無線通信が行われる。
一方,このような1対多双方向無線通信において,基地局装置の近隣に存在する端末に加え,基地局装置からの距離が離れた端末や無線信号伝播の障害物の陰となるエリアに存在する端末と通信を行いたい場合等,通信エリアを拡張したい場合も多い。
従来,このような場合,複数の基地局装置をそれぞれ適当な位置に分散配置し,各基地局装置の無線通信エリアにおいて1対多双方向無線通信を構成するとともに,各基地局装置(マスターノード)間を,別途,基幹ネットワークで接続する2階層のネットワークを構成することが一般的である。図9は,1又は複数の端末2(子局)と1対多の双方向無線通信を行う複数の基地局装置1(親局)を基幹ネットワーク3で接続した従来の一般的なネットワークの構成を表す。図9には図示していないが,基幹ネットワーク3には,例えば,情報配信サーバやインターネット接続サーバ等が接続される。
また,特許文献1には,複数のマスターノード(基地局装置に相当)の通信エリアが重複する位置に存在する端末がゲートウェイの機能を果たすことにより,マスターノード間の通信を端末が中継する通信システムが示されている。
【0003】
【特許文献1】
特開2001−156787号公報
【0004】
【発明が解決しようとする課題】
しかしながら,図9に示すような従来の一般的なネットワーク構成では,基地局装置1相互間を接続する基幹ネットワーク3を配線する必要があり,基地局装置1の配置位置に制約が生じたり配線コストが大きくなる等の問題点があった。また,図9に示す従来のネットワーク構成において,基幹ネットワーク3を無線通信により構成することも考えられるが,一般的に,基地局装置1が端末2との通信を制御するための通信プロトコルと基地局装置1同士が通信を行うための通信プロトコルとは異なるため,この場合,基地局装置1同士の通信用の無線通信システムをさらに具備しなければならない上,無線信号(高周波信号)の干渉を避けるため,端末2との通信に用いる無線周波数帯域と異なる周波数帯域を基幹ネットワーク用に別途用意したり,端末2との通信帯域の一部を基幹ネットワーク用に使用したりする必要が生じ,システムが複雑になって通信効率が悪化するという問題点があった。
また,特許文献1に示される技術では,マスターノード間を中継する端末(以下,ゲートウェイ端末という)は,複数のマスターノードと通信を行うことになるため,該ゲートウェイ端末に対する通信が複数のマスターノード間でバッティングしないように,前記ゲートウェイ端末を介してマスターノート間で同期をとる必要が生じ,通信効率が悪化するという問題点があった。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,基地局装置と複数の端末との間で1対多の双方向無線通信を行う場合に,通信効率を悪化させることなく通信エリアの拡張が可能な無線通信中継装置及び無線通信システムを提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明は,所定の基地局装置と複数の端末との間で行われる1対多の無線通信を中継する無線通信中継装置であって,前記基地局装置又は他の無線通信中継装置により送信及び受信される高周波信号を前記端末が用いる通信方式によって受信及び送信する端末通信手段と,前記端末通信手段により受信及び送信される前記高周波信号によって伝送される通信データの一部又は全部を前記基地局装置が用いる通信方式によって前記端末及び/又は他の無線通信中継装置との間で高周波信号を用いて送信及び受信する基地局通信手段と,を具備してなることを特徴とする無線通信中継装置として構成されるものである。
このような構成により,当該無線通信中継装置は,前記端末通信手段により前記基地局装置に対して1つの端末として通信を行うとともに,前記基地局通信手段の通信エリア内に存在する端末に対しては,前記基地局装置として通信を行うことになり,これによって前記基地局装置と前記基地局通信手段の通信エリア内の端末との間の通信が中継される。従って,当該無線通信中継装置を,前記基地局装置の通信エリア内の位置(前記基地局装置と前記端末通信手段とが通信可能な位置)において,前記基地局通信手段の通信エリアが前記基地局装置の通信エリアの外側をカバーするように設置すれば,当該無線通信中継装置による通信の中継によって前記基地局装置の実質的な通信エリアを拡張できることになる。
さらに,当該無線通信中継装置は,1つの前記基地局装置又は1つの他の無線通信中継装置に対してのみ前記端末として機能する(振舞う)ので,複数の前記基地局装置をその通信エリアが重複する位置にある前記端末によってブリッジする場合のように,他の基地局装置と同期をとる等の通信効率の悪化要因がない。
【0006】
また,前記基地局通信手段の通信相手となる前記端末及び他の無線通信中継装置それぞれに割り当てる通信帯域を設定する通信帯域設定手段を具備するものも考えられる。
前記基地局通信手段の通信相手としては,その通信エリア内に存在する(以下,「配下の」という)前記端末と他の無線通信中継装置とが考えられるが,配下の無線通信中継装置との間で送受信されるデータ量は,該配下の無線通信中継装置の通信相手となる配下の端末(複数存在する場合もある)と,配下の無線通信中継装置のさらに下位側の他の無線通信中継装置との間で送受信するデータ量の合計となるため,各端末との通信データ量よりも大きい場合が多い。そこで,前記通信帯域設定手段により,前記エリア内中継装置への通信帯域の割り当てを大きくするよう設定すれば,各端末に割り当てられる通信帯域を均等化することができる。これにより,効率の良い通信を行うことが可能となる。
【0007】
また,前記基地局通信手段により通信中の他の無線通信中継装置及び該他の無線通信中継装置より下位側で通信中の他の無線通信中継装置の数に関する下位側中継装置数を前記基地局通信手段を介して取得する下位側中継装置数取得手段と,前記下位側中継装置数取得手段により取得した前記下位側中継装置数に1を加算した数を前記下位側中継装置数として前記端末通信手段により送信する下位側中継装置数送信手段と,を具備し,前記通信帯域設定手段が,前記下位側中継装置数取得手段により取得した前記下位側中継装置数に基づいて前記通信帯域を設定するものが考えられる。
通常,配下の無線通信中継装置の下位側に存在する他の無線通信中継装置の数が多いほど,該配下の無線通信中継装置との間で送受信されるデータ量が大きくなる場合が多い。従って,このように自装置よりも下位側の無線通信中継装置の数に基づいて通信帯域の割り当てを自動的に行うことにより,装置構成が変更されても各端末に割り当てられる通信帯域を均等化することができる。
【0008】
また,前記基地局通信手段により通信中の他の無線通信中継装置及び該他の無線通信中継装置より下位側で通信中の他の無線通信中継装置それぞれと通信中の前記端末の数に関する下位側端末数を前記基地局通信手段を介して取得する下位側端末数取得手段と,前記下位側端末数取得手段により取得した前記下位側端末数の合計に前記基地局通信手段により通信中の前記端末の数を加算した数を前記下位側端末数として前記端末通信手段により送信する下位側端末数送信手段と,を具備し,前記通信帯域設定手段が,前記下位側端末数取得手段により取得した前記下位側端末数と前記基地局通信手段により通信中の前記端末の数とに基づいて前記通信帯域を設定するものも考えられる。
このような構成によれば,自装置の配下の端末の数及びそれよりも下位側に存在する全ての端末の数に応じて通信帯域の自動割り当てが行われるので,下位側に存在する他の無線通信中継装置の数を用いる場合よりも,各端末へ割り当てる通信帯域をより精度高く均等化することが可能となる。
【0009】
また,前記端末通信手段が,前記基地局装置又は他の無線通信中継装置との間における前記高周波信号の送受信を,無線により又はマイクロストリップ線路を介して行うよう構成されたものも考えられる。
同様に,前記基地局通信手段が,他の無線通信中継装置との間における前記高周波信号の送受信を,無線により又はマイクロストリップ線路を介して行うよう構成されたものも考えられる。
前記端末通信手段及び前記基地局通信手段が送受信するのは高周波信号であり,有線伝送では減衰が大きいのでアンテナを用いて無線電波で送受信するのが通常である。しかし,マイクロストリップ線路を用いれば高周波信号を小さな減衰で伝送することが可能であるので,設置位置が変更される可能性が少ない前記基地局装置や他の無線通信中継装置との間の信号伝送経路としてマイクロストリップ線路を介して信号伝送を行うことも考えられる。これにより,遠距離になるほど拡散してしまう電波(無線)のみを用いるよりもむしろ効率良く高周波信号を伝送することが可能となる場合もある。もちろん指向性アンテナを用いることにより極力電波の拡散を小さくして無線伝送することも考えられる。この場合,前記端末との通信用の比較的指向性の低い(指向性が緩い)アンテナと前記基地局装置や他の無線通信中継装置との通信用の指向性の高い(指向性が鋭い)アンテナとの両方を具備することが望ましい。
【0010】
また,本発明は,所定の基地局装置と複数の端末との間で1対多の無線通信を行う無線通信システムにおいて,前記無線通信中継装置を構成要素とする無線通信システムとして捉えたものであってもよい。
この場合,前記無線通信中継装置の機能と同様の機能を前記基地局装置に設けることが考えられる。
即ち,前記基地局装置が,該基地局装置の通信相手となる前記端末及び前記無線通信中継装置それぞれに割り当てる通信帯域を設定する通信帯域設定手段を具備するものである。
さらに,前記基地局装置が,該基地局装置と通信中の前記無線通信中継装置及び該無線通信中継装置より下位側で通信中の他の前記無線通信中継装置の数に関する下位側中継装置数を前記無線通信中継装置から取得する下位側中継装置数取得手段を具備し,前記基地局装置の前記通信帯域設定手段が,前記下位側中継装置数取得手段により取得した前記下位側中継装置数に基づいて前記通信帯域を設定するものや,前記基地局装置が,該基地局装置と通信中の前記無線通信中継装置及び該無線通信中継装置より下位側で通信中の他の前記無線通信中継装置それぞれと通信中の前記端末の数に関する下位側端末数を前記無線通信中継装置から取得する下位側端末数取得手段を具備し,前記基地局装置の前記通信帯域設定手段が,前記下位側端末数取得手段により取得した前記下位側端末数と前記基地局装置が通信中の前記端末の数とに基づいて前記通信帯域を設定するもの等が考えられる。
これにより,前述した通り前記端末それぞれに割り当てる通信帯域を均等化することができる。
【0011】
また,前記無線通信システムにおいて,マイクロストリップ線路の信号線に1又は複数のパッチアンテナを電気的に結合させた1又は複数のテープ状アンテナを具備し,前記テープ状アンテナそれぞれが,前記基地局装置及び/又は前記無線通信中継装置の前記基地局通信手段に接続されて前記高周波信号を伝送するよう構成されたものも考えられる。
これにより,例えば,端末の使用位置がある程度定まっているような場合には,その使用位置付近まではマイクロストリップ線路により前記高周波信号を伝送し,そこから先はマイクロストリップ線路に設けた前記パッチアンテナを介した無線通信により比較的狭い範囲をカバーするように構成することができるので,不要なエリアに前記高周波信号が拡散されることがなく,前記高周波信号の出力レベルを最小限に抑えたエネルギーロスの少ない通信を行うことが可能となる。また,障害物を回避して前記高周波信号を伝送することも可能となる。
【0012】
また,前記無線通信システムにおいて,前記テープ状アンテナを構成する前記ストリップ線路の信号線に電気的に接続された第1のアンテナと前記無線通信中継装置の前記端末通信手段に接続された第2のアンテナとを具備し,前記テープ状アンテナ及びこれに接続される前記基地局装置又は前記無線通信中継装置それぞれが列車を構成する複数の車両それぞれに配置されるとともに,複数の前記パッチアンテナが所定間隔で設けられた前記テープ状アンテナが前記車両の室内にその長手方向に沿って配設され,隣接する車両における一方の車両側の前記第1のアンテナと他方の車両側の前記第2のアンテナとが前記隣接する車両間において対向配置されたものも考えられる。
このように,前記テープ状アンテナを車両の長手方向に沿って室内の天井や壁面等に配設すれば,前記パッチアンテナを列車の座席間隔等を考慮した適当な間隔で設けることにより,各車両の前記基地局装置又は前記無線通信中継装置と車両内の各座席に着席した利用者が使用する端末それぞれとがエネルギーロスの少ない無線通信を行うことが可能となる。さらに,隣接する車両間が,互いに対向するアンテナにより無線で信号伝送されるので,車両の連結が変更された場合であっても有線接続時のような接続替えの手間を要しない。また,前記高周波信号のエネルギーロスが少ないので,前記高周波信号の出力レベルを低く抑えることができ,その結果,すれ違う列車間での前記高周波信号(電波)の相互干渉や,駅や線路周辺で用いられている無線信号(電波)への干渉を防止できる。
【0013】
また,前記無線通信中継装置の前記端末通信手段と前記基地局装置又は他の無線通信中継装置の前記基地局通信手段との間を接続して前記高周波信号を伝送するマイクロストリップ線路を具備するものも考えられる。
これにより,遠距離になるほど拡散してしまう電波(無線)のみを用いるよりもむしろ効率良く高周波信号を伝送することが可能となる。
【0014】
【発明の実施の形態】
以下添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係る無線通信システムの概略構成を表すブロック図,図2は本発明の実施の形態に係る無線通信システムのネットワーク構成例を表す図,図3は本発明の実施の形態に係る無線通信システムを構成する無線中継装置による第1の通信帯域設定処理の手順を表すフローチャート,図4は本発明の実施の形態に係る無線通信システムを構成する無線中継装置による第2の通信帯域設定処理の手順を表すフローチャート,図5は本発明の第1の実施例に係る無線通信システムのネットワーク構成例を表す図,図6は本発明の第2の実施例に係る無線通信システムのネットワーク構成例を表す図,図7は本発明の第3の実施例に係る無線通信システムのネットワーク構成例を表す図,図8は本発明の第3の実施例に係る無線通信システムを構成するテープ状アンテナを用いた場合と従来のアンテナを用いた場合とについて端末の位置とその通信速度との関係の比較結果の一例を表すグラフ,図9は従来の無線通信システムのネットワーク構成例を表す図である。
【0015】
まず,図1を用いて,本発明の実施の形態に係る無線通信システムの構成について説明する。
本発明の実施の形態に係る無線通信システムは,情報配信サーバ10,無線アクセスポイント20,無線中継装置30,及び端末40を具備するものである。前記情報配信サーバ10は,前記端末40からの要求に応じてニュースや音楽,映像等のデジタルコンテンツを提供する一般的な計算機である。
前記無線アクセスポイント20(前記基地局装置の一例)は,前記情報配信サーバ10とネットワークケーブル50により接続され,前記情報配信サーバ10により送受信される通信データを高周波信号として無線により送受信するいわゆるアクセスポイントである。前記無線アクセスポイント20は,TCP/IP等の通信プロトコルに従って前記情報配信サーバ10と通信を行うLAN通信部21と,IEEE802.11bのインフラストラクチャーモードにおけるアクセスポイント側の通信プロトコルに従って,前記情報配信サーバ10が送受信する通信データを,例えば2.4GHz帯DSスペクトラム拡散方式の高周波信号として所定の通信エリア内の前記端末40や前記無線中継装置30との間で送受信するアクセスポイント側通信部22と,該アクセスポイント側通信部22の通信相手となる前記端末40や前記中継装置30それぞれに対する通信帯域の割り当てを行う通信帯域設定部23と,前記アクセスポイント側通信部22により送受信される高周波信号を所定エリア内において無線信号(電波)として送受信するダイポールアンテナ等であるアンテナ24とを具備している。
前記端末40は,例えば,一般的な無線LANカードが装着されたパーソナルコンピュータやPDA等であり,前記無線アクセスポイント10又は前記無線中継装置30との間でIEEE802.11bのインフラストラクチャーモードにおける端末(セル)側の通信プロトコルに従って通信データ(前記情報配信サーバ10へのコンテンツ配信要求や前記情報配信サーバ10から配信されるコンテンツデータ等)の送受信を行うものである。
前記アクセスポイント側通信部22によって通信エリア内の(以下,「配下の」という)前記端末40又は前記無線中継装置30から受信したデータ(通信データ)は,前記LAN制御部21に転送され,該LAN制御部21によって前記情報配信サーバ10に送信される。一方,前記LAN制御部21によって前記情報配信サーバ10から受信したデータ(通信データ)は,前記アクセスポイント側通信部22に転送され,該アクセスポイント側通信部22によって配下の前記端末40又は前記無線中継装置30に送信される。
【0016】
前記無線中継装置30(本発明に係る無線通信中継装置の一例)は,前記無線アクセスポイント20や他の無線中継装置30に対して1つの前記端末40として通信データを無線により送受信するとともに,その通信データを所定の通信エリア内の前記端末40や他の無線中継装置30との間で無線により送受信するものである。この無線中継装置30は,前記無線アクセスポイント10又は他の無線中継装置30により送受信される電波(高周波信号)を送受信する端末アンテナ31と,該端末アンテナ31を介してIEEE802.11bのインフラストラクチャーモードにおける端末(セル)側の通信プロトコル(即ち,前記端末40が用いる通信方式)によって通信データを送受信する端末側通信部32(前記端末通信手段の一例)と,該端末通信部32により送受信される通信データを前記端末40及び他の無線中継装置30との間でIEEE802.11bのインフラストラクチャーモードにおけるアクセスポイント側の通信プロトコルに従って送受信するアクセスポイント側通信部33と,該アクセスポイント側通信部33の通信相手となる前記端末40や前記中継装置30それぞれに対する通信帯域の割り当てを行う通信帯域設定部34と,前記アクセスポイント側通信部33により送受信される高周波信号を所定エリア内において無線信号(電波)として送受信するダイポールアンテナ等であるアンテナ35とを具備している。前記アクセスポイント側通信部33及び前記通信帯域設定部34は,前記無線アクセスポイント10が備える前記アクセスポイント側通信部22及び前記通信帯域設定部23と同じものである。
【0017】
前記アクセスポイント側通信部33によってその配下の前記端末40又は他の無線中継装置30(の前記端末側通信部32)から受信したデータ(通信データ)は,前記端末側通信部32に転送され,該端末側通信部32によってその通信相手となる前記無線アクセスポイント20又は他の無線中継装置30(の前記アクセスポイント側通信部33)に送信される。
また,前記端末側通信部32によってその通信エリア内に存在する前記無線アクセスポイント20又は他の無線中継装置30(の前記アクセスポイント側通信部33)から受信したデータ(通信データ)は,前記アクセスポイント側通信部33に転送され,該アクセスポイント側通信部33によってその配下の前記端末40又は他の無線中継装置30に送信される。ここで,前記端末側通信部32の通信相手の位置(方向)は通常は固定されるので,前記端末側通信部32に接続されるアンテナ31は,指向性アンテナとすることが望ましい。
【0018】
図1に示した無線通信システムのネットワーク構成例を図2に示す。図2では,前記無線アクセスポイント20は黒丸印,前記無線中継装置30は半黒半白の丸印,前記端末40は白丸印でそれぞれ表している。また,前記情報配信サーバ10は図示していない。
図2に示すように,前記無線アクセスポイント20はそのアンテナ24の特性及び前記端末40側のアンテナの特性に応じた所定の通信エリアA1(アンテナ24から発信される電波(高周波信号)が通信可能レベルで到達するとともに,前記端末40から発信される電波が通信可能なレベルで到達するエリア)を有しており,通信エリアA1内に存在する前記端末40と1対多の無線通信を行う。さらに,通信エリアA1内に前記無線中継装置30を配置することにより,該無線中継装置30は,前記端末側通信部32により,前記端末40と同じ通信方式によって前記無線アクセスポイント20と通信を行う。前記無線中継装置30の前記端末側通信部32は,前記端末40と同様に振舞うことになるので,前記無線アクセスポイント20から見れば,前記無線中継装置30(の前記端末側通信部32)は,他の前記端末40と全く同じに見える。
【0019】
一方,前記無線アクセスポイント20の通信エリアA1内に配置された前記無線中継装置30も,そのアンテナ35及び前記端末40のアンテナの特性により定まる所定の通信エリアA2(アンテナ35から発信される電波(高周波信号)が通信可能レベルで到達するとともに,前記端末40から発信される電波が通信可能なレベルで到達するエリア)を有しており,前記アクセスポイント側通信部32により,通信エリアA2内に存在する前記端末40と1対多の無線通信を行う。前記無線中継装置30の前記アクセスポイント側通信部33は,前記無線アクセスポイント20の前記アクセスポイント側通信部22と同様に振舞うことになるので,前記端末40から見れば,前記無線中継装置30(の前記アクセスポイント側通信部33)は,前記無線アクセスポイント20と全く同じに見える。
【0020】
ここで,前記無線アクセスポイント20の通信エリアA1内の前記無線中継装置30は,その通信エリアA2が前記エリアA1の外側の所定領域をカバーするように設置される。
さらに,前記エリアA2内には,他の無線中継装置30が配置され,その通信エリアA3が前記エリアA1及びA2の外側の所定領域をカバーするように設置される。
このように,前記無線中継装置30を,その通信エリアが順次拡張されるように設置すれば,前記無線中継装置30のデータ中継機能により,前記無線アクセスポイント20の実質的な通信エリアが拡張されることになる。
また,前記無線中継装置30は,1台の前記無線アクセスポイント20又は1台の他の無線中継装置30に対してのみ前記端末40として機能する(振舞う)ので,複数の前記無線アクセスポイント20をその通信エリアが重複する位置にある前記端末40によってブリッジする場合(特許文献1に示される構成の場合)のように,複数の前記無線アクセスポイント20の間で同期をとる等の通信効率を悪化させる要因がない。
【0021】
次に,前記無線アクセスポイント20及び前記無線中継装置30において,前記通信帯域設定部23,34により行われる通信帯域設定機能について説明する。
前述したように,前記無線アクセスポイント20及び前記無線中継装置30から見れば,その配下の前記無線中継装置30は,前記端末40と同じにみえる。しかし,配下の前記無線中継装置30との間で送受信されるデータ量は,該配下の無線中継装置30の通信相手となるさらに下位側の前記端末40(複数存在する場合もある)と,前記配下の無線中継装置30のさらに下位側の他の無線中継装置30との間で送受信するデータ量の合計となるため,配下の前記端末40それぞれとの通信データ量よりも大きい場合が多い。
例えば,図2に示した構成では,エリアA3に存在する前記無線中継装置30を通過する通信データは前記端末40の3台分のデータ量となり,エリアA2に存在する前記無線中継装置30を通過する通信データは前記端末40の5台分のデータ量となる。
そこで,前記通信帯域設定部23,34により,配下の前記無線中継装置30への通信帯域の割り当てを大きくするよう設定すれば,各端末40に割り当てられる通信帯域を均等化することができる。
以下,自装置よりも下位側の他の無線中継装置30の数(以下,下位側中継装置数という)に基づいて通信帯域の自動割り当てを行う第1の通信帯域設定処理と,自装置の配下及びそれよりも下位側に存在する端末40の数(以下,それぞれ配下の端末数及び下位側端末数という)に基づいて通信帯域の自動割り当てを行う第2の通信帯域設定処理とについて説明する。
【0022】
(第1の通信帯域設定処理)
まず,図3に示すフローチャートを用いて,前記無線中継装置30により実行される前記第1の通信帯域設定処理の手順につて説明する。以下,S11,S12,…は,処理手順(ステップ)の番号を表す。
前記無線中継装置30が起動されると,前記端末側通信部32により,通信エリア内に存在する(自装置が配下となっている)前記無線アクセスポイント20又は前記無線中継装置30(以下,上位ノードという)への通信接続が確立される(S11)。
次に,前記通信帯域設定部34により,変数である下位側中継装置総数が初期値(=1)に設定されるとともに,当該無線中継装置30の配下の前記端末40及び他の無線中継装置30(以下,配下のノードという)それぞれに割り当てる通信帯域が所定の初期状態に設定される(S12)。
【0023】
次に,前記端末側通信部32により,前記上位ノードに対して前記下位側中継装置総数が送信される(S13)。
さらに,前記アクセスポイント側通信部33により,配下の他の無線中継装置30から該配下の他の無線中継装置30より下位側で通信中の他の無線中継装置の総数である下位側中継装置数が受信(取得)される(S14)。これは,配下の他の無線中継装置30から前記S13に相当する処理によって送信される前記下位側中継装置数を受信する処理である。即ち,S13で送信された前記下位側中継装置総数が,前記上位ノードにとっての前記下位側中継装置数に相当する。次に,S14で受信(取得)した前記下位側中継装置数が前回受信した数(初回の場合は所定の初期値)から変化しているか否かが判別され(S15),変化がない場合はそのままS13へ戻って前述した処理が繰り返される。
一方,S15において前記下位側中継装置数に変化があると判別された場合には,前記通信帯域設定部34によって前記配下のノードそれぞれへの通信帯域の割り当てが設定変更(S16)される。以後,設定変更された通信帯域の割り当てに従って,当該無線中継装置30の前記アクセスポイント側通信部33とその配下のノードとの間の通信が行われる。
次に,前記通信帯域設定部34により,前記下位側中継装置総数が配下の他の無線中継装置30(複数もあり得る)から受信(取得)した前記下位側中継装置数の合計に1を加算(自装置分を加算)した値に設定(S17)された後,S13へ戻って前述した処理が繰り返される。
【0024】
ここで,前記配下のノードに割り当てる通信帯域の設定方法としては,前記下位側中継装置数に比例して配分すること等が考えられる。この場合,前記配下のノードに割り当て可能な全通信帯域をWall,配下の他の無線中継装置30それぞれから取得した前記下位側中継装置数をP(i=1,2,…,n)(iは,配下の他の無線中継装置30それぞれの番号を表すものとする)とすると,配下の他の無線中継装置30それぞれに割り当てる通信帯域Wは,次の(1)式で表すことができる。
=Wall×P/{(Σi=1,n)+1} …(1)
この(1)式の分母は,前記下位側中継装置総数である。また,自装置(当該無線中継装置30)の配下の端末40には,配下の他の無線中継装置30それぞれに割り当てた残りの通信帯域(Wall−(Σi=1,n))が割り当てられることになる。
これにより,自装置よりも下位側の他の無線中継装置30の数に基づいて通信帯域の自動割り当てが行われ,各端末へ割り当てる通信帯域を均等化することができる。
【0025】
また,S17で設定された前記下位側中継装置総数は,S13において前記上位ノードに送信されるので,該上位ノードは,その配下の(即ち,該上位ノードの前記アクセスポイント側通信部22,33により通信中の)他の無線中継装置30(即ち,当該無線中継装置30)及び該他の無線中継装置30より下位側で通信中の他の無線中継装置30の数を取得することができる。当該無線中継装置30については,S14で受信した前記下位側中継装置数がこれに相当する。
また,図3に示したものと同様の処理が前記無線アクセスポイント30においても行われるが,前記無線アクセスポイント30には前記上位ノードが存在しないので,前記無線アクセスポイント30では,図3に示した処理におけるS11及びS13の手順が省略された処理が実行されることになる。
このように,無線中継装置30それぞれにおいて,新たに前記上位ノードに接続したときには自装置分(=1)の数が,その後は前記下位側中継装置数の合計に自装置分を加算した最新の前記下位側中継装置総数が前記上位ノードへ送信(S13)されるので,ネットワーク内のいずれかで生じた無線中継装置30の数の変化は順次前記上位ノードへ伝達されることになる。
また,前記下位側中継装置数の取得処理(S14)は,例えば,前記下位側中継装置数の送信要求を配下のノードに所定周期で一斉送信し,これに応じて配下の他の無線中継装置30から送信されてくる前記下位側中継装置総数を受信するもの等であってもよい。
【0026】
(第2の通信帯域設定処理)
次に,図4のフローチャートを用いて,前記配下の端末数及び前記下位側端末数(自装置の配下及びそれよりも下位側に存在する端末40の数)に基づいて通信帯域の自動割り当てを行う第2の通信帯域設定処理の手順について説明する。前記無線中継装置30が起動されると,前記端末側通信部32により,通信エリア内に存在する(自装置が配下となっている)前記無線アクセスポイント20又は前記無線中継装置30(以下,上位ノードという)への通信接続が確立される(S21)。
次に,前記通信帯域設定部34により,変数である下位側端末総数が初期値(=0)に設定されるとともに,当該無線中継装置30の前記配下のノードそれぞれに割り当てる通信帯域が所定の初期状態に設定される(S22)。
【0027】
次に,前記端末側通信部32により,前記上位ノードに対して前記下位側端末総数が送信される(S23)。
次に,前記アクセスポイント側通信部33により,配下の他の無線中継装置30から該配下の他の無線中継装置30及びそれより下位側で通信中の他の無線中継装置それぞれと通信中の前記端末40の総数である下位側端末数が受信(取得)される(S24)。この下位側端末数の取得方法も前述したS14(図3)と同様である。従って,S23で送信された前記下位側端末総数が,前記上位ノードにとっての前記下位側端末数に相当する。
さらに,前記アクセスポイント側通信部33により,現在通信中(通信接続中)の配下の前記端末40の数が検出される(S24)。この自装置(当該無線中継装置30)の配下の端末40の数は,例えば,前記アクセスポイント側通信部33によって定期的に所定の応答要求を送信し,これに対する応答の数から,S24における前記下位側端末数の受信相手の数(即ち,配下の他の無線中継装置30の数)を差し引いた数を算出することによって得ること等が考えられる。
次に,S24,S25で受信(取得)及び検出した前記下位側端末数及び配下の前記端末40の数が前回の数(初回の場合は所定の初期値)から変化しているか否かが判別され(S26),変化がない場合はそのままS23へ戻って前述した処理が繰り返される。
一方,S26において前記下位側端末数等又は配下の前記端末40の数に変化があると判別された場合には,前記通信帯域設定部34によって前記配下のノードそれぞれへの通信帯域の割り当てが設定変更(S27)される。以後,設定変更された通信帯域の割り当てに従って,当該無線中継装置30の前記アクセスポイント側通信部33とその配下のノードとの間の通信が行われる。
次に,前記通信帯域設定部34により,前記下位側端末総数が配下の他の無線中継装置30(複数もあり得る)から受信(取得)した前記下位側端末数の合計に自装置の配下の前記端末40の数を加算した値に設定(S28)された後,S23へ戻って前述した処理が繰り返される。
【0028】
ここで,前記配下のノードに割り当てる通信帯域の設定方法としては,前記下位側端末数及び配下の端末の数に比例して配分すること等が考えられる。この場合,前記配下のノードに割り当て可能な全通信帯域をWall,配下の他の無線中継装置30それぞれから取得した前記下位側端末数をQ(i=1,2,…,n)(iは,配下の他の無線中継装置30それぞれの番号を表すものとする),自装置の配下の端末数をQとすると,配下の他の無線中継装置30それぞれに割り当てる通信帯域Wは,次の(2)式で表すことができる。
=Wall×Q/{(Σi=1,n)+Q} …(2)
この(2)式の分母は,前記下位側端末総数である。また,自装置(当該無線中継装置30)の配下の端末40には,配下の他の無線中継装置30それぞれに割り当てた残りの通信帯域(Wall−(Σi=1,n))が割り当てられることになる。
これにより,自装置の配下及びそれよりも下位側に存在する端末40の数に基づいて通信帯域の自動割り当てが行われ,各端末へ割り当てる通信帯域を均等化することができる。
【0029】
また,S28で設定された前記下位側端末総数は,S23において前記上位ノードに送信されるので,該上位ノードは,その配下の(即ち,該上位ノードの前記アクセスポイント側通信部22,33により通信中の)他の無線中継装置30(即ち,当該無線中継装置30)及び該他の無線中継装置30より下位側で通信中の全ての前記端末40の数を取得することができる。当該無線中継装置30については,S24で受信した前記下位側端末数がこれに相当する。
また,図4に示したものと同様の処理が前記無線アクセスポイント30においても行われるが,前記無線アクセスポイント30には前記上位ノードが存在しないので,前記無線アクセスポイント30では,図4に示した処理におけるS21及びS23の手順が省略された処理が実行されることになる。
このように,無線中継装置30それぞれにおいて,新たに前記上位ノードに接続したときには自装置の配下の前記端末40の数が,その後は前記下位側端末数の合計に自装置の配下の前記端末40の数を加算した最新の前記下位側端末総数が前記上位ノードへ送信(S23)されるので,ネットワーク内のいずれかで生じた前記端末40の数の変化は順次前記上位ノードへ伝達されることになる。
【0030】
前記第2の通信帯域設定処理によれば,前記第1の通信帯域設定処理を行う場合よりも,前記端末40それぞれへ割り当てる通信帯域をより精度高く均等化することが可能となる。
一方,前記端末40の数が変動する頻度は,通常は前記無線中継装置30の数が変動する頻度よりも高いと考えられるため,前記端末40の数が変動頻度が高い場合に前記第2の通信帯域設定処理を行なうと,その処理のオーバーヘッドにより通信効率が悪化する恐れがある。このような場合には,前記第1の通信帯域設定処理を採用するか,前記第2の通信帯域設定処理において端末数が所定数以上変化したときのみ通信帯域の再設定を行うようにすること等が考えられる。
ここで,前記アクセスポイント側通信部22,33による通信帯域の割り当て方法としては,例えば,時分割通信制御において前記配下のノードそれぞれに割り当てる通信時間を増減する方法や,前記配下のノードそれぞれに割り当てるチャンネル数を増減する方法等が考えられる。
また,図3及び図4には示していないが,これら通信帯域設定処理とは別に,前記端末40から前記情報配信サーバ10へのコンテンツの要求や,前記情報配信サーバ10から前記端末40それぞれに配信されるコンテンツ等の通信データの送受信が行われることはいうまでもない。
【0031】
【実施例】
(第1の実施例)
前述した実施の形態では,前記無線アクセスポイント20及び前記無線中継装置30において,前記端末40との通信と前記無線中継装置30との通信は,いずれも1つのアンテナ24,35を用いて行う無線通信システムであったが,例えば,前記アクセスポイント側通信部22,33と前記アンテナ24,35との間に所定の信号分岐・結合回路を設け,前記アンテナ24,35それぞれを,前記端末40と通信するための比較的指向性の低い(指向性が緩い)アンテナと前記無線中継装置30と通信するための指向性の高い(指向性が鋭い)アンテナとで構成する応用例(第1の実施例)も考えられる。図5は,このような応用例である無線通信システムのネットワーク構成例である。図5において,A11で示すエリアが前記無線アクセスポイント20の前記アクセスポイント側通信部22に接続される指向性アンテナによる通信エリアであり,A21,A23で示すエリアが前記無線中継装置30の前記アクセスポイント側通信部33に接続される指向性アンテナによる通信エリアである。
一般に,指向性アンテナは高周波信号の伝送効率がよく,伝送距離を長くとれるため,例えば図5に示すように,前記無線アクセスポイント20と前記無線中継装置30との間,及び前記無線中継装置30相互間の距離を長くとることが可能となる。これにより,必要な場所にのみ効率的に前記無線中継装置30を配置することが可能となる。
【0032】
また,図示していないが,図5に示した前記指向性アンテナを用いた高周波信号の無線伝送に代えて,前記無線アクセスポイント20の前記アクセスポイント側通信部22とその通信相手となる前記無線中継装置30の前記端末側通信部31との間や,前記無線中継装置30の前記アクセスポイント側通信部33とその通信相手となる前記無線中継装置30の前記端末側通信部31との間における高周波信号の伝送を,マイクロストリップ線路を介して接続することも考えられる。
これにより,遠距離になるほど拡散してしまう電波(無線)のみを用いるよりもむしろ効率良く高周波信号を伝送することが可能となる場合もある。マイクロストリップ線路は,導体材料からなるグランド層に誘電材料からなる誘電体層と導体材料からなる信号線とを順次積層した構造を有するものであり,高周波信号の伝送効率が高い周知の線路である。
ここで,マイクロストリップ線路を介して信号伝送を行う構成としては,マイクロストリップ線路の信号線を前記無線アクセスポイント20や前記無線中継装置30と直結して信号伝送することも考えられるが,例えば,前記無線アクセスポイント20や前記無線中継装置30の前記アクセスポイント側通信部22,33にマイクロストリップ線路の信号線の一端を接続し,もう一端の付近にパッチアンテナを電気的に結合させ,該パッチアンテナを介した無線信号(電波)によって前記無線アクセスポイント20や他の無線中継装置30との信号伝送を行うよう構成すること等も考えられる。
【0033】
(第2の実施例)
また,マイクロストリップ線路を用いた応用例として,図6に示すような無線通信システム(第2の実施例)も考えられる。
図6に示す無線通信システムは,マイクロストリップ線路61の信号線に1又は複数のパッチアンテナ62を電気的に結合させたテープ状アンテナ60を,前記無線アクセスポイント20や前記無線中継装置30の前記アクセスポイント側通信部22,33に接続することにより,高周波信号を伝送するよう構成したものである。
これにより,例えば,図書館や列車の車両内,駅のホーム等,前記端末40の使用位置がある程度定まっているような場合には,その使用位置付近まではマイクロストリップ線路61により高周波信号を伝送し,そこから先はマイクロストリップ線路61に設けた前記パッチアンテナ62を介した無線通信により比較的狭い範囲をカバーするように構成することができるので,不要なエリアに高周波信号が拡散されることがなく,高周波信号の出力レベルを最小限に抑えたエネルギーロスの少ない通信を行うことが可能となる。また,障害物を回避して高周波信号を伝送することも可能となる。
【0034】
(第3の実施例)
図7は,前記第2の実施例に係る無線通信システムを複数の車両からなる列車に適応した応用例(第3の実施例)である。
図7に示す無線通信システムでは,前記第3の実施例に係る無線通信システムにおいて,前記テープ状アンテナ60を構成する前記ストリップ線路61の信号線に電気的に接続された平面アンテナ等である第1のアンテナ63と,前記無線中継装置30の前記端末通信部31に接続された平面アンテナ等である第2のアンテナ31’とが設けられている。前記アンテナ31は前記アンテナ31の代わりに設けられるものである。
さらに,前記テープ状アンテナ60及びこれに接続される前記無線アクセスポイント20又は前記無線中継装置30それぞれが,列車を構成する複数の車両70それぞれに配置されるとともに,複数の前記パッチアンテナ62が所定間隔で設けられた前記テープ状アンテナ60が車両70の室内にその長手方向に沿って配設されている。もちろん,前記情報配信サーバ10は,前記無線アクセスポイント20が設置される車両に設置される。
さらに,隣接する車両70における一方の車両側の前記第1のアンテナ63と他方の車両側の前記第2のアンテナ31’とが隣接する車両間において対向配置されている。
このように,前記テープ状アンテナ60を車両の長手方向に沿って室内の天井や壁面等に配設すれば,前記パッチアンテナ62を列車の座席間隔等を考慮した適当な間隔で設けることにより,各車両の前記無線アクセスポイント20又は前記無線中継装置30と車両内の各座席に着席した利用者が使用する端末40それぞれとがエネルギーロスの少ない無線通信を行うことが可能となる。
【0035】
図8は,列車の車両内において,前記テープ状アンテナ60を用いた場合と従来の一般的なダイポールアンテナを用いた場合とについて前記端末40の位置とその通信速度との関係の比較結果の一例を表すグラフである。
図8(a)に示すように,従来のアンテナ24では,前記無線アクセスポイント20からの距離(即ち,アンテナ24からの距離)が16mの付近において,ほぼ一定間隔で通信速度が極端に落ち込む場所(破線で囲んだ部分)が発生する。これは,前記アンテナ24から前記端末40に直接到達する周波数信号(無線信号)と,壁面や天井面に反射して前記端末40に到達する周波数信号とが干渉するいわゆるマルチパスの状態が生じるためである。
一方,同じ条件で前記テープ状アンテナ60を用いた場合は,図8(b)に示すように,通信速度の落ち込みが少ない。これは,高周波信号が前記端末40の位置付近まで前記マイクロストリップ線路61により伝送されるので,壁面等に反射して前記端末40に到達する高周波信号の発生を抑えることができるからである。
このように,前記テープ状アンテナ60を用いることにより,高品質の通信を実現することが可能となる。
さらに,隣接する車両間が,互いに対向するアンテナ63,31’により無線で信号伝送されるので,車両の連結が変更された場合であっても有線接続時のような接続替えの手間を要しない。
また,高周波信号のエネルギーロスが少ないので,高周波信号の出力レベルを低く抑えることができ,その結果,すれ違う列車間での高周波信号(電波)の相互干渉や,駅や線路周辺で用いられている無線信号(電波)への干渉を防止できる。例えば,一般的なダイポールアンテナを用いた場合,30mW程度の出力が必要となるところ,前記パッチアンテナ62から放射される電波は,1mW未満にしても通信可能である。
【0036】
【発明の効果】
以上説明したように,本発明によれば,基地局装置と端末との間の1対多の無線通信において,基地局装置に対して1つの端末として通信を行うとともに,所定通信エリア内に存在する端末に対しては,基地局装置として通信を行う無線通信中継装置を設けることにより,基地局装置の実質的な通信エリアを拡張できる。さらに,複数の基地局装置をその通信エリアが重複する位置にある端末によってブリッジする場合のように,他の基地局装置と同期をとる等の通信効率の悪化要因がない。
また,基地局装置や無線通信中継装置に,通信エリア内の端末や無線通信中継装置に対する通信帯域の割り当てを行う機能を設けることにより,各端末に割り当てられる通信帯域を均等化することができ,その結果,効率の良い通信を行うことが可能となる。
また,高周波信号の伝送をマイクロストリップ線路や該マイクロストリップ線路にパッチアンテナを設けたテープ状アンテナを介して行うことにより,必要な場所にのみへの電波の放射や,障害物をの回避が容易となり,エネルギーロスの少ない効率的な通信装置を構成することが可能となる。
また,テープ状アンテナを用いた無線通信システムを列車内における通信システムに適用することにより,高品質の通信システムを構築することが可能となる上,すれ違う列車間での高周波信号(電波)の相互干渉や,駅や線路周辺で用いられている無線信号(電波)への干渉を防止することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る無線通信システムの概略構成を表すブロック図。
【図2】本発明の実施の形態に係る無線通信システムのネットワーク構成例を表す図。
【図3】本発明の実施の形態に係る無線通信システムを構成する無線中継装置による第1の通信帯域設定処理の手順を表すフローチャート。
【図4】本発明の実施の形態に係る無線通信システムを構成する無線中継装置による第2の通信帯域設定処理の手順を表すフローチャート。
【図5】本発明の第1の実施例に係る無線通信システムのネットワーク構成例を表す図。
【図6】本発明の第2の実施例に係る無線通信システムのネットワーク構成例を表す図。
【図7】本発明の第3の実施例に係る無線通信システムのネットワーク構成例を表す図。
【図8】本発明の第3の実施例に係る無線通信システムを構成するテープ状アンテナを用いた場合と従来のアンテナを用いた場合とについて端末の位置とその通信速度との関係の比較結果の一例を表すグラフ。
【図9】従来の無線通信システムのネットワーク構成例を表す図。
【符号の説明】
10…情報配信サーバ
20…無線アクセスポイント(基地局装置)
21…LAN制御部
22…アクセスポイント側通信部
23,34…通信帯域設定部(通信帯域設定手段)
24,31,35…アンテナ
31’…アンテナ(第2のアンテナ)
30…無線中継装置(無線通信中継装置)
32…端末側通信部(端末通信手段)
33…アクセスポイント側通信部(基地局通信手段)
40…端末
50…ネットワークケーブル
60…テープ状アンテナ
61…マイクロストリップ線路
62…パッチアンテナ
63…アンテナ(第1のアンテナ)
70…列車の車両
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wireless communication relay device that relays one-to-many wireless communication performed between a predetermined base station device such as an access point constituting a wireless LAN and a plurality of terminals, and a wireless communication relay device using the wireless communication relay device. Related to a wireless communication system.
[0002]
[Prior art]
A wireless network configured on the spot required by terminals (information terminals such as personal computers and PDAs) used by a plurality of users, that is, ad hoc networks includes distributed ad hoc networks and centralized hod hoc networks. There is.
In a distributed ad hoc network, each terminal has a function of accessing another terminal (such as a media access control (MAC) function), and configures a network autonomously. On the other hand, in a centralized ad hoc network, a master node (base station device) serving as a base station exists in the network, and the master node controls all communications in the network. That is, in the centralized ad hoc network, one-to-many (master / slave type) two-way wireless communication is performed between the master node (base station device) and each terminal.
In a centralized ad hoc network, since the master node manages all communication, even if many terminals join the network and communication requests from each terminal are frequently congested, the network can be maintained properly. An advantage is that service quality (QoS) such as a communication band can be easily set for each terminal. Examples of the centralized ad hoc network include a wireless LAN infrastructure mode defined by IEEE 802.11b, BlueTooth, and the like. Generally, a wireless communication system that provides a service for distributing music, video, news, and other contents to mobile information terminals, such as a hot spot installed in a waiting area at a station or an airport, and a service for connecting to the Internet. Employs a centralized ad-hoc network, in which a one-to-many bidirectional wireless communication is established between a base station apparatus that always functions as a master node and one or more terminals existing in a wireless communication area of the base station apparatus. Done.
On the other hand, in such point-to-multipoint two-way wireless communication, in addition to terminals existing in the vicinity of the base station apparatus, terminals located far from the base station apparatus and areas located behind the obstacles of radio signal propagation are present. In many cases, it is necessary to extend the communication area, for example, when communicating with a terminal that performs communication.
Conventionally, in such a case, a plurality of base station apparatuses are distributed and arranged at appropriate positions, and one-to-many bidirectional wireless communication is configured in a wireless communication area of each base station apparatus. It is common to form a two-layer network in which the two layers are separately connected by a backbone network. FIG. 9 shows a configuration of a conventional general network in which a plurality of base station apparatuses 1 (master stations) performing one-to-many bidirectional wireless communication with one or a plurality of terminals 2 (slave stations) are connected by a backbone network 3. Represents Although not shown in FIG. 9, for example, an information distribution server, an Internet connection server, and the like are connected to the backbone network 3.
Further, in Japanese Patent Application Laid-Open No. H11-163, a terminal in which communication areas of a plurality of master nodes (corresponding to a base station device) overlap each other performs the function of a gateway, so that the terminal relays communication between the master nodes. The system is shown.
[0003]
[Patent Document 1]
JP 2001-156787 A
[0004]
[Problems to be solved by the invention]
However, in the conventional general network configuration as shown in FIG. 9, it is necessary to wire the backbone network 3 that connects the base station devices 1 to each other, which places restrictions on the location of the base station device 1 and reduces the wiring cost. However, there was a problem that the size became large. In the conventional network configuration shown in FIG. 9, the backbone network 3 may be configured by wireless communication. However, in general, a communication protocol for controlling communication between the base station apparatus 1 and the terminal 2 and a base Since the communication protocol is different from that for communication between the station devices 1, in this case, a radio communication system for communication between the base station devices 1 must be further provided, and interference of radio signals (high-frequency signals) is reduced. To avoid this, it is necessary to separately prepare a frequency band different from the radio frequency band used for communication with the terminal 2 for the backbone network, or to use a part of the communication band for the backbone network for the backbone network. However, there has been a problem that communication efficiency is deteriorated due to complexity.
Further, in the technique disclosed in Patent Document 1, a terminal that relays between master nodes (hereinafter, referred to as a gateway terminal) communicates with a plurality of master nodes. There is a need to synchronize between the master notes via the gateway terminal so as not to batting between them, resulting in a problem that communication efficiency is deteriorated.
Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to improve communication efficiency when performing one-to-many two-way wireless communication between a base station apparatus and a plurality of terminals. An object of the present invention is to provide a wireless communication relay device and a wireless communication system capable of expanding a communication area without deterioration.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a wireless communication relay device for relaying one-to-many wireless communication performed between a predetermined base station device and a plurality of terminals, the wireless communication relay device comprising: A terminal communication means for receiving and transmitting a high-frequency signal transmitted and received by the wireless communication relay device according to a communication scheme used by the terminal; and a communication data transmitted by the high-frequency signal received and transmitted by the terminal communication means. Base station communication means for transmitting and receiving all or a part of the terminal and / or another wireless communication relay device using a high-frequency signal according to a communication method used by the base station device. It is configured as a characteristic wireless communication relay device.
With such a configuration, the wireless communication relay device communicates with the base station device as one terminal by the terminal communication unit, and communicates with a terminal existing in the communication area of the base station communication unit. Communicates as the base station device, whereby the communication between the base station device and a terminal in the communication area of the base station communication means is relayed. Therefore, when the wireless communication relay device is located in the communication area of the base station device (where the base station device and the terminal communication device can communicate with each other), the communication area of the base station communication device is changed to the base station. If the wireless communication relay device is installed so as to cover the outside of the communication area of the device, the substantial communication area of the base station device can be expanded by relaying the communication by the wireless communication relay device.
Further, the wireless communication relay device functions (behaves) as the terminal only for one base station device or one other wireless communication relay device, so that a plurality of the base station devices have overlapping communication areas. As in the case of bridging by the terminal located at a position where the communication is performed, there is no factor for deteriorating communication efficiency such as synchronization with another base station apparatus.
[0006]
In addition, it is also conceivable to provide a communication band setting unit for setting a communication band to be allocated to each of the terminal and another wireless communication relay device, which are communication partners of the base station communication unit.
The communication partner of the base station communication means may be the terminal existing in the communication area (hereinafter, referred to as “subordinate”) and another wireless communication relay device. The amount of data transmitted and received between the subordinate wireless communication relay device and the subordinate terminal (there may be a plurality of terminals) that is a communication partner of the subordinate wireless communication relay device and another wireless communication relay device further below the subordinate wireless communication relay device Since the total amount of data transmitted / received to / from the device is larger than the amount of communication data with each terminal in many cases. Therefore, if the communication band setting means is set to increase the allocation of the communication band to the intra-area relay device, the communication band allocated to each terminal can be equalized. As a result, efficient communication can be performed.
[0007]
Further, the number of lower-layer relay devices related to the number of other wireless communication relay devices communicating with the base station communication means and the number of other wireless communication relay devices communicating below the other wireless communication relay device is determined by the base station. The number of lower-level relay devices obtained through the communication device, and the number obtained by adding 1 to the number of lower-level relay devices obtained by the lower-level relay device number obtainer as the number of lower-level relay devices. Means for transmitting the number of lower-level relay devices transmitted by the means, wherein the communication band setting means sets the communication band based on the number of lower-level relay devices acquired by the number of lower-order relay device acquisition means. Things are conceivable.
Normally, the larger the number of other wireless communication relay devices existing below the subordinate wireless communication relay device, the greater the amount of data transmitted to and received from the subordinate wireless communication relay device. Therefore, by automatically allocating the communication band based on the number of wireless communication relay devices lower than the own device, the communication band allocated to each terminal is equalized even if the device configuration is changed. can do.
[0008]
In addition, another wireless communication relay device communicating with the base station communication means and a lower side relating to the number of the terminals communicating with each of the other wireless communication relay devices communicating below the other wireless communication relay device. A lower terminal number obtaining means for obtaining the number of terminals via the base station communication means, and a terminal which is communicating by the base station communication means to the sum of the lower terminal number obtained by the lower terminal number obtaining means. And a lower terminal number transmitting means for transmitting the number obtained by adding the number as the lower terminal number by the terminal communication means, wherein the communication band setting means obtains the lower terminal number obtained by the lower terminal number obtaining means. It is also conceivable to set the communication band based on the number of lower terminals and the number of terminals communicating with the base station communication means.
According to such a configuration, the communication band is automatically allocated in accordance with the number of terminals under the control of the own device and the number of all terminals existing below the own device. The communication band allocated to each terminal can be more accurately equalized than when the number of wireless communication relay devices is used.
[0009]
It is also conceivable that the terminal communication means is configured to transmit and receive the high-frequency signal to and from the base station device or another wireless communication relay device wirelessly or via a microstrip line.
Similarly, the base station communication unit may be configured to transmit and receive the high-frequency signal to and from another wireless communication relay device wirelessly or via a microstrip line.
The terminal communication means and the base station communication means transmit and receive high-frequency signals, which are generally transmitted and received by radio waves using an antenna since attenuation is large in wired transmission. However, since the high-frequency signal can be transmitted with a small attenuation by using the microstrip line, the signal transmission between the base station device and another wireless communication relay device where the installation position is unlikely to be changed is small. Signal transmission via a microstrip line as a route is also conceivable. As a result, in some cases, it is possible to transmit a high-frequency signal more efficiently than using only radio waves (wireless) that spread as the distance increases. Of course, it is also conceivable to use a directional antenna to reduce the spread of radio waves as much as possible and perform wireless transmission. In this case, an antenna having relatively low directivity (low directivity) for communication with the terminal and a high directivity (sharp directivity) for communication with the base station apparatus or another wireless communication relay apparatus are used. It is desirable to have both an antenna.
[0010]
Further, the present invention is a wireless communication system in which one-to-many wireless communication is performed between a predetermined base station apparatus and a plurality of terminals. There may be.
In this case, it is conceivable to provide a function similar to that of the wireless communication relay device to the base station device.
That is, the base station apparatus includes communication band setting means for setting a communication band to be allocated to each of the terminal and the wireless communication relay apparatus, which are communication partners of the base station apparatus.
Further, the base station device may determine the number of lower-level relay devices related to the number of the wireless communication relay devices communicating with the base station device and the number of other wireless communication relay devices communicating below the wireless communication relay device. And a communication band setting unit of the base station device, the communication band setting unit of the base station device acquiring the number of lower relay devices based on the number of lower relay devices obtained by the lower relay device number acquisition unit. And the radio communication relay device communicating with the base station device and the other radio communication relay device communicating below the radio communication relay device. And a lower-band terminal number obtaining unit for obtaining, from the wireless communication relay device, a lower-band terminal number relating to the number of the terminals communicating with the mobile station, wherein the communication band setting unit of the base station apparatus comprises: Such as those acquired the lower terminal number and the base station apparatus by the acquisition means sets the communication band based on the number of the terminal in communication can be considered.
This makes it possible to equalize the communication bandwidth allocated to each of the terminals as described above.
[0011]
The wireless communication system further includes one or a plurality of tape antennas in which one or a plurality of patch antennas are electrically coupled to a signal line of a microstrip line, and each of the tape antennas is the base station device. And / or connected to the base station communication means of the wireless communication relay device to transmit the high-frequency signal.
Accordingly, for example, when the use position of the terminal is determined to some extent, the high-frequency signal is transmitted by the microstrip line up to the vicinity of the use position, and the patch antenna provided on the microstrip line thereafter. Can be configured to cover a relatively narrow range by wireless communication via the radio communication, so that the high-frequency signal is not spread to unnecessary areas and the output level of the high-frequency signal is minimized. Communication with less loss can be performed. Further, it is possible to transmit the high-frequency signal while avoiding an obstacle.
[0012]
In the wireless communication system, a first antenna electrically connected to a signal line of the strip line constituting the tape antenna and a second antenna connected to the terminal communication means of the wireless communication relay device. An antenna, wherein the tape-shaped antenna and the base station device or the wireless communication relay device connected to the tape-shaped antenna are respectively arranged in a plurality of vehicles constituting a train, and a plurality of the patch antennas are arranged at a predetermined interval. The tape-shaped antenna provided in the interior of the vehicle is disposed along the longitudinal direction of the vehicle, and the first antenna on one vehicle side and the second antenna on the other vehicle side in adjacent vehicles May be disposed facing each other between the adjacent vehicles.
As described above, if the tape-shaped antenna is disposed on the ceiling or wall in the room along the longitudinal direction of the vehicle, the patch antennas are provided at appropriate intervals in consideration of the seat spacing of the train, etc. The base station apparatus or the wireless communication relay apparatus described above and a terminal used by a user seated in each seat in a vehicle can perform wireless communication with little energy loss. Furthermore, since signals between adjacent vehicles are wirelessly transmitted by the antennas facing each other, even when the connection of the vehicles is changed, the trouble of changing the connection as in the case of the wired connection is not required. In addition, since the energy loss of the high-frequency signal is small, the output level of the high-frequency signal can be suppressed to a low level. It can prevent interference with the radio signal (radio wave) that is being used.
[0013]
A microstrip line for transmitting the high-frequency signal by connecting between the terminal communication means of the wireless communication relay device and the base station communication means of the base station device or another wireless communication relay device; Is also conceivable.
This makes it possible to transmit a high-frequency signal more efficiently, rather than using only radio waves (wireless) that spread as the distance increases.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments and examples of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention.
Here, FIG. 1 is a block diagram illustrating a schematic configuration of a wireless communication system according to an embodiment of the present invention, FIG. 2 is a diagram illustrating a network configuration example of a wireless communication system according to an embodiment of the present invention, and FIG. FIG. 4 is a flowchart illustrating a procedure of a first communication band setting process by a wireless relay device included in the wireless communication system according to the embodiment of the present invention; FIG. 4 is a wireless relay included in the wireless communication system according to the embodiment of the present invention; 5 is a flowchart illustrating a procedure of a second communication band setting process performed by the device, FIG. 5 is a diagram illustrating a network configuration example of a wireless communication system according to the first embodiment of the present invention, and FIG. 6 is a second embodiment of the present invention. FIG. 7 illustrates a network configuration example of a wireless communication system according to the third embodiment of the present invention, FIG. 7 illustrates a network configuration example of a wireless communication system according to a third embodiment of the present invention, and FIG. FIG. 9 is a graph showing an example of a comparison result of a relationship between a position of a terminal and a communication speed thereof when a tape-shaped antenna constituting the wireless communication system is used and when a conventional antenna is used, and FIG. FIG. 1 is a diagram illustrating a network configuration example of a system.
[0015]
First, the configuration of the wireless communication system according to the embodiment of the present invention will be described using FIG.
The wireless communication system according to the embodiment of the present invention includes an information distribution server 10, a wireless access point 20, a wireless relay device 30, and a terminal 40. The information distribution server 10 is a general computer that provides digital contents such as news, music, and video in response to a request from the terminal 40.
The wireless access point 20 (an example of the base station device) is a so-called access point that is connected to the information distribution server 10 by a network cable 50 and wirelessly transmits and receives communication data transmitted and received by the information distribution server 10 as a high-frequency signal. It is. The wireless access point 20 communicates with the information distribution server 10 according to a communication protocol such as TCP / IP, and the information distribution server according to a communication protocol of the access point in the infrastructure mode of IEEE 802.11b. An access point-side communication unit 22 that transmits and receives communication data transmitted and received by the wireless communication apparatus 10 to and from the terminal 40 and the wireless relay apparatus 30 in a predetermined communication area as, for example, a 2.4 GHz band DS spread spectrum high frequency signal; A communication band setting unit 23 for allocating a communication band to each of the terminal 40 and the relay device 30 which are communication partners of the access point side communication unit 22, and a high frequency signal transmitted and received by the access point side communication unit 22. Wireless in area No. is provided with an antenna 24 is a dipole antenna or the like for transmitting and receiving a (radio waves).
The terminal 40 is, for example, a personal computer or a PDA equipped with a general wireless LAN card, and is a terminal (IEEE 802.11b infrastructure mode) between the wireless access point 10 and the wireless relay device 30. It transmits and receives communication data (content distribution request to the information distribution server 10, content data distributed from the information distribution server 10, and the like) according to a communication protocol of the (cell) side.
Data (communication data) received from the terminal 40 or the wireless relay device 30 in a communication area (hereinafter, referred to as “subordinate”) by the access point side communication unit 22 is transferred to the LAN control unit 21, The information is transmitted to the information distribution server 10 by the LAN control unit 21. On the other hand, data (communication data) received from the information distribution server 10 by the LAN control unit 21 is transferred to the access point-side communication unit 22, and the access point-side communication unit 22 controls the terminal 40 or the wireless It is transmitted to the relay device 30.
[0016]
The wireless relay device 30 (an example of a wireless communication relay device according to the present invention) transmits and receives communication data wirelessly to and from the wireless access point 20 and another wireless relay device 30 as one terminal 40. Communication data is transmitted and received between the terminal 40 and another wireless relay device 30 in a predetermined communication area by radio. The wireless relay device 30 includes a terminal antenna 31 that transmits and receives radio waves (high-frequency signals) transmitted and received by the wireless access point 10 or another wireless relay device 30, and an IEEE 802.11b infrastructure mode via the terminal antenna 31. And a terminal-side communication unit 32 (an example of the terminal communication unit) that transmits and receives communication data according to a communication protocol of the terminal (cell) side (ie, a communication method used by the terminal 40). An access point side communication unit 33 for transmitting and receiving communication data between the terminal 40 and another wireless relay device 30 according to an access point side communication protocol in an infrastructure mode of IEEE802.11b; The terminal 40 to be a communication partner A communication band setting unit 34 for allocating a communication band to each of the relay devices 30; a dipole antenna for transmitting and receiving a high frequency signal transmitted and received by the access point side communication unit 33 as a radio signal (radio wave) within a predetermined area. And an antenna 35. The access point side communication unit 33 and the communication band setting unit 34 are the same as the access point side communication unit 22 and the communication band setting unit 23 included in the wireless access point 10.
[0017]
Data (communication data) received by the access point-side communication unit 33 from the terminal 40 or another wireless relay device 30 (the terminal-side communication unit 32) under the access point-side communication unit 33 is transferred to the terminal-side communication unit 32, The communication is transmitted to the wireless access point 20 or another wireless relay device 30 (the access point-side communication unit 33 of the wireless relay device 30) which is the communication partner by the terminal-side communication unit 32.
Further, data (communication data) received from the wireless access point 20 or another wireless relay device 30 (of the access point side communication unit 33) existing in the communication area by the terminal side communication unit 32 is the access data. The data is transferred to the point-side communication unit 33 and transmitted to the terminal 40 or another wireless relay device 30 under the control of the access-point-side communication unit 33. Here, since the position (direction) of the communication partner of the terminal side communication unit 32 is usually fixed, it is desirable that the antenna 31 connected to the terminal side communication unit 32 be a directional antenna.
[0018]
FIG. 2 shows a network configuration example of the wireless communication system shown in FIG. In FIG. 2, the wireless access point 20 is indicated by a black circle, the wireless relay device 30 is indicated by a half-black half-white circle, and the terminal 40 is indicated by a white circle. The information distribution server 10 is not shown.
As shown in FIG. 2, the wireless access point 20 can communicate with a predetermined communication area A1 (a radio wave (high-frequency signal) transmitted from the antenna 24) according to the characteristics of the antenna 24 and the characteristics of the antenna on the terminal 40 side. At the same level as the radio wave transmitted from the terminal 40), and performs one-to-many wireless communication with the terminal 40 existing within the communication area A1. Further, by disposing the wireless relay device 30 in the communication area A1, the wireless relay device 30 communicates with the wireless access point 20 by the terminal-side communication unit 32 in the same communication scheme as the terminal 40. . Since the terminal-side communication unit 32 of the wireless relay device 30 behaves in the same manner as the terminal 40, from the wireless access point 20, (the terminal-side communication unit 32 of the wireless relay device 30) , Looks exactly the same as the other terminals 40.
[0019]
On the other hand, the wireless relay device 30 disposed in the communication area A1 of the wireless access point 20 also has a predetermined communication area A2 (a radio wave (radio wave transmitted from the antenna 35) determined by the characteristics of its antenna 35 and the antenna of the terminal 40. High-frequency signal) arrives at a communicable level and an area where radio waves transmitted from the terminal 40 reach a communicable level). One-to-many wireless communication with the existing terminal 40 is performed. Since the access point side communication unit 33 of the wireless relay device 30 behaves in the same manner as the access point side communication unit 22 of the wireless access point 20, from the viewpoint of the terminal 40, the wireless relay device 30 ( The access point side communication unit 33) looks exactly the same as the wireless access point 20.
[0020]
Here, the wireless relay device 30 in the communication area A1 of the wireless access point 20 is installed so that the communication area A2 covers a predetermined area outside the area A1.
Further, another wireless relay device 30 is disposed in the area A2, and its communication area A3 is installed so as to cover a predetermined area outside the areas A1 and A2.
As described above, if the wireless relay device 30 is installed so that its communication area is sequentially expanded, the substantial communication area of the wireless access point 20 is expanded by the data relay function of the wireless relay device 30. Will be.
Also, the wireless relay device 30 functions (behaves) as the terminal 40 only for one wireless access point 20 or one other wireless relay device 30, so that a plurality of the wireless access points 20 can be used. As in the case of bridging by the terminal 40 whose communication area overlaps (in the case of the configuration shown in Patent Document 1), communication efficiency such as synchronization between the plurality of wireless access points 20 is deteriorated. There is no factor to make it.
[0021]
Next, a communication band setting function performed by the communication band setting units 23 and 34 in the wireless access point 20 and the wireless relay device 30 will be described.
As described above, when viewed from the wireless access point 20 and the wireless relay device 30, the wireless relay device 30 under the wireless access point 20 looks the same as the terminal 40. However, the amount of data transmitted to and received from the subordinate wireless relay device 30 depends on the further lower terminal 40 (there may be a plurality of terminals) with which the subordinate wireless relay device 30 communicates. Since the total amount of data transmitted / received to / from another wireless relay device 30 located further below the subordinate wireless relay device 30 is larger than the communication data amount with each of the subordinate terminals 40 in many cases.
For example, in the configuration shown in FIG. 2, the communication data passing through the wireless relay device 30 existing in the area A3 has a data amount of three terminals 40 and passes through the wireless relay device 30 existing in the area A2. The communication data to be transmitted has a data amount of five terminals 40.
Therefore, if the communication band setting units 23 and 34 are set to increase the allocation of the communication band to the subordinate wireless relay devices 30, the communication band allocated to each terminal 40 can be equalized.
Hereinafter, a first communication band setting process for automatically allocating a communication band based on the number of other wireless relay devices 30 lower than the own device (hereinafter, referred to as the number of lower relay devices), A second communication band setting process for automatically allocating a communication band based on the number of terminals 40 located on the lower side (hereinafter referred to as the number of subordinate terminals and the number of lower terminals, respectively) will be described.
[0022]
(First communication band setting process)
First, the procedure of the first communication band setting process executed by the wireless relay device 30 will be described with reference to the flowchart shown in FIG. Hereinafter, S11, S12,... Represent the numbers of the processing procedures (steps).
When the wireless relay device 30 is started, the terminal-side communication unit 32 causes the wireless access point 20 or the wireless relay device 30 (hereinafter referred to as a higher A communication connection is established (S11).
Next, the communication band setting unit 34 sets the total number of lower-level relay devices, which is a variable, to an initial value (= 1), and the terminal 40 and other wireless relay devices 30 under the wireless relay device 30. A communication band to be allocated to each (hereinafter, referred to as subordinate nodes) is set to a predetermined initial state (S12).
[0023]
Next, the terminal-side communication unit 32 transmits the total number of the lower-level relay devices to the higher-level node (S13).
Further, the access point side communication unit 33 controls the number of lower-level relay devices, which is the total number of other wireless relay devices that are communicating with other lower-level relay devices 30 under the lower-level wireless relay device 30. Is received (acquired) (S14). This is a process of receiving the number of lower-level relay devices transmitted from another wireless relay device 30 under its control by the process corresponding to S13. That is, the total number of lower relay devices transmitted in S13 corresponds to the number of lower relay devices for the upper node. Next, it is determined whether or not the number of lower-level relay devices received (acquired) in S14 has changed from the previously received number (predetermined initial value for the first time) (S15). The process returns to S13 as it is, and the above-described processing is repeated.
On the other hand, if it is determined in S15 that there is a change in the number of lower-level relay devices, the communication band setting unit 34 changes the setting of the communication band to each of the subordinate nodes (S16). Thereafter, communication between the access point-side communication unit 33 of the wireless relay device 30 and a node under the access point-side communication unit 33 is performed according to the assignment of the changed communication band.
Next, the communication band setting unit 34 adds 1 to the total number of the lower-level relay devices received (acquired) from the other wireless relay devices 30 (there may be a plurality) of the lower-level relay devices by the communication band setting unit 34. After the value is set to the value obtained by adding the value of the own device (S17), the process returns to S13 and the above-described processing is repeated.
[0024]
Here, as a method of setting a communication band to be allocated to the subordinate nodes, distribution may be performed in proportion to the number of lower-level relay devices. In this case, the total communication bandwidth that can be allocated to the subordinate nodes is W all , The number of lower-level relay devices acquired from each of the other wireless relay devices 30 under the i (I = 1, 2,..., N) (where i represents the number of each of the other wireless relay devices 30 under its control), the communication bandwidth W allocated to each of the other wireless relay devices 30 under its control i Can be expressed by the following equation (1).
W i = W all × P i / {(Σ i = 1, n P i ) +1}… (1)
The denominator of the equation (1) is the total number of the lower-side relay devices. In addition, the terminal 40 under its own device (the wireless relay device 30) has the remaining communication bandwidth (W) assigned to each of the other wireless relay devices 30 under its control. all − (Σ i = 1, n W i )) Will be assigned.
As a result, the communication band is automatically assigned based on the number of other wireless relay devices 30 lower than the own device, and the communication band assigned to each terminal can be equalized.
[0025]
Further, since the total number of the lower-level relay devices set in S17 is transmitted to the higher-level node in S13, the higher-level node is controlled by the subordinate (ie, the access point-side communication units 22, 33 of the higher-level node). Accordingly, it is possible to acquire the number of other wireless relay devices 30 that are communicating (that is, the wireless relay device 30) and the number of other wireless relay devices 30 that are communicating on a lower level than the other wireless relay device 30. For the wireless relay device 30, the number of lower-level relay devices received in S14 corresponds to this.
The same processing as that shown in FIG. 3 is also performed in the wireless access point 30. However, since the wireless access point 30 does not have the upper node, the wireless access point 30 has the same processing as that shown in FIG. A process in which the procedures of S11 and S13 in the above process are omitted is executed.
As described above, in each of the wireless relay devices 30, the number of the own device (= 1) when newly connected to the upper node, and thereafter, the latest value obtained by adding the own device to the total number of the lower relay devices. Since the total number of the lower-level relay devices is transmitted to the upper node (S13), a change in the number of wireless relay devices 30 occurring in any of the networks is sequentially transmitted to the upper node.
Further, the acquisition processing of the number of lower-level relay devices (S14) includes, for example, simultaneously transmitting a transmission request of the number of lower-level relay devices to a subordinate node at a predetermined cycle, and in response to the request, transmitting another lower-level relay device under the control. 30 may receive the total number of the lower-level relay devices transmitted from the device 30.
[0026]
(Second communication band setting process)
Next, using the flowchart of FIG. 4, automatic assignment of a communication band is performed based on the number of terminals under the control and the number of lower terminals (the number of terminals 40 under the control of the own device and the terminals 40 lower than the own device). The procedure of the second communication band setting process to be performed will be described. When the wireless relay device 30 is started, the terminal-side communication unit 32 causes the wireless access point 20 or the wireless relay device 30 (hereinafter referred to as the upper A communication connection is established (S21).
Next, the communication band setting unit 34 sets the total number of lower terminals, which is a variable, to an initial value (= 0), and sets the communication band to be allocated to each of the nodes under the radio relay device 30 to a predetermined initial value. The state is set (S22).
[0027]
Next, the terminal side communication unit 32 transmits the total number of the lower side terminals to the upper node (S23).
Next, the access point side communication unit 33 transmits the signal from the other wireless relay device 30 under its control to the other wireless relay device 30 under its control and the other wireless relay device communicating at a lower level. The number of lower terminals, which is the total number of terminals 40, is received (acquired) (S24). The method of acquiring the number of lower terminals is the same as that in S14 (FIG. 3) described above. Therefore, the total number of lower terminals transmitted in S23 corresponds to the number of lower terminals for the upper node.
Further, the access point side communication unit 33 detects the number of the terminals 40 that are currently under communication (communication is being connected) (S24). The number of the terminals 40 under the own device (the wireless relay device 30) can be determined, for example, by transmitting a predetermined response request periodically by the access point side communication unit 33 and determining the number of responses to the request in S24. It may be obtained by calculating a number obtained by subtracting the number of receiving partners of the number of lower terminals (that is, the number of other wireless relay devices 30 under the control).
Next, it is determined whether or not the number of lower terminals and the number of subordinate terminals 40 that have been received (acquired) and detected in S24 and S25 have changed from the previous number (in the case of the first time, a predetermined initial value). (S26), and if there is no change, the process returns to S23 and the above-described processing is repeated.
On the other hand, if it is determined in S26 that the number of the lower terminals or the like or the number of the subordinate terminals 40 has changed, the communication band setting unit 34 sets the allocation of the communication band to each of the subordinate nodes. It is changed (S27). Thereafter, communication between the access point-side communication unit 33 of the wireless relay device 30 and a node under the access point-side communication unit 33 is performed according to the assignment of the changed communication band.
Next, the communication band setting unit 34 determines that the total number of lower terminals is equal to the total number of lower terminals received (acquired) from the other wireless relay devices 30 (there may be more than one) under the control of the own device. After the value is set to the value obtained by adding the number of the terminals 40 (S28), the process returns to S23 and the above-described processing is repeated.
[0028]
Here, as a method of setting a communication band to be allocated to the subordinate nodes, distribution may be considered in proportion to the number of lower terminals and the number of subordinate terminals. In this case, the total communication bandwidth that can be allocated to the subordinate nodes is W all , The number of lower terminals obtained from each of the other wireless relay devices 30 under the i (I = 1, 2,..., N) (i represents the number of each of the other wireless relay devices 30 under its control), and the number of terminals under its own device is represented by Q 0 Then, the communication bandwidth W allocated to each of the other wireless relay devices 30 under the i Can be expressed by the following equation (2).
W i = W all × Q i / {(Σ i = 1, n Q i ) + Q 0 …… (2)
The denominator of the equation (2) is the total number of lower terminals. In addition, the terminal 40 under its own device (the wireless relay device 30) has the remaining communication bandwidth (W) assigned to each of the other wireless relay devices 30 under its control. all − (Σ i = 1, n W i )) Will be assigned.
As a result, the communication band is automatically allocated based on the number of the terminals 40 under the control of the own device and the terminals below the own device, and the communication band allocated to each terminal can be equalized.
[0029]
Also, since the lower-level terminal total number set in S28 is transmitted to the upper-level node in S23, the upper-level node communicates with the lower-level node (ie, by the access point-side communication units 22 and 33 of the higher-level node). It is possible to acquire the number of other wireless relay devices 30 (that are communicating) (that is, the wireless relay device 30) and the number of all the terminals 40 that are communicating on a lower side than the other wireless relay device 30. For the wireless relay device 30, the number of lower terminals received in S24 corresponds to this.
The same processing as that shown in FIG. 4 is also performed in the wireless access point 30, but since the wireless access point 30 does not have the upper node, the wireless access point 30 has the same configuration as that shown in FIG. The processing in which the procedures of S21 and S23 in the above-described processing are omitted is executed.
As described above, in each of the wireless relay devices 30, the number of the terminals 40 under the control of the own device is added to the number of the terminals 40 under the control of the own device when newly connected to the upper node. Is transmitted to the upper node (S23), the change in the number of the terminals 40 occurring in any of the networks is sequentially transmitted to the upper node. become.
[0030]
According to the second communication band setting process, the communication bands allocated to the terminals 40 can be more accurately equalized than when the first communication band setting process is performed.
On the other hand, the frequency at which the number of the terminals 40 fluctuates is generally considered to be higher than the frequency at which the number of the wireless relay devices 30 fluctuates. When the communication band setting process is performed, there is a possibility that the communication efficiency is deteriorated due to the overhead of the process. In such a case, the first communication band setting process is employed, or the communication band is reset only when the number of terminals changes by a predetermined number or more in the second communication band setting process. And so on.
Here, as a method of allocating a communication band by the access point side communication units 22 and 33, for example, a method of increasing or decreasing a communication time allocated to each of the subordinate nodes in time division communication control, or a method of allocating to each of the subordinate nodes A method of increasing or decreasing the number of channels can be considered.
Although not shown in FIGS. 3 and 4, apart from these communication band setting processes, a request for content from the terminal 40 to the information distribution server 10 or a request from the information distribution server 10 to the terminal 40 It goes without saying that transmission and reception of communication data such as distributed contents are performed.
[0031]
【Example】
(First embodiment)
In the above-described embodiment, in the wireless access point 20 and the wireless relay device 30, the communication with the terminal 40 and the communication with the wireless relay device 30 are performed using one antenna 24, 35. Although it was a communication system, for example, a predetermined signal branching / coupling circuit is provided between the access point side communication units 22 and 33 and the antennas 24 and 35, and the antennas 24 and 35 are An application example (first embodiment) composed of an antenna having relatively low directivity (low directivity) for communication and an antenna having high directivity (sharp directivity) for communicating with the wireless relay apparatus 30 (first embodiment) Example) is also conceivable. FIG. 5 shows an example of a network configuration of a wireless communication system which is such an application example. In FIG. 5, the area indicated by A11 is a communication area by a directional antenna connected to the access point side communication unit 22 of the wireless access point 20, and the areas indicated by A21 and A23 are the access areas of the wireless relay apparatus 30. It is a communication area by the directional antenna connected to the point side communication unit 33.
In general, a directional antenna has good transmission efficiency of a high-frequency signal and a long transmission distance. For example, as shown in FIG. 5, between the wireless access point 20 and the wireless relay device 30 and the wireless relay device 30 as shown in FIG. It is possible to increase the distance between each other. This makes it possible to efficiently arrange the wireless relay device 30 only in a necessary place.
[0032]
Although not shown, instead of the radio transmission of the high-frequency signal using the directional antenna shown in FIG. Between the terminal-side communication unit 31 of the relay device 30 and between the access-point-side communication unit 33 of the wireless relay device 30 and the terminal-side communication unit 31 of the wireless relay device 30 that is the communication partner. It is also conceivable to connect transmission of a high-frequency signal via a microstrip line.
As a result, in some cases, it is possible to transmit a high-frequency signal more efficiently than using only radio waves (wireless) that spread as the distance increases. A microstrip line has a structure in which a dielectric layer made of a dielectric material and a signal line made of a conductive material are sequentially laminated on a ground layer made of a conductive material, and is a known line having high transmission efficiency of a high-frequency signal. .
Here, as a configuration for performing signal transmission via the microstrip line, a signal line of the microstrip line may be directly connected to the wireless access point 20 or the wireless relay device 30 to perform signal transmission. One end of a signal line of a microstrip line is connected to the access point side communication units 22 and 33 of the wireless access point 20 and the wireless relay device 30, and a patch antenna is electrically coupled near the other end, and It is also conceivable to configure so as to perform signal transmission with the wireless access point 20 or another wireless relay device 30 by a wireless signal (radio wave) via an antenna.
[0033]
(Second embodiment)
As an application example using a microstrip line, a wireless communication system (second embodiment) as shown in FIG. 6 can be considered.
The wireless communication system illustrated in FIG. 6 includes a tape-shaped antenna 60 in which one or a plurality of patch antennas 62 are electrically coupled to a signal line of a microstrip line 61 and the tape-like antenna 60 of the wireless access point 20 and the wireless relay device 30. By connecting to the access point side communication units 22 and 33, a high-frequency signal is transmitted.
Accordingly, when the use position of the terminal 40 is fixed to some extent, for example, in a library or train car, at the platform of a station, or the like, a high-frequency signal is transmitted by the microstrip line 61 to the vicinity of the use position. From there, it can be configured to cover a relatively narrow range by wireless communication via the patch antenna 62 provided on the microstrip line 61, so that high-frequency signals are not diffused to unnecessary areas. Therefore, it is possible to perform communication with low energy loss while minimizing the output level of the high-frequency signal. Also, it is possible to transmit a high-frequency signal while avoiding obstacles.
[0034]
(Third embodiment)
FIG. 7 is an application example (third embodiment) in which the wireless communication system according to the second embodiment is applied to a train including a plurality of vehicles.
In the wireless communication system shown in FIG. 7, in the wireless communication system according to the third embodiment, a flat antenna or the like which is electrically connected to a signal line of the strip line 61 constituting the tape antenna 60 is used. One antenna 63 and a second antenna 31 ′ such as a planar antenna connected to the terminal communication unit 31 of the wireless relay device 30 are provided. The antenna 31 is provided in place of the antenna 31.
Further, each of the tape-shaped antenna 60 and the wireless access point 20 or the wireless relay device 30 connected to the tape-shaped antenna 60 is disposed in each of a plurality of vehicles 70 constituting a train, and a plurality of the patch antennas 62 The tape-shaped antennas 60 provided at intervals are arranged in the room of the vehicle 70 along the longitudinal direction thereof. Of course, the information distribution server 10 is installed in a vehicle in which the wireless access point 20 is installed.
Further, in the adjacent vehicle 70, the first antenna 63 on one vehicle side and the second antenna 31 'on the other vehicle side are arranged to face each other between adjacent vehicles.
As described above, if the tape-shaped antenna 60 is arranged on the ceiling or wall in the room along the longitudinal direction of the vehicle, the patch antennas 62 are provided at appropriate intervals in consideration of the interval between train seats and the like. The wireless access point 20 or the wireless relay device 30 of each vehicle and each of the terminals 40 used by the user sitting on each seat in the vehicle can perform wireless communication with little energy loss.
[0035]
FIG. 8 is an example of a comparison result of the relationship between the position of the terminal 40 and the communication speed between the case where the tape-shaped antenna 60 is used and the case where a conventional general dipole antenna is used in a train car. It is a graph showing.
As shown in FIG. 8A, in the conventional antenna 24, a place where the communication speed extremely drops at substantially constant intervals near the distance from the wireless access point 20 (that is, the distance from the antenna 24) is about 16 m. (A portion surrounded by a broken line) occurs. This is because a so-called multipath state occurs in which a frequency signal (radio signal) that directly reaches the terminal 40 from the antenna 24 and a frequency signal that reaches the terminal 40 after being reflected on a wall surface or a ceiling surface. It is.
On the other hand, when the tape-shaped antenna 60 is used under the same conditions, as shown in FIG. This is because the high-frequency signal is transmitted to the vicinity of the terminal 40 by the microstrip line 61, so that the generation of a high-frequency signal that reaches the terminal 40 by being reflected on a wall surface or the like can be suppressed.
As described above, by using the tape-shaped antenna 60, high-quality communication can be realized.
Further, since signals between adjacent vehicles are wirelessly transmitted by the antennas 63 and 31 'opposed to each other, even if the connection of the vehicles is changed, the trouble of changing the connection as in the case of the wired connection is not required. .
Also, since the energy loss of the high-frequency signal is small, the output level of the high-frequency signal can be suppressed low, and as a result, the mutual interference of the high-frequency signal (radio wave) between the passing trains and the use around the station and the track. Interference with wireless signals (radio waves) can be prevented. For example, when a general dipole antenna is used, an output of about 30 mW is required, but radio waves radiated from the patch antenna 62 can communicate even if less than 1 mW.
[0036]
【The invention's effect】
As described above, according to the present invention, in one-to-many wireless communication between a base station apparatus and a terminal, communication is performed with the base station apparatus as one terminal, and communication is performed within a predetermined communication area. By providing a wireless communication relay device for performing communication as a base station device, a substantial communication area of the base station device can be expanded. Further, unlike a case where a plurality of base station apparatuses are bridged by a terminal whose communication area overlaps, there is no deteriorating factor of communication efficiency such as synchronization with another base station apparatus.
Also, by providing the base station device and the wireless communication relay device with a function of allocating a communication band to the terminal and the wireless communication relay device in the communication area, the communication band allocated to each terminal can be equalized. As a result, efficient communication can be performed.
In addition, by transmitting a high-frequency signal through a microstrip line or a tape-like antenna having a patch antenna provided on the microstrip line, it is easy to radiate radio waves only to a required location and avoid obstacles. Thus, an efficient communication device with less energy loss can be configured.
In addition, by applying a wireless communication system using a tape antenna to a communication system in a train, it is possible to construct a high-quality communication system, and the mutual exchange of high-frequency signals (radio waves) between passing trains is possible. It is possible to prevent interference and interference with radio signals (radio waves) used around stations and railway tracks.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a schematic configuration of a wireless communication system according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a network configuration example of a wireless communication system according to an embodiment of the present invention.
FIG. 3 is a flowchart illustrating a procedure of a first communication band setting process by a wireless relay device included in the wireless communication system according to the embodiment of the present invention.
FIG. 4 is a flowchart illustrating a procedure of a second communication band setting process performed by a wireless relay device included in the wireless communication system according to the embodiment of the present invention.
FIG. 5 is a diagram illustrating a network configuration example of a wireless communication system according to the first embodiment of the present invention.
FIG. 6 is a diagram illustrating a network configuration example of a wireless communication system according to a second embodiment of the present invention.
FIG. 7 is a diagram illustrating a network configuration example of a wireless communication system according to a third embodiment of the present invention.
FIG. 8 is a comparison result of the relationship between the position of a terminal and the communication speed when a tape antenna is used and when a conventional antenna is used in a wireless communication system according to a third embodiment of the present invention; 4 is a graph showing an example.
FIG. 9 is a diagram illustrating a network configuration example of a conventional wireless communication system.
[Explanation of symbols]
10 Information distribution server
20 ... Wireless access point (base station device)
21 ... LAN control unit
22: Access point side communication unit
23, 34: communication band setting unit (communication band setting means)
24, 31, 35 ... antenna
31 '... antenna (second antenna)
30. Wireless relay device (wireless communication relay device)
32: terminal-side communication unit (terminal communication means)
33: Access point side communication unit (base station communication means)
40 ... terminal
50 ... Network cable
60 ... Tape antenna
61 ... Microstrip line
62 ... Patch antenna
63 ... antenna (first antenna)
70… Train car

Claims (13)

所定の基地局装置と複数の端末との間で行われる1対多の無線通信を中継する無線通信中継装置であって,
前記基地局装置又は他の無線通信中継装置により送信及び受信される高周波信号を前記端末が用いる通信方式によって受信及び送信する端末通信手段と,
前記端末通信手段により受信及び送信される前記高周波信号によって伝送される通信データの一部又は全部を前記基地局装置が用いる通信方式によって前記端末及び/又は他の無線通信中継装置との間で高周波信号を用いて送信及び受信する基地局通信手段と,
を具備してなることを特徴とする無線通信中継装置。
A wireless communication relay device that relays one-to-many wireless communication performed between a predetermined base station device and a plurality of terminals,
Terminal communication means for receiving and transmitting a high-frequency signal transmitted and received by the base station device or another wireless communication relay device by a communication method used by the terminal;
A part or all of communication data transmitted by the high-frequency signal received and transmitted by the terminal communication means is transmitted to the terminal and / or another wireless communication relay device at a high frequency by a communication method used by the base station device. Base station communication means for transmitting and receiving using signals;
A wireless communication relay device comprising:
前記基地局通信手段の通信相手となる前記端末及び他の無線通信中継装置それぞれに割り当てる通信帯域を設定する通信帯域設定手段を具備してなる請求項1に記載の無線通信中継装置。The wireless communication relay device according to claim 1, further comprising a communication band setting unit configured to set a communication band to be allocated to each of the terminal and another wireless communication relay device that are communication partners of the base station communication unit. 前記基地局通信手段により通信中の他の無線通信中継装置及び該他の無線通信中継装置より下位側で通信中の他の無線通信中継装置の数に関する下位側中継装置数を前記基地局通信手段を介して取得する下位側中継装置数取得手段と,
前記下位側中継装置数取得手段により取得した前記下位側中継装置数の合計に1を加算した数を前記下位側中継装置数として前記端末通信手段により送信する下位側中継装置数送信手段と,を具備し,
前記通信帯域設定手段が,前記下位側中継装置数取得手段により取得した前記下位側中継装置数に基づいて前記通信帯域を設定するものである請求項2に記載の無線通信中継装置。
The base station communication unit determines the number of lower-level relay devices related to the number of other wireless communication relay devices communicating with the base station communication unit and the number of other wireless communication relay devices communicating below the other wireless communication relay device. Means for obtaining the number of lower-level relay devices obtained through
Lower relay device number transmitting means for transmitting, by the terminal communication means, a number obtained by adding 1 to the total number of lower relay devices obtained by the lower relay device number obtaining means as the lower relay device number; Equipped,
3. The wireless communication relay device according to claim 2, wherein the communication band setting means sets the communication band based on the number of lower relay devices obtained by the lower relay device number obtaining device.
前記基地局通信手段により通信中の他の無線通信中継装置及び該他の無線通信中継装置より下位側で通信中の他の無線通信中継装置それぞれと通信中の前記端末の数に関する下位側端末数を前記基地局通信手段を介して取得する下位側端末数取得手段と,
前記下位側端末数取得手段により取得した前記下位側端末数の合計に前記基地局通信手段により通信中の前記端末の数を加算した数を前記下位側端末数として前記端末通信手段により送信する下位側端末数送信手段と,を具備し,
前記通信帯域設定手段が,前記下位側端末数取得手段により取得した前記下位側端末数と前記基地局通信手段により通信中の前記端末の数とに基づいて前記通信帯域を設定するものである請求項2に記載の無線通信中継装置。
The number of lower terminals related to the number of the other terminals communicating with the other wireless communication relay devices communicating with the base station communication means and the other wireless communication relay devices communicating with the other wireless communication relay devices lower than the other wireless communication relay device, respectively. Means for obtaining the number of lower terminals via the base station communication means,
A lower order number transmitted by the terminal communication means as the lower order terminal number obtained by adding the number of the terminals communicating by the base station communication means to the total of the lower order terminal numbers acquired by the lower order terminal number acquisition means. Side terminal number transmitting means,
The communication band setting means sets the communication band based on the number of lower terminals acquired by the lower terminal number acquiring means and the number of terminals communicating with the base station communication means. Item 3. The wireless communication relay device according to item 2.
前記端末通信手段が,前記基地局装置又は他の無線通信中継装置との間における前記高周波信号の送受信を,無線により又はマイクロストリップ線路を介して行うよう構成されてなる請求項1〜4のいずれかに記載の無線通信中継装置。5. The terminal communication unit according to claim 1, wherein the terminal communication unit transmits and receives the high-frequency signal to and from the base station device or another wireless communication relay device wirelessly or via a microstrip line. 6. A wireless communication relay device according to any one of the above. 前記基地局通信手段が,他の無線通信中継装置との間における前記高周波信号の送受信を,無線により又はマイクロストリップ線路を介して行うよう構成されてなる請求項1〜5のいずれかに記載の無線通信中継装置。6. The base station communication unit according to claim 1, wherein the base station communication unit is configured to transmit and receive the high-frequency signal to and from another wireless communication relay device wirelessly or via a microstrip line. Wireless communication relay device. 所定の基地局装置と複数の端末との間で1対多の無線通信を行う無線通信システムにおいて,
請求項1〜6のいずれかに記載の無線通信中継装置を具備してなることを特徴とする無線通信システム。
In a wireless communication system that performs one-to-many wireless communication between a predetermined base station device and a plurality of terminals,
A wireless communication system comprising the wireless communication relay device according to claim 1.
前記基地局装置が,該基地局装置の通信相手となる前記端末及び前記無線通信中継装置それぞれに割り当てる通信帯域を設定する通信帯域設定手段を具備してなる請求項7に記載の無線通信システム。8. The wireless communication system according to claim 7, wherein said base station apparatus further comprises communication band setting means for setting a communication band to be allocated to each of said terminal and said wireless communication relay apparatus with which said base station apparatus communicates. 前記基地局装置が,該基地局装置と通信中の前記無線通信中継装置及び該無線通信中継装置より下位側で通信中の他の前記無線通信中継装置の数に関する下位側中継装置数を前記無線通信中継装置から取得する下位側中継装置数取得手段を具備し,
前記基地局装置の前記通信帯域設定手段が,前記下位側中継装置数取得手段により取得した前記下位側中継装置数に基づいて前記通信帯域を設定するものである請求項8に記載の無線通信システム。
The base station device determines the number of lower-level relay devices related to the number of the wireless communication relay devices communicating with the base station device and the number of the other wireless communication relay devices communicating below the wireless communication relay device. A means for acquiring the number of lower-level relay devices obtained from the communication relay device;
9. The wireless communication system according to claim 8, wherein the communication band setting unit of the base station device sets the communication band based on the number of lower relay devices obtained by the lower relay device number obtaining unit. .
前記基地局装置が,該基地局装置と通信中の前記無線通信中継装置及び該無線通信中継装置より下位側で通信中の他の前記無線通信中継装置それぞれと通信中の前記端末の数に関する下位側端末数を前記無線通信中継装置から取得する下位側端末数取得手段を具備し,
前記基地局装置の前記通信帯域設定手段が,前記下位側端末数取得手段により取得した前記下位側端末数と前記基地局装置が通信中の前記端末の数とに基づいて前記通信帯域を設定するものである請求項8に記載の無線通信システム。
The base station apparatus has a lower order relating to the number of the terminals communicating with the wireless communication relay apparatus communicating with the base station apparatus and each of the other wireless communication relay apparatuses communicating on the lower side of the wireless communication relay apparatus. A lower terminal number acquisition means for acquiring the number of side terminals from the wireless communication relay device;
The communication band setting unit of the base station device sets the communication band based on the lower terminal number acquired by the lower terminal number acquiring unit and the number of terminals with which the base station device is communicating. The wireless communication system according to claim 8, wherein
マイクロストリップ線路の信号線に1又は複数のパッチアンテナを電気的に結合させた1又は複数のテープ状アンテナを具備し,
前記テープ状アンテナそれぞれが,前記基地局装置及び/又は前記無線通信中継装置の前記基地局通信手段に接続されて前記高周波信号を伝送するよう構成されてなる請求項7〜10のいずれかに記載の無線通信システム。
And one or more tape antennas in which one or more patch antennas are electrically coupled to the signal lines of the microstrip line;
The said tape-shaped antenna is each connected to the said base station communication means of the said base station apparatus and / or the said wireless communication relay apparatus, and is comprised so that the said high frequency signal may be transmitted. Wireless communication system.
前記テープ状アンテナを構成する前記ストリップ線路の信号線に電気的に接続された第1のアンテナと前記無線通信中継装置の前記端末通信手段に接続された第2のアンテナとを具備し,
前記テープ状アンテナ及びこれに接続される前記基地局装置又は前記無線通信中継装置それぞれが列車を構成する複数の車両それぞれに配置されるとともに,複数の前記パッチアンテナが所定間隔で設けられた前記テープ状アンテナが前記車両の室内にその長手方向に沿って配設され,
隣接する車両における一方の車両側の前記第1のアンテナと他方の車両側の前記第2のアンテナとが前記隣接する車両間において対向配置されてなる請求項11に記載の無線通信システム。
A first antenna electrically connected to a signal line of the strip line constituting the tape-shaped antenna, and a second antenna connected to the terminal communication means of the wireless communication relay device;
The tape in which the tape-shaped antenna and the base station device or the wireless communication relay device connected to the tape-shaped antenna are respectively arranged in a plurality of vehicles constituting a train, and a plurality of the patch antennas are provided at predetermined intervals. An antenna is disposed in the interior of the vehicle along the longitudinal direction thereof,
The wireless communication system according to claim 11, wherein the first antenna on one vehicle side of the adjacent vehicle and the second antenna on the other vehicle side are arranged to face each other between the adjacent vehicles.
前記無線通信中継装置の前記端末通信手段と前記基地局装置又は他の無線通信中継装置の前記基地局通信手段との間を接続して前記高周波信号を伝送するマイクロストリップ線路を具備してなる請求項7〜10のいずれかに記載の無線通信システム。A microstrip line for transmitting the high-frequency signal by connecting between the terminal communication means of the wireless communication relay device and the base station communication means of the base station device or another wireless communication relay device. Item 11. The wireless communication system according to any one of Items 7 to 10.
JP2002333433A 2002-11-18 2002-11-18 Wireless communication relay device, wireless communication system Expired - Lifetime JP3940062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333433A JP3940062B2 (en) 2002-11-18 2002-11-18 Wireless communication relay device, wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333433A JP3940062B2 (en) 2002-11-18 2002-11-18 Wireless communication relay device, wireless communication system

Publications (2)

Publication Number Publication Date
JP2004172719A true JP2004172719A (en) 2004-06-17
JP3940062B2 JP3940062B2 (en) 2007-07-04

Family

ID=32698144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333433A Expired - Lifetime JP3940062B2 (en) 2002-11-18 2002-11-18 Wireless communication relay device, wireless communication system

Country Status (1)

Country Link
JP (1) JP3940062B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425440A (en) * 2005-04-22 2006-10-25 Toshiba Res Europ Ltd Circumferentially positioned bridging stations provide coverage around a base station
GB2427528A (en) * 2005-06-23 2006-12-27 Toshiba Res Europ Ltd Base station applies interference cancellation to separate out bridging station transmissions
JP2007181166A (en) * 2005-12-02 2007-07-12 Ntt Docomo Inc Communication node and wireless radio system as well as data relay method
JP2008098885A (en) * 2006-10-11 2008-04-24 Nec Corp Wireless lan system, radio communication apparatus, method of allocating call limit, and program
JP2009522827A (en) * 2005-12-28 2009-06-11 パナソニック株式会社 Selective distribution of communication infrastructure
US7720000B2 (en) 2007-08-28 2010-05-18 Panasonic Corporation Network control apparatus, method, and program
JP2010517410A (en) * 2007-01-25 2010-05-20 サムスン エレクトロニクス カンパニー リミテッド Apparatus and method for processing bandwidth request in broadband wireless access communication system using multi-hop relay scheme
JP2010161620A (en) * 2009-01-08 2010-07-22 Mitsubishi Electric Corp Communication system
WO2010097674A1 (en) * 2009-02-24 2010-09-02 パナソニック電工株式会社 Wireless network system
JP2010226325A (en) * 2009-03-23 2010-10-07 Anritsu Networks Kk Radio network system communication method and radio communication device
JP2010233104A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Radio communication system, radio control server, communication terminal, and control program
JP2012016052A (en) * 2005-06-17 2012-01-19 Fujitsu Ltd Source device, relay device, and destination device used in radio communication system
JP4861484B2 (en) * 2006-12-07 2012-01-25 ミソニモ チ アクイジションズ エル.エル.シー. System and method for assigning time slots and channels
JP2012060665A (en) * 2011-11-14 2012-03-22 Fujitsu Ltd Relay station and bandwidth allocation method
US8224344B2 (en) 2007-12-05 2012-07-17 Fujitsu Limited Parameter collecting method, wireless base station and relay station
JP2013090206A (en) * 2011-10-19 2013-05-13 Aiphone Co Ltd Intercom master unit and intercom system
JP5251512B2 (en) * 2006-10-25 2013-07-31 富士通株式会社 Wireless base station, relay station, wireless communication system, and wireless communication method
US8711754B2 (en) 2007-04-12 2014-04-29 Fujitsu Limited Base station, relay station, and bandwidth allocation method
JP2014160949A (en) * 2013-02-20 2014-09-04 O F Networks Co Ltd Band allocation control apparatus and program, line concentration point apparatus, and communication system
JP2014527748A (en) * 2011-08-09 2014-10-16 アルカテル−ルーセント Method for streaming video content, edge node and client entity implementing such a method
JP5863927B1 (en) * 2014-10-27 2016-02-17 Necプラットフォームズ株式会社 Access point, radio repeater, radio resource setting method and program
JP2016048829A (en) * 2014-08-27 2016-04-07 日本電信電話株式会社 Communication control system, communication control device, and communication control method
WO2018173905A1 (en) * 2017-03-23 2018-09-27 日本電気株式会社 Communication relay device, communication device, communication system, communication relay method, and communication method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425440A (en) * 2005-04-22 2006-10-25 Toshiba Res Europ Ltd Circumferentially positioned bridging stations provide coverage around a base station
GB2425440B (en) * 2005-04-22 2008-05-21 Toshiba Res Europ Ltd Wireless communications system
JP2012016052A (en) * 2005-06-17 2012-01-19 Fujitsu Ltd Source device, relay device, and destination device used in radio communication system
GB2427528A (en) * 2005-06-23 2006-12-27 Toshiba Res Europ Ltd Base station applies interference cancellation to separate out bridging station transmissions
GB2427528B (en) * 2005-06-23 2008-04-09 Toshiba Res Europ Ltd Wireless communications system
JP2007181166A (en) * 2005-12-02 2007-07-12 Ntt Docomo Inc Communication node and wireless radio system as well as data relay method
JP2009522827A (en) * 2005-12-28 2009-06-11 パナソニック株式会社 Selective distribution of communication infrastructure
JP4719275B2 (en) * 2005-12-28 2011-07-06 パナソニック株式会社 Selective distribution of communication infrastructure
JP2008098885A (en) * 2006-10-11 2008-04-24 Nec Corp Wireless lan system, radio communication apparatus, method of allocating call limit, and program
JP5251512B2 (en) * 2006-10-25 2013-07-31 富士通株式会社 Wireless base station, relay station, wireless communication system, and wireless communication method
JP4861484B2 (en) * 2006-12-07 2012-01-25 ミソニモ チ アクイジションズ エル.エル.シー. System and method for assigning time slots and channels
JP2010517410A (en) * 2007-01-25 2010-05-20 サムスン エレクトロニクス カンパニー リミテッド Apparatus and method for processing bandwidth request in broadband wireless access communication system using multi-hop relay scheme
US8711754B2 (en) 2007-04-12 2014-04-29 Fujitsu Limited Base station, relay station, and bandwidth allocation method
US7720000B2 (en) 2007-08-28 2010-05-18 Panasonic Corporation Network control apparatus, method, and program
JP5067427B2 (en) * 2007-12-05 2012-11-07 富士通株式会社 Parameter collection method, radio base station, and relay station
US8224344B2 (en) 2007-12-05 2012-07-17 Fujitsu Limited Parameter collecting method, wireless base station and relay station
JP2010161620A (en) * 2009-01-08 2010-07-22 Mitsubishi Electric Corp Communication system
WO2010097674A1 (en) * 2009-02-24 2010-09-02 パナソニック電工株式会社 Wireless network system
JP2010226325A (en) * 2009-03-23 2010-10-07 Anritsu Networks Kk Radio network system communication method and radio communication device
JP2010233104A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Radio communication system, radio control server, communication terminal, and control program
JP2014527748A (en) * 2011-08-09 2014-10-16 アルカテル−ルーセント Method for streaming video content, edge node and client entity implementing such a method
JP2013090206A (en) * 2011-10-19 2013-05-13 Aiphone Co Ltd Intercom master unit and intercom system
JP2012060665A (en) * 2011-11-14 2012-03-22 Fujitsu Ltd Relay station and bandwidth allocation method
JP2014160949A (en) * 2013-02-20 2014-09-04 O F Networks Co Ltd Band allocation control apparatus and program, line concentration point apparatus, and communication system
JP2016048829A (en) * 2014-08-27 2016-04-07 日本電信電話株式会社 Communication control system, communication control device, and communication control method
JP5863927B1 (en) * 2014-10-27 2016-02-17 Necプラットフォームズ株式会社 Access point, radio repeater, radio resource setting method and program
WO2018173905A1 (en) * 2017-03-23 2018-09-27 日本電気株式会社 Communication relay device, communication device, communication system, communication relay method, and communication method

Also Published As

Publication number Publication date
JP3940062B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
JP3940062B2 (en) Wireless communication relay device, wireless communication system
US11937099B2 (en) Efficient adaptable wireless network system with agile beamforming
KR101423337B1 (en) Wireless communication system for inter-connecting an ad-hoc network and an infra structure network with liscensed band, a wireless terminal and communication method thereof
US7768952B2 (en) System and method of wirelessly communicating with mobile devices
US9008058B2 (en) Techniques for spatial reuse in wireless personal area networks based on virtual time divisional multiple access
US7181206B2 (en) Broadband communication platform and methods of network operation
CN102917374B (en) According to the cordless communication network of the sectorization of 802.11 standardized operations
US20070201540A1 (en) Hybrid power line wireless communication network
US8565673B2 (en) Hierarchical networks utilizing frame transmissions pipelining
EP2587686A2 (en) Adaptive broadband platforms and methods of operation
CN104053213A (en) Integrated Relay In Wireless Communication Networks
US20090232049A1 (en) System and method for a multiple hop wireless network
JP2004531136A (en) Communique system of virtual private narrowcast in cellular communication networks
JP2002505053A (en) Channel selection in wireless link systems
JPH08265233A (en) Wireless chamber internal communication using antenna array
WO2005081459A1 (en) Wireless access method and system
WO2004068876A1 (en) Relay communication device, communication method and mobile communication system
JP2003510968A (en) Multi-layer communication network
US20200259551A1 (en) Wireless Multi-Media Communication Device and Method of Using
KR101068365B1 (en) Method for signaling a path to radio stations of a radio communications system
JP4284325B2 (en) Routing method for Adhoc network
JP2004235839A (en) Fixed radio access system
WO2024017902A1 (en) A self-organizing multi-directional antenna system for multiple radio base stations to aggregate network capacity in a hotspot
JP2004072200A (en) Communication path control system, communication path control method, and base station
JPH11261572A (en) Radio communications system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070329

R150 Certificate of patent or registration of utility model

Ref document number: 3940062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7