JP2004171926A5 - - Google Patents

Download PDF

Info

Publication number
JP2004171926A5
JP2004171926A5 JP2002336447A JP2002336447A JP2004171926A5 JP 2004171926 A5 JP2004171926 A5 JP 2004171926A5 JP 2002336447 A JP2002336447 A JP 2002336447A JP 2002336447 A JP2002336447 A JP 2002336447A JP 2004171926 A5 JP2004171926 A5 JP 2004171926A5
Authority
JP
Japan
Prior art keywords
heating coil
coil
air
hole
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002336447A
Other languages
Japanese (ja)
Other versions
JP2004171926A (en
JP3997895B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2002336447A priority Critical patent/JP3997895B2/en
Priority claimed from JP2002336447A external-priority patent/JP3997895B2/en
Publication of JP2004171926A publication Critical patent/JP2004171926A/en
Publication of JP2004171926A5 publication Critical patent/JP2004171926A5/ja
Application granted granted Critical
Publication of JP3997895B2 publication Critical patent/JP3997895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の名称】誘導加熱装置
【特許請求の範囲】
【請求項1】被加熱物を載置する平面プレートと、前記平面プレート下方に位置する加熱コイルと、前記平面プレートと加熱コイルとの間に設けた隙間と、送風装置と、前記加熱コイル下方に位置して前記送風装置が発生する風の一部を誘導して前記加熱コイルの略中央下から上方に風を誘導する送風誘導壁とを有し、前記加熱コイルは略ドーナツ状で中央に通風穴を有し、前記風の一部を前記平面プレートと前記加熱コイルとの間の前記隙間を通過させる構成とした誘導加熱装置。
【請求項2】送風誘導壁を通風穴の下方に位置させ、送風装置から送風される風の風下の位置に送風誘導壁を形成した請求項1記載の誘導加熱装置。
【請求項3】送風誘導壁を複数個形成し、送風装置から送風される風を分断して加熱コイルの任意の部位に送風可能な構成とした請求項1または2に記載の誘導加熱装置。
【請求項4】送風装置からの風の一部が送風誘導壁で加熱コイルに誘導され、さらに通風穴に位置する遮蔽突起部で加熱コイルの上方と加熱コイルの下方に分離される構成とした請求項1〜3のいずれか1項に記載の誘導加熱装置。
【請求項5】通風穴に温度検知部を形成し、温度検知部が有する防風部材で通風穴からの風を遮る構成とした請求項1〜4のいずれか1項に記載の誘導加熱装置。
【請求項6】防風部材は下方に尖った略円錐形状をした構成とした請求項5に記載の誘導加熱装置。
【請求項7】温度検知部は通風穴の中央から偏心して配置する構成とした請求項5または6に記載の誘導加熱装置。
【請求項8】加熱コイルは基台と、コイルの中心から放射状に配置したフェライトと、コイル押さえと、前記コイル押さえはコイル外周を覆う壁と前記壁から前記コイル上面に伸設した複数の押さえ爪とを備え、壁に風穴を設けた構成とした請求項1〜7のいずれか1項に記載の誘導加熱装置。
【請求項9】加熱コイルは基台と、コイルの中心から放射状に配置した上に開いたコ字状フェライトと、コイル押さえと、前記コイル押さえは加熱コイル外周に位置しフェライト配置の外周を覆う壁と前記壁から前記コイル上面に伸設した複数の押さえ爪とを備え、コ字状フェライトの内周凸部がコイル内周より内側に位置し、外周凸部がコイル外周より外側に位置し、前記コイル押さえの外周凸部間に位置する壁に風穴を設けた構成とした請求項1〜7のいずれか1項に記載の誘導加熱装置。
【請求項10】加熱コイル外周に2本のリング状導体を上下方向に分離して略平行に配置し、上下のリング状導体の間に風穴が位置する構成とした請求項1〜9のいずれか1項に記載の誘導加熱装置。
【請求項11】加熱コイル上部と平面プレートとの間に遮蔽板を配置し、通風穴からコイル上面に誘導された風が前記遮蔽板とコイル上面との間を通って加熱コイル外周に拡散する構成とした請求項1〜10のいずれか1項に記載の誘導加熱装置。
【請求項12】コイル押さえは壁から中心に向かう複数の押さえ爪と、押さえ爪の先端付近に伸設した下方に凸な突起とを有し、突起がコイルに当接するとともに、押さえ爪本体はコイルから離れて位置する構成とした請求項1〜11のいずれか1項に記載の誘導加熱装置。
【請求項13】加熱コイル上部と平面プレートとの間に遮蔽板を配置し、遮蔽板と平面プレートとの間に非磁性金属板を配置し、加熱コイルと遮蔽板との間か遮蔽板と非磁性金属板との間か非磁性金属板と平面プレートとの間かの少なくとも一つ以上に隙間を設けて、通風穴からコイル上面に誘導された風が前記隙間を通って加熱コイル外周に拡散する構成とした請求項11に記載の誘導加熱装置。
【請求項14】加熱コイルを駆動する制御回路をインバータ回路で形成し、インバータ回路はアルミニウムや銅等の高導電率かつ低抵抗の非磁性金属を加熱可能とした請求項1〜13のいずれか1項に記載の誘導加熱装置。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、主に一般家庭での加熱調理や業務用で金属加熱等を行う誘導加熱装置に関する。
【0002】
【従来の技術】
従来の誘導加熱装置は、加熱コイル下面を主に冷却するか、または側面から加熱コイルの下面を主に冷却している(例えば、特許文献1参照)。
【0003】
【特許文献1】
特願2001−260753号公報(第3〜5図)
【0004】
【発明が解決しようとする課題】
銅やアルミニウム等の鍋を加熱するために鉄鍋に適した約20ら約30kHzよりも高いやく40から約100kHzの高周波電流を加熱コイルに流さなければならなかった。また、高出力な誘導加熱装置が要望されている。周波数が高くなれば表皮効果で実効抵抗が高くなり発熱が大きくなる。また、電流値を大きくすると加熱コイルの自己発熱も大きくなる。以上のように誘導加熱装置の性能を高めるためには、加熱コイルの冷却を効率的に行うことが要求されている。
【0005】
本発明は、加熱コイルの中央から外周方向に加熱コイルの上面と下面との両方を同時に冷却できる誘導加熱装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
この課題を解決するために本発明は、発熱の大きい加熱コイルを効率的に冷却するために、加熱コイルの中央に位置する通風穴を通して冷却風を加熱コイル上面に分岐誘導して加熱コイル上面の中央から放射状に冷却風を平面プレートと加熱コイルとの間の隙間を通過させるとともに加熱コイル下面も冷却できるように構成したものである。
【0007】
これにより、従来よりも高周波数の電流を加熱コイルに流したり、加熱コイルへ流す電流値を大きくして、加熱コイルの発熱が多くなっても、十分に冷却できる誘導加熱装置が得られる。特に非磁性金属を加熱することが可能になる。
【0008】
【発明の実施の形態】
本発明の請求項1に記載の発明は、被加熱物を載置する平面プレートと、前記平面プレート下方に位置する加熱コイルと、前記平面プレートと加熱コイルとの間に設けた隙間と、送風装置と、前記加熱コイル下方に位置して前記送風装置が発生する風の一部を誘導して前記加熱コイルの略中央下から上方に送風を誘導する送風誘導壁とを有し、前記加熱コイルは略ドーナツ状で中央に通風穴を有し、前記風の一部を前記平面プレートと前記加熱コイルとの間の前記隙間を通過させる構成としたものであり、加熱コイルの上下両面を冷却できるという作用を有する。
【0009】
請求項2に記載の発明は、送風誘導壁を通風穴の下方に位置させ、送風装置から送風される風の風下の位置に送風誘導壁を形成した構成としたものであり、加熱コイルの上下両面を冷却できるという作用を有する。
【0010】
請求項3に記載の発明は、送風誘導壁を複数個形成し、送風装置から送風される風を分断して加熱コイルの任意の部位に送風可能な構成としたものであり、加熱コイルの任意の部位を冷却できるという作用を有する。
【0011】
請求項4に記載の発明は、送風装置からの風の一部が送風誘導壁で加熱コイルに誘導され、さらに通風穴に位置する温度検知部で加熱コイルの上方と加熱コイルの下方に分離する構成としたものであり、加熱コイルの上下両面を冷却できるという作用を有する。
【0012】
請求項5に記載の発明は、通風穴に温度検知部を形成し、温度検知部が有する防風部材で通風穴からの風を遮る構成としたものであり、送風装置からの送風を通風穴の上下に分岐して加熱コイルの上下両面を冷却できるとともに、温度検知部が冷却風で冷却されにくいという作用を有する。
【0013】
請求項6に記載の発明は、防風部材は下方に尖った略円錐形状をした構成としたものであり、温度検知部を送風から保護するとともに、送風を加熱コイルの上下に損失が少ない分岐を可能にするという作用を有する。
【0014】
請求項7に記載の発明は、温度検知部は通風穴の中央から偏心して配置する構成としたものであり、送風を通風穴の一部から加熱コイルの上方に通過させると同時に通過した風の流れる方向を制御することができ、また温度検知部で加熱コイルの下方に送風を分岐させて温度検知部の位置と面積により下法に分岐する風の量を制御するという作用を有する。
【0015】
請求項8に記載の発明は、加熱コイルは基台と、コイルの中心から放射状に配置したフェライトと、コイル押さえと、前記コイル押さえはコイル外周を覆う壁と前記壁から前記コイル上面に伸設した複数の押さえ爪とを備え、壁に風穴を設けた構成としたものであり、加熱コイルの上方に誘導された風を放射状に放散させて加熱コイル上面から放射状に放散させて効率の良い冷却が可能になるという作用を有する。
【0016】
請求項9に記載の発明は、加熱コイルは基台と、コイルの中心から放射状に配置した上に開いたコ字状フェライトと、コイル押さえと、前記コイル押さえは加熱コイル外周に位置しフェライト配置の外周を覆う壁と前記壁から前記コイル上面に伸設した複数の押さえ爪とを備え、コ字状フェライトの内周凸部がコイル内周より内側に位置し、外周凸部がコイル外周より外側に位置し、前記コイル押さえの外周凸部間に位置する壁に風穴を設けた構成としたものであり、加熱コイルの上方に誘導された風を放射状に放散させて加熱コイル上面から放射状に放散させて効率の良い冷却が可能になると同時にフェライトの高さと同じ高さで風穴を形成することができて、高さがコンパクトな加熱コイルを設計することができるという作用を有する。
【0017】
請求項10に記載の発明は、加熱コイル外周に2本のリング状導体を上下方向に分離して略平行に配置し、上下のリング状導体の間に風穴が位置する構成としたものであり、加熱コイルの上方に誘導された風を放射状に放散させて加熱コイル上面から放射状に放散させて効率の良い冷却が可能になるという作用を有する。
【0018】
請求項11に記載の発明は、加熱コイル上部と平面プレートとの間に遮蔽板を配置し、通風穴からコイル上面に誘導された風が前記遮蔽板とコイル上面との間を通って加熱コイル外周に拡散する構成としたものであり、通風穴から加熱コイル上方に分岐した風を遮蔽板で押さえ込んで加熱コイル上部で放射状に放散させて加熱コイル上面を効率的に冷却することができるという作用を有する。
【0019】
請求項12に記載の発明は、コイル押さえは壁から中心に向かう複数の押さえ爪と、押さえ爪の先端付近に伸設した下方に凸な突起とを有し、突起がコイルに当接するとともに、押さえ爪本体はコイルから離れて位置する構成としたものであり、加熱コイルの上面を効率的に冷却できるという作用を有する。
【0020】
請求項13に記載の発明は、加熱コイル上部と平面プレートとの間に遮蔽板を配置し、遮蔽板と平面プレートとの間に非磁性金属板を配置し、加熱コイルと遮蔽板との間か遮蔽板と非磁性金属板との間か非磁性金属板と平面プレートとの間かの少なくとも一つ以上に隙間を設けて、通風穴からコイル上面に誘導された風が前記隙間を通って加熱コイル外周に拡散する構成としたものであり、加熱コイルと遮熱板と非磁性金属板と平面プレートとの間に任意に隙間を設けて通風穴からの冷却風を隙間に通すことでコイルより上に位置する任意の部品を冷却できるという作用を有する。
【0021】
請求項14に記載の発明は、加熱コイルを駆動する制御回路をインバータ回路で形成し、インバータ回路はアルミニウムや銅等の高導電率かつ低抵抗の非磁性金属を加熱可能とした構成としたものであり、加熱コイルの発熱が大きい場合でも加熱コイルの上下両面を均一に冷却するという作用を有する。
【0022】
【実施例】
(実施例1)
以下本発明の実施例について、図面を参照しながら説明する。
【0023】
11は金属板で形成された上部が開口した直方体の外郭である。12は外郭の上部を塞ぐように固定される金属板で形成された天面枠であり、天面枠12には長方形の耐熱ガラス板で形成された平面プレート13が外周を天面枠12に接着されて水密的に固定されている。平面プレート13には鍋等を置く位置がデザインされている。14は天面枠12後方に横方向に配置された吸排気グリルであり、多数の通気穴15を有して天面枠12に着脱自在に載置されている。16は天面枠12を外郭11前部に固定するフックである。
【0024】
17は外郭11の左側に配置されたロースタであり、把手18を引き出して使用する。ロースタ17はシーズヒータ(図示せず)で加熱される構成である。19は制御回路20が収納された回路部である。21は操作部であり、使用するときは前面下部を軸支されて前方に傾斜して飛びだす構造になっている。
【0025】
22は外郭11の左部に配置された第1の加熱コイルであり誘導加熱により最大3kWの加熱能力がある。第1の加熱コイル22は約20kHzの周波数の電源で駆動され、磁性金属で形成された鍋等を加熱する。23は外郭11の右部に配置された第2の加熱コイルである。第2の加熱コイル23は約2kWの加熱能力がある。第2の加熱コイル23は金属の種類により約20kHzまたは約60kHzの周波数の電源で駆動される。第2の加熱コイル23の上方平面プレート13上に載置された鍋等の金属の種類が磁性金属か非磁性金属かは、第2の加熱コイル23の負荷電流から判別して駆動電源の周波数を決定する。磁性金属の場合は20kHzにし非磁性金属の場合は60kHzにする。
【0026】
前記制御回路20は第1の加熱コイル22に約20kHzの周波数の電流を供給し、第2の加熱コイル23に約20kHzと約60kHzの周波数の電流を供給するインバータ回路を備えている。
【0027】
24は3個で第1の加熱コイル22を支持する第1の支持ばねである。25は3個で第2の加熱コイル23を支持する第2の支持ばねである。26は第1の加熱コイル22と第2の加熱コイル23との中央奥に位置する円盤状のクイックラジエントヒータであり、ガラス鍋や土鍋等を加熱する機能がある。
【0028】
回路部19について説明する。第2の加熱コイル23を制御する上基板27と上基板27を収納する上基板ケース28と、第1の加熱コイル22を制御する中基板29と中基板29を収納する中基板ケース30と、第2の加熱コイル23に供給する電源を作る下基板31と下基板31を収納する下基板ケース32とを上から順に水平に積み重ねて、回路部19に収納されている。回路部19には外郭11の右後方に位置する収納部33が形成されている。
【0029】
34は送風装置を形成する縦軸型のシロッコファンであり、前記回路部19の収納部33に収納されて回路部19に送風する。上基板27、中基板29、下基板31のそれぞれにはシロッコファン34の送風口35に近い位置に上基板27には上ヒートシンク36、中基板29上には中ヒートシンク37、下基板31上には下ヒートシンク38がそれぞれ位置しており、各々の基板27、29、31上では発熱の多い各ヒートシンク36、37、38を最初に冷却する構成となっている。
【0030】
39は上基板ケース28の上に位置する基板ケースカバーであり、基板ケースカバー39の上部には第2の支持ばね25が位置する。基板ケースカバー39は天面40を有して略長方形の箱形状を成し、上基板ケース28とシロッコファン34との上に配置される。また、第2の加熱コイル23の下に送風空間41を挟んで基板ケースカバー39が位置することとなる。
【0031】
42は第2の加熱コイル23の中央に位置する円形の通風穴であり、通風穴42より小さい温度検知部43が通風穴42の中心から偏心して通風穴42の一部を塞ぐ位置に配置されている。温度検知部43は通風穴42の一部を遮蔽する遮蔽突起部を形成する。
【0032】
前述のように上ヒートシンク36は上基板27のシロッコファン34に近い位置に配置されている。44は前記基板ケースカバー39に設けられ、前記第2の加熱コイル23の通風穴42下に位置して、概略通風穴42の直径に近い大きさの略円形の第1の貫通穴であり、第1の貫通穴44の外周には垂直方向でシロッコファン34の風下側に半円状の第1の送風誘導壁45が設けてある。第1の送風誘導壁45は基板ケースカバー39の天面40から下方に垂直に伸設されている。46は第2の貫通穴であり、前記第1の貫通穴44よりシロッコファン34側に位置して第2の送風誘導壁47が第2の貫通穴46の風下側に設けてある。48は第3の貫通穴であり、第2の貫通穴46よりさらにシロッコファン34側に位置する。49は第3の貫通穴48の風下側に設けられた第3の送風誘導壁である。第1の送風誘導壁45は第2の送風誘導壁47よりも下方に長く伸設され、第2の送風誘導壁47は第3の送風誘導壁49よりも下方に長く伸設されている。また、第1の貫通穴44は第2の貫通穴46よりも開口面積は大きく、第2の貫通穴46は第3の貫通穴48よりも開口面積は大きい。
【0033】
第2の加熱コイル23は、コ字状に形成され上方向に開口したフェライト50と、このフェライト50を12本放射状に配置してインサート成形したPPS樹脂等で略円盤状に形成された基台51と、直径0.05mmの自己融着型エナメル線を約1600本撚って太い導線52を形成しこの導線52で中央を開口した円盤状に熱融着させて成形したコイル53と、コイル53を押さえるコイル押さえ54とを有している。コイル53は巻き数を増すために2層に巻いてある。巻き方は中心から1層目と2層目とを交互に巻きながら外周へと巻いて行く方法である。
【0034】
コイル押さえ54は垂直方向に円筒状に形成しコイル53外周に位置する壁55と、壁55から放射状に中心に向かう4本の押さえ爪56と、押さえ爪56の先端付近に下向きに凸な突起57が設けてある。突起57以外の押さえ爪56の伸設部58はコイル53には接することなく突起57のみがコイル53の上面に当接することとなり、コイル53と押さえ爪56との間に約2mmの隙間59ができる。この隙間59を冷却風が通過する。
【0035】
温度検知部43は、前記基台51の通風穴42に下方に向かって伸設された逆円錐形状の防風部材60の凹状収容部61と、PPS樹脂等で形成され逆円錐形状で前記防風部材60に固定された温度検知台62と、サーミスタ等を用いた温度検知素子63を上面に保持した温度検知ユニット64と、保持ばね65とで構成されている。前記温度検知ユニット64を保持ばね65で平面プレート13の下面に押圧して、温度検知素子63が平面プレート13の下面に直接当接して平面プレート13の温度を検知する構成になっている。防風部材60と温度検知台62との間には約1mm幅の空間66があり、この空間66が通風穴42を通過する風による冷却から温度検知素子63を熱的に断熱する機能がある。
【0036】
前述のように温度検知部43を通風穴42の中心から偏心して位置させることで、シロッコファン34から送られる風を通風穴42から第2の加熱コイル23上面の隙間59に誘導するときに温度検知部43の配置を変えることで任意の方向に風を誘導することができる。つまり、第2の加熱コイル23の上面を放射状に流れる風の強い方向があると、通風穴42のこの風の強い方向に温度検知部43を配置することで、通風穴42からの風が温度検知部43に邪魔されて弱まる。
【0037】
一方放射状に流れる風の弱い方向は温度検知部43に邪魔された風の一部が流入して風が強まり、結果としてシロッコファン34からの一方向の風を偏心した温度検知部43を有する通風穴42を通すことで、第2の加熱コイル23上面の隙間59を均等に流すことができて、コイル53上面を均等に冷却することができるので、コイル53上面の温度上昇に偏りが無くなる。
【0038】
また、温度検知部43で反射された風は第2の加熱コイル23下面に沿って第2の加熱コイル23外周に向かって送風空間41を放射状に流れて、第2の加熱コイル23下面を均等に冷却することができるのでコイル53下面の温度上昇に偏りが無くなる。
【0039】
67は基台51にインサート成形で配置されたコ字状のフェライト50の外周凸部であり、68はフェライト50の内周凸部である。フェライト50は外周凸部67と内周凸部68とを上方に向けて、基台51の外周に均等な角度で放射状に12個配置されている。外周凸部67と外周凸部67との間は比較的低い外周凹部69が12カ所形成されている。
【0040】
ここで、コイル押さえ54の壁55には風穴70が外周に10箇所設けてある。風穴70は壁55を貫通した穴であり、コイル押さえ54を基台51にセットすると、基台51の外周凹部69の角度に風穴70が位置するように配置されている。これにより、通風穴42から第2の加熱コイル23上面に誘導された風は、押さえ爪56とコイル53上面の間の隙間59を通過して外周凹部69の外側に位置する風穴70から第2の加熱コイル23外方に放散される。風穴70の高さはコイル53の高さとほぼ同じ高さである。
【0041】
71はリング状導体である第1のリングであり、シリコンゴム被覆電線をリング状にかしめやはんだ等で接続して前記コイル押さえ54の壁55内周に沿って配置されている。
【0042】
第1のリング71は前記コイル53と同一中心の円周でコイル53外周の外側にコイル53より約3mm高い位置でコイル53外周に配置されている。72はリング状導体である第2のリングであり、シリコンゴム被覆電線をリング状にかしめやはんだ等で接続して前記基台51の外周溝部73に沿って前記外周凸部67外側に設けられた載置リブ74にセットされて配置されている。
【0043】
第2のリング72は前記コイル53と同一中心の円周でコイル53外周より外側にコイル53より約5mm低い位置にコイル53外周に配置されている。前述のコイル押さえ54の風穴70は第1のリング71の高さと第2のリング72の高さとの間に位置し、第1のリング71と第2のリング72の外側に位置することとなる。
【0044】
75は遮蔽板であり、遮蔽板75は略円盤状に形成された0.3mmのマイカ板をプレス型で打ち抜いて形成された上遮蔽板76と、上遮蔽板76と同じく0.3mmのマイカ板で形成された下遮蔽板77と、上遮蔽板76と下遮蔽板77との間に塗布した導電性塗膜78と、導電性塗膜78の両端に電機的に接続されて下向きに伸設した一対の電極79とを有している。電極79は電気的に接地されている。導電性塗膜78は上遮蔽板76と下遮蔽板77とで電気的に絶縁されている。上遮蔽板76と下遮蔽板77とは接着されている。遮蔽板75の略中央には前記温度検知部43の位置に温度検知部43の外周と同じ大きさの嵌合穴80が開けてある。遮蔽板75を押さえ爪56に載置したときに前記嵌合穴80が温度検知部43に嵌合して位置決めになるとともに、加熱コイル23上面の隙間59と遮蔽板75上面の空間とを遮断する。この嵌合穴80からは前記シロッコファン34からの送風は遮蔽板75上方にはほとんど漏れない。この構成により通風穴42から第2の加熱コイル23上面に通過した風は遮蔽板75に上方への進路を阻まれて上昇せずに遮蔽板75に沿って通風穴42から放射状に外周へと流れることとなる。
【0045】
81は遮蔽板75の上に位置し前記平面プレート13の下に密着した非磁性金属板である厚さ1mmのアルミニウム板で形成された略半月状のシールド板である。シールド板81は2枚を使用してドーナツ状に配置し前記遮蔽板75上に位置し、シールド板81の外周から伸設した各々2カ所の曲げ爪82を曲げて取り付ける。シールド板81とシールド板81との間は約10mm間隔を開けておく。シールド板81の投影面は前記コイル53の投影とほぼ一致する。シールド板81は下面が前記遮蔽板75に密着するとともに上面を前記平面プレート13に密着している。
【0046】
83は第2の加熱コイル23の基台51外周溝部73に収納されて固定された透明リングであり、基台51の外周溝部73に備えられて水平方向に発光する発光ダイオード84の光を第2の加熱コイル23のほぼ外周に沿って光りの輪を上方に放射する。この光の輪は平面プレート13を介して使用時に第2の加熱コイル23の位置を知らせて鍋を置く位置を知らせる機能がある。
【0047】
85は基台51の外周近傍に備えられた一対の温度検知センサであり、前記遮蔽板75の温度を下方から検知する。前記外周凸部67は第2の加熱コイル23外周に均等な角度で12カ所設けてあり、従って外周凹部69は均一な角度で12カ所存在する。
【0048】
一方コイル押さえ54の壁55に設けられた外周凹部69に対応する風穴70は10カ所である。残りの2カ所は壁55に風穴70が無い状態である。その位置がこの一対の温度検知センサ85の取付位置である。従って、通風穴42を通ってコイル53上面に沿って放射状に放散された風が風穴70から排気されるときに、温度検知センサ85上を通過した風は風穴70が無いので円滑にコイル押さえ54の外周外方に流れることができない。よって温度検知センサ85上を通過する風は他の放射状に排気される空気の流れよりも弱い流れとなる。結果として温度検知センサ85は冷却風の影響が小さく、精度の高い温度検知が可能になる。
【0049】
86は基板ケースカバー39天面40の第1の加熱コイル22近傍に開口した分流口である。シロッコファン34からの送風で上基板27上を流れた風は上ヒートシンク36を冷却した後、一部は基板ケースカバー39上に達し第2の加熱コイル23を冷却する。基板ケースカバー39上面へ流れた風以外は基板ケースカバー39天面40の下を流れて、分流口86から第1の加熱コイル22下面へ送風される。第1の加熱コイル22は駆動周波数が20kHzと比較的低いので分流口86からの風が第1の加熱コイル22下面を冷却することで、第1の加熱コイル22の冷却は充分である。第1の加熱コイル22を冷却した風は温風となって吸排気グリル14から後方へ排気される。87は第2の加熱コイル23上の平面プレート13に載置したアルミニウム製の鍋である。
【0050】
以上のように構成された誘導加熱装置について、図1を用いてその動作を説明する。まず、平面プレート13の第2の加熱コイル23上にアルミニウム製鍋87を載置する。第2の加熱コイル23に通電する。制御回路20は第2の加熱コイル23への通電と同時にシロッコファン34を駆動する。制御回路20は通電の負荷電流から鍋87が非磁性金属製であることを検知する。非磁性金属を検知した制御回路20は第2の加熱コイル23へ供給する電源の周波数を60kHzにする。
【0051】
第2の加熱コイル23から60kHzの交番磁界が発生すると、アルミニウム製の鍋87は底面に電磁誘導により渦電流が発生して加熱される。同時に自身の電流により第2の加熱コイル23からの磁界に対して反発する磁界が発生する。結果として鍋87に浮力が発生する。この浮力を低減するために第2の加熱コイル23が発生する交番磁界中に非磁性金属のシールド板81を配置するのである。位置は第2の加熱コイル23と鍋87との間である。この状態で第2の加熱コイル23に60kHzの交番電流を流すと発生する磁界によりシールド板81内に渦電流が発生し、この渦電流により発生する磁界に第2の加熱コイル23からの磁界が反発して第2の加熱コイル23中心部に磁束が集中する。磁束が集中するために鍋87の底面では渦電流が発生しジュール熱で鍋87が加熱される。
【0052】
ここでシールド板81がない場合は第2の加熱コイル23からの磁界が鍋87底全体に平均に分布するために鍋底に発生するジュール熱が少ない割に磁界は鍋に達しているので浮力は発生する。一方シールド板81がある場合には一部の磁束はシールド板81で吸収されるので鍋87に達する磁束は比較的少ない。従って発生する浮力は比較的少なくなる。
【0053】
しかし、シールド板81からの磁界により反発した磁束が鍋87の中央付近に集中するために表皮効果により鍋87底で発生するジュール熱は比較的多くなる。結果としてシールド板81を備えると鍋87に発生する浮力は低減されるが、発熱量は維持できることとなる。
【0054】
遮蔽板75の働きについて説明する。第2の加熱コイル23と鍋87底面とは相対する略平面であり電気的にはコンデンサを形成することとなる。60kHzで第2の加熱コイル23を駆動した場合は、このコンデンサの一方の電極である第2の加熱コイル23に交番電流を流すので交番電界をかけることになり、鍋87底に電位が発生する。この電位の発生した鍋87に人間が触れると感電するのでこの電界を遮蔽する必要がある。鍋87底を接地すればよいが現実的ではない。そこで鍋87底に変わる遮蔽板75の導電性塗膜78を第2の加熱コイル2と鍋87底との間に位置させて第2の加熱コイル23と導電性塗膜78とでコンデンサを形成する。第2の加熱コイル23の交番電界によって導電性塗膜78に電位が発生しても電極79を介して接地されているので鍋87底に電位が発生することはない。
【0055】
第2の加熱コイル23に20kHzの交番電流を供給する場合は周波数が比較的低いので鍋87底に人間が感じる程度の電位が発生するまでには至らない。第1の加熱コイル22の場合も20kHzの交番電流を供給するので同じである。
【0056】
第2の加熱コイル23に60kHzの交番電流を供給する場合は、シールド板81には渦電流によって若干の発熱がある。シールド板81の上面は平面プレート13に密着しているので熱伝導により平面プレート13を介して空中へ放熱する。
【0057】
鍋87の加熱に伴いコイル53も自己発熱して温度が上昇する。シロッコファン34は吸排気グリル14から吸入して空気を送風口35から上基板27、中基板29下基板31へ送風する。上基板27へ送風された空気は最初に上ヒートシンク36を冷却する。
【0058】
さらに上基板27上を進むと風の一部は第3の送風誘導壁49にぶつかって第3の貫通穴48を通過して基板ケースカバー39天面40の上の送風空間41に吹き上げられる。
【0059】
また、風の一部は第2の送風誘導壁47にぶつかって第2の貫通穴46を通過して基板ケースカバー39の上面の送風空間41に吹き上げられる。最後に第1の送風誘導壁45にぶつかって第1の貫通穴44を吹き上がって基板ケースカバー39上に達し、第2の加熱コイル23の通風穴42に達する。
【0060】
ここで一部の風は温度検知部43に遮られて第2の加熱コイル23下面の送風空間41を通風穴42を中心に放射状に放散される。通風穴42を通過した風は遮蔽板75にぶつかって遮蔽板75下面を放射状に放散される。この風の流れはやがてコイル押さえ54の押さえ爪56とコイル53の間の隙間59を通過してコイル53を冷却しながらコイル押さえ54の壁55に達する。壁55に達した風は第1のリング71と第2のリング72の間を通過して外周凸部67の間の外周凹部69を通過して10カ所ある壁55の風穴70を通過して第2の加熱コイル23外方へ放散される。通風穴42を通過するときにシロッコファン34からの風は第1の送風誘導壁45にぶつかって風下に強く流れようとする。
【0061】
しかし、通風穴42の風下側には温度検知部43が設けてあるので、温度検知部43にぶつかった風の一部が第2の加熱コイル23下面に流れるとともに、通風穴42を通って第2の加熱コイル23上面に流れる風は通風穴42の風下に位置する温度検知部43によって風下側の風が弱くなり、温度検知部43にぶつかった風が風上側に跳ね返るので通風穴42を通過した時点で第2の加熱コイル23の上面を均等な強さで放射状に放散される風の流れになる。従って隙間59を放射状に均等な風が通風穴42から風穴70まで障害物がなく円滑にコイル53上面を流れることとなり、コイル53の冷却を効率的に行うことが出来る。温度検知部43の下部の防風部材60は逆円錐形状なので冷却風が第2の加熱コイル23上面と下面とに分離する際に圧損を少なく少なくすることができる。
【0062】
第2の加熱コイル23下面では第3の貫通穴48と第2の貫通穴46と第1の貫通穴44とから吹き上げて通風穴42を通過しなかった風が第2の加熱コイル23下を放射状に放散されてコイル53下面を冷却しながら第2の加熱コイル23外方へ放散される。このとき第2の貫通穴46と第3の貫通穴48を通過した風が第1の貫通穴44を通過した風と合流して全体として第2の加熱コイル23の下面を流れる冷却風は放射状に均等に流れることとなり、第2の加熱コイル23の冷却を効率的に行うことができる。
【0063】
鍋87が磁性金属製である場合は、例えばホーロー鍋等であれば、制御回路20は負荷電流から判断して第2の加熱コイル23に20kHzの交番電流を供給する。20kHzの磁界ではシールド板81にはほとんど渦電流は発生しないのでシールド板81の発熱は問題にはならない。
【0064】
以上にように本実施例によれば、基板ケースカバー39の第1の貫通穴44を通風穴42の下に設けるとともに、通風穴42に温度検知部43を設け、遮蔽板75とコイル53との間に隙間59を設けることで、第2の加熱コイル23上面の冷却を第2の加熱コイル23の中心である通風穴42からの均等な放射状冷却風で効率的に行うことが出来るとともに、第2の貫通穴46と第3の貫通穴48とを設けることで第2の加熱コイル23下面の冷却を第2の加熱コイル23の中心から放射状に均等に冷却することができ、第2の加熱コイル23の上面と下面の両方を同時にしかも放射状に均等に冷却することができる。
【0065】
(実施例2)
以下本発明の第2の実施例について、図面を参照しながら説明する。図7において、平面プレート13、第2の加熱コイル23、上基板27、上基板ケース28、上ヒートシンク36、送風空間41、基板ケースカバー39、天面40、通風穴42、温度検知部43、第1の貫通穴44、第1の送風誘導壁45、第2の貫通穴46、第2の送風誘導壁47、第3の貫通穴48、第3の送風誘導壁49、フェライト50、基台51、コイル53、コイル押さえ54、壁55、押さえ爪56、突起57、伸設部58、隙間59、防風部材60、凹状収容部61、温度検知台62、温度検知素子63、温度検知ユニット64、保持ばね65、空間66、外周凸部67、内周凸部68、外周凹部69、風穴70、第1のリング71、第2のリング72、外周溝部73、載置リブ74、導電性塗膜78、電極79、透明リング83、は実施例1と同一の機能と形状であり、同一の符号を使用する。
【0066】
図1の構成と異なるのは非磁性金属板であるシールド板90の上面に高さが2mmの当て突起部91を複数設けたことと、遮蔽板92の嵌合穴93を通風穴42よりも大きい面積で開口した点である。突起部91を設けたためにシールド板90と平面プレート13との密着がなくなり、シールド板90と平面プレート13との間に約2mmの隙間94が発生する。
【0067】
また、嵌合穴93を大きくすることで、通風穴42から吹き上げる風が嵌合穴93を通過してシールド板90まで達することができる。
【0068】
上記のように構成された誘導加熱装置について、以下その動作を説明する。まず、シロッコファン34からの風が通風穴42を通過するまでは実施例1と同じである。また、第2の加熱コイル23下面で放散される風の動きも実施例1と同じである。
【0069】
通風穴42を通過した風について、嵌合穴93を通過した風は温度検知部43にぶつかって一部は遮蔽板92下面に沿ってコイル53上面を冷却しながら放射状に放散される。嵌合穴93を通過した風はシールド板90の中央を通過して平面プレート13にぶつかって、シールド板90と平面プレート13との間の隙間94を外周方向へ平面プレート13下面に沿って放射状に放散される。このときシールド板90と平面プレート13の下面を冷却しながら放射状に放散されることとなる。
【0070】
以上のように、通風穴42を通過した風をシールド板90と平面プレート13との間に設けた隙間94を通過させることにより、シールド板90や平面プレート13の冷却を行うことができる。
【0071】
なお、第1の実施例において第2の加熱コイル23のコイル53を2層にしたが、ターン数を増やすために3層や4層にしても良い。また、第2の実施例では、平面プレート13とシールド板90との間に隙間94を設けたが、シールド板90と遮蔽板92との間に隙間94を設けても良いし、遮蔽板92とコイル押さえ54との間に隙間94を設けても良いことは言うまでもない。
【0072】
【発明の効果】
以上のように本発明によれば、加熱コイルの下面と上面を中央から均等な放射状の冷却風で効率的に冷却することができる優れた誘導加熱装置を実現できるものである。
【図面の簡単な説明】
【図1】本発明の実施例1における第2の加熱コイルの部分断面図
【図2】本発明の実施例1における誘導加熱装置の分解斜視図
【図3】本発明の実施例1における誘導加熱装置の制御部の斜視図
【図4】本発明の実施例1における誘導加熱装置の平面図
【図5】本発明の実施例1における第2の加熱コイルの部分斜視図
【図6】本発明の実施例1における第2の加熱コイルの部分斜視図
【図7】本発明の実施例2における第2の加熱コイルの部分断面図
【符号の説明】
13 平面プレート
23 第2の加熱コイル(加熱コイル)
34 シロッコファン(送風装置)
42 通風穴
43 温度検知部
45 第1の送風誘導壁
47 第2の送風誘導壁
49 第3の送風誘導壁
50 フェライト
51 基台
53 コイル
54 コイル押さえ
55 壁
56 押さえ爪
58 伸設部(押さえ爪本体)
59 隙間
60 防風部材
67 外周凸部
70 風穴
71 第1のリング(リング状導体)
72 第2のリング(リング状導体)
75 遮蔽板
81 シールド板(非磁性金属板)
90 シールド板(非磁性金属板)
92 遮蔽板
94 隙間
Patent application title: Induction heating apparatus
[Claim of claim]
1. A flat plate on which an object to be heated is placed, a heating coil positioned below the flat plate, a gap provided between the flat plate and the heating coil, an air blower, and the heating coil below. And a wind guiding wall for guiding a part of the wind generated by the blowing device and guiding the wind upward from about the lower center of the heating coil, the heating coil having a substantially donut shape in the center With ventilation holes And pass part of the wind through the gap between the flat plate and the heating coil Induction heating device configured.
2. The induction heating apparatus according to claim 1, wherein the air flow guide wall is positioned below the air vent and the air flow guide wall is formed at a position downwind of the air blown from the air blower.
3. The induction heating apparatus according to claim 1, wherein a plurality of air blowing guide walls are formed, and the air blown from the air blowing device is divided so that air can be blown to any part of the heating coil.
4. A structure in which a part of the wind from the air blower is guided to the heating coil by the air flow guiding wall, and is further separated into the upper side of the heating coil and the lower side of the heating coil by the shielding projection located in the ventilating hole. The induction heating apparatus of any one of Claims 1-3.
5. The induction heating apparatus according to any one of claims 1 to 4, wherein a temperature detecting portion is formed in the ventilating hole, and the wind from the ventilating hole is blocked by a windproof member of the temperature detecting portion.
6. The induction heating apparatus according to claim 5, wherein the windproof member has a substantially conical shape pointed downward.
7. The induction heating apparatus according to claim 5, wherein the temperature detecting portion is disposed eccentrically from the center of the ventilating hole.
8. The heating coil comprises a base, ferrite arranged radially from the center of the coil, a coil presser, and a coil presser, a wall covering the outer periphery of the coil and a plurality of pressers extended from the wall to the upper surface of the coil The induction heating apparatus according to any one of claims 1 to 7, further comprising a claw and an air hole formed in the wall.
9. A heating coil is disposed on a base, a U-shaped ferrite opened radially from the center of the coil, a coil presser, and the coil presser is located on the outer periphery of the heating coil to cover the outer periphery of the ferrite arrangement A wall and a plurality of pressing claws extending from the wall to the upper surface of the coil, wherein an inner circumferential convex portion of the U-shaped ferrite is positioned inward of an inner circumferential surface of the coil, and an outer circumferential convex portion is positioned outward from the outer circumferential surface of the coil; The induction heating apparatus according to any one of claims 1 to 7, wherein an air hole is provided in a wall located between outer peripheral convex portions of the coil presser.
10. The method according to any one of claims 1 to 9, wherein two ring conductors are vertically separated on the outer periphery of the heating coil and arranged substantially parallel, and an air hole is positioned between the upper and lower ring conductors. An induction heating device according to any one of the preceding claims.
11. A shield plate is disposed between the upper portion of the heating coil and the flat plate, and the wind guided from the air vent to the upper surface of the coil is diffused to the outer periphery of the heating coil through the space between the shield plate and the upper surface of the coil. The induction heating apparatus of any one of Claims 1-10 comprised.
12. The coil presser has a plurality of presser claws directed from the wall to the center, and a downwardly convex projection extended near the tip of the presser claw, and the projection abuts on the coil and the presser claw main body is The induction heating device according to any one of claims 1 to 11, wherein the induction heating device is disposed apart from the coil.
13. A shield plate is disposed between the heating coil upper portion and the flat plate, a nonmagnetic metal plate is disposed between the shield plate and the flat plate, and a gap between the heating coil and the shield plate A gap is provided at least one or more between the nonmagnetic metal plate and the nonmagnetic metal plate and the flat plate, and the wind guided to the upper surface of the coil from the ventilating hole passes through the gap to the outer periphery of the heating coil The induction heating apparatus according to claim 11, wherein the induction heating apparatus diffuses.
14. A control circuit for driving a heating coil is formed by an inverter circuit, and the inverter circuit is capable of heating a high-conductivity low-resistance nonmagnetic metal such as aluminum or copper. An induction heating device according to item 1.
Detailed Description of the Invention
[0001]
Field of the Invention
BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to an induction heating apparatus that mainly performs cooking in general homes and metal heating for business use.
[0002]
[Prior Art]
The conventional induction heating device mainly cools the lower surface of the heating coil, or mainly cools the lower surface of the heating coil from the side (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Application No. 2001-260753 (FIGS. 3-5)
[0004]
[Problems to be solved by the invention]
In order to heat the pot such as copper and aluminum, a high frequency current of 40 to about 100 kHz higher than about 20 kHz or about 30 kHz suitable for an iron pot had to be applied to the heating coil. There is also a demand for a high-power induction heating device. As the frequency increases, the skin resistance increases the effective resistance and heat generation increases. In addition, when the current value is increased, the self-heating of the heating coil is also increased. As described above, in order to enhance the performance of the induction heating apparatus, it is required to efficiently cool the heating coil.
[0005]
An object of the present invention is to provide an induction heating device capable of simultaneously cooling both the upper surface and the lower surface of the heating coil in the circumferential direction from the center of the heating coil.
[0006]
[Means for Solving the Problems]
In order to solve this problem, according to the present invention, in order to efficiently cool the heating coil having a large heat generation, the cooling air is diverted to the upper surface of the heating coil through a vent located at the center of the heating coil to The cooling air is allowed to pass radially through the gap between the flat plate and the heating coil from the center and can also cool the lower surface of the heating coil.
[0007]
As a result, an induction heating apparatus can be obtained which can sufficiently cool even if the heat generation of the heating coil is increased by passing a current of higher frequency to the heating coil or increasing the value of the current flowing to the heating coil. In particular, it becomes possible to heat nonmagnetic metals.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention is a flat plate on which an object to be heated is placed, a heating coil located below the flat plate, a gap provided between the flat plate and the heating coil, and air blowing. The heating coil, the heating coil being positioned below the heating coil, and guiding a part of the wind generated by the blowing device to guide the wind from the lower center of the heating coil to the upper part; Is generally donut-shaped and has a ventilation hole at the center, Writing style Part of Pass through the gap between the flat plate and the heating coil And has the effect of being able to cool the upper and lower surfaces of the heating coil.
[0009]
The invention according to claim 2 is characterized in that the air flow guide wall is positioned below the air vent and the air flow guide wall is formed at a position downwind of the air blown from the air blower, and the upper and lower sides of the heating coil It has the effect that both sides can be cooled.
[0010]
The invention according to claim 3 has a structure in which a plurality of air blowing guide walls are formed, the air blown from the air blowing device is divided, and the air can be blown to any part of the heating coil. It has the effect of being able to cool the site of
[0011]
In the invention according to claim 4, a part of the wind from the blower is guided to the heating coil by the blowing guide wall, and is further separated into the upper side of the heating coil and the lower side of the heating coil in the temperature detecting portion located in the ventilating hole. It has the effect of being able to cool the upper and lower surfaces of the heating coil.
[0012]
The invention according to claim 5 is such that the temperature detection unit is formed in the ventilation hole, and the wind from the ventilation hole is blocked by the windproof member of the temperature detection unit. While it can branch up and down and can cool up-and-down both sides of a heating coil, it has the effect that a temperature detection part is hard to be cooled with cooling air.
[0013]
In the invention according to claim 6, the windproof member has a substantially conical shape with a pointed downward, and protects the temperature detection unit from the air flow, and at the same time the air flow is branched with little loss above and below the heating coil. It has the effect of making it possible.
[0014]
In the invention according to claim 7, the temperature detecting portion is disposed eccentrically from the center of the ventilating hole, and the air is allowed to pass through from a part of the ventilating hole to the upper side of the heating coil at the same time The direction of flow can be controlled, and the temperature detection unit has the function of branching air flow below the heating coil and controlling the amount of wind branched downward according to the position and area of the temperature detection unit.
[0015]
In the invention according to claim 8, the heating coil is extended from the base, the ferrite arranged radially from the center of the coil, the coil press, the coil press from the wall covering the coil outer periphery and the wall to the coil upper surface And a plurality of holding claws, and the air hole is provided in the wall, and the wind induced above the heating coil is radially dissipated and dissipated radially from the top surface of the heating coil for efficient cooling. Function is possible.
[0016]
In the invention according to claim 9, the heating coil is disposed on the base, the U-shaped ferrite opened upward from the center of the coil, the coil presser, and the coil presser positioned on the outer periphery of the heating coil. And a plurality of holding claws extending from the wall to the upper surface of the coil, wherein the inner circumferential convex portion of the U-shaped ferrite is positioned inward from the inner circumferential surface of the coil, and the outer circumferential convex portion is outward from the outer circumferential surface of the coil A wind hole is provided in a wall located between the outer peripheral convex portions of the coil press, and the wind induced above the heating coil is radially dissipated and dissipated radially from the upper surface of the heating coil. At the same time, it becomes possible to form an air hole at the same height as the height of the ferrite and to design a heating coil having a compact height.
[0017]
According to the invention as set forth in claim 10, the two ring-shaped conductors are separated in the vertical direction on the outer periphery of the heating coil and arranged substantially parallel, and the air hole is positioned between the upper and lower ring-shaped conductors. The present invention has the effect of radially radiating the wind induced above the heating coil and radiating it radially from the top surface of the heating coil to enable efficient cooling.
[0018]
In the invention according to claim 11, the shielding plate is disposed between the heating coil upper portion and the flat plate, and the wind guided from the ventilating hole to the coil upper surface passes between the shielding plate and the coil upper surface to heat the heating coil. It is configured to diffuse to the outer periphery, and the air branched from the air vent to the upper side of the heating coil can be pressed down by the shielding plate and dissipated radially at the upper portion of the heating coil to efficiently cool the upper surface of the heating coil. Have.
[0019]
In the invention according to claim 12, the coil presser has a plurality of presser claws directed from the wall toward the center and a downwardly convex projection extended near the tip of the presser claw, and the projection abuts on the coil, The pressing claw main body is configured to be located apart from the coil, and has an effect that the upper surface of the heating coil can be efficiently cooled.
[0020]
The invention according to claim 13 arranges the shielding plate between the heating coil upper portion and the flat plate, arranges the nonmagnetic metal plate between the shielding plate and the flat plate, and between the heating coil and the shielding plate. A gap is provided between at least one of the shielding plate and the nonmagnetic metal plate or between the nonmagnetic metal plate and the flat plate, and the wind guided from the ventilating hole to the upper surface of the coil passes through the gap. The coil is configured to diffuse around the heating coil, and a gap is optionally provided between the heating coil, the heat shield plate, the nonmagnetic metal plate, and the flat plate, and the cooling air from the ventilating hole is passed through the gap. It has the effect of being able to cool any parts located above it.
[0021]
According to the invention as set forth in claim 14, the control circuit for driving the heating coil is formed of an inverter circuit, and the inverter circuit is configured to be able to heat a high conductivity and low resistance nonmagnetic metal such as aluminum or copper. Even if the heat generation of the heating coil is large, the upper and lower surfaces of the heating coil are uniformly cooled.
[0022]
【Example】
Example 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
Reference numeral 11 denotes an outer shell of a rectangular parallelepiped opened at the top formed of a metal plate. A top frame 12 is formed of a metal plate fixed to close the upper portion of the outer shell, and a flat plate 13 formed of a heat-resistant glass plate having a rectangular shape is formed on the top frame 12 on the top frame 12. It is bonded and watertightly fixed. The flat plate 13 is designed to have a position for placing a pot or the like. An intake and exhaust grill 14 is disposed laterally in the rear direction of the top frame 12 and has a large number of vent holes 15 and is removably mounted on the top frame 12. A hook 16 fixes the top frame 12 to the front of the shell 11.
[0024]
Reference numeral 17 denotes a roaster disposed on the left side of the shell 11, and the handle 18 is pulled out and used. The roaster 17 is configured to be heated by a sheathed heater (not shown). Reference numeral 19 denotes a circuit unit in which the control circuit 20 is housed. Reference numeral 21 denotes an operation unit, which is pivotally supported at the lower front surface when it is used, and is configured to be inclined forward.
[0025]
A first heating coil 22 is disposed at the left part of the shell 11 and has a heating capacity of up to 3 kW by induction heating. The first heating coil 22 is driven by a power supply having a frequency of about 20 kHz, and heats a pan or the like formed of magnetic metal. Reference numeral 23 denotes a second heating coil disposed on the right side of the shell 11. The second heating coil 23 has a heating capacity of about 2 kW. The second heating coil 23 is driven by a power supply having a frequency of about 20 kHz or about 60 kHz depending on the type of metal. It is determined from the load current of the second heating coil 23 whether the type of metal such as a pan placed on the upper flat plate 13 of the second heating coil 23 is a magnetic metal or a nonmagnetic metal, and the frequency of the driving power supply Decide. In the case of magnetic metal, it is 20 kHz, and in the case of nonmagnetic metal, it is 60 kHz.
[0026]
The control circuit 20 includes an inverter circuit that supplies a current of about 20 kHz to the first heating coil 22 and supplies a current of about 20 kHz and about 60 kHz to the second heating coil 23.
[0027]
Reference numeral 24 denotes a first supporting spring for supporting the first heating coil 22 three. Reference numeral 25 is a second supporting spring for supporting the second heating coil 23 three. Reference numeral 26 denotes a disk-shaped quick radiation heater located at the center back of the first heating coil 22 and the second heating coil 23, and has a function of heating a glass pot, a clay pot, and the like.
[0028]
The circuit unit 19 will be described. An upper substrate case 28 accommodating the upper substrate 27 and the upper substrate 27 controlling the second heating coil 23; and an intermediate substrate case 30 accommodating the intermediate substrate 29 and the intermediate substrate 29 controlling the first heating coil 22; A lower substrate 31 for producing power to be supplied to the second heating coil 23 and a lower substrate case 32 accommodating the lower substrate 31 are stacked horizontally in order from the top and accommodated in the circuit section 19. The circuit portion 19 is formed with a storage portion 33 located at the right rear of the outer shell 11.
[0029]
Reference numeral 34 denotes a vertical axis sirocco fan which forms an air blower, which is accommodated in the accommodating portion 33 of the circuit portion 19 and blows the air to the circuit portion 19. Upper heat sink 36 on the upper substrate 27, middle heat sink 37 on the middle substrate 29, and lower substrate 31 on the upper substrate 27 at positions close to the air vents 35 of the sirocco fan 34 on the upper substrate 27, middle substrate 29, and lower substrate 31. The lower heat sinks 38 are positioned, respectively, and are configured to first cool the heat sinks 36, 37, 38 which generate a large amount of heat on the respective substrates 27, 29, 31.
[0030]
A reference numeral 39 denotes a substrate case cover positioned on the upper substrate case 28. A second support spring 25 is positioned on the upper portion of the substrate case cover 39. The substrate case cover 39 has a top surface 40 and has a substantially rectangular box shape, and is disposed on the upper substrate case 28 and the sirocco fan 34. Further, the substrate case cover 39 is positioned below the second heating coil 23 with the air blowing space 41 interposed therebetween.
[0031]
Reference numeral 42 denotes a circular ventilation hole located at the center of the second heating coil 23, and a temperature detection unit 43 smaller than the ventilation hole 42 is disposed at a position where the temperature detection unit 43 is eccentric from the center of the ventilation hole 42 and blocks part of the ventilation hole 42. ing. The temperature detection unit 43 forms a shielding projection that shields a part of the ventilation hole 42.
[0032]
As described above, the upper heat sink 36 is disposed at a position close to the sirocco fan 34 of the upper substrate 27. 44 is a substantially circular first through hole provided on the substrate case cover 39 and located below the vent holes 42 of the second heating coil 23 and having a size close to the diameter of the vent holes 42 in general; On the outer periphery of the first through hole 44, a semicircular first air flow guide wall 45 is provided on the leeward side of the sirocco fan 34 in the vertical direction. The first air flow guiding wall 45 is vertically extended downward from the top surface 40 of the substrate case cover 39. A second through hole 46 is provided on the leeward side of the second through hole 46 with a second air flow guiding wall 47 located on the sirocco fan 34 side with respect to the first through hole 44. A third through hole 48 is located closer to the sirocco fan 34 than the second through hole 46. Reference numeral 49 denotes a third air flow guiding wall provided on the downwind side of the third through hole 48. The first air flow guiding wall 45 extends longer below the second air blowing wall 47, and the second air blowing wall 47 extends longer than the third air blowing wall 49. Also, the first through hole 44 has a larger opening area than the second through hole 46, and the second through hole 46 has a larger opening area than the third through hole 48.
[0033]
The second heating coil 23 is a substantially disk-shaped base formed of a U-shaped ferrite 50 opened upward and a PPS resin etc. in which 12 pieces of the ferrite 50 are radially disposed and insert-molded. 51, a coil 53 formed by twisting approximately 1,600 self-bonding type enameled wires of a diameter of 0.05 mm to form a thick conducting wire 52, and thermally fusing the conducting wire 52 into a disk shape with a central opening; And a coil presser 54 for pressing the coil 53. The coil 53 is wound in two layers to increase the number of turns. The winding method is a method of winding to the outer periphery while alternately winding the first layer and the second layer from the center.
[0034]
The coil presser 54 is formed in a cylindrical shape in the vertical direction, and is provided with a wall 55 located on the outer periphery of the coil 53, four presser claws 56 radially extending from the wall 55 toward the center, and a projection projecting downward near the tip of the presser claw 56 57 are provided. The extension portion 58 of the pressing claw 56 other than the protrusion 57 is not in contact with the coil 53, and only the protrusion 57 is in contact with the upper surface of the coil 53, and a gap 59 of about 2 mm is formed between the coil 53 and the pressing claw 56. it can. Cooling air passes through the gap 59.
[0035]
The temperature detection unit 43 is formed of a PPS resin or the like and a concave accommodation portion 61 of a windproof member 60 of an inverted conical shape extended downward in the ventilation holes 42 of the base 51, and the windproof member A temperature detection stand 62 fixed to 60, a temperature detection unit 64 holding a temperature detection element 63 using a thermistor or the like on the upper surface, and a holding spring 65. The temperature detection unit 64 is pressed against the lower surface of the flat plate 13 by the holding spring 65, and the temperature detection element 63 is in direct contact with the lower surface of the flat plate 13 to detect the temperature of the flat plate 13. There is a space 66 having a width of about 1 mm between the windproof member 60 and the temperature detection table 62, and this space 66 has a function to thermally insulate the temperature detection element 63 from the cooling by the wind passing through the ventilation holes 42.
[0036]
As described above, when the temperature detection unit 43 is positioned eccentrically from the center of the ventilating hole 42, the temperature sent when the wind sent from the sirocco fan 34 is guided from the ventilating hole 42 to the gap 59 on the upper surface of the second heating coil 23 By changing the arrangement of the detection unit 43, wind can be guided in any direction. That is, when there is a strong wind direction flowing radially on the upper surface of the second heating coil 23, the temperature from the draft hole 42 is a temperature by arranging the temperature detection unit 43 in the strong wind direction of the draft hole 42. It is disturbed by the detection unit 43 and weakens.
[0037]
On the other hand, in the weak direction of the radially flowing wind, a part of the disturbed wind flows into the temperature detection unit 43 to strengthen the wind, and as a result, the temperature detection unit 43 having the one-way wind from the sirocco fan 34 eccentric By passing the air holes 42, the gaps 59 on the upper surface of the second heating coil 23 can be made to flow evenly, and the upper surface of the coil 53 can be uniformly cooled.
[0038]
In addition, the wind reflected by the temperature detection unit 43 flows radially toward the outer periphery of the second heating coil 23 along the lower surface of the second heating coil 23, and flows evenly over the lower surface of the second heating coil 23. Therefore, the temperature rise on the lower surface of the coil 53 is not biased.
[0039]
Reference numeral 67 denotes an outer circumferential convex portion of the U-shaped ferrite 50 disposed on the base 51 by insert molding, and reference numeral 68 denotes an inner circumferential convex portion of the ferrite 50. The ferrites 50 are arranged radially at an equal angle on the outer periphery of the base 51 with the outer peripheral convex portions 67 and the inner peripheral convex portions 68 directed upward. Between the outer circumferential convex portion 67 and the outer circumferential convex portion 67, twelve relatively low outer circumferential concave portions 69 are formed.
[0040]
Here, ten air holes 70 are provided on the outer periphery of the wall 55 of the coil presser 54. The air hole 70 is a hole penetrating through the wall 55, and when the coil presser 54 is set on the base 51, the air hole 70 is disposed at the angle of the outer peripheral recess 69 of the base 51. Thus, the wind guided from the ventilating hole 42 to the upper surface of the second heating coil 23 passes through the gap 59 between the pressing claw 56 and the upper surface of the coil 53 and the air from the air hole 70 located outside the outer peripheral recess 69 The heating coil 23 is dissipated outward. The height of the air hole 70 is approximately the same height as the height of the coil 53.
[0041]
A first ring 71 is a ring-shaped conductor, and is arranged along the inner periphery of the wall 55 of the coil retainer 54 by connecting a silicon rubber coated electric wire in a ring shape by caulking or soldering.
[0042]
The first ring 71 is disposed on the outer periphery of the coil 53 at a position which is about 3 mm higher than the coil 53 outside the outer periphery of the coil 53 at the same center of circumference as the coil 53. The second ring 72 is a ring-shaped conductor, and is connected to the outer periphery convex portion 67 along the outer peripheral groove portion 73 of the base 51 by connecting a silicon rubber coated electric wire in a ring shape by caulking or soldering. It is set by the mounting rib 74, and is arrange | positioned.
[0043]
The second ring 72 is disposed on the outer periphery of the coil 53 and at a position approximately 5 mm lower than the coil 53 outside the outer periphery of the coil 53 at the same center of circumference as the coil 53. The air hole 70 of the coil retainer 54 described above is located between the height of the first ring 71 and the height of the second ring 72, and will be located outside the first ring 71 and the second ring 72. .
[0044]
Reference numeral 75 denotes a shielding plate, and the shielding plate 75 is a 0.3 mm mica plate punched with a substantially disk shape by a press die, and an upper shielding plate 76 and a 0.3 mm mica plate similar to the upper shielding plate 76. A lower shielding plate 77 formed of a plate, a conductive coating 78 applied between the upper shielding plate 76 and the lower shielding plate 77, and both ends of the conductive coating 78 are electrically connected to both ends and stretched downward. And a pair of electrodes 79 provided. The electrode 79 is electrically grounded. The conductive coating 78 is electrically insulated by the upper shielding plate 76 and the lower shielding plate 77. The upper shielding plate 76 and the lower shielding plate 77 are bonded. A fitting hole 80 of the same size as the outer periphery of the temperature detection unit 43 is opened at the position of the temperature detection unit 43 substantially at the center of the shielding plate 75. When the shielding plate 75 is placed on the pressing claw 56, the fitting hole 80 is fitted to the temperature detecting portion 43 and positioned, and the gap 59 on the top surface of the heating coil 23 and the space on the top surface of the shielding plate 75 are blocked. Do. The air from the sirocco fan 34 hardly leaks from the fitting hole 80 above the shielding plate 75. With this configuration, the wind that has passed from the ventilation holes 42 to the upper surface of the second heating coil 23 is blocked by the shielding plate 75 from traveling upward and does not rise along the shielding plate 75 radially from the ventilation holes 42 to the outer periphery. It will flow.
[0045]
Reference numeral 81 denotes a substantially semicircular shield plate formed of an aluminum plate of 1 mm in thickness, which is a nonmagnetic metal plate located on the shield plate 75 and in close contact with the lower surface of the flat plate 13. Two shield plates 81 are arranged in a donut shape and positioned on the shield plate 75, and two bent claws 82 extended from the outer periphery of the shield plate 81 are bent and attached. A space of about 10 mm is provided between the shield plate 81 and the shield plate 81. The projection plane of the shield plate 81 substantially coincides with the projection of the coil 53. The lower surface of the shield plate 81 is in close contact with the shielding plate 75 and the upper surface is in close contact with the flat plate 13.
[0046]
A transparent ring 83 is housed and fixed in the outer circumferential groove portion 73 of the base 51 of the second heating coil 23. The transparent ring 83 is provided in the outer circumferential groove portion 73 of the base 51 and emits light of the light emitting diode 84 which emits light in the horizontal direction. A ring of light is emitted upward substantially along the outer periphery of the two heating coils 23. This light ring has a function of notifying the position of the second heating coil 23 at the time of use through the flat plate 13 and notifying the position of placing the pan.
[0047]
A pair of temperature detection sensors 85 are provided near the outer periphery of the base 51, and detect the temperature of the shielding plate 75 from below. The outer peripheral convex portion 67 is provided at twelve positions on the outer periphery of the second heating coil 23 at equal angles. Therefore, the outer peripheral concave portions 69 exist at twelve positions at uniform angles.
[0048]
On the other hand, there are ten air holes 70 corresponding to the outer peripheral recess 69 provided in the wall 55 of the coil presser 54. The remaining two places do not have the air holes 70 in the wall 55. The position is the mounting position of the pair of temperature detection sensors 85. Therefore, when the wind radially dissipated along the upper surface of the coil 53 through the ventilation hole 42 is exhausted from the air hole 70, the wind passing over the temperature detection sensor 85 does not have the air hole 70, so the coil presser 54 smoothly. Can not flow outward of the circumference of the. Thus, the wind passing over the temperature detection sensor 85 is weaker than the flow of the other radially exhausted air. As a result, the temperature detection sensor 85 is less affected by the cooling air, and temperature detection with high accuracy is possible.
[0049]
Reference numeral 86 denotes a diverter port opened in the vicinity of the first heating coil 22 of the top surface 40 of the substrate case cover 39. The air that has flowed on the upper substrate 27 by air flow from the sirocco fan 34 cools the upper heat sink 36, and then partially reaches on the substrate case cover 39 and cools the second heating coil 23. The air flows under the top surface 40 of the substrate case cover 39 except for the air that has flowed to the upper surface of the substrate case cover 39, and is blown to the lower surface of the first heating coil 22 from the diversion port 86. Since the first heating coil 22 has a relatively low driving frequency of 20 kHz, the cooling of the first heating coil 22 is sufficient because the air from the diversion port 86 cools the lower surface of the first heating coil 22. The wind that has cooled the first heating coil 22 becomes warm air and is exhausted rearward from the intake and exhaust grille 14. Reference numeral 87 denotes an aluminum pan placed on the flat plate 13 on the second heating coil 23.
[0050]
The operation of the induction heating apparatus configured as described above will be described with reference to FIG. First, the aluminum pan 87 is placed on the second heating coil 23 of the flat plate 13. The second heating coil 23 is energized. The control circuit 20 simultaneously drives the second heating coil 23 and drives the sirocco fan 34. The control circuit 20 detects that the pan 87 is made of nonmagnetic metal from the load current of electricity. The control circuit 20 having detected the nonmagnetic metal sets the frequency of the power supply supplied to the second heating coil 23 to 60 kHz.
[0051]
When an alternating magnetic field of 60 kHz is generated from the second heating coil 23, the aluminum pan 87 is heated by generating an eddy current on the bottom surface by electromagnetic induction. At the same time, its own current generates a magnetic field which repels the magnetic field from the second heating coil 23. As a result, buoyancy occurs in the pot 87. In order to reduce the buoyancy, a shield plate 81 of nonmagnetic metal is disposed in the alternating magnetic field generated by the second heating coil 23. The position is between the second heating coil 23 and the pan 87. In this state, when an alternating current of 60 kHz is supplied to the second heating coil 23, an eddy current is generated in the shield plate 81 by the magnetic field generated, and the magnetic field from the second heating coil 23 is generated in the magnetic field generated by the eddy current. Repelled, the magnetic flux is concentrated at the center of the second heating coil 23. Due to the concentration of the magnetic flux, an eddy current is generated at the bottom of the pan 87, and the pan 87 is heated by Joule heat.
[0052]
If the shield plate 81 is not present, the magnetic field from the second heating coil 23 is evenly distributed over the entire bottom of the pan 87 and the Joule heat generated at the pan bottom is small but the magnetic field reaches the pan so the buoyancy is Occur. On the other hand, when the shield plate 81 is present, a part of the magnetic flux is absorbed by the shield plate 81, so the magnetic flux reaching the pan 87 is relatively small. Therefore, the generated buoyancy is relatively small.
[0053]
However, since the magnetic flux repelled by the magnetic field from the shield plate 81 is concentrated near the center of the pot 87, the Joule heat generated at the bottom of the pot 87 is relatively large due to the skin effect. As a result, when the shield plate 81 is provided, the buoyancy generated in the pan 87 is reduced, but the calorific value can be maintained.
[0054]
The function of the shielding plate 75 will be described. The second heating coil 23 and the bottom surface of the pan 87 are substantially flat facing each other, and electrically form a capacitor. When the second heating coil 23 is driven at 60 kHz, an alternating electric current is applied to the second heating coil 23 which is one of the electrodes of the capacitor, so that an alternating electric field is applied and a potential is generated at the bottom of the pan 87 . It is necessary to shield this electric field because a person who is in contact with the pot 87 where this potential is generated causes an electric shock. It is fine if the bottom of the pan 87 is grounded, but this is not realistic. Therefore, the conductive coating 78 of the shielding plate 75 which changes to the bottom of the pan 87 is positioned between the second heating coil 2 and the bottom of the pan 87 to form a capacitor with the second heating coil 23 and the conductive coating 78 Do. Even if a potential is generated in the conductive coating film 78 due to the alternating electric field of the second heating coil 23, the potential is not generated at the bottom of the pan 87 because it is grounded via the electrode 79.
[0055]
In the case where an alternating current of 20 kHz is supplied to the second heating coil 23, the frequency is relatively low, so that the potential which a human senses in the bottom of the pan 87 does not occur. The first heating coil 22 is also the same because it supplies an alternating current of 20 kHz.
[0056]
When an alternating current of 60 kHz is supplied to the second heating coil 23, the shield plate 81 has a slight heat generation due to the eddy current. Since the upper surface of the shield plate 81 is in close contact with the flat plate 13, the heat is dissipated to the air through the flat plate 13 by heat conduction.
[0057]
As the pan 87 is heated, the coil 53 also generates heat and the temperature rises. The sirocco fan 34 sucks air from the intake and exhaust grille 14 and blows air from the air blowing port 35 to the upper substrate 27 and the middle substrate 29 lower substrate 31. The air blown to the upper substrate 27 first cools the upper heat sink 36.
[0058]
Further, when traveling on the upper substrate 27, a part of the wind collides with the third air flow guiding wall 49, passes through the third through hole 48 and blows up to the air blowing space 41 on the top surface 40 of the substrate case cover 39.
[0059]
Further, part of the wind collides with the second air blowing guide wall 47, passes through the second through hole 46, and is blown up to the air blowing space 41 on the upper surface of the substrate case cover 39. Finally, it strikes the first air flow guiding wall 45, blows up the first through hole 44, reaches the substrate case cover 39, and reaches the air vents 42 of the second heating coil 23.
[0060]
Here, a part of the wind is blocked by the temperature detection unit 43 and dissipated radially around the ventilation hole 42 in the blowing space 41 on the lower surface of the second heating coil 23. The wind having passed through the vent holes 42 collides with the shielding plate 75 and is radially dissipated on the lower surface of the shielding plate 75. The flow of the wind eventually passes through the gap 59 between the pressing claw 56 of the coil presser 54 and the coil 53 and reaches the wall 55 of the coil presser 54 while cooling the coil 53. The wind reaching the wall 55 passes between the first ring 71 and the second ring 72, passes through the outer peripheral recess 69 between the outer peripheral convex portions 67 and passes through the air holes 70 of the ten walls 55. The second heating coil 23 is dissipated outward. When passing through the air vents 42, the wind from the sirocco fan 34 strikes the first air flow guiding wall 45 and tends to flow downwind.
[0061]
However, since the temperature detection unit 43 is provided on the downwind side of the ventilating hole 42, a part of the wind that has hit the temperature detecting unit 43 flows to the lower surface of the second heating coil 23 and passes through the ventilating hole 42. The wind flowing on the upper surface of the heating coil 23 of 2 is weakened by the temperature detection unit 43 located on the downwind side of the ventilation hole 42 and the wind on the downwind side weakens, and the wind that hits the temperature detection unit 43 bounces upwind and passes through the ventilation hole 42 At this point, the upper surface of the second heating coil 23 becomes a flow of wind which is radially dissipated with equal strength. Therefore, the wind which is radially uniform in the gap 59 flows smoothly on the upper surface of the coil 53 without obstacle from the ventilating hole 42 to the air hole 70, and the coil 53 can be cooled efficiently. Since the wind protection member 60 at the lower part of the temperature detection unit 43 has an inverted conical shape, pressure loss can be reduced and reduced when the cooling air is separated into the upper surface and the lower surface of the second heating coil 23.
[0062]
On the lower surface of the second heating coil 23, the wind blown up from the third through hole 48, the second through hole 46, and the first through hole 44 and not passing through the ventilating hole 42 is below the second heating coil 23. It is dissipated radially and dissipated outward of the second heating coil 23 while cooling the lower surface of the coil 53. At this time, the air passing through the second through hole 46 and the third through hole 48 merges with the air passing through the first through hole 44, and the cooling air flowing on the lower surface of the second heating coil 23 as a whole is radial. The second heating coil 23 can be efficiently cooled.
[0063]
When the pan 87 is made of magnetic metal, for example, in the case of a hollow pan, the control circuit 20 supplies an alternating current of 20 kHz to the second heating coil 23, judging from the load current. In a magnetic field of 20 kHz, almost no eddy current is generated in the shield plate 81, so the heat generation of the shield plate 81 is not a problem.
[0064]
As described above, according to the present embodiment, the first through hole 44 of the substrate case cover 39 is provided under the ventilating hole 42, and the temperature detecting portion 43 is provided in the ventilating hole 42. By providing the gap 59 between the two, it is possible to efficiently cool the upper surface of the second heating coil 23 with the uniform radial cooling air from the ventilation hole 42 which is the center of the second heating coil 23, By providing the second through hole 46 and the third through hole 48, the cooling of the lower surface of the second heating coil 23 can be cooled uniformly from the center of the second heating coil 23, and the second Both the upper and lower surfaces of the heating coil 23 can be cooled equally and radially at the same time.
[0065]
(Example 2)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. In FIG. 7, the flat plate 13, the second heating coil 23, the upper substrate 27, the upper substrate case 28, the upper heat sink 36, the air blowing space 41, the substrate case cover 39, the top surface 40, the ventilation holes 42, the temperature detection unit 43, First through hole 44, first air guiding wall 45, second through hole 46, second air guiding wall 47, third through hole 48, third air guiding wall 49, ferrite 50, base 51, coil 53, coil press 54, wall 55, presser claw 56, projection 57, extension portion 58, gap 59, windproof member 60, concave housing portion 61, temperature detection stand 62, temperature detection element 63, temperature detection unit 64 , Holding spring 65, space 66, outer circumferential convex portion 67, inner circumferential convex portion 68, outer circumferential concave portion 69, air hole 70, first ring 71, second ring 72, outer circumferential groove 73, placement rib 74, conductive coating film 78 , Electrode 79, transparent Grayed 83, is the same function and shape as in Example 1, using the same reference numerals.
[0066]
A plurality of abutment projections 91 having a height of 2 mm are provided on the upper surface of the shield plate 90 which is different from the configuration of FIG. 1 and is a nonmagnetic metal plate, and the fitting holes 93 of the shielding plate 92 It is a point opened with a large area. Since the projection 91 is provided, the adhesion between the shield plate 90 and the flat plate 13 is lost, and a gap 94 of about 2 mm is generated between the shield plate 90 and the flat plate 13.
[0067]
Further, by enlarging the fitting hole 93, the wind blown up from the ventilating hole 42 can pass through the fitting hole 93 and reach the shield plate 90.
[0068]
The operation of the induction heating apparatus configured as described above will be described below. First, the process until the wind from the sirocco fan 34 passes through the vent holes 42 is the same as in the first embodiment. Further, the movement of the wind dissipated on the lower surface of the second heating coil 23 is also the same as in the first embodiment.
[0069]
With regard to the wind having passed through the ventilation holes 42, the wind having passed through the fitting holes 93 collides with the temperature detection portion 43 and is dissipated radially while cooling the upper surface of the coil 53 along the lower surface of the shielding plate 92. The wind having passed through the fitting hole 93 passes through the center of the shield plate 90 and strikes the flat plate 13, and the gap 94 between the shield plate 90 and the flat plate 13 is radially extended along the lower surface of the flat plate 13. Dissipated. At this time, the shield plate 90 and the lower surface of the flat plate 13 are radially dissipated while being cooled.
[0070]
As described above, cooling the shield plate 90 and the flat plate 13 can be performed by causing the air having passed through the vent holes 42 to pass through the gap 94 provided between the shield plate 90 and the flat plate 13.
[0071]
Although the coil 53 of the second heating coil 23 is two layers in the first embodiment, three or four layers may be used to increase the number of turns. In the second embodiment, the gap 94 is provided between the flat plate 13 and the shield plate 90. However, the gap 94 may be provided between the shield plate 90 and the shield plate 92. It goes without saying that a gap 94 may be provided between the coil and the coil presser 54.
[0072]
【Effect of the invention】
As described above, according to the present invention, it is possible to realize an excellent induction heating apparatus capable of efficiently cooling the lower surface and the upper surface of the heating coil from the center by the uniform radial cooling air.
Brief Description of the Drawings
FIG. 1 is a partial sectional view of a second heating coil according to a first embodiment of the present invention.
FIG. 2 is an exploded perspective view of an induction heating apparatus according to a first embodiment of the present invention.
FIG. 3 is a perspective view of a control unit of the induction heating apparatus according to the first embodiment of the present invention.
FIG. 4 is a plan view of the induction heating apparatus in the first embodiment of the present invention.
FIG. 5 is a partial perspective view of a second heating coil in the first embodiment of the present invention.
FIG. 6 is a partial perspective view of a second heating coil in the first embodiment of the present invention.
FIG. 7 is a partial cross-sectional view of a second heating coil in the second embodiment of the present invention.
[Description of the code]
13 flat plate
23 Second heating coil (heating coil)
34 Sirocco fan (air blower)
42 ventilation holes
43 Temperature detector
45 1st blast induction wall
47 Second blast induction wall
49 3rd blast induction wall
50 ferrite
51 base
53 coils
54 Coil presser
55 wall
56 fingernail
58 Extension section (pressing claw main body)
59 gap
60 Windproof member
67 Outer peripheral protrusion
70 windhole
71 First ring (ring conductor)
72 Second ring (ring conductor)
75 Shielding board
81 Shield plate (nonmagnetic metal plate)
90 Shield plate (nonmagnetic metal plate)
92 Shielding board
94 gap

JP2002336447A 2002-11-20 2002-11-20 Induction heating device Expired - Lifetime JP3997895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336447A JP3997895B2 (en) 2002-11-20 2002-11-20 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336447A JP3997895B2 (en) 2002-11-20 2002-11-20 Induction heating device

Publications (3)

Publication Number Publication Date
JP2004171926A JP2004171926A (en) 2004-06-17
JP2004171926A5 true JP2004171926A5 (en) 2005-03-17
JP3997895B2 JP3997895B2 (en) 2007-10-24

Family

ID=32700289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336447A Expired - Lifetime JP3997895B2 (en) 2002-11-20 2002-11-20 Induction heating device

Country Status (1)

Country Link
JP (1) JP3997895B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521211B2 (en) * 2004-03-24 2010-08-11 日立アプライアンス株式会社 Induction heating cooker
JP4346508B2 (en) * 2004-06-11 2009-10-21 株式会社東芝 Cooker
EP1811812B1 (en) * 2005-02-04 2010-04-07 Panasonic Corporation Induction heater
JP4356652B2 (en) * 2005-05-25 2009-11-04 パナソニック株式会社 Induction heating cooker
JP4494504B2 (en) * 2005-12-28 2010-06-30 三菱電機株式会社 Induction heating cooker
JP4832196B2 (en) * 2006-07-12 2011-12-07 日立アプライアンス株式会社 Induction heating cooker
JP5064013B2 (en) * 2006-12-22 2012-10-31 三洋電機株式会社 Cooking equipment
JP4859883B2 (en) * 2008-06-30 2012-01-25 三菱電機株式会社 Induction heating cooker
JP5183576B2 (en) * 2009-06-15 2013-04-17 三菱電機株式会社 Electromagnetic induction heating cooker
JP4831214B2 (en) * 2009-07-01 2011-12-07 パナソニック株式会社 Induction heating cooker
JP5538116B2 (en) * 2010-07-21 2014-07-02 三菱電機株式会社 Induction heating cooker
CN102638911A (en) * 2012-04-20 2012-08-15 广东创迪电器有限公司 Electromagnetic heating structure
JP5460783B2 (en) * 2012-06-20 2014-04-02 三菱電機株式会社 Induction cooking device
JP6931286B2 (en) * 2017-01-25 2021-09-01 中部電力株式会社 Induction heating device and induction heating method
CN111983535A (en) * 2020-08-20 2020-11-24 李宁菘 Magnet temperature control device of nuclear magnetic resonance equipment

Similar Documents

Publication Publication Date Title
JP3997895B2 (en) Induction heating device
JP2004171926A5 (en)
US7057144B2 (en) Induction heating device
JP4917923B2 (en) Induction heating cooker
JP2005302406A (en) Induction heating cooker
JP2007157614A (en) Induction heating cooker
JP2009140649A (en) Heating cooker
JP3804493B2 (en) Induction heating cooker
JP5026364B2 (en) Induction cooking device
JP5014395B2 (en) Induction heating cooker
JP2009123658A (en) Heating cooker
JP4148212B2 (en) Induction heating cooker
JP2012178369A (en) Induction heating cooker
JP5047379B1 (en) Induction heating cooker
JP4059043B2 (en) Induction heating cooker
JP3925388B2 (en) Induction heating device
JP6840109B2 (en) Induction heating cooker
JP2005122963A (en) Induction heating cooker
JP3671337B2 (en) rice cooker
US12022595B2 (en) Cooking appliance
JP5241630B2 (en) Induction heating cooker
KR102064802B1 (en) Induction heating cooker with efficient cooling structure
JP2010073385A (en) Induction heating cooking appliance
JP5653172B2 (en) Induction heating cooker
US20220394826A1 (en) Electric range