JP2004171430A - Carrying vehicle - Google Patents

Carrying vehicle Download PDF

Info

Publication number
JP2004171430A
JP2004171430A JP2002338820A JP2002338820A JP2004171430A JP 2004171430 A JP2004171430 A JP 2004171430A JP 2002338820 A JP2002338820 A JP 2002338820A JP 2002338820 A JP2002338820 A JP 2002338820A JP 2004171430 A JP2004171430 A JP 2004171430A
Authority
JP
Japan
Prior art keywords
traveling
route
data
running
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002338820A
Other languages
Japanese (ja)
Inventor
Takuya Okada
岡田  卓也
Masaaki Matsumoto
松本  全陽
Hirohide Otani
大谷  博英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP2002338820A priority Critical patent/JP2004171430A/en
Publication of JP2004171430A publication Critical patent/JP2004171430A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carrying vehicle capable of precisely traveling along a set route while correcting its own traveling position. <P>SOLUTION: In this self-traveling carrying vehicle moved along a predetermined route between optional two points, a two-dimensional map of the traveling route with a traveling start point as the origin is formed from traveling data consisting of an advancing directional vector acquired every fixed distance by manually traveling the vehicle in the set of the route, and logic coordinates read from the two-dimensional map in self-traveling and traveling position coordinates determined from the traveling data acquired by self-traveling are examined for every control point (step S1). When a positional slippage of distance d is present, the traveling data (advancing directional vector) are corrected so as to advance to the direction of the logic coordinates from the present position (step S2) to automatically correct its own position, thereby, the carrying vehicle can be precisely traveled along the traveling route. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、予め任意の二点間を移動せしめることにより、任意の経路データを記録し、その記録させた経路データに基づき任意の経路を再現するよう自律走行することのできる搬送車に関する。
【0002】
【従来の技術】
所定経路を自走可能な従来の搬送車は、前記所定経路上に磁場、光学、電場等の物理特性を利用した誘導路を設け、搬送装置を経路上に誘導する方法が一般的であった。しかし、この方式の場合、経路は予め設けられた経路に限定されるため、任意の経路を自走させようとすると、誘導路を設け直す必要があった。そこで、誘導路を設けることなく任意の経路を自走させることのできる搬送装置が求められ、その搬送装置として、所定の経路を人的操作により移動させ、斯かる移動に伴い、複数の地点での自己位置や車体方位、進行方向(前進、後退)、速度等の走行データを所定時間毎にサンプリングして記憶し、自走時には斯かる記憶データに基づいて自走するものがある。(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−29517号公報
こうした搬送装置においては、任意の二点間上を移動させることにより、前記搬送装置の移動量データが随時検出され、そして記録される。この場合、搬送装置は、上述の任意の二点間を走らせその経路データ(移動量データ)を検出記録する経路設定モードと、その収集記録させた経路データに基づき自走させる自走モードとを取り得る。
【0004】
上述の搬送車は、設定経路上をほとんどずれることなく走行することが可能だが、場合によっては車輪のスリップや、経路上の小石などの障害物により、搬送車の進行方向が変化したり、移動量に過不足が生じてしまい設定経路上からはずれることがある。このような場合、搬送車を元の経路に復帰させなければ搬送車の到達点が大きくずれてしまう。
【0005】
本発明は、斯かる点に鑑みなされたもので、自走時に先の経路データ取得時(経路設定モード)と同様に取得した実際の走行時の走行データと経路データとを比較し、偏差ある場合、それを無くすよう位置を自動的に補正することによって、経路を正しく移動することができる搬送車を提供するものである。
【0006】
【課題を解決するための手段】
請求項1の発明に係る搬送車は、任意の二点間を予め定められた経路に沿って走行して経路データを取得し、該取得された経路データに基づき上記経路を自走可能な搬送車であって、上記経路上を複数の区間に分割すると共に上記区間毎のその区間走行開始時と終了時での車体進行方向ベクトルのなす角度を走行データとして記憶する記憶手段と、これら走行データに基づき、経路設定開始点座標を原点とする各区間におけるその走行区間が終了した時点での車体の位置を示す走行位置座標を求める車体位置算出手段とを備え、経路設定動作モード終了後に移動経路の二次元マップが作成されるものである。
【0007】
請求項2の発明に係る搬送車にあっては、搬送車が上記走行データに基づき走行を開始する自走時は、その自走に伴い随時求められた走行データにて演算算出した一走行区間分の走行終了後の走行位置座標と上記二次元マップ上の対応座標との比較により搬送車の位置補正を行う制御手段を有するものである。
【0008】
【発明の実施の形態】
以下本発明の実施の形態を図面に基づき説明する。図1は本発明を実施する搬送装置の概略的な車体構成図であり、当該装置を上部より見たものである。
【0009】
本実施例搬送装置は、貨物等を積載可能に上面が平坦で、かつ平面形状が略長方形状の基台1を有し、この基台1には長手方向の一方側の両サイドにそれぞれ駆動装置5,6によって独立駆動される2つの車輪(駆動輪)2,3が取付られ、他方側の長手方向中心線上に駆動装置の設けられていない1つの舵角自在な車輪(従動輪)4が取付けられている。
【0010】
実際には、駆動装置5,6からの動力は各駆動装置5,6に装着せる減速機を内蔵したギヤボックスにて減速され車輪2,3の車軸に伝達されるものとなっている。
【0011】
また駆動装置5,6としては、例えばDCサーボモータで構成したものが使用できる他に、ステップモータ、トルク制御可能なモータなどを利用することも可能である。そのほかガソリンエンジン等のエンジン手段や、更に交流電源を利用可能であればACモータ、ACサーボモータを利用することも可能である。
【0012】
ここで、各車輪2,3の車軸には車輪2,3の回転角を検出する回転角検出手段、例えば光学式エンコーダ7,8が配置されている。この検出手段は、後述するように搬送車を自走制御する走行モード時及び人力により所望の経路を走行させて自走経路を記憶させる経路設定モード時に利用される。
【0013】
搬送車は、上述したように基台1の裏面に設けた2つの車輪(駆動輪)2,3と1つの従動論4により人力による手引き又は手押し時、ユーザが所望する方向に自在に人力走行可能である。また自走させる場合には、前記各駆動装置5,6を個別に制御することにより所望の方向に走行させることができる。
【0014】
ここで本実施例では、例えばマイクロコンピュータからなる制御部(図示せず)を有し、制御部は搬送車を図2に示すような経路(Psを始点、Peを終点とする経路)で人力走行させたときの各駆動装置5,6の回転角を回転角検出手段で検出し、検出された走行データを例えば半導体ランダムメモリからなる記憶部に時系列的に記憶するよう制御して経路設定を行い、その後記憶部に記憶された走行データに基づいて前記駆動装置5,6を制御することにより搬送車をこの同一経路上を繰り返し自走させることができる。
【0015】
すなわち経路設定は、搬送車を手動などで引っ張る際に、一定距離間隔毎に走行データθiを順次記憶部に記憶することで行われる。
【0016】
そしてこのとき得られる走行データθiは、例えば経路を複数N(Nは正整数)の区間に分割した場合の各区間毎の進行方向ベクトルデータ、すなわちi番目の走行区間における走行開始時と、終了時での車体進行方向ベクトルのなす角度を走行データとしている。
【0017】
ここで、本発明ではこの経路設定時、すなわち搬送車を人力走行させ前記回転角検出手段で走行データを検出するとき、これら取得された走行データを基にして走行した経路を座標的に表わせるように、二次元マップを作成するものである。二次元マップの作成は、搬送車の経路設定終了後に自動的に行われるようになっている。
【0018】
その二次元マップは経路設定の開始点座標を原点0にとると、以下の式で求まる。
【0019】
【数1】

Figure 2004171430
上述のようにして経路設定(経路設定モード)が終了し二次元マップが作成された後、搬送車が走行データに基づき走行を開始する(走行モード)。このとき経路設定の開始点をPs,終了点をPeとすると、搬送車は二次元マップ上のPsを起点としてPeに向かって走行を始めることになる。つまり、記憶装置に記憶されている走行データθiをPs→Peの順に読み出して走行する。
【0020】
この走行モードでは一走行区間の走行が終わる度に、先の経路設定モード時での二次元マップ作成時とほぼ同じ要領で記憶した走行データから計算を行い、時々刻々と変化する搬送車のその時点で走行位置座標を求める。このように、走行している搬送車の車体の位置を示す走行位置座標を求める車体位置算出手段を備えている。
【0021】
そしてその座標と二次元マップ上の対応座標との比較により搬送車の位置補正を行うものとなっている。これら一連の作業は、制御部にて実行される。
【0022】
図3は、自走時の制御部が実行する位置補正のための制御を示すフローチャートである。自走時には搬送車は記憶部に記憶されている走行経路データに従って、すなわち二次元マップに従うよう制御部によって自走制御される。
【0023】
以下に斯かるフローチャートに基づいて動作を説明する。この場合、搬送車の制御は搬送車がある一定距離進む毎に行われているが、今、搬送車がある制御ポイントにあるとする。また設定経路がN個の走行区間から成るものとする。
【0024】
ステップS1において、操作部より自走モードの選択及び実行指示があると、搬送車は走行を開始するとともに走行データの取得を行う。そして取得した走行データより搬送車のその時点での走行位置座標を求め、その走行位置座標と、先の経路設定モードにおいて取得済みの二次元マップより得られる理論座標Pとの距離d(偏差)を調べる。すなわちこの距離なる偏差dが予め設定した許容離間距離d内のものかを判定する。なお、走行開始時は搬送車は二次元マップの設定開始点座標の原点と同じ位置にあり一致しているので、i=0である。
【0025】
続くステップS2では、この距離、すなわち偏差di+1が予め設定した許容離間距離d内のものかであるかの判定の結果、この距離d≧d(≒0)ならば(ステップS1のY)、すなわち搬送車が理論座標からd以上離れた位置にある場合は、設定経路上に搬送車を復帰させるために、次の走行区間での走行データθiを補正値に置き換える処理を実行する。
【0026】
具体的には、その時点での走行位置座標から、次の走行区間で到達すべき理論座標Pi+1に向けたベクトルを求める。そしてそのベクトルとその時点での搬送車の進行方向ベクトルとがなす角度を求めて、現在の位置から理論座標Pi+1の方向に進むよう走行データθを補正し置き換えるのである。ただし、ここで注意しなければならないのは、搬送車の操舵角には限界があるということである。
【0027】
そこで続くステップS3では、算出された走行データθが、搬送車の操舵角の最大値Stを超えるものであるかを判断する。
【0028】
その結果、走行データθは操舵角の限界内のものであるときは(ステップS3のN)、走行データθに基づいた方向修正が可能なのでステップS5に進みその走行データに基づいた制御信号を出力し走行するように制御が行われる。
【0029】
ところが、補正すべき走行データθが搬送車の操舵角の最大値Stを超える場合には(ステップS3のY)、ステップS4の処理が実行される。すなわちステップS4において、走行データθは搬送車が進行方向を変えられる限界の角度すなわち最大の操舵角Stとする処理が実行される。つまり、補正する走行データとしては、|θ|≧Stとはなってならない。
【0030】
以上のような処理を行った後に、続くステップS5において走行データに基づいた制御信号を出力し走行する処理が実行される。
【0031】
そしてステップS6に進んだところで、一走行区間分の走行終了後の位置座標と、理論座標Pi+1との距離di+1を調べる。その結果、di+1≧d(予め設定した許容離間距離)ならば(ステップS6のY)、すなわちまだ搬送車が、到達目標点である理論座標Pi+1からd以上離れた位置にある場合、走行経路に復帰させるよう進行方向を変える必要があるので、ステップS2に戻り、再度その座標から理論座標Pi+1の方向に向けた補正データを求め走行を行う(ステップS2→ステップS3→ステップS4→ステップS5→ステップS6)。
【0032】
その結果、di+1<d(許容離間距離内)となったならば(ステップS6のN)、ステップS7に進み、次の走行区間での到達目標点が更新される。続くステップS8において、上記の処理が搬送車が目標地点に到達するまで(ステップS8のNである限り)、ステップS5に戻り以降ステップS6→ステップS7→ステップS8の処理が繰り返される。こうして最終の目標地点に達すると(ステップS8のY)、走行停止となる。
【0033】
図4および図5は、その位置補正をしながら走行制御される搬送車の走行例を示すものである。
【0034】
図4は、始点P0を出発した搬送車が走行経路を離れるよう動くも、地点P1に対応する制御地点で走行経路に向かうよう方向を修正制御され、地点P2で戻り、地点P3とほぼ走行経路を辿るも、地点P3を過ぎて今度は走行経路を逆側に再び離れ出したため、地点P4に対応する制御地点で戻るよう方向修正制御され、地点P5→P6と戻されながら走行経路を辿るように走行する例を示している。
【0035】
一方図5のケースは、途中の地点Piを過ぎてさらに走行経路を大きく外れて行く場合に、地点Pi+1に対応する制御地点で求まる修正方向角が操舵角の限界のSt以上であるので、先ずこの最大操舵角でもっての方向修正制御を行い、さらに途中で再度方向修正制御を行い、地点Pi+2に近づいた制御地点で、求められた角度でもっての方向修正制御を行い、地点Pi+3にて走行経路に復帰させ、その後、Pi+4→Pi+5→Pi+6と、ほぼ走行経路を辿るように制御されて自走する様相を示している。
【0036】
以上のようにして、搬送車は走行中の自身の位置を、走行経路の座標と照合して自動的に位置を補正をしながら走行するので走行経路通りに走行することができる。
【0037】
【発明の効果】
本発明によれば、自走搬送車の走行に際して何らかの誘導手段を用いる必要が無いため経路設定を容易に行えると同時に、経路設定時に取得した走行データから走行経路の二次元マップを作成することができ、自走時にはこの二次元マップの座標と搬送車自身の走行位置とを照合し、そのつど位置補正がなされて自動方向制御されるため、正確に設定した経路上を走行することができる。
【図面の簡単な説明】
【図1】本発明を適用してなる搬送車の一実施例を示す上面より見た車体構成図である。
【図2】搬送車の経路設定時の走行経路を示す経路図である。
【図3】本発明の搬送車に対して実施される位置補正の手順を説明するフローチャートである。
【図4】本発明の搬送車の走行例を示す図である。
【図5】本発明の搬送車の他の走行例を示す図である。
【符号の説明】
1 基台
2,3 車輪
4 従動輪
5,6 駆動装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carrier capable of recording arbitrary route data by previously moving between arbitrary two points, and autonomously traveling so as to reproduce an arbitrary route based on the recorded route data.
[0002]
[Prior art]
Conventional carrier vehicles capable of self-traveling on a predetermined route generally have a method of providing a guideway utilizing physical characteristics such as a magnetic field, an optical field, and an electric field on the predetermined route, and guiding the transport device on the route. . However, in the case of this method, since the route is limited to a route provided in advance, it is necessary to re-establish a guidance route in order to run an arbitrary route by itself. Therefore, there is a demand for a transport device capable of self-propelling an arbitrary route without providing a guideway, and as the transport device, a predetermined route is moved by a human operation. In some cases, the travel data such as the self-position, the vehicle body direction, the traveling direction (forward, backward), and the speed are sampled and stored at predetermined time intervals, and the vehicle travels on its own based on the stored data. (For example, see Patent Document 1).
[0003]
[Patent Document 1]
In such a transfer apparatus, the movement amount data of the transfer apparatus is detected and recorded at any time by moving over any two points. In this case, the transport device performs a route setting mode for running between any two points described above and detecting and recording the route data (movement amount data), and a self-propelled mode for self-propelling based on the collected and recorded route data. I can take it.
[0004]
Although the above-mentioned carrier can travel on the set route with little deviation, in some cases, the traveling direction of the carrier may change or move due to slippage of wheels or obstacles such as pebbles on the route. The amount may be too large or too small and may deviate from the set route. In such a case, unless the carrier is returned to the original route, the arrival point of the carrier will be greatly shifted.
[0005]
The present invention has been made in view of such a point, and compares travel data at the time of actual travel acquired in the same way as at the time of previous route data acquisition (route setting mode) at the time of self-running with route data, and there is a deviation. In this case, the present invention is to provide a transport vehicle that can move the route correctly by automatically correcting the position so as to eliminate it.
[0006]
[Means for Solving the Problems]
The carrier according to the first aspect of the present invention travels along a predetermined route between any two points to acquire route data, and based on the acquired route data, a transport vehicle capable of self-traveling on the route. A vehicle, which divides the route into a plurality of sections, and stores, as travel data, an angle formed by a vehicle body traveling direction vector at the start and end of travel of the section for each of the sections; Vehicle position calculating means for calculating running position coordinates indicating the position of the vehicle body at the end of the running section in each section having the route setting start point coordinates as the origin based on the route setting start point coordinates. Is created.
[0007]
In the carrier according to the second aspect of the present invention, when the carrier starts traveling based on the traveling data, the traveling vehicle calculates one traveling section based on traveling data obtained as needed along with the traveling. A control means is provided for correcting the position of the carrier by comparing the traveling position coordinates after the traveling of the minute with the corresponding coordinates on the two-dimensional map.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a vehicle body configuration of a transfer device embodying the present invention, and shows the device as viewed from above.
[0009]
The transport device of the present embodiment has a base 1 having a flat top surface and a substantially rectangular planar shape so that a cargo or the like can be loaded thereon. Two wheels (drive wheels) 2 and 3 independently driven by the devices 5 and 6 are attached, and one steerable wheel (follower wheel) 4 having no drive device on the other longitudinal center line. Is installed.
[0010]
Actually, the motive power from the driving devices 5 and 6 is reduced by a gear box having a built-in reduction gear mounted on each of the driving devices 5 and 6 and transmitted to the axles of the wheels 2 and 3.
[0011]
Further, as the driving devices 5 and 6, for example, a device constituted by a DC servo motor can be used, and a step motor, a motor capable of controlling torque, or the like can also be used. In addition, it is also possible to use an engine means such as a gasoline engine, or an AC motor or an AC servomotor if an AC power supply can be used.
[0012]
Here, on the axles of the wheels 2 and 3, rotation angle detecting means for detecting the rotation angles of the wheels 2 and 3, for example, optical encoders 7 and 8 are arranged. This detection means is used in a traveling mode in which the transport vehicle is controlled to travel by self, as described later, and in a route setting mode in which a desired route is traveled by human power and the traveling route is stored.
[0013]
As described above, when the vehicle is manually pulled or pushed by the two wheels (drive wheels) 2 and 3 and one driven theory 4 provided on the back surface of the base 1 as described above, it can be manually driven in the direction desired by the user. It is possible. In the case of self-running, it is possible to run in a desired direction by controlling the driving devices 5 and 6 individually.
[0014]
Here, in the present embodiment, a control unit (not shown) including, for example, a microcomputer is provided, and the control unit performs manual operation on a route as shown in FIG. 2 (a route starting from Ps and ending at Pe). The rotation angle of each of the driving devices 5 and 6 at the time of traveling is detected by a rotation angle detecting means, and the detected traveling data is controlled to be stored in a time-series manner in, for example, a storage unit composed of a semiconductor random memory to set a route. Then, by controlling the driving devices 5 and 6 based on the traveling data stored in the storage unit, the carrier can be repeatedly driven on the same route.
[0015]
That is, the route setting is performed by sequentially storing the traveling data θi in the storage unit at fixed distance intervals when the carrier is manually pulled.
[0016]
The traveling data θi obtained at this time is, for example, traveling direction vector data for each section when the route is divided into a plurality of N sections (N is a positive integer), that is, at the start of traveling in the i-th traveling section and at the end of traveling. The angle formed by the vehicle body traveling direction vector at the time is the traveling data.
[0017]
Here, in the present invention, when the route is set, that is, when the transport vehicle is manually driven and the rotation angle detecting means detects the travel data, the route traveled based on the acquired travel data can be represented by coordinates. In this way, a two-dimensional map is created. The creation of the two-dimensional map is automatically performed after the route setting of the carrier has been completed.
[0018]
The two-dimensional map can be obtained by the following equation when the starting point coordinates of the route setting are set to the origin 0.
[0019]
(Equation 1)
Figure 2004171430
After the route setting (route setting mode) is completed and a two-dimensional map is created as described above, the carrier starts traveling based on the traveling data (traveling mode). At this time, assuming that the start point of route setting is Ps and the end point is Pe, the carrier starts traveling toward Pe starting from Ps on the two-dimensional map. That is, the travel data θi stored in the storage device is read in the order of Ps → Pe to travel.
[0020]
In this traveling mode, every time the traveling of one traveling section is completed, calculation is performed from the traveling data stored in almost the same manner as when the two-dimensional map was created in the previous route setting mode, and that of the transport vehicle that changes every moment is calculated. The traveling position coordinates are obtained at the time. In this way, the vehicle body position calculating means for obtaining the running position coordinates indicating the position of the vehicle body of the traveling carrier is provided.
[0021]
The position of the carrier is corrected by comparing the coordinates with the corresponding coordinates on the two-dimensional map. These series of operations are executed by the control unit.
[0022]
FIG. 3 is a flowchart showing the control for position correction executed by the control unit during self-running. At the time of self-propelling, the carrier is self-propelled by the control unit according to the traveling route data stored in the storage unit, that is, according to the two-dimensional map.
[0023]
The operation will be described below based on such a flowchart. In this case, the control of the carrier is performed every time the carrier travels a certain distance, but it is assumed that the carrier is at a certain control point. It is also assumed that the set route is composed of N traveling sections.
[0024]
In step S1, when there is a selection and execution instruction of the self-propelled mode from the operation unit, the carrier starts traveling and acquires traveling data. And it obtains the traveling position coordinates at that point in the transport vehicle from traveling data obtained, and the traveling position coordinates, the distance between the theoretical coordinate P i obtained from acquired two-dimensional map in the previous routing mode d i ( Deviation). That determines whether those in the allowable distance d that this distance becomes deviation d i is preset. Note that at the start of traveling, the carrier is at the same position as the origin of the setting start point coordinates of the two-dimensional map and coincides, so i = 0.
[0025]
In step S2, the distance, i.e. the deviation d i + 1 is one of the determination results is or not within an acceptable distance d set in advance, if the distance d i ≧ d (≒ 0) (Y in step S1) That is, when the carrier is at a position distant from the theoretical coordinates by d or more, a process of replacing the traveling data θi in the next traveling section with a correction value is performed to return the carrier to the set route.
[0026]
Specifically, a vector is calculated from the running position coordinates at that time to the theoretical coordinate P i + 1 to be reached in the next running section. Then, the angle between the vector and the traveling direction vector of the carrier at that time is obtained, and the traveling data θ i is corrected and replaced so as to proceed from the current position to the direction of the theoretical coordinate P i + 1 . However, it should be noted here that the steering angle of the carrier is limited.
[0027]
Then, in the subsequent step S3, it is determined whether or not the calculated traveling data θ i exceeds the maximum value St of the steering angle of the transport vehicle.
[0028]
As a result, when the traveling data θ i is within the limit of the steering angle (N in step S3), since the direction can be corrected based on the traveling data θ i , the process proceeds to step S5, and the control signal based on the traveling data is obtained. Is output so that the vehicle travels.
[0029]
However, when the traveling data θ i to be corrected exceeds the maximum value St of the steering angle of the transport vehicle (Y in step S3), the processing in step S4 is executed. That is, in step S4, a process is performed in which the traveling data θ i is set to a limit angle at which the traveling direction of the carrier can be changed, that is, the maximum steering angle St. That is, the traveling data to be corrected does not satisfy | θ i | ≧ St.
[0030]
After performing the above-described processing, in a succeeding step S5, a processing of outputting a control signal based on the traveling data and traveling is executed.
[0031]
Then, when the process proceeds to step S6, a distance di + 1 between the position coordinates after the end of traveling for one traveling section and the theoretical coordinates Pi + 1 is checked. As a result, if d i + 1 ≧ d (predetermined allowable separation distance) (Y in step S6), that is, if the carrier is still at a position at least d away from the theoretical coordinates P i + 1 which is the target point, the traveling Since it is necessary to change the traveling direction so as to return to the route, the process returns to step S2 and travels again by obtaining correction data from the coordinates in the direction of the theoretical coordinate Pi + 1 (step S2 → step S3 → step S4 → step S5 → Step S6).
[0032]
As a result, if di + 1 <d (within the allowable separation distance) (N in step S6), the process proceeds to step S7, and the target point in the next traveling section is updated. In the following step S8, until the above-mentioned processing reaches the target point (as long as N in step S8), the processing returns to step S5, and thereafter the processing of step S6 → step S7 → step S8 is repeated. When the vehicle reaches the final target point (Y in step S8), the vehicle stops running.
[0033]
FIG. 4 and FIG. 5 show examples of traveling of a transport vehicle whose traveling is controlled while correcting the position.
[0034]
FIG. 4 shows that although the transport vehicle that has left the starting point P0 moves away from the traveling route, the direction is corrected and controlled so as to head toward the traveling route at the control point corresponding to the point P1, returns at the point P2, and substantially travels along the point P3. However, since the vehicle has left the traveling route again after passing the point P3, the direction is controlled to return at the control point corresponding to the point P4, and the traveling route is traced while returning from the point P5 to the point P6. Is shown.
[0035]
On the other hand, in the case of FIG. 5, when the vehicle further deviates from the traveling route past the point Pi on the way, the correction direction angle obtained at the control point corresponding to the point Pi + 1 is equal to or larger than the steering angle limit St. First, the direction correction control with the maximum steering angle is performed, and further the direction correction control is performed again halfway, and at the control point approaching the point P i + 2 , the direction correction control with the obtained angle is performed, and the point P i + 3 To return to the traveling route, and thereafter, it is controlled to follow the traveling route in the order of P i + 4 → P i + 5 → P i + 6, and the vehicle travels by itself.
[0036]
As described above, the carrier travels along the traveling route because the traveling vehicle travels while automatically correcting the position of the traveling vehicle by comparing the position of the traveling vehicle with the coordinates of the traveling route.
[0037]
【The invention's effect】
According to the present invention, it is not necessary to use any guidance means when the self-propelled carrier travels, so that the route can be easily set, and at the same time, a two-dimensional map of the traveling route can be created from the traveling data acquired at the time of the route setting. When the self-propelled vehicle travels, the coordinates of the two-dimensional map are compared with the traveling position of the carrier itself, the position is corrected each time, and the automatic direction control is performed, so that the vehicle can travel on an accurately set route.
[Brief description of the drawings]
FIG. 1 is a top view showing a vehicle body configuration of an embodiment of a carrier to which the present invention is applied.
FIG. 2 is a route diagram showing a traveling route when a route of a carrier is set.
FIG. 3 is a flowchart illustrating a procedure of position correction performed on the carrier according to the present invention.
FIG. 4 is a diagram showing a traveling example of the carrier of the present invention.
FIG. 5 is a diagram showing another traveling example of the carrier according to the present invention.
[Explanation of symbols]
Reference Signs List 1 base 2, 3 wheel 4 driven wheel 5, 6 drive

Claims (2)

任意の二点間を予め定められた経路に沿って走行し経路データを取得し、該取得された経路データに基づき上記経路を自走可能な搬送車であって、上記経路上を複数の区間に分割すると共に上記区間毎のその区間走行開始時と終了時での車体進行方向ベクトルのなす角度を走行データとして記憶する記憶手段と、これら走行データに基づき、経路設定開始点座標を原点とする各区間におけるその走行区間が終了した時点での車体の位置を示す走行位置座標を求める車体位置算出手段とを備え、経路設定動作モード終了後に移動経路の二次元マップが作成されることを特徴とする搬送車。A transport vehicle that travels along a predetermined route between any two points and acquires route data, and is capable of self-propelled on the route based on the acquired route data. Storage means for storing, as travel data, the angle formed by the vehicle body traveling direction vectors at the start and end of the section travel for each section, and based on the travel data, the coordinates of the route setting start point are set as the origin. A vehicle position calculating means for calculating traveling position coordinates indicating the position of the vehicle body at the time when the traveling section in each section is completed, and a two-dimensional map of the traveling route is created after the end of the route setting operation mode. Transport vehicle. 搬送車が上記走行データに基づき走行を開始する自走時は、その自走に伴い随時求められた走行データにて演算算出した一走行区間分の走行終了後の走行位置座標と上記二次元マップ上の対応座標との比較により搬送車の位置補正を行い、搬送車を経路に従い走行するよう制御する制御手段を有することを特徴とする請求項1に記載の搬送車。At the time of self-running in which the carrier starts running based on the above-mentioned running data, the running position coordinates and the two-dimensional map after the end of running for one running section calculated based on the running data obtained as needed along with the self-running. 2. The carrier according to claim 1, further comprising control means for correcting the position of the carrier by comparing with the corresponding coordinates and controlling the carrier to travel along a route.
JP2002338820A 2002-11-22 2002-11-22 Carrying vehicle Pending JP2004171430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002338820A JP2004171430A (en) 2002-11-22 2002-11-22 Carrying vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002338820A JP2004171430A (en) 2002-11-22 2002-11-22 Carrying vehicle

Publications (1)

Publication Number Publication Date
JP2004171430A true JP2004171430A (en) 2004-06-17

Family

ID=32701927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002338820A Pending JP2004171430A (en) 2002-11-22 2002-11-22 Carrying vehicle

Country Status (1)

Country Link
JP (1) JP2004171430A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153303A (en) * 2014-02-18 2015-08-24 村田機械株式会社 Autonomous travel carriage
WO2016002096A1 (en) * 2014-07-04 2016-01-07 マミヤ・オーピー株式会社 Work machine; device, method, and program for determining whether or not work machine can enter movement path; recording medium on which program therefor is recorded; and device for controlling movement of work machine
JP2019109771A (en) * 2017-12-19 2019-07-04 株式会社ダイヘン Moving body
CN111750861A (en) * 2020-05-29 2020-10-09 广州极飞科技有限公司 Optimal path planning method and device and electronic equipment
JPWO2019054205A1 (en) * 2017-09-13 2020-10-15 日本電産株式会社 Mobile robot system
WO2022168253A1 (en) * 2021-02-05 2022-08-11 日本電気株式会社 Delivery system, control device, and control method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153303A (en) * 2014-02-18 2015-08-24 村田機械株式会社 Autonomous travel carriage
WO2015125627A1 (en) * 2014-02-18 2015-08-27 村田機械株式会社 Autonomous travel carriage
EP3109721A4 (en) * 2014-02-18 2017-09-20 Murata Machinery, Ltd. Autonomous travel carriage
WO2016002246A1 (en) * 2014-07-04 2016-01-07 マミヤ・オーピー株式会社 Work machine; system, method, and program for generating movement paths for work vehicle, determining possibility of entry to movement paths, and automatically selecting movement path; recording medium on which program therefor is recorded; and system for controlling movement of work machine
JP2017068870A (en) * 2014-07-04 2017-04-06 マミヤ・オーピー株式会社 Work machine; system, method, program, and recording medium recording program for creation of work machine traveling route, adaptability determination of ingress into traveling route, traveling route automatic selection; and traveling control system of work machine
JPWO2016002246A1 (en) * 2014-07-04 2017-04-27 マミヤ・オーピー株式会社 Work machine, system for generating travel route of work machine, determining whether to enter travel route, automatic selection of travel route, method, program, recording medium storing program, travel control system for work machine
WO2016002096A1 (en) * 2014-07-04 2016-01-07 マミヤ・オーピー株式会社 Work machine; device, method, and program for determining whether or not work machine can enter movement path; recording medium on which program therefor is recorded; and device for controlling movement of work machine
JPWO2019054205A1 (en) * 2017-09-13 2020-10-15 日本電産株式会社 Mobile robot system
JP2019109771A (en) * 2017-12-19 2019-07-04 株式会社ダイヘン Moving body
JP7021929B2 (en) 2017-12-19 2022-02-17 株式会社ダイヘン Mobile
CN111750861A (en) * 2020-05-29 2020-10-09 广州极飞科技有限公司 Optimal path planning method and device and electronic equipment
CN111750861B (en) * 2020-05-29 2024-04-09 广州极飞科技股份有限公司 Optimization path planning method and device and electronic equipment
WO2022168253A1 (en) * 2021-02-05 2022-08-11 日本電気株式会社 Delivery system, control device, and control method

Similar Documents

Publication Publication Date Title
CN108725585B (en) Trajectory tracking control method and device for autonomous parking of vehicle
US10266201B2 (en) K-turn path controller
JP5712097B2 (en) Control device for autonomous vehicle
JP5420510B2 (en) Control device for autonomous vehicle
KR102192530B1 (en) Automated guided vehicle, system with a computer and an automated guided vehicle, method for planning a virtual track and method for operating an automated guided vehicle
CN110361013B (en) Path planning system and method for vehicle model
JP5420511B2 (en) Control device for autonomous vehicle
US20080059015A1 (en) Software architecture for high-speed traversal of prescribed routes
KR101512784B1 (en) Automatic parking assistant method integrated path generation and steering control and Automatic parking assistant system for the same method
JP5396983B2 (en) Moving body and teaching method of moving body
KR20200019725A (en) Parking Assistance Method and Parking Control Device
JPH1066405A (en) Unmanned working by unmanned operation of working vehicle
CN105752154B (en) Vehicle steering control system and method
CN111267857B (en) Lane changing track generation method and device for automatic driving vehicle
JP2017211825A (en) Self-position estimation device and self-position estimation method
CN110509923B (en) Automatic driving path planning method, system, computer readable storage medium and vehicle
JP2012145998A (en) Autonomous traveling body
JP2007249631A (en) Polygonal line following mobile robot, and control method for polygonal line following mobile robot
JP2007257276A (en) Traveling path preparation method, autonomous traveling object and autonomous traveling object control system
JP2004171430A (en) Carrying vehicle
JP6720751B2 (en) Parking assistance method and parking assistance device
JP2000242330A (en) Automatic steering mobile object and device and method for correcting steering of same mobile object
JP2707546B2 (en) Vehicle steering control device
CN110069066B (en) Unmanned vehicle tracking method and terminal
JP5298959B2 (en) Moving body