JP2004170872A - Primary coated optical fiber - Google Patents

Primary coated optical fiber Download PDF

Info

Publication number
JP2004170872A
JP2004170872A JP2002339441A JP2002339441A JP2004170872A JP 2004170872 A JP2004170872 A JP 2004170872A JP 2002339441 A JP2002339441 A JP 2002339441A JP 2002339441 A JP2002339441 A JP 2002339441A JP 2004170872 A JP2004170872 A JP 2004170872A
Authority
JP
Japan
Prior art keywords
optical fiber
coating layer
secondary coating
less
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002339441A
Other languages
Japanese (ja)
Other versions
JP4082189B2 (en
Inventor
Yoshihisa Kato
善久 加藤
Hideyuki Suzuki
秀幸 鈴木
Yoshinori Kurosawa
芳宣 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002339441A priority Critical patent/JP4082189B2/en
Publication of JP2004170872A publication Critical patent/JP2004170872A/en
Application granted granted Critical
Publication of JP4082189B2 publication Critical patent/JP4082189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a primary coated optical fiber which can be stably rewound without being affected by humidity or fluctuation of destaticization effect of a static eliminator. <P>SOLUTION: After manufacturing the primary coated optical fiber by applying a primary coating layer and a secondary coating layer by drawing on a bare optical fiber, the electrification voltage on the surface of the primary coated optical fiber rolled around a winding bobbin in a rewinding process is set to 20kV or less. Thus, the primary coated optical fiber can be stably rewound without being affected by humidity or fluctuation of destaticization effect of the static eliminator. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ裸線上に一次被覆層及び二次被覆層が順次設けられた光ファイバ素線に係り、特に安定した高速線引が可能な光ファイバ素線に関するものである。
【0002】
【従来の技術】
一般に、光ファイバ素線は、光ファイバ裸線上に線引されるコーティング材として、紫外線硬化樹脂が主に用いられ、線引速度の高速化、線引長の長尺化が進んでいる。
【0003】
通常、線引後の品質チェックとして、巻替を兼ねたプルーフテストが行われる。
【0004】
プルーフテストとは、光ファイバ素線のガラスに強度の低い欠陥部分がないかを調べる試験であり、一定の張力を加えて巻替を実施することにより行われている。
【0005】
このプルーフテストにおいては光ファイバ素線を高速で走行させるため、ファイバ表面に摩擦による静電気が発生しやすく、この静電気により光ファイバ素線に巻乱れが生じ、伝送損失が増加するという問題があるため、この静電気量、すなわち光ファイバ素線表面の帯電圧を測定し、低減する必要がある。
【0006】
この帯電圧を測定して光ファイバ素線を製造する方法としては、表面の帯電圧を測定して紫外線硬化樹脂の架橋度を検出し、検出した架橋度に応じて紫外線の照射密度を制御することにより、帯電圧の低い、すなわち高い架橋度の樹脂被覆層を有する光ファイバ素線を製造する方法が提案されており(例えば、特許文献1参照。)、通常、巻替装置には静電気除去装置が取り付けられている。
【0007】
【特許文献1】
特開平6−183790号公報(第2−3頁、図2)
【0008】
【発明が解決しようとする課題】
しかしながら、光ファイバ素線の帯電圧は、周囲の湿度の影響を受けやすいため、静電気除去装置の除電性能を安定して保つことが困難であり、巻替時の除電効果が不十分になる場合が多い。こうなると、再度巻替を実施したり、ひどい場合には廃却しなければならなくなってしまう。
【0009】
そこで、本発明の目的は、湿度や静電気除去装置の除電効果の変動に影響されることなく安定した巻替を行うことができる光ファイバ素線を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために請求項1の発明は、光ファイバ裸線上に一次被覆層及び二次被覆層が順次設けられた光ファイバ素線において、二次被覆層は常温での体積固有抵抗値が1×1014Ω・cm以下の樹脂からなるものである。
【0011】
請求項2の発明は、光ファイバ裸線上に一次被覆層及び二次被覆層が順次設けられた光ファイバ素線において、二次被覆層は摩擦帯電圧が3000V以下である樹脂からなるものである。
【0012】
請求項3の発明は、光ファイバ裸線上に一次被覆層及び二次被覆層が順次設けられた光ファイバ素線において、二次被覆層は、アモーゲン類、エレノン、リン酸エステル、ソルビタン脂肪酸エステル、脂肪酸ジエタノールアミド、非イオン活性剤、ノニオン系活性剤、カチオン系活性剤、アニオン系活性剤等から選ばれる少なくとも1種類以上が添加された樹脂からなるものである。
【0013】
請求項4の発明は、請求項1〜3のいずれかに記載の構成に加え、二次被覆層は、巻取ボビンに巻き取られた時の表面の帯電圧が20kV以下になるものである。
【0014】
上記構成によれば、巻取ボビンへの巻取時の静電気によるファイバ同士の反発作用が弱くなるので、巻乱れが生じにくくなり、湿度や静電気除去装置の除電効果の変動に影響されることなく安定した巻替を行うことができる。
【0015】
【発明の実施の形態】
次に、本発明の実施の形態を添付図面に基づいて詳述する。
【0016】
本発明者らは、光ファイバ素線の巻取ボビンへの巻取時に巻乱れが生じる原因を調査した結果、光ファイバ素線表面の帯電圧、さらに二次被覆層の体積固有抵抗値、摩擦帯電圧等が影響していることを見出した。
【0017】
本発明にかかる光ファイバ素線は、コアとクラッドとからなる光ファイバ裸線上に一次被覆層及び二次被覆層が順次設けられており、巻取ボビンに巻き取られている。そして、巻取ボビンへの巻取時の表面の帯電圧が20kV以下になっている。
【0018】
二次被覆層は、常温での体積固有抵抗値が1×1014Ω・cm以下であるか、または摩擦帯電圧が3000V以下であるか、またはアモーゲン類、エレノン、リン酸エステル、ソルビタン脂肪酸エステル、脂肪酸ジエタノールアミド、非イオン活性剤、ノニオン系活性剤、カチオン系活性剤、アニオン系活性剤等から選ばれる少なくとも1種類以上が添加されている。
【0019】
一次被覆層及び二次被覆層としては、特に限定するものではないが、一般には紫外線硬化樹脂組成物が用いられる。
【0020】
紫外線硬化樹脂組成物としては、ウレタン(メタ)アクリレート系、エポキシ(メタ)アクリレート系、ポリエステル(メタ)アクリレート系、シリコーン(メタ)アクリレート系などがある。
【0021】
さらに、一次被覆層には主にヤング率が0.5MPa〜10MPaのものが、二次被覆層にはヤング率が50MPa〜200MPaのものが用いられる。
【0022】
巻取ボビンに巻き取られた光ファイバ素線表面の帯電圧を20kV以下とするのは、それより帯電圧が大きいと巻取ボビンへ光ファイバ素線が巻き取られる際に、静電気によるファイバ同士の反発作用が強くなり、巻乱れが生じ、ボビン巻状態での伝送損失が大きくなるためである。また、巻替性は湿度や除電装置の性能の変動による影響を受けやすいので、光ファイバ素線表面の帯電圧は好ましくは15kV以下が良い。
【0023】
ここでいう帯電圧とは、温度23±2℃、湿度60±5%、巻替速度400m/min以上でプルーフテストを行った場合に、除電装置なしで巻取ボビンの光ファイバ素線表面に生じる静電気量を、高精度静電気センサSK(キーエンス製)により測定した値に基づく。
【0024】
また、二次被覆層の体積固有抵抗値を1×1014Ω・cm以下とするのは、それ以上高くなると、高速で光ファイバ素線のプルーフテストを行った場合に、ファイバ表面に生じる静電気の反発作用が強くなり、巻取ボビンへの巻取時に巻乱れが生じ、ボビン巻状態での伝送損失が大きくなるためである。
【0025】
ここでいう体積固有抵抗値とは、High Resistance Meter(YHP製 model 4329A)と、Resistivity Cell(YHP製 16008A)とにより、500Vで1分間課電後の抵抗値を測定して得られる値を示している。
【0026】
また、二次被覆層の摩擦帯電圧を3000V以下とするのは、それ以上大きくなると高速で光ファイバ素線のプルーフテストを行った場合に、ファイバ同士の反発作用により巻取ボビンへの巻取時に巻乱れが生じ、ボビン巻状態での伝送損失が大きくなるためである。さらに、巻替性は湿度や除電装置の性能の変動による影響を受けやすいので、好ましくは摩擦帯電圧が2000V以下のものを用いることが望ましい。
【0027】
ここでいう摩擦帯電圧とは、ロータリースタティックテスタ(摩擦物:ステンレス 20℃,65%RH)により測定した値に基づく。
【0028】
また、二次被覆層に用いる樹脂に、アモーゲン類(化1式、化2式)、エレノン(化3式)、リン酸エステル(化4式)、ソルビタン脂肪酸エステル、脂肪酸ジエタノールアミド、非イオン活性剤、ノニオン系活性剤、カチオン系活性剤、アニオン系活性剤等から選ばれる少なくとも1種類以上を添加するのは、摩擦などにより光ファイバ素線表面に発生する静電気を抑えるためである。添加量は特に規定するものではないが、0.01〜1wt%が好ましい。添加量が0.01wt%より少ないと、帯電防止効果が得にくくなるためである。また、添加量が1wt%より多くなると、帯電防止効果が少なくなることや、機械特性、識別のための着色UVインキとの密着性などの特性の低下を引き起こしやすくなるためである。
【0029】
【化1】

Figure 2004170872
【0030】
【化2】
Figure 2004170872
【0031】
【化3】
Figure 2004170872
【0032】
【化4】
Figure 2004170872
【0033】
次に本発明にかかる光ファイバ素線の製造方法を、作用と共に図2、図3を用いて説明する。
【0034】
図2は光ファイバ裸線上に紫外線硬化樹脂被覆層を形成するための紫外線照射装置の概略図であり、図3は光ファイバ素線の巻替装置の概略図である。
【0035】
図2に示すように、光ファイバ裸線上に被覆層を設けるには、光ファイバ裸線上に線引により紫外線硬化樹脂が被覆された光ファイバ素線を通過させる石英管1と紫外光を照射するUVランプ2とがほぼ平行に設けられ、それら石英管1とUVランプ2とを取り囲むように、半円筒状の2つの反射板3が設けられた紫外線照射装置を用いる。
【0036】
また、図3に示すように、送出ボビン4に巻き取られた光ファイバ素線を巻替えるには、送出ボビン4から送出された光ファイバ素線が巻回される複数のプーリ9と、光ファイバ素線を走行させるベルトラップ5と、光ファイバ素線を巻き取る巻取ボビン7とで主に構成され、この巻取ボビン7の近傍に、巻き取られた光ファイバ素線に発生した静電気を除去する静電気除去装置(イオライザー)6と、その光ファイバ素線の帯電量を検出する静電気センサ8とを備えた巻替装置を用いる。
【0037】
これらの装置を用いてボビン巻光ファイバ素線を製造するに際しては、光ファイバ裸線としての石英ガラスファイバ(例えば直径d=125±1μm)上に、一次被覆層(例えば約35μm厚)及び二次被覆層(例えば約25μm厚)を被覆する。
【0038】
このとき、一次被覆層に対して図2に示したような4kWの紫外線照射装置を2灯(ランプ長各250mm)用い、二次被覆層に対して6kWの紫外線照射装置を4灯(ランプ長各250mm)用い、線引速度1200m/minで1000km線引し、被覆層を硬化させた後、送出ボビンに巻き取る。
【0039】
そして、図3に示したように、送出ボビン4から光ファイバ素線を送り出し、静電気除去装置6により表面の静電気を除去しながら巻取ボビン7に巻替える。
【0040】
これにより、巻取ボビン7への巻取時の静電気によるファイバ同士の反発作用が弱くなるので、巻乱れが生じにくくなり、湿度や静電気除去装置6の除電効果の変動に影響されることなく安定した巻替を行うことができる。
【0041】
【実施例】
次に、本発明のより具体的な実施例を比較例を用いて説明する。
【0042】
まず、二次被覆層として表1に示すA〜Fの二次被覆材を用い、二次被覆材A〜Eを用いた実施例I〜V及び二次被覆材Fを用いた比較例の光ファイバ素線を3000kmずつ製造した。
【0043】
二次被覆材C及びDとEに使用した帯電防止剤は、Cが化1式、DとEが化4式で示されるものであり、その添加量はCが0.02wt%、Dが0.2wt%、Eが1.0wt%とした。
【0044】
【表1】
Figure 2004170872
【0045】
そして、これらの実施例I〜V及び比較例について、図3に示した巻替装置により、線引後の送出ボビンから25kmずつ、プルーフテストを兼ねた巻替を速度1200m/minで行い、巻取ボビンに巻き取られた光ファイバ素線表面の帯電圧を静電気センサ(キーエンス製)を用いて測定した。
【0046】
さらに、巻替した光ファイバ素線を、OTDR(Optical Time Domain Refractmeter)を用いて、巻乱れにより生じる段差の有無を確認した。なお、巻替試験は、周囲相対湿度を50%、60%、70%と変えた場合と、静電気除去装置の有無とについて行い、段差が1ヶ所でも確認された巻取ボビンはNGとして各条件の巻替歩留を調べた。その結果を、表2に示す。
【0047】
【表2】
Figure 2004170872
【0048】
表2に示すように、実施例I及び実施例IIと比較例とから、二次被覆材の体積固有抵抗値が9.0×1013Ω・cm以下、または摩擦帯電圧が2500V以下であれば湿度50%、60%、70%において、帯電圧が20kV以下となり、従来の約4倍〜6倍の歩留が得られることが分かる。さらに、体積固有抵抗値が4.0×1013Ω・cm以下、または摩擦帯電圧が2000V以下であれば、帯電圧が15kV以下となり、より高い歩留が得られることが分かる。
【0049】
また、実施例III〜Vと比較例とから、帯電防止剤を添加することにより、湿度50%、60%、70%において帯電圧が15kV以下となり、従来の約5倍〜7倍の歩留が得られることが分かる。さらに、体積固有抵抗値や摩擦帯電圧が小さいほど帯電圧が低くなり、歩留が向上することが分かる。
【0050】
また、巻乱れがなかった実施例の帯電量と巻乱れが生じた比較例の帯電量とを比較した。
【0051】
図1(a)は実施例の巻替長に対する帯電量を示し、図1(b)は比較例の巻替長に対する帯電量を示す。
【0052】
図1(a)、図1(b)に示すように、比較例の光ファイバ素線は、巻替長が0から25kmにわたって全体的に帯電量が10〜30kVであったのに対して、実施例の光ファイバ素線は、巻替長が0から20kmにわたって帯電量が10kV以下、20から25kmにわたって20kV以下であった。
【0053】
このことから、帯電量が小さい方がボビン巻替性の安定化が図られ、歩留まりが向上することが分かる。
【0054】
【発明の効果】
以上要するに本発明によれば、湿度や静電気除去装置の除電効果の変動に影響されることなく安定した巻替を行うことができる。
【図面の簡単な説明】
【図1】(a)は比較例の巻替長に対する帯電量を示し、(b)は実施例の巻替長に対する帯電量を示す。
【図2】光ファイバ裸線上に紫外線硬化樹脂被覆層を形成するための紫外線照射装置の概略図である。
【図3】光ファイバ素線の巻替装置の概略図である。
【符号の説明】
1 石英管
2 UVランプ
3 反射板
4 送出ボビン
5 ベルトラップ
6 静電気除去装置(除電装置)
7 巻取ボビン
8 静電気センサ(帯電量センサ)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical fiber in which a primary coating layer and a secondary coating layer are sequentially provided on a bare optical fiber, and more particularly to an optical fiber that can be stably drawn at a high speed.
[0002]
[Prior art]
In general, an optical fiber is mainly made of an ultraviolet curable resin as a coating material to be drawn on a bare optical fiber, and the drawing speed is increased and the drawing length is becoming longer.
[0003]
Usually, as a quality check after drawing, a proof test also serving as rewinding is performed.
[0004]
The proof test is a test for examining the glass of the optical fiber for defects having low strength. The proof test is performed by applying a certain tension and performing rewinding.
[0005]
In this proof test, since the optical fiber is run at high speed, static electricity due to friction is likely to be generated on the fiber surface, and this static electricity causes the optical fiber to be disturbed and increase transmission loss. It is necessary to measure and reduce the amount of static electricity, that is, the charged voltage on the surface of the optical fiber.
[0006]
As a method of manufacturing the optical fiber by measuring the charged voltage, the charged voltage on the surface is measured to detect the degree of crosslinking of the ultraviolet curable resin, and the irradiation density of the ultraviolet light is controlled according to the detected degree of crosslinking. For this reason, there has been proposed a method of manufacturing an optical fiber having a resin coating layer having a low charged voltage, that is, a resin coating layer having a high degree of cross-linking (for example, see Patent Literature 1). Equipment is installed.
[0007]
[Patent Document 1]
JP-A-6-183790 (page 2-3, FIG. 2)
[0008]
[Problems to be solved by the invention]
However, since the charged voltage of the optical fiber is easily affected by the surrounding humidity, it is difficult to stably maintain the static elimination performance of the static eliminator, and the static elimination effect at the time of rewinding becomes insufficient. There are many. In this case, rewinding must be performed again or, in severe cases, discarded.
[0009]
Therefore, an object of the present invention is to provide an optical fiber that can perform stable rewinding without being affected by fluctuations in humidity or the static elimination effect of the static eliminator.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 provides an optical fiber element in which a primary coating layer and a secondary coating layer are sequentially provided on a bare optical fiber, wherein the secondary coating layer has a volume resistivity at room temperature. Is made of a resin of 1 × 10 14 Ω · cm or less.
[0011]
According to a second aspect of the present invention, in the optical fiber element in which the primary coating layer and the secondary coating layer are sequentially provided on the bare optical fiber, the secondary coating layer is made of a resin having a frictional voltage of 3000 V or less. .
[0012]
The invention according to claim 3 is the optical fiber in which the primary coating layer and the secondary coating layer are sequentially provided on the bare optical fiber, wherein the secondary coating layer is formed of an amogen, an elenone, a phosphate, a sorbitan fatty acid ester, It is composed of a resin to which at least one or more selected from fatty acid diethanolamide, nonionic activator, nonionic activator, cationic activator, anionic activator and the like is added.
[0013]
According to a fourth aspect of the invention, in addition to the configuration according to any one of the first to third aspects, the secondary coating layer has a surface charged voltage of 20 kV or less when wound on a winding bobbin. .
[0014]
According to the above configuration, the repulsion between the fibers due to static electricity during winding on the winding bobbin is weakened, so that winding is less likely to occur, without being affected by fluctuations in humidity or the static electricity removing effect of the static electricity removing device. Stable rewinding can be performed.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0016]
The present inventors have investigated the cause of the turbulence when the optical fiber is wound on the winding bobbin, and found that the charged voltage on the surface of the optical fiber, the volume resistivity of the secondary coating layer, the friction, It was found that the charging voltage and the like had an effect.
[0017]
In the optical fiber according to the present invention, a primary coating layer and a secondary coating layer are sequentially provided on a bare optical fiber consisting of a core and a clad, and are wound around a winding bobbin. The surface charged voltage at the time of winding on the winding bobbin is 20 kV or less.
[0018]
The secondary coating layer has a volume resistivity at room temperature of 1 × 10 14 Ω · cm or less, a frictional voltage of 3000 V or less, or an amogen, an elenone, a phosphate, a sorbitan fatty acid ester. And at least one selected from fatty acid diethanolamide, nonionic activators, nonionic activators, cationic activators, anionic activators and the like.
[0019]
The primary coating layer and the secondary coating layer are not particularly limited, but generally, an ultraviolet curable resin composition is used.
[0020]
Examples of the ultraviolet curable resin composition include urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, and silicone (meth) acrylate.
[0021]
Further, the primary coating layer mainly has a Young's modulus of 0.5 MPa to 10 MPa, and the secondary coating layer has a Young's modulus of 50 MPa to 200 MPa.
[0022]
The reason why the charged voltage on the surface of the optical fiber wound on the winding bobbin is set to 20 kV or less is that if the charged voltage is higher than this, the fibers due to static electricity are generated when the optical fiber is wound on the winding bobbin. This is because the repulsive action of the coil becomes strong, which causes winding disturbance and increases transmission loss in the bobbin winding state. In addition, since the rewindability is easily affected by fluctuations in humidity and the performance of the static eliminator, the charged voltage on the surface of the optical fiber is preferably 15 kV or less.
[0023]
The term "charged voltage" as used herein means that when a proof test is performed at a temperature of 23 ± 2 ° C., a humidity of 60 ± 5%, and a rewinding speed of 400 m / min or more, the surface of the optical fiber of the winding bobbin is removed without a charge removing device. The amount of generated static electricity is based on a value measured by a high-precision static electricity sensor SK (manufactured by Keyence).
[0024]
Further, the volume resistivity value of the secondary coating layer is set to 1 × 10 14 Ω · cm or less. If the volume resistivity value is higher than the above value, static electricity generated on the fiber surface when a proof test of the optical fiber is performed at a high speed is performed. This is because the repulsive action of the coil becomes strong, and winding is disturbed during winding on the winding bobbin, and the transmission loss in the bobbin winding state increases.
[0025]
The volume specific resistance here refers to a value obtained by measuring the resistance after applying power at 500 V for 1 minute using a High Resistance Meter (model 4329A manufactured by YHP) and a Resistivity Cell (16008A manufactured by YHP). ing.
[0026]
Further, the reason why the friction band voltage of the secondary coating layer is set to 3000 V or less is that if the voltage becomes higher than that, when a proof test of the optical fiber is performed at high speed, the fiber is wound on the winding bobbin by a repulsive action between the fibers. This is because winding disturbance sometimes occurs and transmission loss in a bobbin winding state increases. Further, since the rewindability is easily affected by fluctuations in humidity and the performance of the static eliminator, it is preferable to use one having a friction band voltage of 2000 V or less.
[0027]
The term "frictional charged voltage" used herein is based on a value measured by a rotary static tester (frictional material: stainless steel, 20 ° C., 65% RH).
[0028]
In addition, resins used for the secondary coating layer include amogens (Chemical Formula 1 and Chemical Formula 2), elenone (Chemical Formula 3), phosphate ester (Chemical Formula 4), sorbitan fatty acid ester, fatty acid diethanolamide, and nonionic activity. The reason for adding at least one or more selected from agents, nonionic activators, cationic activators, anionic activators, and the like is to suppress static electricity generated on the surface of the optical fiber by friction or the like. The amount of addition is not particularly limited, but is preferably 0.01 to 1 wt%. If the addition amount is less than 0.01 wt%, it is difficult to obtain an antistatic effect. On the other hand, when the addition amount is more than 1 wt%, the antistatic effect is reduced, and the mechanical characteristics and the characteristics such as the adhesion to the colored UV ink for identification are easily reduced.
[0029]
Embedded image
Figure 2004170872
[0030]
Embedded image
Figure 2004170872
[0031]
Embedded image
Figure 2004170872
[0032]
Embedded image
Figure 2004170872
[0033]
Next, a method of manufacturing an optical fiber according to the present invention will be described with reference to FIGS.
[0034]
FIG. 2 is a schematic diagram of an ultraviolet irradiation device for forming an ultraviolet curable resin coating layer on the bare optical fiber, and FIG. 3 is a schematic diagram of a device for rewinding an optical fiber.
[0035]
As shown in FIG. 2, in order to provide a coating layer on the bare optical fiber, a quartz tube 1 through which a bare optical fiber coated with an ultraviolet curable resin is drawn by drawing on the bare optical fiber and ultraviolet light are irradiated. An UV irradiator is used in which a UV lamp 2 is provided substantially in parallel, and two semi-cylindrical reflectors 3 are provided so as to surround the quartz tube 1 and the UV lamp 2.
[0036]
Further, as shown in FIG. 3, in order to rewind the optical fiber wound around the delivery bobbin 4, a plurality of pulleys 9 around which the optical fiber wound from the delivery bobbin 4 is wound, It is mainly composed of a belt wrap 5 for running the optical fiber, and a winding bobbin 7 for winding the optical fiber. Near the winding bobbin 7, static electricity generated in the wound optical fiber is formed. A rewinding device including an electrostatic remover (ionizer) 6 for removing the electric charge and an electrostatic sensor 8 for detecting the charge amount of the optical fiber is used.
[0037]
When a bobbin wound optical fiber is manufactured using these devices, a primary coating layer (for example, about 35 μm thick) and a secondary coating layer are formed on a silica glass fiber (for example, diameter d = 125 ± 1 μm) as an optical fiber bare wire. A next coating layer (eg, about 25 μm thick) is applied.
[0038]
At this time, two 4 kW ultraviolet irradiation devices (lamp length 250 mm) as shown in FIG. 2 were used for the primary coating layer, and four 6 kW ultraviolet irradiation devices (lamp length) were used for the secondary coating layer. Each of them is drawn 250 mm at a drawing speed of 1200 m / min to cure the coating layer and then wound up on a delivery bobbin.
[0039]
Then, as shown in FIG. 3, the optical fiber is sent out from the sending bobbin 4, and is wound around the winding bobbin 7 while removing static electricity on the surface by the static electricity removing device 6.
[0040]
As a result, the repulsion between the fibers due to static electricity during winding on the winding bobbin 7 is weakened, so that winding is less likely to occur, and stable without being affected by humidity or fluctuations of the static elimination effect of the static eliminator 6. Rewinding can be performed.
[0041]
【Example】
Next, more specific examples of the present invention will be described using comparative examples.
[0042]
First, the secondary coating materials of A to F shown in Table 1 were used as the secondary coating layer, and the light of Examples I to V using the secondary coating materials A to E and the comparative example using the secondary coating material F was used. Fiber strands were manufactured at 3000 km each.
[0043]
The antistatic agent used for the secondary coating materials C and D and E is such that C is represented by Formula 1 and D and E are represented by Formula 4, and the added amounts of C are 0.02 wt% and D is 0.2 wt% and E were 1.0 wt%.
[0044]
[Table 1]
Figure 2004170872
[0045]
For each of Examples I to V and Comparative Example, the rewinding device shown in FIG. 3 performs rewinding, which also serves as a proof test, at a speed of 1200 m / min from the sending-out bobbin after drawing, at a speed of 1200 m / min. The charged voltage on the surface of the optical fiber wound around the take-up bobbin was measured using an electrostatic sensor (manufactured by Keyence).
[0046]
Further, the presence or absence of a step caused by turbulence was confirmed for the re-wound optical fiber using OTDR (Optical Time Domain Refractometer). The rewinding test was conducted when the ambient relative humidity was changed to 50%, 60%, and 70%, and the presence or absence of the static electricity removing device. Was examined for the rewind yield. Table 2 shows the results.
[0047]
[Table 2]
Figure 2004170872
[0048]
As shown in Table 2, from Example I and Example II and the comparative example, if the volume resistivity of the secondary coating material is 9.0 × 10 13 Ω · cm or less, or the friction band voltage is 2500 V or less. For example, when the humidity is 50%, 60%, and 70%, the charged voltage is 20 kV or less, and it is understood that the yield of about 4 to 6 times that of the related art can be obtained. Furthermore, when the volume specific resistance value is 4.0 × 10 13 Ω · cm or less or the frictional charged voltage is 2000 V or less, the charged voltage becomes 15 kV or less, and it can be seen that a higher yield can be obtained.
[0049]
Further, from Examples III to V and the comparative example, when the antistatic agent was added, the charged voltage became 15 kV or less at the humidity of 50%, 60%, and 70%, and the yield was about 5 to 7 times that of the conventional example. Is obtained. Further, it can be seen that the smaller the volume resistivity and the frictional charged voltage, the lower the charged voltage, and the higher the yield.
[0050]
In addition, the charge amount of the example having no winding disturbance and the charge amount of the comparative example having the winding disturbance were compared.
[0051]
FIG. 1A shows the charge amount with respect to the rewind length in the example, and FIG. 1B shows the charge amount with respect to the rewind length in the comparative example.
[0052]
As shown in FIGS. 1 (a) and 1 (b), the optical fiber of the comparative example had an overall charge amount of 10 to 30 kV over a rewind length of 0 to 25 km. The optical fiber of the example had a recharge length of 10 kV or less over a rewind length of 0 to 20 km, and 20 kV or less over a length of 20 to 25 km.
[0053]
From this, it is understood that the smaller the charge amount, the more stable the bobbin rewinding property is, and the higher the yield is.
[0054]
【The invention's effect】
In short, according to the present invention, it is possible to perform stable rewinding without being affected by fluctuations in humidity or the static elimination effect of the static eliminator.
[Brief description of the drawings]
FIG. 1A shows a charge amount with respect to a rewind length in a comparative example, and FIG. 1B shows a charge amount with respect to a rewind length in an example.
FIG. 2 is a schematic view of an ultraviolet irradiation device for forming an ultraviolet curable resin coating layer on the bare optical fiber.
FIG. 3 is a schematic view of a device for rewinding an optical fiber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Quartz tube 2 UV lamp 3 Reflector 4 Sending bobbin 5 Bell trap 6 Static eliminator (static eliminator)
7 Winding bobbin 8 Static electricity sensor (charge amount sensor)

Claims (4)

光ファイバ裸線上に一次被覆層及び二次被覆層が順次設けられた光ファイバ素線において、上記二次被覆層は常温での体積固有抵抗値が1×1014Ω・cm以下の樹脂からなることを特徴とする光ファイバ素線。In an optical fiber element in which a primary coating layer and a secondary coating layer are sequentially provided on a bare optical fiber, the secondary coating layer is made of a resin having a volume resistivity at room temperature of 1 × 10 14 Ω · cm or less. An optical fiber, comprising: 光ファイバ裸線上に一次被覆層及び二次被覆層が順次設けられた光ファイバ素線において、上記二次被覆層は摩擦帯電圧が3000V以下である樹脂からなることを特徴とする光ファイバ素線。An optical fiber element in which a primary coating layer and a secondary coating layer are sequentially provided on a bare optical fiber, wherein the secondary coating layer is made of a resin having a frictional voltage of 3000 V or less. . 光ファイバ裸線上に一次被覆層及び二次被覆層が順次設けられた光ファイバ素線において、上記二次被覆層は、アモーゲン類、エレノン、リン酸エステル、ソルビタン脂肪酸エステル、脂肪酸ジエタノールアミド、非イオン活性剤、ノニオン系活性剤、カチオン系活性剤、アニオン系活性剤等から選ばれる少なくとも1種類以上が添加された樹脂からなることを特徴とする光ファイバ素線。In an optical fiber element in which a primary coating layer and a secondary coating layer are sequentially provided on an optical fiber bare wire, the secondary coating layer includes an amogen, an elenone, a phosphate, a sorbitan fatty acid ester, a fatty acid diethanolamide, a nonionic An optical fiber comprising a resin to which at least one selected from an activator, a nonionic activator, a cationic activator, an anionic activator and the like is added. 上記二次被覆層は、巻取ボビンに巻き取られた時の表面の帯電圧が20kV以下になる請求項1〜3のいずれかに記載の光ファイバ素線。The optical fiber according to any one of claims 1 to 3, wherein the secondary coating layer has a surface charged voltage of 20 kV or less when wound on a winding bobbin.
JP2002339441A 2002-11-22 2002-11-22 Optical fiber Expired - Fee Related JP4082189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339441A JP4082189B2 (en) 2002-11-22 2002-11-22 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339441A JP4082189B2 (en) 2002-11-22 2002-11-22 Optical fiber

Publications (2)

Publication Number Publication Date
JP2004170872A true JP2004170872A (en) 2004-06-17
JP4082189B2 JP4082189B2 (en) 2008-04-30

Family

ID=32702386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339441A Expired - Fee Related JP4082189B2 (en) 2002-11-22 2002-11-22 Optical fiber

Country Status (1)

Country Link
JP (1) JP4082189B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505320A (en) * 2007-11-29 2011-02-24 コーニング インコーポレイテッド Fiber curing with extended irradiation device and non-linear path
JP2019077605A (en) * 2017-10-26 2019-05-23 住友電気工業株式会社 Ultraviolet-curable type resin composition and optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505320A (en) * 2007-11-29 2011-02-24 コーニング インコーポレイテッド Fiber curing with extended irradiation device and non-linear path
KR101559600B1 (en) * 2007-11-29 2015-10-13 코닝 인코포레이티드 Fiber cure with extended irradiators and non linear path
JP2019077605A (en) * 2017-10-26 2019-05-23 住友電気工業株式会社 Ultraviolet-curable type resin composition and optical fiber

Also Published As

Publication number Publication date
JP4082189B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
TW573141B (en) Coated optical fiber
JP4134724B2 (en) Coated optical fiber, optical fiber ribbon and optical fiber unit using the same
US4957364A (en) Helical bend proof testing of optical fibers
JPS6087308A (en) Optical glass fiber having primary and secondary covers
CZ282486B6 (en) Bundle of optical fibers and process for producing thereof
JPH0431365B2 (en)
ITMI961899A1 (en) OPTICAL CABLE FOR DATA TRANSMISSION IN LOCAL NETWORKS
US20110274397A1 (en) Tight-buffered optical fiber having improved fiber access
US5703988A (en) Coated optical fiber and fabrication process therefor
JP2008224744A (en) Optical fiber
JP2950264B2 (en) Manufacturing method of optical fiber ribbon
JP2004170872A (en) Primary coated optical fiber
JPWO2004095106A1 (en) Optical fiber manufacturing method, manufacturing apparatus, and cleaning apparatus
JPH03252326A (en) Self-supporting coil for optical fiber and its manufacture
AU4652189A (en) Fiber optic canister adhesive and use thereof
JP3858895B2 (en) Optical fiber core and manufacturing method thereof
JPH09105823A (en) Processing method for optical fiber dispenser using bonding agent which can be cured with ultraviolet ray
JP2004168628A (en) Primary coated optical fiber and method of manufacturing the same
JP2004341297A (en) Coated optical fiber
JP4845007B2 (en) Optical fiber core wire, optical fiber tape core wire and manufacturing method thereof
JPH01107865A (en) Coloring device for optical fiber
JP4630210B2 (en) Optical fiber ribbon and its adhesion measurement method
JP4947617B2 (en) Optical fiber core and optical fiber ribbon
JP2021085729A (en) Method for evaluating adhesion property of optical fiber and optical fiber
JP2021189234A (en) Method and apparatus for manufacturing optical fiber assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees