JP2004170171A - Outer diameter measurement device - Google Patents

Outer diameter measurement device Download PDF

Info

Publication number
JP2004170171A
JP2004170171A JP2002334688A JP2002334688A JP2004170171A JP 2004170171 A JP2004170171 A JP 2004170171A JP 2002334688 A JP2002334688 A JP 2002334688A JP 2002334688 A JP2002334688 A JP 2002334688A JP 2004170171 A JP2004170171 A JP 2004170171A
Authority
JP
Japan
Prior art keywords
transport
outer diameter
measured
transport path
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002334688A
Other languages
Japanese (ja)
Other versions
JP3835607B2 (en
Inventor
Hirohisa Yamada
裕久 山田
Hisayoshi Inokuchi
久與志 井ノ口
Naoki Sawada
直樹 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Machine Systems Corp
Original Assignee
Koyo Machine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Machine Industries Co Ltd filed Critical Koyo Machine Industries Co Ltd
Priority to JP2002334688A priority Critical patent/JP3835607B2/en
Publication of JP2004170171A publication Critical patent/JP2004170171A/en
Application granted granted Critical
Publication of JP3835607B2 publication Critical patent/JP3835607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an outer diameter measurement device capable of measuring at high precision by minimizing influence of moisture and the like adhering on a surface of an object to be measured as well as realizing stable transportation of the object to be measured. <P>SOLUTION: This outer diameter measurement device has transportation belts parallely provided along a transportation route on right and left for transporting the object to be measured while supporting it at right and left of its lower side and is constructed so that outer diameter can be measured by a laser measurement device during transportation by the transportation belts. Projecting/light-receiving means are provided in approximately upper and lower positions and clearance of the transportation belts is narrow in a predetermined range including a measurement position so that the transportation belt is located completely under the object to be measured. The clearance of the transportation belts at a position other than the predetermined range in the transportation route is wider than that in the predetermined range. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、円柱工作物等、円筒表面を有する被測定物を、搬送ベルトによる搬送中にレーザ測定装置により測定するための外径寸法測定装置に関するものである。
【0002】
【従来の技術】
例えばセンタレス研削盤では、その下流側に搬送コンベヤとレーザ測定装置とを有する外径寸法測定装置を配置し、スルーフィード研削後の工作物を搬送コンベヤで搬送する間に、その工作物(被測定物)の外径寸法をレーザ測定装置によりオンラインで測定して、全工作物についての寸法管理を行っている。
【0003】
ここで用いられる外径寸法測定装置としては、例えば左右一対の搬送ベルトを用いた搬送コンベアを使用し、その搬送経路を挟んで左右にレーザ測定装置の投光手段と受光手段とを向かい合わせに配置したものが知られている(例えば、特許文献1参照)。この外径寸法測定装置では、搬送ベルトで被測定物の下側左右を支持しつつ軸方向に搬送すると共に、その搬送中の被測定物に対して横向きにレーザ光を照射して外径寸法を測定するようになっている。
【0004】
この種の外径寸法測定装置では、搬送中の被測定物に対して横側からレーザ光を照射するため、少なくともレーザ測定装置による測定位置においては、搬送ベルトが被測定物の横側に完全に隠れる程度にそれら左右の搬送ベルトの間隔を広くする必要があるが、そのように左右の搬送ベルトの間隔を広くすることで搬送中の被測定物が安定し、結果として被測定物の落下や傾きを防止でき、安定した測定を行うことができるという利点がある。
【0005】
【特許文献1】
特開平1−134608号公報
【0006】
【発明が解決しようとする課題】
特許文献1に記載の外径寸法測定装置では、上記のような利点を有する一方、次のような欠点があった。即ち、上流側の研削工程から研削液等が付着したままの被測定物が搬送ベルト上に供給された場合、搬送中にそれらの水分が被測定物の下側に溜まり、これが横向きに照射されるレーザ光を遮断して外形寸法の測定精度を悪化させる可能性があった。
【0007】
本発明は、このような従来の問題点に鑑み、被測定物の安定的な搬送を実現しつつ、被測定物の表面に付着した水分等による測定精度への影響を極力小さくして高精度の測定が可能な外径寸法測定装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、搬送経路に沿って左右並列に配設され且つ円筒表面を有する被測定物を下側左右において支持しつつその軸方向に搬送する線状の搬送ベルトと、前記搬送経路上の所定の測定位置を挟んで配置された投光手段と受光手段とを有するレーザ測定装置とを備え、前記被測定物の外径寸法を前記搬送ベルトによる搬送中に前記レーザ測定装置により測定可能に構成された外径寸法測定装置において、前記レーザ測定装置の前記投光手段と前記受光手段とを前記搬送経路に対して略上下に配置すると共に、前記搬送経路上における前記測定位置を含む所定範囲においては前記搬送ベルトの間隔をその搬送ベルトが完全に前記被測定物の下側に入るように狭くし、前記搬送経路上における前記所定範囲以外の部分においては前記搬送ベルトの間隔を前記所定範囲におけるそれよりも広くしたものである。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳述する。図1〜図14は、本発明の一実施形態を例示している。図1〜図3において、1は外径寸法測定装置で、上流側に配置されたセンタレス研削盤等の上流側装置2と、下流側に配置された下流側装置3との間に配置されている。
【0010】
外径寸法測定装置1は、センタレス研削盤によるスルーフィード研削後の円柱工作物等、円筒表面を有する工作物(被測定物)Wを搬送しつつその外径寸法をオンラインで測定するためのもので、上流側装置2の工作物排出部2aと下流側装置3の工作物受入部3aとの間の搬送経路Rに沿って工作物Wを搬送する搬送手段4と、この搬送手段4により搬送中の工作物Wの表面から水分等の付着物を除去する付着物除去手段5と、搬送経路R上の測定位置Aの近傍に配置されたレーザ測定装置6と、これら搬送手段4、付着物除去手段5、レーザ測定装置6等を直接的又は間接的に支持するベース板7とを備えている。ベース板7は、搬送経路Rに沿って例えばその搬送経路Rの搬送方向に対して左側に略鉛直に配置されている。なお、以下の説明では、単に左、右、又は左右という場合には特に説明のない限り搬送方向に対する左右をいうものとする。
【0011】
搬送手段4は、駆動プーリ8、従動プーリ9、中間従動プーリ10,11、テンションプーリ12、駆動モータ13、ガイド板14、搬送ベルト15等を備えている。
【0012】
ガイド板14は、搬送ベルト15を搬送経路Rに沿って案内するためのもので、搬送経路R方向に長い鉛直方向の平板状に形成されており、ベース板7の一面側に着脱自在に固定されている。ガイド板14の上縁側の端面は、搬送ベルト15を搬送経路Rに沿って案内するガイド面(ガイド手段)16となっており、緩やかな上向きの略円弧状に形成されている。即ち、搬送経路Rは、このガイド面16に沿った略円弧状となっている。
【0013】
ガイド板14の下縁側は、搬送ベルト15を搬送経路Rの下流側から搬送経路Rの上流側に戻す戻し経路Rrに沿って、搬送ベルト15との間に任意の間隔を空けて略直線状に形成されている。
【0014】
また、ガイド板14には、その下流端側及び上流端側に夫々駆動プーリ8及び従動プーリ9を配置するための切り欠き部17,18が形成されており、長手方向の中間部分の上縁側には、レーザ測定装置6を配置するための凹入状の切り欠き部19が、搬送経路R上の測定位置Aに対応して搬送方向に対して後下がりの傾斜状に形成されている。なお、「後下がりの傾斜状」とは、搬送方向下流側(前)から上流側(後)に向けて低くなるように傾斜した状態をいうものとする。更に、ガイド板14の上縁側で且つ切り欠き部19の上流側及び下流側の各角部には、中間従動プーリ10,11を配置するための切り欠き部20,21が形成されている。
【0015】
駆動プーリ8は、搬送ベルト15を搬送経路Rに沿って駆動するためのもので、ガイド板14の切り欠き部17に対応して、搬送経路Rの最下流側の下側に配置されており、例えばベース板7側から搬送経路Rに垂直で且つ水平に突設された回転軸8aにより回転自在に支持されている。回転軸8aは、ギア22等を介して駆動モータ13の駆動軸13aに接続されており、駆動プーリ8は、駆動モータ13の駆動により矢印α方向(図1)に一定速度で回転可能となっている。また、駆動プーリ8の外周面上には、図6に示すように、搬送ベルト15を巻き掛けるための左右一対のガイド溝23a,23bが環状に形成されている。このガイド溝23a,23bは例えば断面V字形に形成されている。
【0016】
また、駆動プーリ8は、搬送ベルト15のテンションを調整可能に構成されている。即ち、駆動モータ13は、駆動プーリ8を支持する回転軸8a、ギア22等と共に例えば支持板13bを介してベース板7側に搬送方向位置調整可能に装着されており、この支持板13bの位置をベース板7に対して搬送方向に調整することにより、駆動プーリ8の搬送方向位置を調整して搬送ベルト15のテンションを調整することが可能となっている。なお、このテンション調整機構は、例えば従動プーリ9側に設けてもよい。
【0017】
従動プーリ9は、駆動プーリ8により駆動される搬送ベルト15を搬送経路Rの上流側で支持しつつ従動して、搬送ベルト15を戻し経路Rr側から搬送経路R側に案内するもので、ガイド板14の切り欠き部18に対応して、搬送経路Rの最上流側の下側に配置されている。この従動プーリ9は、例えばガイド板14から搬送経路Rに垂直で且つ水平に突設された回転軸9aにより回転自在に支持され、図7に示すように、その外周面上には搬送ベルト15を巻き掛けるための左右一対のガイド溝24a,24bが環状に形成されている。これらガイド溝24a,24bの間隔は、例えば駆動プーリ8側のガイド溝23a,23bの間隔と略等しくなっている。なお、ガイド溝24a,24bは例えば断面V字形に形成されている。
【0018】
搬送ベルト15は、例えば鋼製の複数本の線材を縒り線状にして形成した断面略円形状の1本の無端ベルトよりなり、駆動プーリ8及び従動プーリ9の上側では搬送経路Rに沿って左右に並列するように、また駆動プーリ8及び従動プーリ9の下側では戻し経路Rr上の一カ所で左右が交差するように、駆動プーリ8と従動プーリ9とに巻き掛けられている。
【0019】
即ち、搬送ベルト15は、例えば図4に示すように、駆動プーリ8及び従動プーリ9の上側、即ち搬送経路R側では左側のガイド溝23a,24a同士、右側のガイド溝23b,24b同士を夫々接続し、駆動プーリ8及び従動プーリ9の下側、即ち戻し経路Rr側では左側のガイド溝23aと右側のガイド溝24b、右側のガイド溝23bと左側のガイド溝24aとを夫々接続するように巻き掛けられている。
【0020】
上流側装置2の工作物排出部2aから搬送経路Rの最上流側に供給された工作物Wは、図7等に示すように、搬送経路Rに沿って左右並列に配設された搬送ベルト15により下側左右を支持された状態でその軸方向に搬送される。このとき、搬送ベルト15は1本の無端ベルトで構成されているため、搬送経路Rに沿って走行する左右の搬送ベルト15に速度差が生じることがなく、工作物Wを安定的に搬送することができる。
【0021】
なお、本実施形態では、駆動プーリ8側のガイド溝23a,23b、従動プーリ9側のガイド溝24a,24bを共に断面V字形としたが、例えば断面円弧状等の他の形状を採用してもよい。
【0022】
中間従動プーリ10,11は、搬送経路R上の左右の搬送ベルト15を、その間隔が測定位置Aにおいて所定幅となるように案内するもので、例えばガイド板14の切り欠き部20,21に対応して、測定位置Aの上流側及び下流側における搬送経路Rの下側に配置されている。これら中間従動プーリ10,11は、例えばガイド板14から搬送経路Rに垂直で且つ水平に突設された回転軸10a,11aにより回転自在に支持され、その外周面上には搬送ベルト15を案内するためのガイド溝25(図8)が環状に形成されており、その上部側においてガイド溝25に左右の搬送ベルト15が掛けられている。
【0023】
ガイド溝25は、図8に示すように例えば断面矩形状に形成され、その内周側左右の角部25a,25b(以下、ガイド部という)において左右の搬送ベルト15を互いに内向き、即ち両者の間隔を狭める方向に保持しつつ搬送方向に案内するようになっている。
【0024】
ここで、中間従動プーリ10,11のガイド溝25は、測定位置Aにおける左右の搬送ベルト15の間隔を左右の搬送ベルト15が完全に工作物Wの下側に入る所定の値Xaとするようにその左右方向幅が設定されており、一方の駆動プーリ8側のガイド溝23a,23b、及び従動プーリ9側のガイド溝24a,24bは、左右の搬送ベルト15の間隔を測定位置Aにおける間隔Xaよりも広い所定の値Xbとするようにその左右方向幅が設定されている。なお、間隔Xbは、工作物Wが搬送中に左右の搬送ベルト15の間から落下しない程度に広く設定すればよく、左右の搬送ベルト15が工作物Wの下側から左右に張り出してもよい。
【0025】
これにより、搬送経路R上における左右の搬送ベルト15は、図5に示すように、その間隔が中間従動プーリ10,11間(所定範囲の一例)(以下、測定搬送経路Rbという)ではXa一定であり、従動プーリ9と中間従動プーリ10との間(以下、上流搬送経路Raという)ではXbからXaに徐々に縮小し、中間従動プーリ11と駆動プーリ8との間(以下、下流搬送経路Rcという)ではXaからXbに徐々に拡大するように保持される。
【0026】
なお、上流搬送経路Ra及び下流搬送経路Rcでは、搬送ベルト15はガイド板14のガイド面16に摺動して上向きの緩やかな略円弧状に案内され、ガイド面16が切り欠き部19により分断されている測定搬送経路Rbでは、搬送ベルト15はそのテンションのみにより例えば略水平に保持される。
【0027】
また、ガイド板14のガイド面16上には、左右の搬送ベルト15の左右外側に沿って一対のベルトガイド26及びワークガイド27が配設されている。ベルトガイド26は、ガイド面16上を摺動する左右の搬送ベルト15の外向き(両者の間隔が広くなる方向)の変位を所定位置で規制するためのもので、搬送方向に長い平板状に形成されており、搬送ベルト15側の内側面26aが上流搬送経路Ra及び下流搬送経路Rc上で左右の搬送ベルト15の左右外側に略接するか又は若干の隙間を有するように、上流搬送経路Ra及び下流搬送経路Rcのガイド面16上に配置されている。
【0028】
即ち、ベルトガイド26は、上流搬送経路Ra及び下流搬送経路Rcにおける左右の搬送ベルト15の間隔の変化に対応して、その左右の内側面26aの間隔が中間従動プーリ10,11側で狭く、従動プーリ9及び駆動プーリ8側で広くなるように配設されている。なお、搬送経路Rにおける左右の搬送ベルト15の間隔の変化がごく僅かであれば、ベルトガイド26の内側面26aは搬送ベルト15の間隔の変化に関係なく平行にしてもよい。また、本実施形態では、ベルトガイド26のガイド面16からの高さを、搬送ベルト15の外径と略同じ程度としているが、少なくとも搬送ベルト15の外側への変位を規制できる程度、例えば搬送ベルト15の半径よりも大であればよい。
【0029】
ワークガイド27は、搬送経路R上を搬送される工作物Wの搬送ベルト15からの脱落を阻止するためのもので、工作物W側(搬送ベルト15側)の内側面27aの間隔が工作物Wの外径よりも広い所定間隔となるように、上流搬送経路Ra及び下流搬送経路Rcにおけるベルトガイド26上に配置されている。ワークガイド27は、例えばベルトガイド26と共にボルト等の固定手段28によりガイド面16に着脱自在に固定されている。
【0030】
なお、ワークガイド27は、工作物Wの搬送ベルト15からの左右方向への脱落を阻止できるものであればよいが、例えばその内側面27aの最上部の位置が工作物Wの上下方向中間位置と同程度かそれよりも高くなるようにすることが望ましい。
【0031】
また、搬送ベルト15のテンション設定、工作物Wの重量、搬送ベルト15上に同時に載せられる工作物Wの最大数、搬送速度等の各種条件設定により、上流搬送経路Ra及び下流搬送経路Rcにおける搬送ベルト15の外側への変位を許容範囲内に収めることができる場合や、工作物Wの脱落の可能性が低い場合等には、ベルトガイド26、ワークガイド27の何れか一方又は両方を省略してもよい。
【0032】
テンションプーリ12は、搬送ベルト15が戻し経路Rr側の交差部において互いに接触しないように、その交差部の近傍で両者間に一定の間隔を保持するためのもので、例えば支持アーム29を介してガイド板14の下部側に取り付けられている。
【0033】
テンションプーリ12は、図9に示すように、その外周面に例えば断面円弧状のガイド溝30が環状に形成されており、支持アーム29の一端側に、駆動プーリ8の回転軸8a等と略平行な回転軸12aにより回転自在に支持されている。また、支持アーム29は、戻し経路Rrの略中間部分に配置され、その一端側のテンションプーリ12をガイド板14の下側に突出させた状態で、ガイド板14の側面に対して搬送方向に揺動自在で且つ着脱自在に装着されており、所定の揺動位置で固定可能となっている。なお、テンションプーリ12は、図9に示すように、回転軸12aにより支持アーム29の一端側から搬送ベルト15側に変位した位置で支持されている。
【0034】
テンションプーリ12は、図4等に示すように、戻し経路Rr側で互いに交差する搬送ベルト15のうち、下側を通過する方をガイド溝30に引っ掛けて押し下げ、上側を通過する搬送ベルト15との間に一定の間隔を確保して交差部における互いの接触を防止している。支持アーム29の揺動位置を調整してテンションプーリ12の押し下げ量を変化させれば、搬送ベルト15のテンションを微調整することができる。
【0035】
なお、支持アーム29をガイド板14に対して揺動自在のまま固定せず、支持アーム29及びテンションプーリ12の自重が搬送ベルト15側にかかるようにして、搬送ベルト15の交差部における接触を防止しつつそのテンションを一定に維持させるように構成してもよい。また、駆動プーリ8側のテンション調整機構を省略して、このテンションプーリ12のみで搬送ベルト15のテンション調整を行うように構成してもよい。
【0036】
付着物除去手段5は、搬送経路R上を搬送中の工作物Wの表面から研削液等の水分、その他の異物を除去するためのもので、工作物Wの上側から乾燥空気を噴射するエアブロー装置31と、工作物Wの下側から空気と共に水分等を吸引するバキューム装置32とを備え、上流搬送経路Ra沿いに1又は複数組、例えば2組配置されている。
【0037】
バキューム装置32は、図10等に示すように、左右の搬送ベルト15間に対応してガイド板14のガイド面16上に上向きの開口状に形成された吸引口33と、この吸引口33からガイド板14内に下向きに形成された縦吸引通路34と、この縦吸引通路34の下端側から横向きに延設され且つその端部側が負圧源35aに接続された横吸引通路35とを備えている。
【0038】
また、エアブロー装置31は、圧縮空気供給源(図示省略)に接続されており、乾燥空気を噴射する噴射口31aを、バキューム装置32の吸引口33に相対向するように下向きに向けた状態で上流搬送経路Raの上側に配置され、例えばベース板7に着脱自在に固定されている。
【0039】
付着物除去手段5は、エアブロー装置31により搬送中の工作物Wに対して上側から乾燥空気を噴射することにより工作物Wの上側から左右両側にかけて付着している研削液等の水分、その他の異物を工作物Wの下側に向けて吹き飛ばすと共に、バキューム装置32により工作物Wの左右両側から下側にかけて付着している水分等を吸引することにより、測定位置Aよりも上流側で工作物Wの表面の付着物を除去するようになっている。
【0040】
ここで、搬送ベルト15は例えば縒り線状に形成されているため、その外周面上には僅かな凹凸があり、工作物Wの左右両側の水分は、バキューム装置32の吸引力により、例えば搬送ベルト15の外周面上のこの僅かな凹凸と工作物Wの外周面との間の隙間を通過して工作物Wの下側に集められ、吸引口33内に吸引される。
【0041】
吸引口33内に水分等と共に吸引された空気は、図10に示すように縦吸引通路34、横吸引通路35を経てバキューム装置32側に案内される。バキューム装置32側にはフィルターが設けられており、そのフィルターにより水分等のみが除去される。
【0042】
なお、付着物除去手段5は、外径寸法測定装置1の作動中は常時作動させておくようにしてもよいし、工作物Wがエアブロー装置31とバキューム装置32との間を通過する期間のみ作動させるようにしてもよい。
【0043】
レーザ測定装置6は、搬送経路R上を搬送中の工作物Wの外径寸法を、測定搬送経路Rb上の測定位置Aにおいて測定するためのもので、測定位置Aを通過する工作物Wに対してレーザ光Lを照射する投光手段36と、この投光手段36から工作物Wに向けて照射されたレーザ光Lを工作物Wの裏側で受光する受光手段37とを備えている。
【0044】
投光手段36と受光手段37とは、測定位置Aを挟んで搬送経路Rの略上下で且つ搬送方向に対して後下がりの傾斜状(例えば鉛直方向から30°程度の傾斜角)に配置されている。即ち、受光手段37は測定位置Aの下側に設けられたガイド板14の切り欠き部19内に受光部37aを下流側斜め上方に向けた状態で配置され、一方の投光手段36はその投光部36aを受光手段37の受光部37aに対向させるように上流側斜め下方に向けた状態で測定位置Aの上側に配置され、共に例えば1つの装着板38を介してベース板7の一面側に着脱自在に固定されている。
【0045】
ここで、装着板38を例えばベース板7に対して位置調整可能に構成すれば、投光手段36と受光手段37との相対位置関係を保持したままで搬送経路Rに対する位置調整を行うことができる。
【0046】
また、受光手段37側には、受光部37aの上方を上流側から覆うレンズフード(覆い部材)39が設けられている。このレンズフード39は、投光手段36側からのレーザ光Lを遮断しない範囲で、受光部37a上のできるだけ広い範囲を上流側から覆うように設けられており、例えば搬送方向上流側が下流側よりも低くなるように傾斜状に配置され、装着板38等に着脱自在に固定されている。なお、レンズフード39は受光手段37に装着してもよい。
【0047】
投光手段36と受光手段37とは搬送方向に対して後下がりの傾斜状に配置されているため、レンズフード39は例えば平面視で受光部37aの受光領域(図12にハッチングで示す)全体を上側から覆うこととなり、工作物Wから受光部37aの受光領域に向けて落下する水滴等の全てをレンズフード39により遮ることができる。これにより、付着物除去手段5による付着物の除去が不十分で、測定位置Aの近傍で工作物Wから水滴等が落下することがあったとしても、その水滴等による受光部37aの汚れを未然に防止して、外径寸法の測定精度の低下を阻止できる。
【0048】
更に、レンズフード39は、搬送方向上流側が下流側よりも低くなるように傾斜状に配置されているため、レンズフード39上に落下した水滴等は受光手段37の上流側に向けて流下し、受光部37a側に落下することはない。
【0049】
レーザ測定装置6は、図11に示すように所定のコンピュータにより構成される測定制御手段40に接続されている。測定制御手段40は、レーザ測定装置6を制御して工作物Wの外径寸法等を算出するもので、受光手段37側から得られる受光分布情報に基づいて、工作物Wにより遮られたレーザ光の範囲により工作物Wの外径寸法を算出するようになっている。
【0050】
また、測定制御手段40には、搬送手段4による工作物Wの搬送速度を測定する搬送速度測定手段41が接続されており、この搬送速度測定手段41で測定される工作物Wの搬送速度に基づいて、工作物Wの外径寸法だけでなく、その長さ寸法についても算出可能となっている。即ち、測定制御手段40は、工作物Wによりレーザ光の一部が遮られている間の経過時間と、搬送速度測定手段41で測定される工作物Wの搬送速度とに基づいて工作物Wの長さ寸法を算出することができる。
【0051】
搬送速度測定手段41は、例えば駆動モータ13が搬送ベルト15を一定量駆動する毎、即ち工作物Wを一定距離搬送する毎にパルスを発生するエンコーダパルス装置等を用いることができる。この場合、測定制御手段40は、1パルスに対応する搬送距離(搬送速度に相当)と、工作物Wによりレーザ光の一部が遮られている間に発生したパルス数(経過時間に相当)とを掛け合わせることにより工作物Wの長さを算出できる。
【0052】
また、搬送速度測定手段41を用いることにより、例えば測定制御手段40による測定で不良工作物が検出された場合、その測定後一定距離下流側でその不良工作物を払い出すように制御することも可能である。
【0053】
なお、レーザ測定装置6は、外径寸法測定装置1の作動中は常時作動させておくようにしてもよいし、例えば工作物Wが測定位置Aを含む所定区間内、例えば測定搬送経路Rb上にある間のみ作動させるようにしてもよい。
【0054】
続いて、上記構成の外径寸法測定装置1による工作物Wの外径寸法等の測定動作について説明する。
【0055】
外径寸法測定装置1を作動させると、駆動モータ13が一定速度で搬送ベルト15を駆動すると共に、付着物除去手段5及びレーザ測定装置6が作動を開始する。また、駆動モータ13が一定速度での駆動動作を開始すると、エンコーダパルス装置よりなる搬送速度測定手段41から一定駆動距離毎にパルスが出力される。
【0056】
センタレス研削盤等よりなる上流側装置2が作動を開始すると、その工作物排出部2aから外径寸法測定装置1の搬送経路Rの最上流側に、例えばスルーフィード研削後の工作物Wが所定時間毎に供給される。工作物排出部2aから供給された工作物Wは、従動プーリ9上若しくはその近傍において、左右の搬送ベルト15によりその下側左右を支持された状態で上流搬送経路Ra上をその軸方向に搬送される。
【0057】
なお、この上流搬送経路Raの最上流側では、左右の搬送ベルト15の間隔は、例えばその間から工作物Wが落下しない範囲で十分に広いXbとなっており、工作物Wはその搬送ベルト15により安定的に保持された状態で搬送される。
【0058】
また、上流搬送経路Ra上では、搬送ベルト15は上向きの滑らかな略円弧状に形成されたガイド面16に沿って摺動するため、搬送ベルト15の上下振動を抑制することができ、工作物Wをより安定的に搬送できる。
【0059】
更に、上流搬送経路Ra上では、左右の搬送ベルト15の左右外側に沿って一対のベルトガイド26及びワークガイド27が配設されているため、例えば搬送ベルト15上に同時に多数の工作物Wが載せられた場合であっても、ベルトガイド26により左右の搬送ベルト15の間隔が一定以上開くことはなく、また搬送ベルトの左右振動を抑制することができ、更に仮に搬送ベルト15が若干不安定な状態になったとしてもワークガイド27により工作物Wの落下を防止でき、工作物Wを更に安定的に搬送できる。
【0060】
上流搬送経路Raを搬送中に工作物Wが2カ所の付着物除去手段5を通過する際には、工作物Wの上側からエアブロー装置31により乾燥空気が噴射され、これによって工作物Wの上側から左右両側にかけて付着している研削液等の水分、その他の異物が下側に向けて吹き飛ばされると共に、工作物Wの下側のバキューム装置32により工作物Wの左右両側から下側にかけて付着している水分等が吸引される。これにより、工作物Wの外周面上の付着物は上流搬送経路Raにおいてきれいに除去される。
【0061】
ここで、付着物除去手段5を構成するエアブロー装置31とバキューム装置32は、共に工作物Wを搬送ベルト15側、即ち下向きに押し付けるように作用するため、軽量の工作物Wであっても搬送ベルト15上から吹き飛ばされ難いという利点がある。また、エアブロー装置31とバキューム装置32とを併用することにより、少ないエネルギーで水滴等を効率的に除去できると共に、例えばエアブロー装置のみを用いた場合と比べてミストが発生し難く、また騒音を低減できるという利点もある。
【0062】
工作物Wが上流搬送経路Raに沿って搬送される間に、左右の搬送ベルト15の間隔はXbから徐々に狭くなり、工作物Wが上流搬送経路Raの最下流側の中間従動プーリ10上に到達した時点で最も狭いXaとなって、測定搬送経路Rb上ではこのXaに保持される。このとき、左右の搬送ベルト15は、図14に示すように完全に工作物Wの下側に入った状態となる。
【0063】
また、測定搬送経路Rb上では、搬送ベルト15を案内するガイド面16が途切れており、工作物Wは左右の搬送ベルト15の張力のみによって保持された状態で測定位置Aを通過する。
【0064】
工作物Wの前端側が測定位置Aに差し掛かると(図13に破線で示す)、レーザ測定装置6の投光手段36から受光手段37側に向けて照射されているレーザ光Lの一部が図14に示すようにその工作物Wによって遮断され、その状態は工作物Wの後端側が測定位置Aを抜けるまで(図13に実線で示す)継続する。
【0065】
測定制御手段40は、受光手段37側から取得した受光分布情報に基づいて、工作物Wに遮られたレーザ光Lの範囲により工作物Wの外径寸法を算出すると共に、工作物Wにレーザ光Lの一部が遮られているレーザ光遮断期間内に搬送速度測定手段41から発せられたパルス数を計数し、そのパルス数と、予め設定されたその1パルスに対応する搬送距離とに基づいて、工作物Wの長さ寸法を算出する。
【0066】
ここで、測定位置Aでは左右の搬送ベルト15はその間隔がXaに保持され、完全に工作物Wの下側に入った状態となっているため(図14)、この搬送ベルト15がレーザ光を遮断して外径寸法の測定精度に悪影響を及ぼすことはない。
【0067】
また、レーザ測定装置6は、投光手段36と受光手段37とを搬送経路Rに対して略上下方向に配置して、レーザ光を工作物Wの上下方向に照射するようになっているため、例えば工作物Wの外周面上の水分等が付着物除去手段5で完全に除去しきれなかった場合でも、図14に示すように、工作物Wの搬送中にその水分等はレーザ光を遮断しない工作物Wの下側に溜まるため、外径寸法の測定精度を高く維持できる。
【0068】
更に、投光手段36と受光手段37とは搬送方向に対して後下がりの傾斜状に配置され、且つ下側の受光手段37側には受光部37aの上方を上流側から覆うレンズフード39が設けられているため、受光部37aの受光領域はレンズフード39により平面視で例えばその全部を上側から覆われることとなり、図12に示すように工作物Wから受光部37aに向けて落下する水滴等をレンズフード39により遮ることができる。これにより、付着物除去手段5による付着物の除去が不十分で、測定位置Aの近傍で工作物Wから水滴等が落下することがあったとしても、その水滴等による受光部37aの汚れを未然に防止して、外径寸法の測定精度の低下を阻止できる。
【0069】
測定位置Aを通過した工作物Wは、中間従動プーリ11上を通過して下流搬送経路Rcに入る。下流搬送経路Rc上では、上流搬送経路Ra側とは逆に左右の搬送ベルト15の間隔がXaからXbまで徐々に広くなり、また上流搬送経路Ra側と同様に搬送ベルト15が上向きの滑らかな略円弧状に形成されたガイド面16に沿って摺動するため、工作物Wを安定的に搬送できる。
【0070】
また、上流搬送経路Ra側と同様に、左右の搬送ベルト15の左右外側に沿って一対のベルトガイド26及びワークガイド27が配設されているため、ベルトガイド26により左右の搬送ベルト15の間隔が一定以上開くことはなく、また搬送ベルトの左右振動を抑制することができ、更に仮に搬送ベルト15が若干不安定な状態になったとしてもワークガイド27により工作物Wの落下を防止でき、工作物Wを更に安定的に搬送できる。
【0071】
下流搬送経路Rc上を搬送された工作物Wは、その下流搬送経路Rcの最下流側において工作物受入部3aを介して下流側装置3側に受け渡される。
【0072】
以上、本発明の各実施形態について例示したが、本発明は各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。例えば、搬送ベルト15は線状のものであればよく、その断面形状は四角形、八角形等の多角形であってもよい。また、搬送ベルト15は複数本の線材を縒り線状にしたものに限られるものではなく、1本の線材により構成してもよい。
【0073】
また、搬送ベルト15の材質は、鋼以外の金属、ゴム、合成樹脂等、どのようなものでもよく、その搬送ベルト15の外径、必要強度、搬送する被測定物の種類等に応じて適宜選択すればよい。また、搬送ベルト15の外径や左右の間隔、搬送経路Rの長さ等についても、被測定物の外径や長さ等に応じて適当な値に設定すればよい。
【0074】
搬送ベルト15は、実施形態のように1本の無端ベルトで構成する他、左右2本の無端ベルトで構成してもよい。
【0075】
レーザ測定装置6を構成する投光手段36と受光手段37とは、どちらを上に配置してもよく、例えば搬送経路Rの下側に投光手段36を、上側に受光手段37を夫々配置してもよい。この場合には、下側の投光手段36側にレンズフード(覆い部材)39を設ければよい。
【0076】
投光手段36と受光手段37とは、被測定物Wから落下する水滴等による汚れを防止するという観点からは実施形態のように搬送方向に対して後下がりの傾斜状に配置することが望ましいが、例えば上下略鉛直に配置してもよく、また搬送経路Rに対して前下がりの傾斜状(後下がりの傾斜状とは逆に、搬送方向上流側(後)から下流側(前)に向けて低くなるように傾斜した状態をいうものとする)に配置してもよい。
【0077】
また、実施形態のように投光手段36と受光手段37とを搬送方向に対して後下がりの傾斜状に配置した場合には、レンズフード(覆い部材)39は、レーザ光を遮断することのないように、搬送経路Rの下側に配置される投光手段36又は受光手段37の上方を上流側から覆うように設ける必要があるが、投光手段36と受光手段37とを搬送方向に対して前下がりの傾斜状に設ける場合には、レンズフード(覆い部材)39は逆に下流側から覆うように設ければよい。なお、レンズフード(覆い部材)39は設けることが望ましいが、省略してもよい。
【0078】
実施形態では、駆動プーリ8と従動プーリ9との間に2つの中間従動プーリ10,11を配置して、その2つの中間従動プーリ10,11により搬送ベルト15を左右方向内向きに案内するように構成したが、その他の案内手段、例えばベルトガイド26等により搬送ベルト15を内向きに案内するように構成してもよい。また、実施形態で用いた中間従動プーリ10,11に代えて、上下方向の回転軸を有する左右一対の従動プーリを測定位置Aの上流側及び下流側に夫々配置し、それら2組の従動プーリにより搬送ベルト15を左右方向内向きに案内するように構成してもよい。
【0079】
搬送ベルト15の振動等を抑制して安定的な搬送を実現するためには、実施形態のようなガイド手段16を設けて搬送経路R上の搬送ベルト15を上向きの略円弧状に案内することが望ましいが、このガイド手段は例えば上流搬送経路Ra、下流搬送経路Rcにおいて搬送ベルト15をその下側に沿って直線状に案内するものであってもよい。また、ガイド手段16は省略してもよい。
【0080】
付着物除去手段5は、実施形態のようにエアブロー装置31とバキューム装置32とで構成することが最も望ましいが、本発明の場合には少なくとも被測定物Wの側面側の水滴等を除去できれば測定精度への悪影響を排除できるため、例えばエアブロー装置31を省略してバキューム装置32のみを設けてもよい。もちろん、バキューム装置32を省略してエアブロー装置31のみを設けてもよい。また、付着物除去手段5は上流搬送経路Ra上に何組配置してもよく、省略してもよい。
【0081】
外径寸法測定装置の寸法等、例えば搬送ベルト15の太さ、間隔、材質、搬送経路Rの距離、搬送速度等については、被測定物の大きさ(外径、長さ等)、重量、上流側装置2からの被測定物の供給間隔等に応じて適当な値に設定すればよい。
【0082】
なお、一般的に小径、軽量の被測定物ほど搬送状態が不安定で寸法の測定精度も低くなる傾向にある。本発明は、被測定物に応じて適切な設計値を採用することで、円筒表面を有する工作物等であればどのような大きさ、重量のものであっても被測定物とすることができるが、特に小径、軽量の被測定物を用いる場合に、被測定物の安定搬送、高精度測定等の効果を顕著に得ることができる。
【0083】
【発明の効果】
本発明は、搬送経路に沿って左右並列に配設され且つ円筒表面を有する被測定物を下側左右において支持しつつその軸方向に搬送する線状の搬送ベルトと、搬送経路上の所定の測定位置を挟んで配置された投光手段と受光手段とを有するレーザ測定装置とを備え、被測定物の外径寸法を搬送ベルトによる搬送中にレーザ測定装置により測定可能に構成された外径寸法測定装置において、レーザ測定装置の投光手段と受光手段とを搬送経路に対して略上下に配置すると共に、搬送経路上における測定位置を含む所定範囲においては搬送ベルトの間隔をその搬送ベルトが完全に被測定物の下側に入るように狭くし、搬送経路上における所定範囲以外の部分においては搬送ベルトの間隔を所定範囲におけるそれよりも広くしているため、被測定物の安定的な搬送を実現しつつ、被測定物の表面に付着した水分等による測定精度への影響を極力小さくして高精度の測定が可能となる。
【0084】
また、搬送経路上の搬送ベルトを上向きの略円弧状に案内するガイド手段を備えることにより、搬送ベルトの上下方向への振動を抑制でき、更に安定した搬送が可能となる。
【0085】
投光手段と受光手段とを搬送方向に斜めに配置すると共に、測定位置の下側に配置した投光手段又は受光手段の上方を上流側から覆う覆い部材を設けることにより、被測定物の表面に付着した水滴等が測定位置の近傍で落下することがあったとしても、その水滴等による投光手段又は受光手段の汚れを未然に防止して、外径寸法の測定精度の低下を阻止できる。
【0086】
測定位置よりも上流側で且つ搬送経路の下側に、負圧源に接続された吸引口を略上向きに配置することにより、被測定物の表面、とりわけ側面から下面側にかけて付着した水滴等の付着物を除去することができ、外径寸法の測定精度への悪影響を排除できる。
【0087】
更に搬送経路の上側で且つ吸引口に対応する位置に、空気を噴射する噴射口を略下向きに配置することにより、被測定物の表面の付着物を更に効率的に除去できる。
【0088】
搬送ベルトを1本の無端ベルトにより構成し、搬送経路以外の位置で交差させて配設することにより、搬送経路に沿って走行する左右の搬送ベルトに速度差が生じることがなく、被測定物をより安定的に搬送することができる。
【0089】
投光手段から照射されたレーザ光の一部が被測定物により遮られている間の経過時間と被測定物の搬送速度とに基づいて被測定物の長さ寸法を測定可能に構成されているため、被測定物の外径寸法と長さ寸法とを1つのレーザ測定装置を用いて同時に測定することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す外径寸法測定装置の全体側面図である。
【図2】本発明の一実施形態を示す外径寸法測定装置の全体平面図である。
【図3】本発明の一実施形態を示す外径寸法測定装置の全体斜視図である。
【図4】本発明の一実施形態を示す搬送ベルトの全体配設図である。
【図5】本発明の一実施形態を示す搬送ベルトの搬送経路上の配設図である。
【図6】本発明の一実施形態を示す駆動プーリの部分正面図である。
【図7】本発明の一実施形態を示す従動プーリ近傍の部分断面図である。
【図8】本発明の一実施形態を示す中間従動プーリ近傍の部分断面図である。
【図9】本発明の一実施形態を示すテンションプーリ近傍の部分断面図である。
【図10】本発明の一実施形態を示す付着物除去手段近傍の部分断面図である。
【図11】本発明の一実施形態を示す測定制御系の概略ブロック図である。
【図12】本発明の一実施形態を示すレンズフードによる効果の説明図である。
【図13】本発明の一実施形態を示す長さ寸法測定の説明図である。
【図14】本発明の一実施形態を示す測定位置における搬送ベルト及び被測定物の断面図である。
【符号の説明】
1 外径寸法測定装置
6 レーザ測定装置
15 搬送ベルト
16 ガイド面(ガイド手段)
31a 噴射口
33 吸引口
35a 負圧源
36 投光手段
37 受光手段
39 レンズフード(覆い部材)
R 搬送経路
A 測定位置
W 工作物(被測定物)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an outer diameter measuring device for measuring an object to be measured having a cylindrical surface, such as a cylindrical workpiece, by a laser measuring device while being conveyed by a conveying belt.
[0002]
[Prior art]
For example, in a centerless grinding machine, an outer diameter measuring device having a transport conveyor and a laser measuring device is disposed downstream of the workpiece, and the workpiece (measurement target) is transferred while the workpiece after through feed grinding is transported by the transport conveyor. The outer diameter of the workpiece is measured online with a laser measuring device to control the dimensions of all workpieces.
[0003]
As the outer diameter measuring device used here, for example, a transport conveyor using a pair of left and right transport belts is used, and the light emitting unit and the light receiving unit of the laser measuring device face each other across the transport path. An arrangement is known (for example, see Patent Document 1). In this outer diameter measuring device, the object to be measured is conveyed in the axial direction while being supported by a conveyor belt at the lower left and right sides, and the object to be measured being conveyed is irradiated with a laser beam in a lateral direction to radiate the outer diameter. Is to be measured.
[0004]
In this type of outer diameter measuring device, a laser beam is applied to the object being transported from the lateral side, so that at least at the measurement position by the laser measuring device, the transport belt is completely positioned on the lateral side of the object to be measured. It is necessary to widen the distance between the left and right conveyor belts to such an extent that the object to be measured is stabilized. There is an advantage that a stable measurement can be performed by preventing a tilt and a tilt.
[0005]
[Patent Document 1]
JP-A-1-134608
[0006]
[Problems to be solved by the invention]
The outer diameter measurement device described in Patent Literature 1 has the above advantages, but has the following disadvantages. That is, when an object to be measured with a grinding liquid or the like adhered thereto is supplied onto the conveyor belt from the upstream grinding process, the water of the object accumulates below the object to be measured during the conveyance, and this is irradiated laterally. There is a possibility that the laser beam may be cut off to deteriorate the measurement accuracy of the external dimensions.
[0007]
The present invention has been made in view of the above-mentioned conventional problems, and realizes stable transport of an object to be measured while minimizing the influence on the measurement accuracy due to moisture or the like adhering to the surface of the object to be measured. It is an object of the present invention to provide an outer diameter measurement device capable of measuring the outer diameter.
[0008]
[Means for Solving the Problems]
The present invention is directed to a linear transport belt that is disposed in parallel on the right and left along a transport path and supports an object to be measured having a cylindrical surface on the lower left and right sides and transports the object in the axial direction thereof; A laser measuring device having a light projecting means and a light receiving means arranged with the measuring position interposed therebetween, wherein the outer diameter dimension of the object to be measured can be measured by the laser measuring device while being conveyed by the conveying belt. In the outer diameter dimension measuring device, the light emitting means and the light receiving means of the laser measuring device are arranged substantially vertically with respect to the transport path, and in a predetermined range including the measurement position on the transport path. The distance between the conveyor belts is narrowed so that the conveyor belt completely enters the lower side of the object to be measured. Septum is those wider than that in the predetermined range.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 to 14 illustrate one embodiment of the present invention. 1 to 3, reference numeral 1 denotes an outer diameter measuring device which is disposed between an upstream device 2 such as a centerless grinding machine disposed on the upstream side and a downstream device 3 disposed on the downstream side. I have.
[0010]
The outer diameter measuring apparatus 1 is for measuring the outer diameter of a workpiece (object to be measured) W having a cylindrical surface, such as a cylindrical workpiece after through-feed grinding by a centerless grinding machine, while transporting the workpiece online. The transport means 4 transports the workpiece W along a transport path R between the workpiece discharge section 2a of the upstream apparatus 2 and the workpiece receiving section 3a of the downstream apparatus 3, and the transport means 4 transports the workpiece W. An adhering substance removing means 5 for removing adhering substances such as moisture from the surface of the workpiece W therein; a laser measuring device 6 disposed near the measuring position A on the transport path R; A base plate 7 for directly or indirectly supporting the removing means 5, the laser measuring device 6, and the like. The base plate 7 is disposed substantially vertically along the transport path R, for example, on the left side in the transport direction of the transport path R. In the following description, the terms “left”, “right”, and “left” and “right” refer to the right and left with respect to the transport direction unless otherwise specified.
[0011]
The transport unit 4 includes a drive pulley 8, a driven pulley 9, intermediate driven pulleys 10, 11, a tension pulley 12, a drive motor 13, a guide plate 14, a transport belt 15, and the like.
[0012]
The guide plate 14 is for guiding the transport belt 15 along the transport path R, is formed in a vertical flat plate shape that is long in the transport path R direction, and is detachably fixed to one surface side of the base plate 7. Have been. An end surface on the upper edge side of the guide plate 14 serves as a guide surface (guide means) 16 for guiding the transport belt 15 along the transport path R, and is formed in a gentle upward substantially arc shape. That is, the transport path R has a substantially arc shape along the guide surface 16.
[0013]
The lower edge side of the guide plate 14 is substantially linear along the return path Rr that returns the transport belt 15 from the downstream side of the transport path R to the upstream side of the transport path R, at an arbitrary interval from the transport belt 15. Is formed.
[0014]
The guide plate 14 has cutouts 17 and 18 at the downstream end and the upstream end, respectively, for disposing the drive pulley 8 and the driven pulley 9, respectively. Has a notch 19 having a concave shape for arranging the laser measuring device 6, which is inclined downward and downward with respect to the transport direction corresponding to the measurement position A on the transport path R. The “rear-falling slope” refers to a state in which the sheet is inclined so as to become lower from the downstream side (front) in the transport direction toward the upstream side (rear). Further, cutouts 20 and 21 for disposing the intermediate driven pulleys 10 and 11 are formed at the upper edge side of the guide plate 14 and at the respective upstream and downstream corners of the cutout 19.
[0015]
The drive pulley 8 is for driving the transport belt 15 along the transport path R, and is arranged below the lowermost downstream side of the transport path R corresponding to the notch 17 of the guide plate 14. For example, it is rotatably supported by a rotating shaft 8a projecting vertically and horizontally from the base plate 7 side to the transport path R. The rotating shaft 8a is connected to a driving shaft 13a of the driving motor 13 via a gear 22 and the like. The driving pulley 8 can rotate at a constant speed in the direction of the arrow α (FIG. 1) by driving the driving motor 13. ing. As shown in FIG. 6, a pair of left and right guide grooves 23a and 23b around which the transport belt 15 is wound are formed in an annular shape on the outer peripheral surface of the drive pulley 8. The guide grooves 23a and 23b are formed, for example, in a V-shaped cross section.
[0016]
The drive pulley 8 is configured so that the tension of the transport belt 15 can be adjusted. That is, the drive motor 13 is mounted on the base plate 7 side via the support plate 13b together with the rotating shaft 8a supporting the drive pulley 8, the gear 22, and the like so that the position in the transport direction can be adjusted. Is adjusted in the transport direction with respect to the base plate 7, so that the position of the drive pulley 8 in the transport direction can be adjusted to adjust the tension of the transport belt 15. The tension adjusting mechanism may be provided, for example, on the driven pulley 9 side.
[0017]
The driven pulley 9 guides the transport belt 15 from the return route Rr to the transport route R while supporting the transport belt 15 driven by the drive pulley 8 while supporting the transport belt 15 on the upstream side of the transport route R. Corresponding to the notch 18 of the plate 14, it is arranged below the most upstream side of the transport path R. The driven pulley 9 is rotatably supported by, for example, a rotating shaft 9a protruding from the guide plate 14 perpendicularly and horizontally to the transport path R. As shown in FIG. Are formed in a ring shape. The distance between the guide grooves 24a and 24b is substantially equal to the distance between the guide grooves 23a and 23b on the drive pulley 8 side, for example. The guide grooves 24a and 24b are formed, for example, in a V-shaped cross section.
[0018]
The transport belt 15 is, for example, a single endless belt having a substantially circular cross-section formed by twisting a plurality of steel wires, and along the transport path R above the driving pulley 8 and the driven pulley 9. The drive pulley 8 and the driven pulley 9 are wound around the drive pulley 8 and the driven pulley 9 so as to be parallel to each other and below the drive pulley 8 and the driven pulley 9 such that the left and right cross at one place on the return path Rr.
[0019]
That is, as shown in FIG. 4, for example, as shown in FIG. 4, the upper side of the drive pulley 8 and the driven pulley 9, that is, the left side guide groove 23 a and the right side guide groove 23 b on the transfer path R side. Under the drive pulley 8 and the driven pulley 9, that is, on the return path Rr side, the left guide groove 23 a and the right guide groove 24 b, and the right guide groove 23 b and the left guide groove 24 a are respectively connected. It is wound.
[0020]
The workpiece W supplied from the workpiece discharge unit 2a of the upstream device 2 to the most upstream side of the transport path R is transport belts disposed in parallel on the right and left along the transport path R as shown in FIG. The paper is conveyed in the axial direction while the lower left and right sides are supported by 15. At this time, since the transport belt 15 is constituted by one endless belt, there is no speed difference between the left and right transport belts 15 traveling along the transport route R, and the workpiece W is transported stably. be able to.
[0021]
In the present embodiment, the guide grooves 23a and 23b on the driving pulley 8 side and the guide grooves 24a and 24b on the driven pulley 9 side are both V-shaped in cross section. However, other shapes such as arc-shaped cross section are adopted. Is also good.
[0022]
The intermediate driven pulleys 10 and 11 guide the left and right transport belts 15 on the transport path R such that the distance between them is a predetermined width at the measurement position A. Correspondingly, it is arranged below the transport path R on the upstream side and the downstream side of the measurement position A. These intermediate driven pulleys 10 and 11 are rotatably supported by, for example, rotating shafts 10 a and 11 a projecting vertically and horizontally from the guide plate 14 to the transport path R, and guide the transport belt 15 on the outer peripheral surface thereof. A guide groove 25 (FIG. 8) is formed in an annular shape, and the left and right conveyor belts 15 are hung on the guide groove 25 on the upper side thereof.
[0023]
The guide groove 25 is formed, for example, in a rectangular shape in cross section as shown in FIG. 8, and the left and right conveyor belts 15 face inward at left and right inner corners 25a and 25b (hereinafter, referred to as guide portions). Are guided in the transport direction while being held in a direction to reduce the distance between the two.
[0024]
Here, the guide grooves 25 of the intermediate driven pulleys 10 and 11 are set so that the distance between the left and right transport belts 15 at the measurement position A is a predetermined value Xa where the left and right transport belts 15 completely enter the lower side of the workpiece W. The guide grooves 23a and 23b on one driving pulley 8 and the guide grooves 24a and 24b on the driven pulley 9 side determine the distance between the left and right conveyor belts 15 at the measurement position A. The width in the left-right direction is set so as to be a predetermined value Xb wider than Xa. The interval Xb may be set to be wide enough that the workpiece W does not drop from between the left and right transport belts 15 during transport, and the left and right transport belts 15 may project right and left from below the workpiece W. .
[0025]
As a result, as shown in FIG. 5, the distance between the left and right transport belts 15 on the transport path R is constant Xa between the intermediate driven pulleys 10 and 11 (an example of a predetermined range) (hereinafter referred to as a measurement transport path Rb). In the space between the driven pulley 9 and the intermediate driven pulley 10 (hereinafter, referred to as the upstream transport path Ra), the distance gradually decreases from Xb to Xa, and between the intermediate driven pulley 11 and the driving pulley 8 (hereinafter, the downstream transport path Ra). Rc) is held so as to gradually expand from Xa to Xb.
[0026]
In the upstream transport path Ra and the downstream transport path Rc, the transport belt 15 slides on the guide surface 16 of the guide plate 14 and is guided in a gentle upward upward arc shape, and the guide surface 16 is divided by the notch 19. In the measurement transport path Rb, the transport belt 15 is held substantially horizontally, for example, only by its tension.
[0027]
A pair of belt guides 26 and a work guide 27 are provided on the guide surface 16 of the guide plate 14 along the left and right outer sides of the left and right transport belts 15. The belt guide 26 is for regulating the displacement of the left and right transport belts 15 sliding on the guide surface 16 in the outward direction (in a direction in which the interval between them becomes wider) at a predetermined position. The upper transport path Ra is formed such that the inner side surface 26a on the side of the transport belt 15 substantially contacts the left and right outer sides of the left and right transport belts 15 on the upstream transport path Ra and the downstream transport path Rc, or has a slight gap. And on the guide surface 16 of the downstream transport path Rc.
[0028]
That is, the belt guide 26 has a narrower space between the left and right inner side surfaces 26a on the intermediate driven pulleys 10 and 11 side in response to a change in the space between the left and right transfer belts 15 in the upstream transfer path Ra and the downstream transfer path Rc. The driven pulley 9 and the driving pulley 8 are arranged to be wider on the side. If the change in the interval between the left and right conveyor belts 15 in the conveyance path R is very small, the inner side surface 26a of the belt guide 26 may be parallel regardless of the change in the interval between the conveyor belts 15. Further, in the present embodiment, the height of the belt guide 26 from the guide surface 16 is substantially the same as the outer diameter of the conveyor belt 15, but at least the displacement of the conveyor belt 15 to the outside can be restricted, for example, What is necessary is just to be larger than the radius of the belt 15.
[0029]
The work guide 27 is for preventing the workpiece W conveyed on the transport path R from dropping from the transport belt 15, and the interval between the inner side surfaces 27 a on the workpiece W side (the transport belt 15 side) is reduced. It is arranged on the belt guide 26 in the upstream transport path Ra and the downstream transport path Rc so as to have a predetermined interval wider than the outer diameter of W. The work guide 27 is detachably fixed to the guide surface 16 by a fixing means 28 such as a bolt together with the belt guide 26, for example.
[0030]
The work guide 27 may be any as long as it can prevent the workpiece W from falling off from the conveyor belt 15 in the left-right direction. For example, the uppermost position of the inner side surface 27a is the middle position of the workpiece W in the vertical direction. It is desirable to make it as high as or higher than.
[0031]
Further, by setting various conditions such as the tension setting of the transport belt 15, the weight of the workpiece W, the maximum number of the workpieces W simultaneously placed on the transport belt 15, and the transport speed, the transport in the upstream transport path Ra and the downstream transport path Rc is performed. When the displacement of the belt 15 to the outside can be kept within the allowable range, or when the possibility of the workpiece W falling off is low, one or both of the belt guide 26 and the work guide 27 are omitted. You may.
[0032]
The tension pulley 12 is for maintaining a constant interval between the two near the intersection so that the conveyor belt 15 does not contact each other at the intersection on the return path Rr side. It is attached to the lower side of the guide plate 14.
[0033]
As shown in FIG. 9, the tension pulley 12 has, for example, a guide groove 30 having an arc-shaped cross section formed in an annular shape on the outer peripheral surface thereof, and is provided on one end side of the support arm 29 with the rotation shaft 8 a of the drive pulley 8 and the like. It is rotatably supported by a parallel rotating shaft 12a. Further, the support arm 29 is arranged at a substantially intermediate portion of the return path Rr, and in a state where the tension pulley 12 at one end thereof projects below the guide plate 14, the support arm 29 is moved in the transport direction with respect to the side surface of the guide plate 14. It is swingably and detachably mounted, and can be fixed at a predetermined swing position. As shown in FIG. 9, the tension pulley 12 is supported by a rotating shaft 12a at a position displaced from one end of the support arm 29 to the conveyor belt 15 side.
[0034]
As shown in FIG. 4 and the like, the tension pulley 12 hooks the lower one of the conveyor belts 15 crossing each other on the return route Rr side by hooking the lower part of the conveyor belt 15 in the guide groove 30 and pushes the lower part of the conveyor belt 15 with the upper conveyor belt 15 A certain interval is secured between them to prevent mutual contact at the intersection. By adjusting the swinging position of the support arm 29 and changing the amount by which the tension pulley 12 is pushed down, the tension of the transport belt 15 can be finely adjusted.
[0035]
Note that the support arm 29 is not fixed to the guide plate 14 while being freely swingable, but the weight of the support arm 29 and the tension pulley 12 is applied to the conveyor belt 15 side so that the contact at the intersection of the conveyor belt 15 is prevented. It may be configured to keep the tension constant while preventing the tension. Further, the tension adjustment mechanism on the drive pulley 8 side may be omitted, and the tension of the transport belt 15 may be adjusted only by the tension pulley 12.
[0036]
The adhering matter removing means 5 is for removing moisture such as grinding fluid and other foreign matter from the surface of the workpiece W being transported on the transport route R, and is an air blow that injects dry air from above the workpiece W. The apparatus includes a device 31 and a vacuum device 32 for sucking moisture and the like from the lower side of the workpiece W, and one or more sets, for example, two sets, are arranged along the upstream transport path Ra.
[0037]
As shown in FIG. 10 and the like, the vacuum device 32 includes a suction port 33 formed in an upward opening shape on the guide surface 16 of the guide plate 14 corresponding to the space between the left and right conveyor belts 15, and the suction port 33. A vertical suction passage formed downward in the guide plate; and a horizontal suction passage extending horizontally from a lower end of the vertical suction passage and having an end connected to a negative pressure source a. ing.
[0038]
In addition, the air blow device 31 is connected to a compressed air supply source (not shown), and has an injection port 31 a for injecting dry air directed downward so as to face the suction port 33 of the vacuum device 32. It is arranged above the upstream conveyance path Ra, and is detachably fixed to, for example, the base plate 7.
[0039]
The adhering matter removing means 5 injects dry air from above into the workpiece W being conveyed by the air blow device 31 to remove water such as grinding fluid and the like adhering from the upper side of the workpiece W to both left and right sides. The foreign matter is blown off toward the lower side of the workpiece W, and the vacuum device 32 sucks moisture or the like adhering from both left and right sides of the workpiece W to the lower side, so that the workpiece is located upstream of the measurement position A. Deposits on the surface of W are removed.
[0040]
Here, since the transport belt 15 is formed, for example, in a twisted wire shape, there are slight irregularities on the outer peripheral surface thereof, and moisture on both the left and right sides of the workpiece W is transported, for example, by the suction force of the vacuum device 32. It passes through the gap between the slight unevenness on the outer peripheral surface of the belt 15 and the outer peripheral surface of the workpiece W, is collected on the lower side of the workpiece W, and is sucked into the suction port 33.
[0041]
The air sucked into the suction port 33 together with the moisture and the like is guided to the vacuum device 32 through a vertical suction passage 34 and a horizontal suction passage 35 as shown in FIG. A filter is provided on the vacuum device 32 side, and only water and the like are removed by the filter.
[0042]
The adhering matter removing means 5 may be operated at all times during the operation of the outer diameter measuring device 1, or only during a period when the workpiece W passes between the air blow device 31 and the vacuum device 32. You may make it operate.
[0043]
The laser measuring device 6 is used to measure the outer diameter of the workpiece W being transported on the transport path R at the measurement position A on the measurement transport path Rb. A light projecting unit 36 for irradiating the workpiece W with the laser beam L, and a light receiving unit 37 for receiving the laser beam L emitted from the projecting unit 36 toward the workpiece W on the back side of the workpiece W are provided.
[0044]
The light projecting means 36 and the light receiving means 37 are arranged substantially vertically above and below the transport path R with the measurement position A interposed therebetween and in a downwardly inclined shape with respect to the transport direction (for example, an inclination angle of about 30 ° from the vertical direction). ing. That is, the light receiving unit 37 is disposed in the notch 19 of the guide plate 14 provided below the measurement position A with the light receiving unit 37a facing obliquely upward on the downstream side. The light projecting portion 36a is disposed above the measurement position A in a state where the light projecting portion 36a faces the light receiving portion 37a of the light receiving means 37 and is obliquely directed downward on the upstream side. It is detachably fixed to the side.
[0045]
Here, if the mounting plate 38 is configured to be position-adjustable with respect to the base plate 7, for example, the position adjustment with respect to the transport path R can be performed while maintaining the relative positional relationship between the light projecting means 36 and the light receiving means 37. it can.
[0046]
In addition, a lens hood (covering member) 39 that covers the upper side of the light receiving unit 37a from the upstream side is provided on the light receiving unit 37 side. The lens hood 39 is provided so as to cover the widest possible range on the light receiving portion 37a from the upstream side in a range where the laser beam L from the light emitting means 36 is not blocked. Also, it is arranged in an inclined manner so as to be low, and is detachably fixed to the mounting plate 38 and the like. The lens hood 39 may be attached to the light receiving means 37.
[0047]
Since the light projecting means 36 and the light receiving means 37 are arranged in a downwardly inclined shape with respect to the transport direction, the lens hood 39 is, for example, the entire light receiving area (shown by hatching in FIG. 12) of the light receiving section 37a in plan view. Is covered from the upper side, and all of the water droplets and the like falling from the workpiece W toward the light receiving area of the light receiving portion 37a can be blocked by the lens hood 39. As a result, even if the adhering material is not sufficiently removed by the adhering material removing means 5 and water droplets or the like fall from the workpiece W in the vicinity of the measurement position A, the light receiving portion 37a is contaminated by the water droplets or the like. This can be prevented beforehand and a decrease in the measurement accuracy of the outer diameter can be prevented.
[0048]
Furthermore, since the lens hood 39 is arranged in an inclined manner so that the upstream side in the transport direction is lower than the downstream side, water droplets and the like that have fallen on the lens hood 39 flow down toward the upstream side of the light receiving unit 37, It does not fall to the light receiving section 37a side.
[0049]
The laser measuring device 6 is connected to a measurement control means 40 constituted by a predetermined computer as shown in FIG. The measurement control means 40 is for controlling the laser measuring device 6 to calculate the outer diameter of the workpiece W and the like, and based on the light receiving distribution information obtained from the light receiving means 37 side, the laser blocked by the workpiece W The outer diameter of the workpiece W is calculated based on the range of light.
[0050]
Further, the measurement control means 40 is connected to a transport speed measuring means 41 for measuring the transport speed of the workpiece W by the transport means 4. The transport speed measuring means 41 measures the transport speed of the workpiece W measured by the transport speed measuring means 41. Based on this, it is possible to calculate not only the outer diameter of the workpiece W but also its length. That is, the measurement control unit 40 determines the workpiece W based on the elapsed time during which part of the laser light is blocked by the workpiece W and the transport speed of the workpiece W measured by the transport speed measurement unit 41. Can be calculated.
[0051]
As the transport speed measuring means 41, for example, an encoder pulse device or the like that generates a pulse each time the drive motor 13 drives the transport belt 15 by a fixed amount, that is, each time the workpiece W is transported by a fixed distance can be used. In this case, the measurement control means 40 determines the transport distance (corresponding to the transport speed) corresponding to one pulse and the number of pulses (corresponding to the elapsed time) generated while a part of the laser light is blocked by the workpiece W. And the length of the workpiece W can be calculated.
[0052]
Further, by using the transport speed measuring means 41, for example, when a defective workpiece is detected by the measurement by the measurement control means 40, it is also possible to control so as to pay out the defective workpiece a predetermined distance downstream after the measurement. It is possible.
[0053]
The laser measuring device 6 may be always operated during the operation of the outer diameter measuring device 1, or may be, for example, in a predetermined section including the measuring position A, for example, on the measuring transport path Rb. May be operated only during the operation.
[0054]
Next, an operation of measuring the outer diameter of the workpiece W by the outer diameter measuring apparatus 1 having the above configuration will be described.
[0055]
When the outer diameter measuring device 1 is operated, the drive motor 13 drives the transport belt 15 at a constant speed, and the attached matter removing means 5 and the laser measuring device 6 start operating. When the drive motor 13 starts driving at a constant speed, a pulse is output at every constant drive distance from the transport speed measuring means 41 composed of an encoder pulse device.
[0056]
When the upstream apparatus 2 including a centerless grinding machine or the like starts operating, a workpiece W after through-feed grinding, for example, is moved from the workpiece discharge section 2a to the most upstream side of the transport path R of the outer diameter measuring apparatus 1 by a predetermined amount. Supplied every hour. The workpiece W supplied from the workpiece discharge unit 2a is transported in the axial direction on the upstream transport path Ra on the driven pulley 9 or in the vicinity thereof while the lower left and right sides thereof are supported by the left and right transport belts 15. Is done.
[0057]
On the most upstream side of the upstream transport path Ra, the interval between the left and right transport belts 15 is, for example, Xb which is sufficiently wide as long as the workpiece W does not fall from between them. Is transported while being stably held.
[0058]
In addition, on the upstream transport path Ra, the transport belt 15 slides along the guide surface 16 formed in an upwardly smooth, substantially arcuate shape, so that the vertical vibration of the transport belt 15 can be suppressed, and W can be transported more stably.
[0059]
Further, on the upstream transport path Ra, since a pair of belt guides 26 and work guides 27 are disposed along the left and right outer sides of the left and right transport belts 15, for example, a large number of workpieces W are simultaneously placed on the transport belt 15. Even if they are placed, the interval between the left and right transport belts 15 is not opened by a certain amount or more by the belt guide 26, and the left and right vibration of the transport belts can be suppressed. The workpiece W can be prevented from dropping by the work guide 27 even when the workpiece W is in a proper state, and the workpiece W can be transported more stably.
[0060]
When the workpiece W passes through the two adhering matter removing means 5 during the transport along the upstream transport path Ra, dry air is injected from the upper side of the workpiece W by the air blow device 31, whereby the upper side of the workpiece W From the left and right sides of the workpiece W and the other foreign substances are blown downward, and are attached from the left and right sides of the workpiece W to the lower side by the vacuum device 32 on the lower side of the workpiece W. Moisture and the like are sucked. Thereby, the deposits on the outer peripheral surface of the workpiece W are clearly removed in the upstream transport path Ra.
[0061]
Here, the air blow device 31 and the vacuum device 32 that constitute the attached matter removing means 5 both act to press the workpiece W toward the transport belt 15, that is, downward, so that even the lightweight workpiece W is transported. There is an advantage that it is not easily blown off from the belt 15. In addition, by using the air blow device 31 and the vacuum device 32 together, water droplets and the like can be efficiently removed with a small amount of energy, and mist is hardly generated and noise is reduced as compared with a case where only the air blow device is used, for example. There is also the advantage of being able to do it.
[0062]
While the workpiece W is being transported along the upstream transport path Ra, the interval between the left and right transport belts 15 gradually decreases from Xb, and the workpiece W is placed on the intermediate driven pulley 10 on the most downstream side of the upstream transport path Ra. Is reached at the point of time Xa, and is held at this Xa on the measurement transport path Rb. At this time, the left and right conveyor belts 15 are completely under the workpiece W as shown in FIG.
[0063]
Further, on the measurement transport path Rb, the guide surface 16 for guiding the transport belt 15 is interrupted, and the workpiece W passes through the measurement position A while being held only by the tension of the left and right transport belts 15.
[0064]
When the front end side of the workpiece W approaches the measurement position A (indicated by a broken line in FIG. 13), a part of the laser light L emitted from the light projecting means 36 of the laser measuring device 6 toward the light receiving means 37 is emitted. As shown in FIG. 14, the workpiece W is shut off, and this state continues until the rear end of the workpiece W passes through the measurement position A (indicated by a solid line in FIG. 13).
[0065]
The measurement control unit 40 calculates the outer diameter of the workpiece W based on the range of the laser light L blocked by the workpiece W based on the light reception distribution information acquired from the light receiving unit 37, and The number of pulses emitted from the transport speed measuring means 41 during the laser light blocking period in which a part of the light L is blocked is counted, and the number of pulses and a predetermined transport distance corresponding to the one pulse are counted. The length dimension of the workpiece W is calculated based on the length.
[0066]
Here, at the measurement position A, the distance between the left and right transport belts 15 is maintained at Xa, and the transport belt 15 is completely under the workpiece W (FIG. 14). And the measurement accuracy of the outer diameter is not adversely affected.
[0067]
Further, the laser measuring device 6 is configured such that the light projecting means 36 and the light receiving means 37 are arranged substantially vertically with respect to the transport path R, so that the laser beam is irradiated in the vertical direction of the workpiece W. For example, even if the moisture or the like on the outer peripheral surface of the workpiece W cannot be completely removed by the attached matter removing means 5, as shown in FIG. Since it accumulates on the lower side of the workpiece W that is not interrupted, the measurement accuracy of the outer diameter dimension can be maintained high.
[0068]
Further, the light projecting means 36 and the light receiving means 37 are disposed in a downwardly inclined shape with respect to the transport direction, and a lens hood 39 for covering the upper part of the light receiving part 37a from the upstream side is provided on the lower light receiving means 37 side. Since the light receiving area is provided, the light receiving area of the light receiving section 37a is, for example, entirely covered from above in plan view by the lens hood 39, and water drops falling from the workpiece W toward the light receiving section 37a as shown in FIG. Can be blocked by the lens hood 39. As a result, even if the adhering material is not sufficiently removed by the adhering material removing means 5 and water droplets or the like fall from the workpiece W in the vicinity of the measurement position A, the light receiving portion 37a is contaminated by the water droplets or the like. This can be prevented beforehand and a decrease in the measurement accuracy of the outer diameter can be prevented.
[0069]
The workpiece W having passed the measurement position A passes over the intermediate driven pulley 11 and enters the downstream transport path Rc. On the downstream transport route Rc, the interval between the left and right transport belts 15 gradually increases from Xa to Xb, contrary to the upstream transport route Ra, and the transport belt 15 is upwardly smooth as in the upstream transport route Ra. Since the workpiece W slides along the guide surface 16 formed in a substantially arc shape, the workpiece W can be stably transported.
[0070]
Further, similarly to the upstream conveyance path Ra side, since the pair of belt guides 26 and the work guide 27 are disposed along the left and right outer sides of the left and right conveyance belts 15, the distance between the left and right conveyance belts 15 is adjusted by the belt guides 26. Does not open more than a certain amount, the lateral vibration of the conveyor belt can be suppressed, and even if the conveyor belt 15 becomes slightly unstable, the work guide 27 can prevent the workpiece W from falling, The workpiece W can be transported more stably.
[0071]
The workpiece W transported on the downstream transport route Rc is transferred to the downstream device 3 via the workpiece receiving unit 3a at the most downstream side of the downstream transport route Rc.
[0072]
As described above, each embodiment of the present invention has been exemplified, but the present invention is not limited to each embodiment, and various changes can be made without departing from the spirit of the present invention. For example, the transport belt 15 may be a linear belt, and its cross-sectional shape may be a polygon such as a quadrangle or an octagon. Further, the transport belt 15 is not limited to a plurality of wires formed into a twisted wire shape, but may be constituted by a single wire.
[0073]
Further, the material of the transport belt 15 may be any material such as metal other than steel, rubber, and synthetic resin, and may be appropriately determined according to the outer diameter of the transport belt 15, the required strength, the type of the object to be transported, and the like. Just select. Further, the outer diameter, the left-right interval, the length of the transport path R, and the like of the transport belt 15 may be set to appropriate values according to the outer diameter, the length, and the like of the measured object.
[0074]
The transport belt 15 may be constituted by one endless belt as in the embodiment, or may be constituted by two left and right endless belts.
[0075]
Either of the light projecting means 36 and the light receiving means 37 constituting the laser measuring device 6 may be arranged on the upper side. For example, the light emitting means 36 is arranged below the transport route R, and the light receiving means 37 is arranged above. May be. In this case, a lens hood (covering member) 39 may be provided on the lower light projecting means 36 side.
[0076]
It is desirable that the light projecting means 36 and the light receiving means 37 are arranged in a downwardly inclined shape with respect to the transport direction as in the embodiment from the viewpoint of preventing contamination due to water drops or the like falling from the measured object W. May be arranged, for example, vertically substantially vertically, and may be inclined forward and downward with respect to the transport path R (as opposed to the downwardly inclined slope, from upstream (rear) to downstream (front) in the transport direction). (Referred to as a state inclined toward the lower side).
[0077]
Further, when the light projecting means 36 and the light receiving means 37 are arranged so as to be inclined backward and downward with respect to the transport direction as in the embodiment, the lens hood (covering member) 39 may block the laser light. It is necessary to provide the upper part of the light projecting means 36 or the light receiving means 37 disposed below the transport path R from the upstream side so that the light projecting means 36 and the light receiving means 37 are moved in the transport direction. On the other hand, when the lens hood (covering member) 39 is provided so as to be inclined forward and downward, the lens hood (covering member) 39 may be provided so as to cover the downstream side. Note that the lens hood (covering member) 39 is preferably provided, but may be omitted.
[0078]
In the embodiment, two intermediate driven pulleys 10 and 11 are arranged between the driving pulley 8 and the driven pulley 9, and the transport belt 15 is guided inward in the left-right direction by the two intermediate driven pulleys 10 and 11. However, the conveyance belt 15 may be configured to be guided inward by other guide means, for example, the belt guide 26 or the like. Further, instead of the intermediate driven pulleys 10 and 11 used in the embodiment, a pair of left and right driven pulleys having a vertical rotation axis are disposed on the upstream side and the downstream side of the measurement position A, respectively. May be configured to guide the transport belt 15 inward in the left-right direction.
[0079]
In order to realize stable conveyance by suppressing the vibration and the like of the conveyance belt 15, it is necessary to provide the guide unit 16 as in the embodiment and guide the conveyance belt 15 on the conveyance path R in an upward substantially arc shape. However, the guide means may guide the transport belt 15 linearly along its lower side in the upstream transport path Ra and the downstream transport path Rc, for example. Further, the guide means 16 may be omitted.
[0080]
The adhering matter removing means 5 is most preferably composed of an air blow device 31 and a vacuum device 32 as in the embodiment. However, in the case of the present invention, measurement is performed as long as at least water droplets on the side surface of the measuring object W can be removed. For example, the air blow device 31 may be omitted and only the vacuum device 32 may be provided, since an adverse effect on accuracy can be eliminated. Of course, the vacuum device 32 may be omitted and only the air blow device 31 may be provided. In addition, any number of sets of the adhering matter removing means 5 may be arranged on the upstream transport path Ra or may be omitted.
[0081]
Regarding the dimensions of the outer diameter measuring device, such as the thickness, interval, material, distance of the transport path R, and transport speed of the transport belt 15, the size (outer diameter, length, etc.), weight, It may be set to an appropriate value according to the supply interval of the device to be measured from the upstream device 2 and the like.
[0082]
In general, the smaller and lighter the object to be measured, the more unstable the transporting state and the lower the accuracy of dimension measurement. The present invention adopts an appropriate design value according to an object to be measured, so that the object to be measured can be any size and weight as long as the workpiece has a cylindrical surface. Particularly, when a small-diameter, lightweight object to be measured is used, effects such as stable conveyance of the object to be measured and high-accuracy measurement can be remarkably obtained.
[0083]
【The invention's effect】
The present invention provides a linear transport belt that is disposed in parallel on the right and left along a transport path and supports the DUT having a cylindrical surface on the lower left and right sides and transports in the axial direction thereof, and a predetermined belt on the transport path. An outer diameter configured to include a laser measuring device having a light projecting unit and a light receiving unit disposed with a measurement position interposed therebetween, and configured to be able to measure the outer diameter of the object to be measured by the laser measuring device while being conveyed by the conveying belt. In the dimension measuring device, the light projecting means and the light receiving means of the laser measuring device are arranged substantially vertically with respect to the transport path, and the distance between the transport belts is set within a predetermined range including the measurement position on the transport path. The width of the transport belt is narrowed to completely enter the lower side of the DUT, and the interval between the transport belts in portions other than the predetermined range on the transport path is wider than that in the predetermined range. While realizing Joteki transport, it is possible to influence as small as possible to the accurate measurement of the measurement accuracy due to moisture or the like attached to the surface of the object to be measured.
[0084]
In addition, the provision of the guide means for guiding the transport belt on the transport path in an upward substantially arcuate shape can suppress the vibration of the transport belt in the up-down direction, thereby enabling more stable transport.
[0085]
By arranging the light emitting means and the light receiving means obliquely in the transport direction and providing a covering member for covering the upper side of the light emitting means or the light receiving means arranged below the measurement position from the upstream side, the surface of the object to be measured is provided. Even if water droplets or the like adhering to the device may fall in the vicinity of the measurement position, contamination of the light emitting means or light receiving means by the water droplets or the like can be prevented beforehand, and a decrease in the measurement accuracy of the outer diameter can be prevented. .
[0086]
By arranging the suction port connected to the negative pressure source substantially upward on the upstream side of the measurement position and on the lower side of the transport path, the surface of the object to be measured, in particular, water droplets and the like adhered from the side surface to the lower surface side. Deposits can be removed, and adverse effects on the measurement accuracy of the outer diameter can be eliminated.
[0087]
Further, by arranging the ejection port for ejecting air substantially downward at a position corresponding to the suction port on the upper side of the transport path, it is possible to more efficiently remove the attached matter on the surface of the measured object.
[0088]
The transport belt is constituted by one endless belt, and is disposed so as to intersect at a position other than the transport path, so that there is no speed difference between the left and right transport belts traveling along the transport path, and the measured object Can be transported more stably.
[0089]
The length of the object to be measured can be measured based on the elapsed time and the transport speed of the object to be measured while a part of the laser light emitted from the light projecting means is blocked by the object to be measured. Therefore, the outer diameter dimension and the length dimension of the object to be measured can be simultaneously measured using one laser measuring device.
[Brief description of the drawings]
FIG. 1 is an overall side view of an outer diameter measuring device showing an embodiment of the present invention.
FIG. 2 is an overall plan view of an outer diameter measurement device showing an embodiment of the present invention.
FIG. 3 is an overall perspective view of an outer diameter measuring device showing an embodiment of the present invention.
FIG. 4 is an overall arrangement diagram of a conveyance belt showing one embodiment of the present invention.
FIG. 5 is an arrangement diagram of a conveyance belt on a conveyance path according to an embodiment of the present invention.
FIG. 6 is a partial front view of a drive pulley showing one embodiment of the present invention.
FIG. 7 is a partial cross-sectional view showing the vicinity of a driven pulley showing one embodiment of the present invention.
FIG. 8 is a partial cross-sectional view showing the vicinity of an intermediate driven pulley showing one embodiment of the present invention.
FIG. 9 is a partial cross-sectional view near a tension pulley showing one embodiment of the present invention.
FIG. 10 is a partial cross-sectional view showing the vicinity of an attached matter removing unit according to an embodiment of the present invention.
FIG. 11 is a schematic block diagram of a measurement control system showing one embodiment of the present invention.
FIG. 12 is an explanatory diagram of an effect of the lens hood showing one embodiment of the present invention.
FIG. 13 is an explanatory diagram of length measurement showing an embodiment of the present invention.
FIG. 14 is a cross-sectional view of a transport belt and a measured object at a measurement position according to an embodiment of the present invention.
[Explanation of symbols]
1 Outside diameter measuring device
6 Laser measuring device
15 Conveyor belt
16 Guide surface (guide means)
31a injection port
33 suction port
35a Negative pressure source
36 Light emitting means
37 Light receiving means
39 Lens hood (covering member)
R transport route
A Measurement position
W Workpiece (measured object)

Claims (7)

搬送経路に沿って左右並列に配設され且つ円筒表面を有する被測定物を下側左右において支持しつつその軸方向に搬送する線状の搬送ベルトと、前記搬送経路上の所定の測定位置を挟んで配置された投光手段と受光手段とを有するレーザ測定装置とを備え、前記被測定物の外径寸法を前記搬送ベルトによる搬送中に前記レーザ測定装置により測定可能に構成された外径寸法測定装置において、前記レーザ測定装置の前記投光手段と前記受光手段とを前記搬送経路に対して略上下に配置すると共に、前記搬送経路上における前記測定位置を含む所定範囲においては前記搬送ベルトの間隔をその搬送ベルトが完全に前記被測定物の下側に入るように狭くし、前記搬送経路上における前記所定範囲以外の部分においては前記搬送ベルトの間隔を前記所定範囲におけるそれよりも広くしたことを特徴とする外径寸法測定装置。A linear transport belt that is disposed in parallel on the right and left along the transport path and supports the object to be measured having a cylindrical surface on the lower left and right sides and transports the object in the axial direction, and a predetermined measurement position on the transport path. A laser measuring device having a light projecting means and a light receiving means interposed therebetween; and an outer diameter configured to be able to be measured by the laser measuring device while the object to be measured is being conveyed by the conveyor belt. In the dimension measuring device, the light projecting means and the light receiving means of the laser measuring device are arranged substantially vertically with respect to the transport path, and the transport belt is disposed within a predetermined range including the measurement position on the transport path. Is narrowed so that the conveyor belt completely enters the lower side of the object to be measured, and the interval of the conveyor belt is set to a value other than the predetermined range on the conveyance path. Outer diameter measuring device, characterized in that the wider than that in the constant range. 前記搬送経路上の前記搬送ベルトを上向きの略円弧状に案内するガイド手段を備えたことを特徴とする請求項1に記載の外径寸法測定装置。The outer diameter measurement device according to claim 1, further comprising a guide unit that guides the transport belt on the transport path in a substantially upward arc shape. 前記投光手段と前記受光手段とを搬送方向に斜めに配置すると共に、前記測定位置の下側に配置した前記投光手段又は前記受光手段の上方を覆う覆い部材を設けたことを特徴とする請求項1又は2に記載の外径寸法測定装置。The light emitting means and the light receiving means are disposed obliquely in the transport direction, and a cover member for covering the light emitting means or the light receiving means disposed below the measurement position is provided. The outer diameter measurement device according to claim 1. 前記測定位置よりも上流側で且つ前記搬送経路の下側に、負圧源に接続された吸引口を略上向きに配置したことを特徴とする請求項1〜3の何れかに記載の外径寸法測定装置。The outer diameter according to any one of claims 1 to 3, wherein a suction port connected to a negative pressure source is disposed substantially upward on the upstream side of the measurement position and below the transport path. Dimension measuring device. 前記搬送経路の上側で且つ前記吸引口に対応する位置に、空気を噴射する噴射口を略下向きに配置したことを特徴とする請求項4に記載の外径寸法測定装置。The outer diameter measurement apparatus according to claim 4, wherein an injection port for injecting air is disposed substantially downward at a position above the transport path and corresponding to the suction port. 前記搬送ベルトは1本の無端ベルトよりなり、前記搬送経路以外の位置で交差させて配設したことを特徴とする請求項1〜5の何れかに記載の外径寸法測定装置。The outer diameter measurement device according to any one of claims 1 to 5, wherein the transport belt includes a single endless belt, and is disposed so as to intersect at a position other than the transport path. 前記投光手段から照射されたレーザ光の一部が前記被測定物により遮られている間の経過時間と前記被測定物の搬送速度とに基づいて前記被測定物の長さ寸法を測定可能に構成されていることを特徴とする請求項1〜6の何れかに記載の外径寸法測定装置。The length dimension of the object to be measured can be measured based on the elapsed time and the transport speed of the object to be measured while a part of the laser light emitted from the light emitting unit is blocked by the object to be measured. The outer diameter measurement device according to any one of claims 1 to 6, characterized in that:
JP2002334688A 2002-11-19 2002-11-19 Outside diameter measuring device Expired - Fee Related JP3835607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334688A JP3835607B2 (en) 2002-11-19 2002-11-19 Outside diameter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334688A JP3835607B2 (en) 2002-11-19 2002-11-19 Outside diameter measuring device

Publications (2)

Publication Number Publication Date
JP2004170171A true JP2004170171A (en) 2004-06-17
JP3835607B2 JP3835607B2 (en) 2006-10-18

Family

ID=32699007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334688A Expired - Fee Related JP3835607B2 (en) 2002-11-19 2002-11-19 Outside diameter measuring device

Country Status (1)

Country Link
JP (1) JP3835607B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184802A (en) * 2008-02-08 2009-08-20 Koyo Mach Ind Co Ltd Conveyor device
JP2009244162A (en) * 2008-03-31 2009-10-22 Nippon Steel Corp Device and method for inspecting lower surface
DE102010013594A1 (en) 2010-03-31 2011-10-06 Aktiebolaget Skf Bearing components i.e. cylindrical rollers, manufacturing method, involves displaying and/or evaluating determined actual form of outer contour, and controlling processing machine dependent on determined actual form of outer contour
CN102768021A (en) * 2012-08-01 2012-11-07 安徽工业大学 Contact-type cylinder diameter measurement device
JP2016041397A (en) * 2014-08-14 2016-03-31 株式会社フジキカイ Article discrimination device in horizontal bag-making filling machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184802A (en) * 2008-02-08 2009-08-20 Koyo Mach Ind Co Ltd Conveyor device
JP2009244162A (en) * 2008-03-31 2009-10-22 Nippon Steel Corp Device and method for inspecting lower surface
DE102010013594A1 (en) 2010-03-31 2011-10-06 Aktiebolaget Skf Bearing components i.e. cylindrical rollers, manufacturing method, involves displaying and/or evaluating determined actual form of outer contour, and controlling processing machine dependent on determined actual form of outer contour
CN102768021A (en) * 2012-08-01 2012-11-07 安徽工业大学 Contact-type cylinder diameter measurement device
JP2016041397A (en) * 2014-08-14 2016-03-31 株式会社フジキカイ Article discrimination device in horizontal bag-making filling machine

Also Published As

Publication number Publication date
JP3835607B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
US10370135B2 (en) Belt sorting system
EP2591901B1 (en) Plastic pellet dosing method
JP2021052163A (en) Substrate cleaning device and substrate cleaning method
CZ298841B6 (en) Method of and apparatus for inspecting in sequence containers traveling on a linear conveyor
JP2004170171A (en) Outer diameter measurement device
JP2019112210A (en) Supply device
JP2009061424A (en) Agricultural-product sorting apparatus
JP5346196B2 (en) Dispenser cap supply device
WO2021229936A1 (en) Bolt feeder
JP4414375B2 (en) Outside diameter measuring device
JP4063546B2 (en) Apparatus and method for conveying objects such as bottles
JP2000198525A (en) Parts feeder
JP3463585B2 (en) Parts feeder
JP2744989B2 (en) Outside diameter measurement system for small diameter workpieces
JPH02110017A (en) Supply device for machine screw or the like
JP7453930B2 (en) Conveyance device
JP5961494B2 (en) Fluid substance supply device and fluid substance inspection device
KR20170058861A (en) Machining apparatus
JPH07104134B2 (en) External Dimension Measuring Device for Centerless Grinder
JP2018072058A (en) Article feeding device to combinational balance
JP2001158524A (en) Overlap removing device of thin-plate components
US6053668A (en) Water slide for transferring semiconductor wafers
JP2002265036A (en) Cartridge aligning method and device
JP2023000437A (en) Conveyance device
US3130863A (en) Feeder apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060719

R150 Certificate of patent or registration of utility model

Ref document number: 3835607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees