JP2004169666A - Operation control method and operation control device of pump - Google Patents

Operation control method and operation control device of pump Download PDF

Info

Publication number
JP2004169666A
JP2004169666A JP2002339223A JP2002339223A JP2004169666A JP 2004169666 A JP2004169666 A JP 2004169666A JP 2002339223 A JP2002339223 A JP 2002339223A JP 2002339223 A JP2002339223 A JP 2002339223A JP 2004169666 A JP2004169666 A JP 2004169666A
Authority
JP
Japan
Prior art keywords
motor
control
pump
pressure
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002339223A
Other languages
Japanese (ja)
Other versions
JP4205409B2 (en
Inventor
Eiji Koyakata
栄次 古舘
Keibin Han
慧敏 潘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2002339223A priority Critical patent/JP4205409B2/en
Publication of JP2004169666A publication Critical patent/JP2004169666A/en
Application granted granted Critical
Publication of JP4205409B2 publication Critical patent/JP4205409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately operate a pump for pumping by preventing over rotation speed driving of a motor. <P>SOLUTION: The motor 2m of the pump 2 for pumping is driven by pressure constant control. When the rotation speed of the motor 2m exceeds a set rotation speed by the pressure constant control, the driving control of the motor 2m is switched from the pressure constant control to rotation speed constant control to suppress over rising of the rotation speed of the motor 2m. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、井戸水等の汲み揚げに用いられるポンプの運転制御方法及び運転制御装置に関する。
【0002】
【従来の技術】
従来、離島や山間僻地等にあっては、井戸水をポンプ(給水ポンプ)で汲み揚げて1又は複数個所の給水栓(蛇口)から給水することが行われる。
【0003】
同様に、井戸やタンク等の水や油等の種々の液体を汲み揚げて1又は複数個所の給水栓等のバルブから給液する場合、前記の井戸水の汲み揚げ用のポンプと同様の汲み揚げ用のポンプが用いられる。
【0004】
これらの汲み揚げ用のポンプは、効率等の面から、その駆動用のモータに、ブラシレスDCモータが多用される(例えば、特許文献1参照)。
【0005】
さらに、この種のポンプの駆動用のモータは、従来、ポンプの吐出圧力を一定に保つように、PID制御等のフィードバック制御(追従形のサーボ制御)による圧力一定制御で駆動される(例えば、特許文献1,2,3参照)。
【0006】
【特許文献1】
特開平11−210670号公報(第1−3頁、図1)
【特許文献2】
特開昭60−79197号公報(第1−2頁、第1図)
【特許文献3】
特開昭54−142602号公報(第1−3頁、第6図,第7図)
【0007】
【発明が解決しようとする課題】
前記従来のように、圧力一定制御によって、ポンプの圧力を一定に制御する場合、例えば、全バルブが開栓されてポンプの吐出圧力が急激に低下したりすると、モータが連続的に過回転数状態でフル回転駆動され続け、異常発熱して故障するだけでなく、危険を伴う問題点がある。
【0008】
一方、前記のフル回転駆動を回避するため、モータを回転数一定制御で駆動し、モータの回転数を一定に保つようにすれば、負荷変動に伴う吐出圧力の変動に対応することができず、例えば、開栓バルブ数が少ないとこに、ポンプの吐出圧力が過大になってポンプや給水(給液)パイプの破損等を招来する問題点がある。
【0009】
なお、バルブが1個所にしかない場合にも、開栓状態(量)の変化によって、前記と同様の問題点が生じる。
【0010】
つぎに、圧力一定制御により、吐出圧力の代わりに吸込圧力を一定に制御してポンプを運転することも考えられるが、この場合も、例えば井戸水の汲み揚げに必要な吸込圧力が井戸の液面(水面)の高低によって変化し、前記と同様の問題点が生じる。
【0011】
そして、井戸水の汲み揚げ用のポンプだけでなく、種々の液体の汲み揚げ用のポンプを運転する際に、同様の問題点が生じる。
【0012】
本発明は、モータの過回転駆動を防止してこの種の汲み揚げ用のポンプを適切に運転することを課題とする。
【0013】
【課題を解決するための手段】
前記の課題を解決するために、請求項1のポンプの運転制御方法は、汲み揚げ用のポンプのモータを圧力一定制御で駆動し、この圧力一定制御により、モータの回転数が設定回転数より高くなったときに、モータの駆動制御を、圧力一定制御から回転数一定制御に切換え、モータの回転数の過上昇を抑制する。
【0014】
したがって、汲み揚げ用のポンプは、通常は、吐出圧力又は吸込圧力が一定になるように、モータが圧力一定制御で駆動される。
【0015】
そして、吐出側や吸込側のいわゆる負荷変動により、圧力一定制御の駆動ではモータの回転数が設定回転数より高くなり、過回転駆動の状態に移行すると、モータの駆動制御が、圧力一定制御から回転数一定制御に切換わり、モータの回転数の過上昇が抑制される。
【0016】
そのため、モータの過回転駆動を防止してこの種の汲み揚げ用のポンプが適切に運転される。
【0017】
また、請求項2のポンプの運転制御方法は、汲み揚げ用のポンプのモータを、ポンプの吐出圧力が設定圧力になるように、圧力一定制御で駆動し、この圧力一定制御により、モータの回転数が設定回転数より高くなったときに、モータの回転数が設定回転数になるように、モータの駆動制御を、圧力一定制御から回転数一定制御に切換え、この回転数一定制御により、ポンプの吐出圧力が設定圧力より高くなったときに、モータの駆動制御を、回転数一定制御から圧力一定制御に切戻す。
【0018】
したがって、この請求項2の場合、汲み揚げ用のポンプは、通常、その吐出圧力が設定圧力になるように、モータが圧力一定制御で駆動される。
【0019】
そして、この圧力一定制御の駆動中に、例えば、前述の全バルブの開栓等による吐出側の負荷変動(過負荷変動)が発生し、モータの回転数が設定回転数より高くなると、モータの駆動制御が、圧力一定制御から回転数一定制御に切換わり、モータの回転数が設定回転数に規制され、回転数の過上昇が抑制される。
【0020】
また、この回転数一定制御の間に、吐出側の負荷状態が変わり、ポンプの吐出圧力が設定圧力より高くなると、モータの駆動制御が圧力一定制御に戻される。
【0021】
そのため、この種の汲み揚げ用のポンプを、その吐出側の負荷状態に応じて一層適切に運転することができる。
【0022】
さらに、請求項3のポンプの運転制御方法は、請求項1,2の汲み揚げ用のポンプのモータが、ブラシレスDCモータであることを特徴とするものである。
【0023】
つぎに、請求項4のポンプの運転制御装置は、汲み揚げ用のポンプの吐出圧力を計測する手段と、
ポンプのモータの回転数を計測する手段と、
吐出圧力,回転数の計測結果に基づきモータを駆動する駆動制御部とを備え、
この駆動制御部に、
吐出圧力の計測結果に基づき、吐出圧力が一定になるように、ポンプのモータを任意的に圧力一定制御で駆動する手段と、
圧力一定制御により、モータの計測された回転数が設定回転数を越えて上限回転数に上昇したときに、モータの駆動制御を、圧力一定制御から回転数一定制御に切換え、回転数の計測結果に基づき、モータの回転数が設定回転数になるように、モータを回転数一定制御で駆動する手段と、
回転数一定制御により、ポンプの計測された吐出圧力が設定圧力より高い上限圧力に上昇したときに、モータの駆動制御を回転数一定制御から圧力一定制御に切戻す手段とを設けたものである。
【0024】
したがって、請求項2の運転制御方法を実現する具体的な運転制御装置を提供することができる。
【0025】
そして、汲み揚げ用のポンプのモータは、請求項5のように、ブラシレスDCモータであることが好ましい。
【0026】
【発明の実施の形態】
本発明の実施の1形態につき、図1〜図5を参照して説明する。
図1のポンプの運転制御装置の構成図に示すように、井戸1の近傍に汲み揚げ用のポンプ2が設置され、このポンプ2はポンプ本体2pと、その駆動用のモータ2mとからなり、このモータ2mは、ここでは、ブラシレスDCモータからなる。
【0027】
そして、モータ2mが駆動されてポンプ2が運転されると、モータ2mのロータ回転に基づくポンプ本体2pの吸込み,吐出しにより、井戸1の水3が、図中の矢印線に示すように、吸入管4を通って汲み揚げられ、ポンプ本体2pから給水管5に吐出される。
【0028】
さらに、給水管5に吐出された水3は、給水管5の1又は複数個所に設けられたバルブ(給水栓)に送られて給水(配水)される。
【0029】
つぎに、ポンプ本体2の吐出側近傍に、流量計6,圧力センサ7が設けられ、流量計6はポンプ2の吐出流量を計測し、圧力センサ7はポンプ2の吐出圧力を計測し、圧力センサ7がポンプ2の吐出圧力を計測する手段である。
なお、流量計6,圧力センサ7はポンプ2に内蔵されていてもよい。
【0030】
そして、流量計6,圧力センサ7の計測出力は、モータ2mの駆動制御部8に供給される。
【0031】
この駆動制御部8は例えばモータ2mに内蔵され、そのケースに取付られた温度センサ9がモータ2mの温度を計測し、その計測出力が駆動制御部8に供給される。
【0032】
また、モータ2mの回転数を計測する手段として、専用のPGセンサ等を設けてもよいが、ここでは、モータ2mの回転位置センサとしてのホール素子センサ(ホールIC)10が、モータ2mの回転数を計測する手段を形成し、モータ2mの回転速度によってパルス間隔が変化するセンサ10の計測出力が、モータ2mの回転数の計測出力として、駆動制御部8に供給される。
【0033】
そして、駆動制御部8は図2の回路ブロック図に示すようにして形成され、流量計6及びセンサ7,9,10の時々刻々の計測出力(計測結果)をA/D変換器11によりデジタルデータに変換してマイクロコンピュータ構成のコントローラ12に取込む。
【0034】
このコントローラ12は、予め設定された制御プログラムに基づき、ソフトウェアにより形成されたつぎの(i)〜(iii)の手段等を有する。
(i)ポンプ2の吐出圧力の計測結果に基づき、その吐出圧力が一定になるように、モータ2mを圧力一定制御で駆動する手段
(ii)圧力一定制御により、モータ2mの計測された回転数が設定回転数を越えて上限回転数に上昇したときに、モータ2mの駆動制御を、圧力一定制御から回転数一定制御に切換え、モータ2mの回転数の計測結果に基づき、モータ2mのの回転数が設定回転数になるように、モータ2mを回転数一定制御で駆動する手段
(iii) 回転数一定制御により、ポンプ2の計測された吐出圧力が設定圧力より高い上限圧力に上昇したときに、モータ2mの駆動制御を回転数一定制御から圧力一定制御に切戻す手段
【0035】
ところで、圧力一定制御,回転数一定制御は、ポンプ2の吐出圧力,モータ2mの回転数に基づくPID制御等のフィードバック制御(追従形のサーボ制御)であり、これらの制御で形成されたPWM波形のモータ駆動パルス(デューティー出力)により、モータドライバ13が駆動パルスに応じたパルス波形のオン電流をモータ2mに供給し、モータ2mを駆動制御する。
【0036】
また、コントローラ12には、前記の(i)〜(iii) の手段の他、ポンプ2を起動する手段,停止する手段等も有する。
【0037】
そして、流量計6,温度センサ9の計測結果は、コントローラ12内の異常監視部14に送られ、この監視部14は、流量計6,温度センサ9の計測結果に基づいてポンプ2の吐出流量,モータ2mの発熱を監視し、吐出流量の異常,モータ2mの異常発熱によるオーバヒートを検出すると、モータドライバ13に駆動停止を指令してモータ2mの駆動を停止し、ポンプ2を止める。
【0038】
つぎに、駆動制御部8による具体的なモータ2mの駆動制御を説明する。
まず、設定圧力Paは水圧換算で16m〜24mの範囲の適当な圧力に設定され、運転前の始動圧力Psは水圧換算で設定圧力−4mである。
【0039】
また、制御切換えのハンチングを防止するため、上限圧力Pbは、水圧換算で設定圧力+0.1mに設定される。
【0040】
つぎに、設定回転数Raは3500rpmであり、上限回転数Rbは、制御切換えのハンチングを防止するため、設定回転数+10rpmに設定される。
【0041】
そして、スタート釦(図示せず)を押してポンプ2の運転を開始すると、ポンプ2を起動する手段が動作し、モータドライバ13がPWM制御の最大パルス幅の3相の電流(モータ電流)をモータ2mの各相の巻線に順次に供給し、回転界磁が発生してモータ2mを起動する。
【0042】
このモータ2mの起動後、図3の駆動制御のフローチャートに示すように、ステップSからステップSに移行し、優先的に圧力一定制御のフィードバック制御が実行され、ステップSを介してステップSに移行することにより、ポンプ2の吐出圧力が設定圧力Paになるように、モータ電流がPWM制御される。
【0043】
そして、ステップSからステップSを介してステップSに戻り、通常は、ステップS〜Sのループ制御により、圧力一定制御でポンプ2が運転される。
【0044】
つぎに、例えば給水管5の全バルブが開栓されてポンプ2の吐出側の負荷変動が生じ、吐出圧力が低下すると、この圧力低下を補うようにモータ2mの回転数が上昇する。
【0045】
そして、モータ2mの回転数が設定回転数Raより高くなり、上限回転数Rbに達すると、ステップSからステップSに移り、モータ2mの駆動制御が圧力一定制御から回転数一定制御に切換わる。
【0046】
このとき、ステップSからステップSを介してステップSに移行し、モータ2mの回転数が設定回転数Raになるように、モータ電流がPWM制御される。
【0047】
そして、吐出圧力が上限圧力Pbに上昇するまでは、ステップS,S,S,S,Sのループ制御により、回転数一定制御でポンプ2が運転される。
【0048】
したがって、負荷変動(過負荷変動)が生じても、モータ2mの回転数が設定回転数に規制されてその上昇が抑制され、モータ2mの回転数の異常な上昇が防止される。
【0049】
つぎに、開栓状態のバルブ数が減少し、回転数一定制御によって吐出圧力が設定圧力Paより高くなり、上限圧力Pbに達すると、ステップSからステップSに戻り、このとき、ステップSからステップSに移行することにより、モータ2mの駆動制御が回転数一定制御から圧力一定制御に切戻される。
【0050】
そして、モータ2mの回転数が再び上限回転数に上昇するまでは、ステップS〜Sのループ制御により、圧力一定制御でポンプ2が運転される。
【0051】
したがって、ポンプ2の吐出側の負荷変動が生じても、モータ2mが過回転状態にならず、モータ2mの異常発熱による故障が防止されるとともに、極めて安全であり、圧力一定制御と回転数一定制御との組合せでポンプ2を適切に運転することができる。
【0052】
そして、モータ2mの回転数が設定回転数Raよりヒステリシス分上昇して上限回転数Rbに達すると、圧力一定制御から設定回転数Raの回転数一定制御に切換わり、吐出圧力が設定圧力Paよりヒステリシス分上昇して上限圧力Pbに達すると、回転数一定制御から設定圧力Paの圧力一定制御に切戻されるため、モータ2の駆動制御の切換えのハンチングが生じることもない。
【0053】
なお、負荷変動に伴うポンプ2の吐出圧力,モータ2mの回転数の時間変化は、例えば図4に示すようになる。
【0054】
同図において、実線イはポンプ2の吐出圧力の変化を示し、実線ロはモータ2mの回転数の変化を示し、太実線ハはt時に起動されたモータ2mの駆動制御が、t時に圧力一定制御から回転数一定制御に切換わり、t時に回転数一定制御から圧力一定制御に切戻されたときの、制御状態(動作状態)を示す。
【0055】
また、図4の駆動制御により、ポンプ2の運転状態での流量と圧力とは、例えば図5の実線ニの関係を示し、図中のFsは始動流量である。
【0056】
つぎに、前記のハンチングを確実に防止するため、実際には、回転数,吐出圧力が上限回転数Rb,上限圧力Pb以上になる状態が一定時間(例えば5秒)連続することを条件に、圧力一定制御から回転数一定制御,その逆に、モータ2mの駆動制御を切換えることが好ましい。
【0057】
そして、前記形態にあっては、圧力センサ7をポンプ2の吐出側に設けたが、圧力センサ7をポンプ2の吸込側に設け、井戸1の液面変化による吸込圧力の変動に応じてモータ2mの駆動制御を圧力一定制御から回転数一定制御,その逆に切換えるようにしてもよい。
【0058】
そして、この発明は井戸だけでなくタンク等からの水や油等の種々の液体の汲み揚げ用のポンプにも、同様に適用することができる。
【0059】
その際、ポンプのモータはブラシレスDCモータに限られるものではなく、圧力一定制御,回転数一定制御のフィードバック制御もPID制御に限られるものではない。
【0060】
また、設定圧力Pa,上限圧力Pb,設定回転数Ra,上限回転数Rb等は、モータ2mの能力や井戸の条件等に応じて適当に設定すればよいのも勿論である。
【0061】
【発明の効果】
本発明は、以下に記載する効果を奏する。
まず、請求項1のポンプの運転制御方法の場合、汲み揚げ用のポンプ2を、通常は、吐出圧力又は吸込圧力が一定になるように、モータ2mが圧力一定制御で駆動し、吐出側や吸込側のいわゆる負荷変動により、圧力一定制御の駆動ではモータ2mの回転数が設定回転数より高くなり、過回転駆動の状態になると、モータ2mの駆動制御を、圧力一定制御から回転数一定制御に切換え、モータ2mの回転数の過上昇を抑制することができる。
【0062】
そのため、モータ2mの過回転駆動を防止してこの種の汲み揚げ用のポンプ2を適切に運転することができる。
【0063】
また、請求項2のポンプの運転制御方法の場合は、ポンプ2のモータ2mの圧力一定制御の駆動中に、例えば、全バルブの開栓等による吐出側の負荷変動(過負荷変動)が生じ、モータ2mの回転数が設定回転数より高くなると、モータ2mの駆動制御を、圧力一定制御から回転数一定制御に切換え、モータ2mの回転数を設定回転数に規制して回転数の過上昇を抑制することができる。
【0064】
さらに、この回転数一定制御の間に、吐出側の負荷状態が変わり、ポンプ2の吐出圧力が設定圧力より高くなると、モータ2mの駆動制御を圧力一定制御に戻すことができる。
【0065】
そのため、この種の汲み揚げ用のポンプ2を、その吐出側の負荷状態に応じて一層適切に運転することができる。
【0066】
そして、請求項1,2のポンプの運転制御方法において、モータ2mはブラシレスDCモータであることが好ましい。
【0067】
つぎに、請求項4のポンプの運転制御装置の場合は、請求項2の運転制御方法を実現する具体的な構成の運転制御装置を提供することができる。
【0068】
そして、請求項4のポンプの運転制御装置においても、モータ2mはブラシレスDCモータであることが好ましい。
【図面の簡単な説明】
【図1】本発明の実施の1形態の構成説明図である。
【図2】図1の一部の詳細な回路ブロック図である。
【図3】図2の動作説明用のフローチャートである。
【図4】図1のポンプの制御特性図である。
【図5】図1のポンプの流量と圧力との関係図である。
【符号の説明】
2 汲み揚げ用のポンプ
2m ポンプ
7 圧力センサ
8 駆動制御部
Pa 設定圧力
Pb 上限圧力
Ra 設定回転数
Rb 上限回転数
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an operation control method and an operation control device for a pump used for pumping well water or the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in remote islands and remote mountainous areas, well water is pumped up by a pump (water supply pump) and supplied from one or more water taps (faucet).
[0003]
Similarly, when pumping various liquids such as water and oil from wells and tanks and supplying them from valves such as water taps at one or a plurality of locations, the same pumping as the pump for pumping well water described above is used. Pump is used.
[0004]
In these pumps for pumping, brushless DC motors are frequently used as driving motors in terms of efficiency and the like (for example, see Patent Document 1).
[0005]
Further, a motor for driving this type of pump is conventionally driven by constant pressure control by feedback control (following servo control) such as PID control so as to keep the discharge pressure of the pump constant (for example, Patent Documents 1, 2, and 3).
[0006]
[Patent Document 1]
JP-A-11-210670 (pages 1-3, FIG. 1)
[Patent Document 2]
JP-A-60-79197 (page 1-2, FIG. 1)
[Patent Document 3]
JP-A-54-142602 (pages 1-3, FIGS. 6, 7)
[0007]
[Problems to be solved by the invention]
When the pump pressure is controlled to be constant by the constant pressure control as in the conventional case, for example, when all the valves are opened and the discharge pressure of the pump suddenly decreases, the motor is continuously rotated at an overspeed. In this state, the motor is continuously driven to rotate at full speed, causing abnormal heat generation and failure.
[0008]
On the other hand, in order to avoid the above-mentioned full rotation drive, if the motor is driven by the rotation speed constant control and the rotation speed of the motor is kept constant, it is possible to cope with the fluctuation of the discharge pressure due to the load fluctuation. However, for example, when the number of opening valves is small, there is a problem that the discharge pressure of the pump becomes excessive and the pump or a water supply (liquid supply) pipe is damaged.
[0009]
Even when there is only one valve, the same problem as described above occurs due to a change in the open state (amount).
[0010]
Next, it is conceivable to operate the pump by controlling the suction pressure to be constant instead of the discharge pressure by the constant pressure control, but also in this case, for example, the suction pressure required for pumping the well water increases the liquid level of the well. (Water surface) varies depending on the level, and the same problem as described above occurs.
[0011]
Similar problems occur when operating not only the pump for pumping well water but also the pump for pumping various liquids.
[0012]
SUMMARY OF THE INVENTION It is an object of the present invention to prevent a motor from rotating excessively and to appropriately operate this kind of pump for pumping.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a pump operation control method according to claim 1 drives a pumping pump motor by constant pressure control, and the constant pressure control causes the motor rotation speed to exceed the set rotation speed. When it becomes higher, the drive control of the motor is switched from the constant pressure control to the constant rotation speed control to suppress an excessive increase in the rotation speed of the motor.
[0014]
Therefore, in the pump for pumping, usually, the motor is driven under constant pressure control so that the discharge pressure or the suction pressure is constant.
[0015]
Then, due to the so-called load fluctuation on the discharge side and the suction side, in the drive of the constant pressure control, the rotation speed of the motor becomes higher than the set rotation speed. The control is switched to the rotation speed constant control, and an excessive increase in the rotation speed of the motor is suppressed.
[0016]
Therefore, this type of pump for pumping is properly operated while preventing the motor from over-rotating.
[0017]
According to a second aspect of the present invention, there is provided a pump operation control method, wherein the pumping pump motor is driven by a constant pressure control so that the discharge pressure of the pump becomes a set pressure, and the rotation of the motor is controlled by the constant pressure control. When the number of revolutions becomes higher than the set number of revolutions, the drive control of the motor is switched from the constant pressure control to the constant number of revolutions control so that the number of revolutions of the motor becomes the set number of revolutions. When the discharge pressure of the pump becomes higher than the set pressure, the drive control of the motor is switched back from the constant rotation speed control to the constant pressure control.
[0018]
Therefore, in the case of the second aspect, in the pump for pumping, the motor is normally driven under constant pressure control so that the discharge pressure thereof becomes the set pressure.
[0019]
During the driving of the constant pressure control, for example, when the load fluctuation (overload fluctuation) on the discharge side due to the opening of all the valves described above occurs and the rotation speed of the motor becomes higher than the set rotation speed, the motor is started. The drive control is switched from the constant pressure control to the constant rotation speed control, the rotation speed of the motor is regulated to the set rotation speed, and an excessive increase in the rotation speed is suppressed.
[0020]
Further, during this rotation speed constant control, when the load state on the discharge side changes and the discharge pressure of the pump becomes higher than the set pressure, the drive control of the motor is returned to the constant pressure control.
[0021]
Therefore, this kind of pump for pumping can be more appropriately operated according to the load state on the discharge side.
[0022]
Furthermore, a pump operation control method according to a third aspect is characterized in that the motor of the pump for pumping of the first and second aspects is a brushless DC motor.
[0023]
Next, the operation control device for a pump according to claim 4 includes a means for measuring a discharge pressure of the pump for pumping,
Means for measuring the number of revolutions of the pump motor;
A drive control unit that drives the motor based on the measurement results of the discharge pressure and the number of rotations,
In this drive control unit,
Means for arbitrarily driving a pump motor under constant pressure control based on the measurement result of the discharge pressure so that the discharge pressure is constant;
When the measured rotation speed of the motor exceeds the set rotation speed and rises to the upper limit rotation speed by the constant pressure control, the drive control of the motor is switched from the constant pressure control to the constant rotation speed control to measure the rotation speed. Means for driving the motor under constant rotation speed control based on the result so that the rotation speed of the motor becomes the set rotation speed;
Means for switching back the motor drive control from the constant rotational speed control to the constant pressure control when the measured discharge pressure of the pump rises to the upper limit pressure higher than the set pressure by the constant rotational speed control. It is.
[0024]
Therefore, it is possible to provide a specific operation control device that realizes the operation control method of the second aspect.
[0025]
The motor of the pump for pumping is preferably a brushless DC motor.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
As shown in the configuration diagram of the operation control device of the pump in FIG. 1, a pump 2 for pumping is installed near a well 1, and this pump 2 includes a pump body 2p and a motor 2m for driving the pump body 2p. Here, the motor 2m is a brushless DC motor.
[0027]
When the motor 2m is driven and the pump 2 is operated, the water 3 of the well 1 is drawn by the suction and discharge of the pump body 2p based on the rotation of the rotor of the motor 2m, as shown by the arrow line in the figure. The water is pumped through the suction pipe 4 and discharged from the pump body 2p to the water supply pipe 5.
[0028]
Further, the water 3 discharged to the water supply pipe 5 is sent to valves (water taps) provided at one or more locations of the water supply pipe 5 to be supplied (distributed).
[0029]
Next, a flow meter 6 and a pressure sensor 7 are provided near the discharge side of the pump body 2, the flow meter 6 measures the discharge flow rate of the pump 2, the pressure sensor 7 measures the discharge pressure of the pump 2, The sensor 7 is a unit for measuring the discharge pressure of the pump 2.
The flow meter 6 and the pressure sensor 7 may be built in the pump 2.
[0030]
Then, the measurement outputs of the flow meter 6 and the pressure sensor 7 are supplied to the drive control unit 8 of the motor 2m.
[0031]
The drive control unit 8 is built in, for example, the motor 2m. A temperature sensor 9 attached to the case measures the temperature of the motor 2m, and the measured output is supplied to the drive control unit 8.
[0032]
Although a dedicated PG sensor or the like may be provided as a means for measuring the number of rotations of the motor 2m, a Hall element sensor (Hall IC) 10 serving as a rotation position sensor of the motor 2m is provided here. A means for counting the number is formed, and the measurement output of the sensor 10 whose pulse interval changes according to the rotation speed of the motor 2m is supplied to the drive control unit 8 as the measurement output of the rotation speed of the motor 2m.
[0033]
The drive control unit 8 is formed as shown in the circuit block diagram of FIG. 2, and the measurement output (measurement result) of the flow meter 6 and the sensors 7, 9, 10 every moment is digitally converted by the A / D converter 11. The data is converted into data and taken into the controller 12 having a microcomputer configuration.
[0034]
The controller 12 has the following units (i) to (iii) formed by software based on a preset control program.
(I) A means for driving the motor 2m under constant pressure control based on the measurement result of the discharge pressure of the pump 2 so that the discharge pressure becomes constant. (Ii) The measured rotation speed of the motor 2m by constant pressure control. When the rotation speed exceeds the set rotation speed and rises to the upper limit rotation speed, the drive control of the motor 2m is switched from the constant pressure control to the constant rotation speed control, and based on the measurement result of the rotation speed of the motor 2m, Means for driving the motor 2m by the constant rotation speed control so that the rotation speed becomes the set rotation speed (iii) The measured discharge pressure of the pump 2 rises to the upper limit pressure higher than the set pressure by the constant rotation speed control. Means for switching back the drive control of the motor 2m from the constant rotation speed control to the constant pressure control.
Incidentally, the constant pressure control and the constant rotation speed control are feedback control (following servo control) such as PID control based on the discharge pressure of the pump 2 and the rotation speed of the motor 2m, and the PWM formed by these controls. The motor driver 13 supplies an on-current having a pulse waveform corresponding to the drive pulse to the motor 2m by a motor drive pulse (duty output) having a waveform, and controls the drive of the motor 2m.
[0036]
In addition, the controller 12 also has a means for starting and stopping the pump 2 in addition to the means (i) to (iii) described above.
[0037]
Then, the measurement results of the flow meter 6 and the temperature sensor 9 are sent to an abnormality monitoring unit 14 in the controller 12, and the monitoring unit 14 determines the discharge flow rate of the pump 2 based on the measurement results of the flow meter 6 and the temperature sensor 9. When the heat generation of the motor 2m is monitored and an abnormality in the discharge flow rate or overheating due to the abnormal heat generation of the motor 2m is detected, the motor driver 13 is instructed to stop driving, the driving of the motor 2m is stopped, and the pump 2 is stopped.
[0038]
Next, specific drive control of the motor 2m by the drive control unit 8 will be described.
First, the set pressure Pa is set to an appropriate pressure in the range of 16 m to 24 m in terms of water pressure, and the starting pressure Ps before operation is the set pressure -4 m in terms of water pressure.
[0039]
In order to prevent hunting of control switching, the upper limit pressure Pb is set to a set pressure +0.1 m in terms of hydraulic pressure.
[0040]
Next, the set rotational speed Ra is 3500 rpm, and the upper limit rotational speed Rb is set to the set rotational speed + 10 rpm in order to prevent hunting of control switching.
[0041]
Then, when the operation of the pump 2 is started by pressing a start button (not shown), the means for starting the pump 2 is operated, and the motor driver 13 outputs the three-phase current (motor current) having the maximum pulse width of the PWM control to the motor. The motor is sequentially supplied to the windings of each phase of 2 m to generate a rotating field and start the motor 2 m.
[0042]
After starting of the motor 2m, as shown in the flow chart of the drive control of the Figure 3, the process proceeds from step S 1 to step S 2, the feedback control of preferentially pressure constant control is performed, via step S 3 Step by moving to S 4, as the discharge pressure of the pump 2 becomes the set pressure Pa, the motor current is PWM controlled.
[0043]
Then, the process returns to step S 1 through step S 5 from step S 4, usually, the loop control in step S 1 to S 5, the pump 2 is operated at constant pressure control.
[0044]
Next, for example, when all valves of the water supply pipe 5 are opened to cause load fluctuation on the discharge side of the pump 2 and the discharge pressure decreases, the rotation speed of the motor 2m increases to compensate for the pressure decrease.
[0045]
Then, the rotational speed of the motor 2m becomes higher than the set rotational speed Ra, reaches the upper limit rotational speed Rb, proceeds from step S 3 to step S 6, the drive control of the motor 2m is the rotational speed constant control from the pressure constant control Switch.
[0046]
In this case, the process proceeds to step S 4 from step S 6 through step S 7, as the rotation speed of the motor 2m is set rotational speed Ra, the motor current is PWM controlled.
[0047]
Until the discharge pressure rises to the upper limit pressure Pb, the pump 2 is operated with the rotation speed constant control by the loop control of steps S 1 , S 6 , S 7 , S 4 , and S 5 .
[0048]
Therefore, even if a load change (overload change) occurs, the rotation speed of the motor 2m is regulated to the set rotation speed and the rise is suppressed, and an abnormal increase in the rotation speed of the motor 2m is prevented.
[0049]
Next, reduces the number of valves of unplugging state, the discharge pressure by the rotation speed constant control becomes higher than the set pressure Pa, reaches the upper limit pressure Pb, returns from step S 7 to step S 1, at this time, step by moving from S 1 to step S 2, the drive control of the motor 2m is switchback to the pressure constant control from the rotational speed constant control.
[0050]
Then, until the rotational speed of the motor 2m to rise again to the upper limit rotational speed, the loop control step S 1 to S 5, the pump 2 is operated at constant pressure control.
[0051]
Therefore, even if a load fluctuation on the discharge side of the pump 2 occurs, the motor 2m does not over-rotate, preventing a failure due to abnormal heat generation of the motor 2m, and is extremely safe. The pump 2 can be appropriately operated in combination with the constant control.
[0052]
When the rotational speed of the motor 2m rises by the hysteresis from the set rotational speed Ra and reaches the upper limit rotational speed Rb, the pressure is switched from the constant pressure control to the constant rotational speed control of the set rotational speed Ra, and the discharge pressure is set to the set pressure Pa. When the hysteresis further increases and reaches the upper limit pressure Pb, the control is switched back from the constant rotation speed control to the constant pressure control of the set pressure Pa, so that the hunting of the switching of the drive control of the motor 2 does not occur.
[0053]
FIG. 4 shows, for example, changes over time in the discharge pressure of the pump 2 and the rotation speed of the motor 2m due to the load fluctuation.
[0054]
In the figure, a solid line A indicates a change in the discharge pressure of the pump 2, a solid line B indicates a change in the number of revolutions of the motor 2m, and a thick solid line C indicates the drive control of the motor 2m started at t S at t 1 It switched to the rotation speed constant control from the pressure constant control, when it is switchback pressure constant control from the rotational speed constant control at t 2, illustrating a control state (operating state).
[0055]
Further, the flow rate and the pressure in the operating state of the pump 2 by the drive control of FIG. 4 indicate, for example, the relationship indicated by the solid line d in FIG.
[0056]
Next, in order to surely prevent the hunting, the condition that the rotation speed and the discharge pressure are equal to or higher than the upper limit rotation speed Rb and the upper limit pressure Pb for a certain period of time (for example, 5 seconds) is set in practice. It is preferable to switch from pressure constant control to rotational speed constant control and vice versa.
[0057]
In the above-described embodiment, the pressure sensor 7 is provided on the discharge side of the pump 2. However, the pressure sensor 7 is provided on the suction side of the pump 2, and the motor is operated in accordance with a change in suction pressure due to a change in the liquid level of the well 1. The 2 m drive control may be switched from the constant pressure control to the constant rotation speed control and vice versa.
[0058]
The present invention can be similarly applied not only to wells but also to pumps for pumping various liquids such as water and oil from tanks and the like.
[0059]
At this time, the pump motor is not limited to the brushless DC motor, and the feedback control of the constant pressure control and the constant rotation speed control is not limited to the PID control.
[0060]
Further, the set pressure Pa, the upper limit pressure Pb, the set rotation speed Ra, the upper limit rotation speed Rb, and the like may be set appropriately according to the capacity of the motor 2m, the conditions of the well, and the like.
[0061]
【The invention's effect】
The present invention has the following effects.
First, in the case of the pump operation control method of claim 1, the pump 2 for pumping is normally driven by the motor 2m under constant pressure control so that the discharge pressure or the suction pressure is constant, and the discharge side and Due to the so-called load fluctuation on the suction side, the rotation speed of the motor 2m becomes higher than the set rotation speed in the drive of the constant pressure control, and when the motor is over-driven, the drive control of the motor 2m is changed from the constant pressure control to the constant rotation speed. By switching to control, an excessive increase in the rotation speed of the motor 2m can be suppressed.
[0062]
Therefore, it is possible to prevent the motor 2m from being over-rotated and to appropriately operate this kind of pump 2 for pumping.
[0063]
Further, in the case of the pump operation control method according to the second aspect, a load fluctuation (overload fluctuation) on the discharge side due to, for example, opening of all valves occurs during driving of the constant pressure control of the motor 2m of the pump 2. When the rotational speed of the motor 2m becomes higher than the set rotational speed, the drive control of the motor 2m is switched from the constant pressure control to the constant rotational speed control, and the rotational speed of the motor 2m is regulated to the set rotational speed, and the rotational speed of the motor 2m is increased. The rise can be suppressed.
[0064]
Further, during this rotation speed constant control, when the load state on the discharge side changes and the discharge pressure of the pump 2 becomes higher than the set pressure, the drive control of the motor 2m can be returned to the constant pressure control.
[0065]
Therefore, this kind of pump 2 for pumping can be more appropriately operated according to the load condition on the discharge side.
[0066]
In the pump operation control method according to claims 1 and 2, the motor 2m is preferably a brushless DC motor.
[0067]
Next, in the case of the operation control device for a pump according to claim 4, it is possible to provide an operation control device having a specific configuration for realizing the operation control method according to claim 2.
[0068]
In the pump operation control device according to the fourth aspect, the motor 2m is preferably a brushless DC motor.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a configuration according to an embodiment of the present invention.
FIG. 2 is a detailed circuit block diagram of a part of FIG. 1;
FIG. 3 is a flowchart for explaining the operation of FIG. 2;
FIG. 4 is a control characteristic diagram of the pump of FIG. 1;
FIG. 5 is a relationship diagram between a flow rate and a pressure of the pump in FIG. 1;
[Explanation of symbols]
2 Pump for pumping 2 m Pump 7 Pressure sensor 8 Drive control unit Pa Set pressure Pb Upper limit pressure Ra Set rotation speed Rb Upper rotation speed

Claims (5)

汲み揚げ用のポンプのモータを圧力一定制御で駆動し、
前記圧力一定制御により、前記モータの回転数が設定回転数より高くなったときに、前記モータの駆動制御を、前記圧力一定制御から回転数一定制御に切換え、
前記モータの回転数の過上昇を抑制することを特徴とするポンプの運転制御方法。
The pump motor for pumping is driven by constant pressure control,
By the constant pressure control, when the rotation speed of the motor becomes higher than a set rotation speed, the drive control of the motor is switched from the constant pressure control to the constant rotation speed control,
An operation control method for a pump, wherein an excessive increase in the rotation speed of the motor is suppressed.
汲み揚げ用のポンプのモータを、前記ポンプの吐出圧力が設定圧力になるように、圧力一定制御で駆動し、
前記圧力一定制御により、前記モータの回転数が設定回転数より高くなったときに、前記モータの回転数が前記設定回転数になるように、前記モータの駆動制御を、前記圧力一定制御から前記回転数一定制御に切換え、
前記回転数一定制御により、前記ポンプの吐出圧力が前記設定圧力より高くなったときに、前記モータの駆動制御を、前記回転数一定制御から前記圧力一定制御に切戻す
ことを特徴とするポンプの運転制御方法。
The pump motor for pumping is driven by constant pressure control so that the discharge pressure of the pump becomes a set pressure,
By the constant pressure control, when the rotation speed of the motor becomes higher than a set rotation speed, the drive control of the motor is changed from the constant pressure control so that the rotation speed of the motor becomes the set rotation speed. Switch to constant rotation speed control,
When the discharge pressure of the pump becomes higher than the set pressure by the rotation speed constant control, the drive control of the motor is switched back from the rotation speed constant control to the pressure constant control. Pump operation control method.
汲み揚げ用のポンプのモータが、ブラシレスDCモータであることを特徴とする請求項1又は請求項2記載のポンプの運転制御方法。3. The pump operation control method according to claim 1, wherein a motor of the pump for pumping is a brushless DC motor. 汲み揚げ用のポンプの吐出圧力を計測する手段と、
前記ポンプのモータの回転数を計測する手段と、
前記吐出圧力,前記回転数の計測結果に基づき前記モータを駆動する駆動制御部とを備え、
前記駆動制御部に、
前記吐出圧力の計測結果に基づき、前記吐出圧力が一定になるように、前記ポンプのモータを前記圧力一定制御で駆動する手段と、
前記圧力一定制御により、前記モータの計測された回転数が設定回転数を越えて上限回転数に上昇したときに、前記モータの駆動制御を、前記圧力一定制御から回転数一定制御に切換え、前記回転数の計測結果に基づき、前記モータの回転数が前記設定回転数になるように、前記モータを前記回転数一定制御で駆動する手段と、
前記回転数一定制御により、前記ポンプの計測された吐出圧力が前記設定圧力より高い上限圧力に上昇したときに、前記モータの駆動制御を、前記回転数一定制御から前記圧力一定制御に切戻す手段とを設けた
ことを特徴とするポンプの運転制御装置。
Means for measuring the discharge pressure of the pump for pumping;
Means for measuring the number of rotations of the pump motor,
A drive control unit that drives the motor based on the measurement result of the discharge pressure and the number of rotations,
In the drive control unit,
Means for driving the motor of the pump under the pressure constant control, based on the measurement result of the discharge pressure, so that the discharge pressure is constant,
By the constant pressure control, when the measured rotational speed of the motor exceeds the set rotational speed and rises to the upper limit rotational speed, the drive control of the motor is switched from the constant pressure control to the constant rotational speed control, Means for driving the motor under the rotation speed constant control, based on the measurement result of the rotation speed, so that the rotation speed of the motor becomes the set rotation speed;
When the measured discharge pressure of the pump increases to the upper limit pressure higher than the set pressure by the rotation speed constant control, the drive control of the motor is switched from the rotation speed constant control to the pressure constant control. An operation control device for a pump, comprising a return means.
汲み揚げ用のポンプのモータが、ブラシレスDCモータであることを特徴とする請求項4記載のポンプの運転制御装置。The operation control device for a pump according to claim 4, wherein the motor of the pump for pumping is a brushless DC motor.
JP2002339223A 2002-11-22 2002-11-22 Pump operation control method and operation control apparatus Expired - Fee Related JP4205409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339223A JP4205409B2 (en) 2002-11-22 2002-11-22 Pump operation control method and operation control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339223A JP4205409B2 (en) 2002-11-22 2002-11-22 Pump operation control method and operation control apparatus

Publications (2)

Publication Number Publication Date
JP2004169666A true JP2004169666A (en) 2004-06-17
JP4205409B2 JP4205409B2 (en) 2009-01-07

Family

ID=32702230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339223A Expired - Fee Related JP4205409B2 (en) 2002-11-22 2002-11-22 Pump operation control method and operation control apparatus

Country Status (1)

Country Link
JP (1) JP4205409B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233182A (en) * 2013-05-30 2014-12-11 日本電産トーソク株式会社 Controller of brushless motor
JP2014233179A (en) * 2013-05-30 2014-12-11 日本電産トーソク株式会社 Controller of brushless motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233182A (en) * 2013-05-30 2014-12-11 日本電産トーソク株式会社 Controller of brushless motor
JP2014233179A (en) * 2013-05-30 2014-12-11 日本電産トーソク株式会社 Controller of brushless motor

Also Published As

Publication number Publication date
JP4205409B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
KR100592164B1 (en) Method and device for controlling temperature rise of autonomous inverter-driven hydraulic unit
JP4012604B2 (en) Method for controlling the torque of an AC motor
CA2285683C (en) Method and apparatus for controlling operation of a submersible pump
US7095952B2 (en) Method for optimizing the efficiency of a motor operated under a load
JP5259525B2 (en) Hydraulic supply device
JPWO2018087908A1 (en) Electric pump device
US8525456B2 (en) Electric pump device
JP2000110560A (en) Fan revolution speed control method and its device
JP4205409B2 (en) Pump operation control method and operation control apparatus
JP2004144020A (en) High pressure coolant supplying device
JP6136140B2 (en) Motor control device and electric pump unit
JP5195199B2 (en) Turbo compressor
AU2018226492B2 (en) Power-loss ridethrough system and method
JPH08159079A (en) Revolution control water supply system with pressure fluctuation restraining function
WO2012093677A1 (en) Electric pump device
JP3464095B2 (en) Variable speed water supply
KR101993758B1 (en) Inverter for pumps applying pressure sensorless algorithm
JP2001342966A (en) Pump controller
JP2000274377A (en) Inverter driving hydraulic unit
JP4096474B2 (en) Water supply pump motor control device and refrigerator
KR102234374B1 (en) Dry vacuum pump apparatus, control method thereof and control program
JP5817520B2 (en) Motor control device and electric pump unit
JP4589026B2 (en) Pump device
JP6079035B2 (en) Motor control device and electric pump unit
JP4245455B2 (en) Torque command priority circuit of PWM converter in wind power generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Effective date: 20080828

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20081016

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111024

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees