JP2004169636A - Diesel particulate filter and its manufacturing method - Google Patents

Diesel particulate filter and its manufacturing method Download PDF

Info

Publication number
JP2004169636A
JP2004169636A JP2002337326A JP2002337326A JP2004169636A JP 2004169636 A JP2004169636 A JP 2004169636A JP 2002337326 A JP2002337326 A JP 2002337326A JP 2002337326 A JP2002337326 A JP 2002337326A JP 2004169636 A JP2004169636 A JP 2004169636A
Authority
JP
Japan
Prior art keywords
diesel particulate
particulate filter
exhaust gas
particles
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002337326A
Other languages
Japanese (ja)
Inventor
Hideo Takahashi
秀雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002337326A priority Critical patent/JP2004169636A/en
Publication of JP2004169636A publication Critical patent/JP2004169636A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diesel particulate filter excellent in heat resistance and thermal shock resistance for selectively trapping a diesel particulate on a partition wall on the exhaust gas outlet side in the filter, and its manufacturing method. <P>SOLUTION: The diesel particulate filter has a plurality of substantially parallel through holes partitioned by porous partitions. The average small hole diameter of the partition in an exhaust gas inlet side part is 5-75% of the average small hole diameter of the partition in an exhaust gas outlet side part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルパティキュレートフィルタおよびその製造方法の提供に関する。
【0002】
【従来の技術】
ディーゼル内燃機関または希薄燃焼ガソリン内燃機関などは、その排気ガス中にパティキュレートマターと呼ばれるススを主成分とする物質(以下、PMという。)を含んでおり、その大気への放出を防ぐ有効な手段としてセラミックスフィルタが用いられる。ディーゼルエンジンからのPMを除去するフィルタを特に、ディーゼルパティキュレートフィルタ(以下、単にDPFと略す。)という。
【0003】
DPFは使用につれてフィルタ内にPMが蓄積されるため定期的に再生することが必要とされている。DPFの再生方法の一つに、燃料にPM燃焼のための触媒を添加し、PMを燃焼させるためエンジン内への燃料噴射する(ポストインジェクション)方法がある。この方法は簡易であるものの、燃料に添加する触媒の搭載や補充が大変であること、前記触媒がPMの燃焼後に灰としてDPF内部に残留し定期的にこの灰の清掃除去が必要である等の問題点もある。
【0004】
このためセラミックスハニカムフィルタからなるDPFの多孔質の隔壁に、直接またはウォッシュコートを介してPM燃焼用触媒を担持したフィルタ(以下、CDPFという。)も提案されている(特許文献1参照。)。CDPFに担持される触媒としては、PM燃焼用のほか、CO、HCの酸化燃焼用、NO処理用等の各種触媒の場合もある。
【0005】
また、DPF内のPMの蓄積の影響を少なくするために、DPF内隔壁のPMの捕集特性を出口側で捕集量が少なくなるように変化させたものが提案されている(特許文献2参照。)。これはフィルタの出口側隔壁に多孔質セラミック層を設けて出口側での堆積量を減らし、出口側側壁の温度の急上昇を防止して溶損や破損の生じにくいセラミックスハニカムフィルタを提供するものである。
【0006】
【特許文献1】
特公平2−55603号公報(第1頁〜第4頁。第2図)
【特許文献2】
特公平5−50323号公報(第1頁〜第5頁。第1図)
【0007】
【発明が解決しようとする課題】
本発明は、フィルタ内の排ガス出口側隔壁で選択的にディーゼルパティキュレートを捕捉し、しかも耐熱性、耐熱衝撃性に優れるディーゼルパティキュレートフィルタおよびその製造方法の提供を目的とする。
【0008】
【課題を解決するための手段】
本発明は、多孔質の隔壁で隔てられた、おおむね平行な複数の貫通孔を有するセラミックスハニカムフィルタであって、排ガス入口側部分の隔壁の平均細孔直径が排ガス出口側部分の隔壁の平均細孔直径の5〜75%であることを特徴とするディーゼルパティキュレートフィルタを提供する。また、別の本発明は、多孔質の隔壁で隔てられた、おおむね平行な複数の貫通孔を有するセラミックスハニカムフィルタの一部分に、セラミックス粒子および/または熱処理後にセラミックス粒子となる金属粒子を含む分散液を付着させた後、800℃以上で熱処理することを特徴とするディーゼルパティキュレートフィルタの製造方法を提供する。
【0009】
【発明の実施の形態】
本発明のディーゼルパティキュレートフィルタ(以下、本フィルタという。)は、排ガス入口側部分の多孔質の隔壁(以下、入口部隔壁という。)が上述のような細孔特性であるため、入口部隔壁と排ガスとは接触するものの実質的にPMを捕集しないか捕集してもその量が少ない。このため、PMの捕集・再生の大部分は排ガス出口側部分の多孔質の隔壁(以下、出口部隔壁という。)で行われる。すなわち、この点で本願発明は特許文献2とは技術思想を異にする。
【0010】
なお、本フィルタの構造の一例を図1に示す。図1は、本フィルタのガス流れ方向の断面図であり、図中、10は本フィルタを、1は入口部隔壁を、2は出口部隔壁を、3は排ガス入口を、4は排ガス出口を、5は封止材を、Lは入口部隔壁の長さを、Lはフィルタの全長を、それぞれ示す。本明細書においてL、Lを考える際には、両端面が封止されている場合には封止部分を除外するものとする(図1参照)。
【0011】
本フィルタは、多孔質の隔壁で隔てられた、おおむね平行な複数の貫通孔を有し、入口部隔壁の平均細孔直径(以下、平均細孔径と略す。)が出口部隔壁の平均細孔径の5〜75%であることを特徴とする。入口部隔壁の平均細孔径が出口部隔壁の平均細孔径の5%未満にするには細孔を小さくする処理を多数回繰り返す必要があるなど生産性の点で問題となるおそれがある。20%以上であれば生産性と効果の両立の点で好ましく、30%以上であればさらに好ましい。一方、入口部隔壁の平均細孔径が出口部隔壁の平均細孔径の75%を超えると、実質的にPMを捕集するようになるおそれがある。65%以下であるとよりPMを捕集しにくくなるため好ましい。なお、本明細書において、入口部隔壁の平均細孔径は封止部分を除いた入口端から0.1Lまでの部位の平均細孔径で、一方、出口部隔壁の平均細孔径とは封止部分を除いた0.9L〜1.0Lまでの部位の平均細孔径で、それぞれ代表させるものとする。
【0012】
本フィルタにおいて、入口部隔壁の平均細孔径は、1〜7μmであると好ましい。入口部隔壁の平均細孔径が7μmを超えると入口部隔壁でのPMのろ過が無視できないレベルとなるおそれがある。さらに好ましくは5μm以下である。一方、入口部隔壁の平均細孔径を1μm未満とするには、後述する平均細孔径を小さくするための操作を何度も繰り返す必要があり生産性の点で問題となるおそれがある。なお、出口部隔壁の平均細孔径は、10〜20μmであるとPMを効率的にろ過・捕集できるため好ましい。なお、本明細書では平均細孔径は水銀ポロシメータで測定した値とする。
【0013】
本フィルタにおいて、フィルタの全長をLとするとき、前記入口部隔壁の長さLは、L=0.1〜0.6Lとするのが好ましい。入口部隔壁の長さLが0.6Lを超えるとフィルタ全体の圧損が高くなり過ぎるおそれがあり好ましくない。Lが0.5L以下であるとさらに好ましい。一方、入口部隔壁の長さLが0.1未満であると所望の効果が得られないおそれがある。Lが0.2L以上であるとさらに好ましい。
【0014】
また、入口部隔壁の長さを各隔壁すべて等しくする必要はなく、中央部にある前記隔壁の長さを長くし、一方、外周辺部の前記隔壁の長さを相対的に短くするなど、各隔壁毎に変化させてもよい。各隔壁毎に長さLが異なる場合は、その平均値が上記範囲に入ることが好ましい。なお、本明細書において入口部隔壁と出口部隔壁の境界の位置は、その場所での平均細孔径が前記出口部隔壁の平均細孔径の75%となる位置をいう。
【0015】
本フィルタの材質としては、セラミックスであれば特に制限されないが、耐熱性、耐熱衝撃性などの点から、窒化ケイ素、炭化ケイ素、コーディエライト、β−スポジュメン、アルミナ、ムライト等の単体またはそれらの複合体などを主とするものが挙げられる。
【0016】
本フィルタとしては、隣接する貫通孔の入口部と出口部を交互に実質的に封止することが好ましい。封止の方法や封止材などは特に制限されないが、封止材を本フィルタと同材質にすると高温で使用した場合に熱膨張率の差に起因する問題が発生しにくくなるので好ましい。なお、封止の代表的なパターンとしては市松模様状が挙げられる。
【0017】
本フィルタにおいて、入口部隔壁に担持させる触媒としては、白金のような耐熱性の低い触媒やPMが堆積すると触媒性能が低下するような触媒がある。このような触媒としては、白金、ロジウム、パラジウム、イリジウム、鉄、コバルト、ニッケル、銅、バナジウム、クロム、マンガン、セリウム、ランタンおよびイットリウムからなる群から選ばれる1種以上の単体、合金、酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、酢酸塩、リン酸塩、アンモニウム塩、シュウ酸塩、ハロゲン化物またはそれらの錯体が挙げられる。
【0018】
これらの触媒では、通常、雰囲気温度が高くなると触媒粒子同士の固着や粒成長により比表面積が低下し触媒が劣化する。したがって、このような耐熱性の低い触媒を1つのDPF内で使用する場合には、排ガスと接触はするものの実質的に通過しないためPMが実質的に堆積しない隔壁部分と、排ガスが通過してPMが堆積する隔壁部分とに分け、前者を耐熱性の低い触媒担持部分とし、後者をPMの捕集再生部分として機能分離させることが望ましい。よって、本フィルタの入口部隔壁でPMの酸化触媒以外の触媒を使用すると、PMが実質的に堆積しないため、PMの燃焼熱による触媒劣化を抑制できるので好ましい。
【0019】
本発明のディーゼルパティキュレートフィルタの製造方法(以下、本製造法という。)は、多孔質の隔壁で隔てられた、おおむね平行な複数の貫通孔を有するセラミックスハニカムフィルタの一部分に、セラミックス粒子および/または熱処理後にセラミックス粒子となる金属粒子を含む分散液を付着させた後、800℃以上で熱処理することを特徴とする。分散液を付着させる態様としては、分散液中に浸漬する方法や分散液を塗布する方法が挙げられる。前記セラミックスハニカムフィルタを前記分散液に浸漬時の模式図を図2に示す。
【0020】
図中、11は入口部隔壁を、12は出口部隔壁を、14は排ガス出口を、15はマスキング材を、16は分散液を、17は16の分散液を入れる容器を、20はセラミックスハニカムフィルタを、それぞれ示す。図2では封止材を充填後、当該分散液に浸漬することとしているが、封止材の充填を当該分散液に浸漬後としてもよい。なお、入口部隔壁の長さLを隔壁毎に変化させる場合には必要な箇所に当該分散液が入らないようにマスキング材を事前に充填しておく。または、あらかじめ浸漬させたくない部分を有機バインダ水溶液に浸漬、乾燥して細孔を有機バインダで閉塞させてもよい。この場合、細孔内の有機バインダはその後の熱処理の過程で熱分解され飛散する。これらの方法により任意の部分のマスキングができる。
【0021】
本製造法において、多孔質の隔壁で隔てられた、おおむね平行な複数の貫通孔を有するセラミックスハニカムフィルタは、通常、前記セラミックスハニカムフィルタとなる原料と気孔形成剤とを含む坏土をハニカム金型を使用して押出成形し、所望の長さで切断して成形体とし、該成形体を所定の雰囲気下で熱処理することにより得られる。例えば、窒化ケイ素粒子および/または金属ケイ素粒子と、気孔形成材と、所望の成形助剤等と、を含む坏土を押出成形し、得られた成形体を乾燥後、窒素雰囲気下で焼結および/または窒化して窒化ケイ素質フィルタとする。しかし、セラミックスハニカムフィルタとなるのであれば特にこの方法に制限されない。本製造法において、前記セラミックスハニカムフィルタの一部とは、前記セラミックスハニカムフィルタにおいて本発明の入口部隔壁となる部分である。
【0022】
本製造法において、セラミックス粒子および/または熱処理後にセラミックス粒子となる金属粒子を含む分散液を使用する。該セラミックス粒子としては、特に制限されないが、セラミックスハニカムフィルタの熱膨張率に近い熱膨張率を有するものであると好ましい。セラミックス粒子の熱膨張率とセラミックスハニカムフィルタの熱膨張率の差が2×10−6/℃以下であると使用時に発生する熱応力が小さいため好ましい。該熱膨張率の差が1×10−6/℃以下であると好ましく、0.5×10−6/℃以下であるとさらに好ましい。なお、熱処理後のセラミックス粒子となる金属粒子としては、例えば金属ケイ素粒子が挙げられる。
【0023】
前記セラミックス粒子が、前記セラミックスハニカムフィルタと同材質のセラミックス粒子であると熱膨張率が同じであるため熱膨張率の差に起因する熱応力が発生しないか発生しても問題となるレベルではないため特に好ましい。セラミックス粒子や熱処理後に同材質となる粒子の平均粒径としては、特に制限されないが、平均粒径が1μm以下であると入口隔壁部の平均細孔径を制御しやすいので好ましい。
【0024】
例えば、セラミックスハニカムフィルタが窒化ケイ素質ハニカムフィルタであるとき、窒化ケイ素粒子および/または金属ケイ素粒子を含む分散液を付着させて窒素雰囲気中800℃以上で熱処理すると好ましい。この場合、金属ケイ素粒子を窒素雰囲気下で高温で熱処理すると金属ケイ素粒子が窒化して窒化ケイ素粒子となる。窒化ケイ素粒子と金属ケイ素粒子との混合粉末を使用する場合には当該部分の焼成収縮を制御できるので好ましい。この場合、窒化ケイ素粒子と金属ケイ素粒子との混合粉末中、窒化ケイ素粒子を20〜80質量%とすると好ましい。
【0025】
本製造法において、前記分散液の溶媒としては水またはアルコール類などの有機溶媒がある。前記分散液中の固形分濃度としては、分散液中10〜60質量%とするのが好ましい。また、前記分散液には必要に応じてポリビニルアルコール、メチルセルロース等の有機バインダを添加してもよい。なお、有機バインダを添加する場合の添加量は前記分散液の固形分に対して外掛で0.1〜5質量%とすると好ましい。なお、必要に応じて分散剤等を前記分散液に添加してもよい。本製造法において、前記分散液を調製するのに撹拌機のほかに、ボールミルなどの各種ミル、アトライタ、等の分散手段を使用してもよい。なお、前記セラミックスハニカムフィルタを前記分散液に浸漬する際には、超音波振動装置などの分散を促進する機器を使用してもよい。
【0026】
本製造法において、前記分散液を付着させた後、800℃以上で熱処理する。
800℃未満の温度で熱処理しても焼結しないおそれがあるからである。好ましくは、各材質毎に、焼結、窒化、炭化等に最適な温度で熱処理するのが好ましい。熱処理の際の雰囲気も各材質毎に適宜最適な雰囲気となるように選択するのが望ましい。例えば、酸化物に対しては大気中、窒化物に対しては窒素中、炭化物に対してはAr雰囲気、などが挙げられる。
【0027】
例えば、主として窒化ケイ素粒子または金属ケイ素粒子を出発原料として作製した窒化ケイ素質ハニカムフィルタの場合、金属ケイ素粒子および/または窒化ケイ素粒子を主として含むスラリを調製し、該スラリ中に前記窒化ケイ素質ハニカムフィルタを浸漬し、乾燥後、窒素雰囲気中で熱処理する。この場合の熱処理条件としては窒素雰囲気下で処理温度が1300℃を超えると充分に窒化されるが、1500℃以上とするとさらに基材フィルタの機械的強度が充分となるため好ましい。処理温度としては1600〜1700℃とするとさらに好ましい。最高温度での保持時間は、0.5〜3時間保持することが好ましい。また、昇温する際の昇温速度としては、120〜480℃/hが好ましく、さらには、300〜400℃/hとするのが好ましい。
【0028】
【実施例】
以下に本発明を実施例に基づいて説明する。
【0029】
[サンプル調製]
直径144mmの円形断面を有する長さ152mm、貫通孔密度31セル/cm、貫通孔間の多孔質隔壁の壁厚は300μmの一体型の金属シリコン製ハニカムフィルタを成形した。これを窒素中で金属ケイ素を窒化して、窒化ケイ素質ハニカムフィルタとする。この両端面を窒化ケイ素で市松模様状に封止してフィルタ基材とする。
【0030】
このフィルタ基材の排ガス入口側を平均粒径1μm以下の金属シリコンと平均粒径1μm以下の窒化ケイ素粉末との混合粉末(内訳は表1参照)を分散したスラリにLが60mmになるように浸漬させる。スラリは、容器にイオン交換水、ポリカルボン酸系の分散剤、有機バインダとしてポリビニルアルコールを添加した。添加量は、混合粉末の質量に対して、分散剤が1%、有機バインダが2%である。これにスターラで撹拌しながら混合粉末を少量ずつ投入して調製した。スターラで撹拌後、投入型の超音波発信振動子によりさらに混合、分散した。また、スラリに前記フィルタ基材を浸漬する時間は2分間一定とし、浸漬する際には超音波を2分間かける。フィルタ基材を複数回浸漬する場合には、1回毎にスラリから取り出して熱風で乾燥させ、所定回数繰り返す。
【0031】
所定回数の浸漬後、基材フィルタを100℃で一昼夜乾燥させる。乾燥させた基材フィルタを窒素雰囲気下で昇温速度300℃/h一定で昇温し、1600℃で2時間保持して窒化、焼成し、評価用フィルタとする。例1〜例10が実施例であり、例11は基材フィルタそのままである。なお、例1では焼成後に貫通孔内部にウイスカが多く観察される。例10では貫通孔の開口部が一部閉塞されている。
【0032】
[評価方法]
評価用フィルタを400m/hの流量で圧損を測定する。圧損測定後、そのままPM付着試験を行う。ボッシュナンバで1程度のPMが発生する条件でエンジンを運転し、排気ガスをDPFにて集塵する。運転時間は約1.5時間で、およそ7gのPM(単位ハニカム容積あたりでは2.5g/L)が集塵される。集塵後、各評価用フィルタを切断し、入口部隔壁のPMの厚さを測定する。次に、各評価用フィルタを大気中で700℃に保持してPMを燃やした後、入口部隔壁の細孔特性を水銀ポロシメータで測定する。結果を表1に示す。
【0033】
【表1】

Figure 2004169636
【0034】
なお、例11は入口部隔壁と出口部隔壁で平均細孔径に違いがないので、PM量はほぼ貫通孔内で均一に近い。例11以外では入口部の細孔径を小さくしてPMの捕集性を低下させてあるので入口部隔壁のPM量が少ない。逆に、出口部隔壁でPMが選択的に捕集されることから、貫通孔の出口端がほぼ閉塞している。
【0035】
また、PMを燃焼させた際に入口部隔壁と出口部隔壁との最高温度を比較するため、例3において入口部と出口部にそれぞれ熱電対を挿入し、排気ガスを通気後、ポストインジェクションによりPMを燃焼させて温度変化を調査する。その結果、出口部隔壁での最高温度が800℃に達したのに対し、入口部隔壁では650℃とかなり最高温度が抑制されていることがわかる。
【0036】
【発明の効果】
本フィルタは、入口部隔壁の平均細孔径が出口部隔壁のそれの5〜75%であるため、PMは排ガス入口側には実質的に堆積しないか堆積しても少量である。
したがって、入口部隔壁に白金のような耐熱性の低い触媒やPMが堆積すると触媒性能が低下するような触媒、例えばガスの無害化触媒、を担持することにより、DPF内でガスを無害化する場所とPMを捕集・再生する場所を分けることができ、触媒性能が長期間維持され、触媒寿命が長くなり、CDPFとして好適である。
【0037】
また、従来のCDPFでポストインジェクションを採用するシステムの場合には、DOC(Diesel oxidation catalyst)と呼ばれる通常運転時には排気ガス中のCOやHCを酸化させて無害化し、一方、ポストインジェクション時には未燃燃料分を酸化燃焼させてガス温度を上昇させる触媒をCDPFの前段に別途配置することが必要とされている。さらに、この場合にはDPFが複数になることからキャンニングが複雑になり、しかも占有空間もDPF複数分となり限られた車載空間の有効利用、設計の大きな障害となる。
【0038】
これに対して、本フィルタを採用すると、1つのDPF内にDOC触媒を取り込めるので本フィルタに流入する排ガスは入口側部分の隔壁に担持されたDOC触媒を通過した際に加熱され、その熱により出口側部分の隔壁でのPMの酸化燃焼が効率的になるほか、キャンニングも容易になり、さらに占有空間をコンパクトにできるため、設計の自由度がひろがり、性能向上、デザイン自由度の向上などの利点もある。
【図面の簡単な説明】
【図1】本フィルタのガス流れ方向の断面図。
【図2】本製造法において、セラミックスハニカムフィルタの一部をセラミックス粒子および/または熱処理後にセラミックス粒子となる金属粒子を含む分散液に浸漬した時の模式図。
【符号の説明】
1:入口部隔壁。
2:出口部隔壁。
3:排ガス入口。
4:排ガス出口。
5:封止材。
10:本フィルタ。
11:入口部隔壁。
12:出口部隔壁。
14:排ガス出口。
15:マスキング材。
16:分散液。
17:16を入れる容器。
20:本フィルタ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diesel particulate filter and a method for manufacturing the same.
[0002]
[Prior art]
Diesel internal combustion engines or lean-burn gasoline internal combustion engines, etc. contain substances containing soot called particulate matter (hereinafter referred to as PM) in their exhaust gas, and are effective in preventing their release into the atmosphere. A ceramic filter is used as a means. A filter that removes PM from a diesel engine is particularly referred to as a diesel particulate filter (hereinafter simply referred to as DPF).
[0003]
Since the DPF accumulates PM in the filter as it is used, it needs to be regenerated periodically. One method for regenerating DPF is to add a catalyst for PM combustion to fuel and inject fuel into the engine (post-injection) to burn PM. Although this method is simple, it is difficult to load and replenish the catalyst to be added to the fuel, the catalyst remains in the DPF as ash after PM combustion, and it is necessary to periodically clean and remove this ash, etc. There are also problems.
[0004]
For this reason, a filter (hereinafter referred to as CDPF) in which a PM combustion catalyst is supported on a porous partition wall of a DPF made of a ceramic honeycomb filter directly or through a wash coat has also been proposed (see Patent Document 1). The catalyst supported on the CDPF, addition for PM combustion is CO, for oxidative combustion of HC, even when the various catalysts, such as for NO x treatment.
[0005]
Further, in order to reduce the influence of the accumulation of PM in the DPF, there has been proposed one in which the PM collection characteristic of the DPF inner partition wall is changed so that the collection amount is reduced on the outlet side (Patent Document 2). reference.). This is to provide a ceramic honeycomb filter in which a porous ceramic layer is provided on the outlet side partition of the filter to reduce the amount of deposition on the outlet side, and the temperature on the side wall of the outlet side is prevented from abruptly increasing, so that melting and breakage are unlikely to occur. is there.
[0006]
[Patent Document 1]
Japanese Examined Patent Publication No. 2-55603 (pages 1 to 4; FIG. 2)
[Patent Document 2]
Japanese Patent Publication No. 5-50323 (pages 1 to 5; FIG. 1)
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a diesel particulate filter that selectively captures diesel particulates at an exhaust gas outlet side partition in a filter and is excellent in heat resistance and thermal shock resistance, and a method for producing the same.
[0008]
[Means for Solving the Problems]
The present invention relates to a ceramic honeycomb filter having a plurality of substantially parallel through-holes separated by porous partition walls, wherein the average pore diameter of the partition walls on the exhaust gas inlet side portion is the average fineness of the partition walls on the exhaust gas outlet side portion. A diesel particulate filter characterized by being 5 to 75% of the pore diameter is provided. Another aspect of the present invention provides a dispersion liquid containing ceramic particles and / or metal particles that become ceramic particles after heat treatment in a part of a ceramic honeycomb filter having a plurality of substantially parallel through-holes separated by porous partition walls. And a method for producing a diesel particulate filter, characterized in that heat treatment is performed at a temperature of 800 ° C. or higher.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the diesel particulate filter of the present invention (hereinafter referred to as the present filter), the porous partition wall (hereinafter referred to as the inlet partition wall) on the exhaust gas inlet side portion has the pore characteristics as described above. Although the exhaust gas is in contact with the exhaust gas, the amount of PM is not collected or even if PM is not collected. For this reason, most of the collection and regeneration of PM is performed by a porous partition wall (hereinafter referred to as an outlet partition wall) on the exhaust gas outlet side portion. That is, the technical idea of the present invention differs from that of Patent Document 2 in this respect.
[0010]
An example of the structure of this filter is shown in FIG. FIG. 1 is a cross-sectional view of the filter in the gas flow direction, in which 10 is the filter, 1 is the inlet partition, 2 is the outlet partition, 3 is the exhaust gas inlet, and 4 is the exhaust gas outlet. 5 indicates a sealing material, L indicates the length of the inlet partition wall, and L 0 indicates the total length of the filter. When considering L, L 0 in this specification, when both end faces is sealed to preclude the sealing portion (see Fig. 1).
[0011]
This filter has a plurality of substantially parallel through-holes separated by a porous partition wall, and the average pore diameter of the inlet partition wall (hereinafter abbreviated as the average pore diameter) is the average pore diameter of the outlet partition wall. It is characterized by being 5 to 75%. In order to make the average pore diameter of the inlet partition walls smaller than 5% of the average pore diameter of the outlet partition walls, it is necessary to repeat the process of reducing the pores many times, which may cause a problem in productivity. If it is 20% or more, it is preferable at the point of coexistence of productivity and an effect, and if it is 30% or more, it is still more preferable. On the other hand, when the average pore diameter of the inlet partition walls exceeds 75% of the average pore diameter of the outlet partition walls, PM may be substantially collected. 65% or less is preferable because it is more difficult to collect PM. In this specification, the average pore diameter of the inlet partition wall is the average pore diameter of the portion from the inlet end excluding the sealing portion to 0.1 L 0 , while the average pore diameter of the outlet partition wall is sealed. The average pore diameters of the portions from 0.9L 0 to 1.0L 0 excluding the portion are respectively represented.
[0012]
In this filter, the average pore diameter of the inlet partition wall is preferably 1 to 7 μm. If the average pore diameter of the inlet partition walls exceeds 7 μm, PM filtration at the inlet partition walls may be at a level that cannot be ignored. More preferably, it is 5 μm or less. On the other hand, in order to make the average pore diameter of the inlet partition wall less than 1 μm, it is necessary to repeat an operation for reducing the average pore diameter, which will be described later, many times, which may cause a problem in terms of productivity. In addition, since the average pore diameter of an exit part partition is 10-20 micrometers, since PM can be filtered and collected efficiently, it is preferable. In this specification, the average pore diameter is a value measured with a mercury porosimeter.
[0013]
In this filter, when the full length of the filter and L 0, the length L of the inlet partition wall is preferably set to L = 0.1~0.6L 0. The length L of the inlet partition wall is not preferred there is a possibility that pressure loss of the entire filter exceeds 0.6 L 0 becomes too high. More preferably, L is 0.5L 0 or less. On the other hand, if the length L of the inlet partition is less than 0.1, the desired effect may not be obtained. L is more preferably 0.2L 0 or more.
[0014]
In addition, it is not necessary to make the length of the entrance partition walls all equal, increasing the length of the partition wall in the center, while relatively shortening the length of the partition wall in the outer periphery, etc. You may change for every partition. When the length L is different for each partition wall, the average value is preferably within the above range. In this specification, the position of the boundary between the inlet partition wall and the outlet partition wall refers to a position where the average pore diameter at that location is 75% of the average pore diameter of the outlet partition wall.
[0015]
The material of this filter is not particularly limited as long as it is ceramic, but from the viewpoint of heat resistance, thermal shock resistance, etc., silicon nitride, silicon carbide, cordierite, β-spodumene, alumina, mullite, etc. Examples mainly include composites.
[0016]
As this filter, it is preferable that the inlet part and outlet part of an adjacent through-hole are substantially sealed alternately. The sealing method and the sealing material are not particularly limited, but it is preferable to use the same sealing material as that of the present filter because problems due to the difference in thermal expansion coefficient are less likely to occur when used at a high temperature. A typical pattern for sealing includes a checkered pattern.
[0017]
In this filter, the catalyst supported on the inlet partition wall includes a catalyst having low heat resistance such as platinum and a catalyst whose catalytic performance is lowered when PM is deposited. Examples of such a catalyst include one or more simple substances, alloys, oxides selected from the group consisting of platinum, rhodium, palladium, iridium, iron, cobalt, nickel, copper, vanadium, chromium, manganese, cerium, lanthanum, and yttrium. , Sulfates, nitrates, carbonates, hydroxides, acetates, phosphates, ammonium salts, oxalates, halides or complexes thereof.
[0018]
In these catalysts, when the atmospheric temperature increases, the specific surface area decreases due to adhesion between the catalyst particles and grain growth, and the catalyst deteriorates. Therefore, when such a low heat-resistant catalyst is used in one DPF, a partition wall portion that is in contact with exhaust gas but does not substantially pass through and therefore PM does not substantially accumulate, and exhaust gas passes through. It is desirable that the partition is divided into partition walls where PM is deposited, and the former is used as a catalyst supporting part having low heat resistance, and the latter is used as a part for collecting and regenerating PM. Therefore, it is preferable to use a catalyst other than the oxidation catalyst of PM at the inlet partition wall of the filter because PM is not substantially deposited, and catalyst deterioration due to the combustion heat of PM can be suppressed.
[0019]
A method for producing a diesel particulate filter according to the present invention (hereinafter referred to as this production method) includes ceramic particles and / or a portion of a ceramic honeycomb filter having a plurality of generally parallel through-holes separated by porous partition walls. Alternatively, a dispersion containing metal particles that become ceramic particles after heat treatment is attached, and then heat treatment is performed at 800 ° C. or higher. Examples of the mode of attaching the dispersion include a method of immersing in the dispersion and a method of applying the dispersion. FIG. 2 shows a schematic diagram when the ceramic honeycomb filter is immersed in the dispersion.
[0020]
In the figure, 11 is an inlet partition wall, 12 is an outlet partition wall, 14 is an exhaust gas outlet, 15 is a masking material, 16 is a dispersion liquid, 17 is a container containing 16 dispersion liquids, and 20 is a ceramic honeycomb. Each filter is shown. In FIG. 2, the sealing material is filled and then immersed in the dispersion, but the sealing material may be filled after being immersed in the dispersion. In addition, when changing the length L of the inlet partition wall for each partition wall, the masking material is filled in advance so that the dispersion liquid does not enter the necessary portions. Alternatively, portions that are not desired to be immersed in advance may be immersed in an organic binder aqueous solution and dried to close the pores with the organic binder. In this case, the organic binder in the pores is thermally decomposed and scattered during the subsequent heat treatment. Any method can be used to mask any part.
[0021]
In the present manufacturing method, the ceramic honeycomb filter having a plurality of substantially parallel through-holes separated by porous partition walls is usually made of a clay containing a raw material to be the ceramic honeycomb filter and a pore forming agent. It is obtained by extruding using a material, cutting it to a desired length to form a molded product, and heat-treating the molded product in a predetermined atmosphere. For example, a clay containing silicon nitride particles and / or metal silicon particles, a pore forming material, a desired molding aid and the like is extruded, and the resulting molded body is dried and then sintered in a nitrogen atmosphere. And / or nitriding into a silicon nitride filter. However, the method is not particularly limited as long as it becomes a ceramic honeycomb filter. In the present manufacturing method, the part of the ceramic honeycomb filter is a part that becomes the inlet partition wall of the present invention in the ceramic honeycomb filter.
[0022]
In this production method, a dispersion containing ceramic particles and / or metal particles that become ceramic particles after heat treatment is used. The ceramic particles are not particularly limited, but preferably have a thermal expansion coefficient close to that of the ceramic honeycomb filter. It is preferable that the difference between the thermal expansion coefficient of the ceramic particles and the thermal expansion coefficient of the ceramic honeycomb filter is 2 × 10 −6 / ° C. or less because the thermal stress generated during use is small. Preferably the difference of the thermal expansion coefficient is 1 × 10 -6 / ℃ or less and further preferably 0.5 × 10 -6 / ℃ or less. In addition, as a metal particle used as the ceramic particle after heat processing, a metal silicon particle is mentioned, for example.
[0023]
If the ceramic particles are ceramic particles of the same material as the ceramic honeycomb filter, the thermal expansion coefficient is the same, so no thermal stress is generated due to the difference in the thermal expansion coefficient or it is not a problem level. Therefore, it is particularly preferable. The average particle size of the ceramic particles and the particles of the same material after heat treatment is not particularly limited, but it is preferable that the average particle size is 1 μm or less because the average pore size of the inlet partition wall portion can be easily controlled.
[0024]
For example, when the ceramic honeycomb filter is a silicon nitride honeycomb filter, it is preferable that a dispersion containing silicon nitride particles and / or metal silicon particles is attached and heat treated at 800 ° C. or higher in a nitrogen atmosphere. In this case, when the metal silicon particles are heat-treated at a high temperature in a nitrogen atmosphere, the metal silicon particles are nitrided to form silicon nitride particles. In the case of using a mixed powder of silicon nitride particles and metal silicon particles, it is preferable because firing shrinkage of the part can be controlled. In this case, the silicon nitride particles are preferably 20 to 80% by mass in the mixed powder of silicon nitride particles and metal silicon particles.
[0025]
In this production method, the solvent of the dispersion includes an organic solvent such as water or alcohols. The solid concentration in the dispersion is preferably 10 to 60% by mass in the dispersion. Moreover, you may add organic binders, such as polyvinyl alcohol and methylcellulose, to the said dispersion liquid as needed. In addition, when the organic binder is added, the amount added is preferably 0.1 to 5% by mass based on the solid content of the dispersion. In addition, you may add a dispersing agent etc. to the said dispersion liquid as needed. In this production method, a dispersion means such as various mills such as a ball mill and an attritor may be used in addition to the stirrer to prepare the dispersion. In addition, when immersing the ceramic honeycomb filter in the dispersion, a device for promoting dispersion such as an ultrasonic vibration device may be used.
[0026]
In this production method, after the dispersion is adhered, heat treatment is performed at 800 ° C. or higher.
This is because even if heat treatment is performed at a temperature lower than 800 ° C., there is a possibility that sintering will not occur. Preferably, each material is heat-treated at a temperature optimum for sintering, nitriding, carbonization, and the like. It is desirable that the atmosphere during the heat treatment is appropriately selected for each material so as to be an optimum atmosphere. For example, in the atmosphere for oxides, in nitrogen for nitrides, and in Ar atmosphere for carbides.
[0027]
For example, in the case of a silicon nitride honeycomb filter manufactured mainly using silicon nitride particles or metal silicon particles, a slurry mainly containing metal silicon particles and / or silicon nitride particles is prepared, and the silicon nitride honeycomb is contained in the slurry. The filter is immersed, dried, and heat-treated in a nitrogen atmosphere. As heat treatment conditions in this case, when the treatment temperature exceeds 1300 ° C. in a nitrogen atmosphere, sufficient nitriding is performed, but if it is 1500 ° C. or more, the mechanical strength of the substrate filter is further sufficient, which is preferable. The treatment temperature is more preferably 1600-1700 ° C. The holding time at the maximum temperature is preferably held for 0.5 to 3 hours. Moreover, as a temperature increase rate at the time of heating, 120-480 degreeC / h is preferable, Furthermore, it is preferable to set it as 300-400 degreeC / h.
[0028]
【Example】
The present invention will be described below based on examples.
[0029]
[Sample preparation]
A monolithic metal silicon honeycomb filter having a circular cross section with a diameter of 144 mm, a length of 152 mm, a through-hole density of 31 cells / cm 2 , and a wall thickness of the porous partition wall between the through-holes of 300 μm was formed. This is nitrided with metal silicon in nitrogen to obtain a silicon nitride honeycomb filter. Both end faces are sealed with silicon nitride in a checkered pattern to form a filter substrate.
[0030]
On the exhaust gas inlet side of the filter base material, L is 60 mm in a slurry in which a mixed powder of metal silicon having an average particle diameter of 1 μm or less and silicon nitride powder having an average particle diameter of 1 μm or less (see Table 1 for details) is dispersed. Soak. In the slurry, polyvinyl alcohol was added to the container as ion-exchanged water, a polycarboxylic acid-based dispersant, and an organic binder. The added amount is 1% for the dispersant and 2% for the organic binder with respect to the mass of the mixed powder. A mixed powder was added little by little while stirring with a stirrer. After stirring with a stirrer, the mixture was further mixed and dispersed by a throwing-type ultrasonic transmission vibrator. The time for immersing the filter substrate in the slurry is constant for 2 minutes, and ultrasonic waves are applied for 2 minutes when immersed. When the filter base material is immersed a plurality of times, the filter base material is taken out from the slurry and dried with hot air every time and is repeated a predetermined number of times.
[0031]
After immersion for a predetermined number of times, the substrate filter is dried at 100 ° C. for a whole day and night. The dried substrate filter is heated at a constant temperature increase rate of 300 ° C./h in a nitrogen atmosphere, held at 1600 ° C. for 2 hours, nitrided and fired to obtain a filter for evaluation. Examples 1 to 10 are examples, and Example 11 is a base material filter as it is. In Example 1, many whiskers are observed inside the through holes after firing. In Example 10, the opening of the through hole is partially blocked.
[0032]
[Evaluation methods]
The pressure loss of the evaluation filter is measured at a flow rate of 400 m 3 / h. After measuring the pressure loss, the PM adhesion test is performed as it is. The engine is operated under the condition that about 1 PM is generated at the Bosch number, and the exhaust gas is collected by the DPF. The operation time is about 1.5 hours, and about 7 g of PM (2.5 g / L per unit honeycomb volume) is collected. After dust collection, each evaluation filter is cut, and the PM thickness of the inlet partition wall is measured. Next, after holding each evaluation filter at 700 ° C. in the atmosphere and burning PM, the pore characteristics of the inlet partition walls are measured with a mercury porosimeter. The results are shown in Table 1.
[0033]
[Table 1]
Figure 2004169636
[0034]
In Example 11, there is no difference in the average pore diameter between the inlet partition wall and the outlet partition wall, so the PM amount is almost uniform in the through hole. Except in Example 11, the PM trapping property is lowered by reducing the pore diameter of the inlet portion, so that the amount of PM in the inlet partition wall is small. On the contrary, since PM is selectively collected by the outlet partition wall, the outlet end of the through hole is substantially closed.
[0035]
Further, in order to compare the maximum temperatures of the inlet partition wall and the outlet partition wall when PM is burned, a thermocouple is inserted into each of the inlet portion and the outlet portion in Example 3, and after exhaust gas is vented, post injection is performed. Investigate temperature change by burning PM. As a result, the maximum temperature at the outlet partition wall reached 800 ° C., whereas the maximum temperature at the inlet partition wall was significantly suppressed to 650 ° C.
[0036]
【The invention's effect】
In this filter, the average pore diameter of the inlet partition walls is 5 to 75% of that of the outlet partition walls, so that PM does not substantially accumulate on the exhaust gas inlet side or a small amount even if deposited.
Therefore, the catalyst is made harmless in the DPF by supporting a catalyst having low heat resistance such as platinum or a catalyst whose catalytic performance is lowered when PM deposits on the inlet partition wall, for example, a gas detoxifying catalyst. It is possible to separate the place from which PM is collected and regenerated, the catalyst performance is maintained for a long time, the catalyst life is prolonged, and it is suitable as CDPF.
[0037]
Further, in the case of a system that employs post-injection in the conventional CDPF, CO and HC in exhaust gas are oxidized and rendered harmless during normal operation called DOC (Diesel oxidation catalyst), while unburned fuel is used during post-injection. It is necessary to separately arrange a catalyst that raises the gas temperature by oxidizing and burning the components in front of the CDPF. Further, in this case, since there are a plurality of DPFs, the canning is complicated, and the occupied space is also a plurality of DPFs, which is a great obstacle to effective use and design of the limited in-vehicle space.
[0038]
On the other hand, when this filter is adopted, the DOC catalyst can be taken into one DPF, so that the exhaust gas flowing into this filter is heated when it passes through the DOC catalyst carried on the partition wall on the inlet side, In addition to efficient oxidation and combustion of PM at the partition at the outlet side, canning is facilitated, and the occupied space can be made compact, increasing design freedom, improving performance, improving design freedom, etc. There are also advantages.
[Brief description of the drawings]
FIG. 1 is a sectional view of a gas flow direction of the filter.
FIG. 2 is a schematic view when a part of a ceramic honeycomb filter is immersed in a dispersion containing ceramic particles and / or metal particles that become ceramic particles after heat treatment in the present manufacturing method.
[Explanation of symbols]
1: Entrance partition wall.
2: Exit partition wall.
3: Exhaust gas inlet.
4: Exhaust gas outlet.
5: Sealing material.
10: This filter.
11: Entrance partition wall.
12: Exit partition wall.
14: Exhaust gas outlet.
15: Masking material.
16: Dispersion.
17:16 container.
20: This filter.

Claims (9)

多孔質の隔壁で隔てられた、おおむね平行な複数の貫通孔を有するセラミックスハニカムフィルタであって、排ガス入口側部分の隔壁の平均細孔直径が排ガス出口側部分の隔壁の平均細孔直径の5〜75%であることを特徴とするディーゼルパティキュレートフィルタ。A ceramic honeycomb filter having a plurality of substantially parallel through-holes separated by porous partition walls, wherein the average pore diameter of the partition walls on the exhaust gas inlet side portion is 5 times the average pore diameter of the partition walls on the exhaust gas outlet side portion. A diesel particulate filter characterized by being -75%. 前記排ガス入口側部分の隔壁の長さLは、フィルタの長さをLとするとき、L=0.1〜0.6Lである請求項1記載のディーゼルパティキュレートフィルタ。2. The diesel particulate filter according to claim 1, wherein a length L of the partition wall at the exhaust gas inlet side portion is L = 0.1 to 0.6L 0 when the length of the filter is L 0 . 前記排ガス入口側部分の隔壁の平均細孔直径が1〜7μmである請求項1または2記載のディーゼルパティキュレートフィルタ。The diesel particulate filter according to claim 1 or 2, wherein an average pore diameter of a partition wall at the exhaust gas inlet side portion is 1 to 7 µm. 前記排ガス入口側部分の隔壁に触媒粒子を担持した請求項1、2または3記載のディーゼルパティキュレートフィルタ。The diesel particulate filter according to claim 1, 2, or 3, wherein catalyst particles are supported on a partition wall of the exhaust gas inlet side portion. 前記触媒が、白金、ロジウム、パラジウム、イリジウム、鉄、コバルト、ニッケル、銅、バナジウム、クロム、マンガン、セリウム、ランタンおよびイットリウムからなる群から選ばれる1種以上の単体、合金、酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、酢酸塩、リン酸塩、アンモニウム塩、シュウ酸塩、ハロゲン化物またはそれらの錯体である請求項4記載のディーゼルパティキュレートフィルタ。The catalyst is one or more selected from the group consisting of platinum, rhodium, palladium, iridium, iron, cobalt, nickel, copper, vanadium, chromium, manganese, cerium, lanthanum and yttrium, alloys, oxides, sulfates The diesel particulate filter according to claim 4, which is a nitrate, carbonate, hydroxide, acetate, phosphate, ammonium salt, oxalate, halide or a complex thereof. 多孔質の隔壁で隔てられた、おおむね平行な複数の貫通孔を有するセラミックスハニカムフィルタの一部分に、セラミックス粒子および/または熱処理後にセラミックス粒子となる金属粒子を含む分散液を付着させた後、800℃以上で熱処理することを特徴とするディーゼルパティキュレートフィルタの製造方法。After a dispersion liquid containing ceramic particles and / or metal particles that become ceramic particles after heat treatment is attached to a part of a ceramic honeycomb filter having a plurality of substantially parallel through-holes separated by porous partition walls, 800 ° C. A method for producing a diesel particulate filter, wherein the heat treatment is performed as described above. 前記セラミックス粒子がセラミックスハニカムフィルタと同材質である請求項6記載のディーゼルパティキュレートフィルタの製造方法。The method for producing a diesel particulate filter according to claim 6, wherein the ceramic particles are made of the same material as the ceramic honeycomb filter. 前記セラミックスハニカムフィルタが窒化ケイ素質ハニカムフィルタであり、前記分散液が窒化ケイ素粒子および/または金属ケイ素粒子を含む分散液である請求項6または7記載のディーゼルパティキュレートフィルタの製造方法。The method for producing a diesel particulate filter according to claim 6 or 7, wherein the ceramic honeycomb filter is a silicon nitride honeycomb filter, and the dispersion is a dispersion containing silicon nitride particles and / or metal silicon particles. 前記熱処理が窒素雰囲気下で1200〜1800℃で保持する処理である請求項8記載のディーゼルパティキュレートフィルタの製造方法。The method for producing a diesel particulate filter according to claim 8, wherein the heat treatment is a treatment of holding at 1200 to 1800 ° C in a nitrogen atmosphere.
JP2002337326A 2002-11-21 2002-11-21 Diesel particulate filter and its manufacturing method Withdrawn JP2004169636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337326A JP2004169636A (en) 2002-11-21 2002-11-21 Diesel particulate filter and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337326A JP2004169636A (en) 2002-11-21 2002-11-21 Diesel particulate filter and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004169636A true JP2004169636A (en) 2004-06-17

Family

ID=32700867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337326A Withdrawn JP2004169636A (en) 2002-11-21 2002-11-21 Diesel particulate filter and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004169636A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272244A (en) * 2005-03-30 2006-10-12 Hitachi Metals Ltd Ceramic honeycomb filter
WO2007026804A1 (en) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Honeycomb catalyst and process for production thereof
JP2008006398A (en) * 2006-06-30 2008-01-17 Tokyo Yogyo Co Ltd Method for sealing honeycomb structure
WO2008044508A1 (en) * 2006-09-29 2008-04-17 Hitachi Metals, Ltd. Process for producing cordierite ceramic honeycomb filter
JP2008272737A (en) * 2007-03-30 2008-11-13 Ibiden Co Ltd Honeycomb filter
JP2008284542A (en) * 2007-04-20 2008-11-27 Ibiden Co Ltd Honeycomb filter
JP2008307456A (en) * 2007-06-13 2008-12-25 Tokyo Yogyo Co Ltd Honeycomb structure
JP2010115578A (en) * 2008-11-12 2010-05-27 Nissan Motor Co Ltd Compound oxide catalyst, diesel particulate filter using the same and method for manufacturing compound oxide catalyst
JP2010221162A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Method of producing device for cleaning exhaust, and device for cleaning exhaust

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272244A (en) * 2005-03-30 2006-10-12 Hitachi Metals Ltd Ceramic honeycomb filter
JP4814886B2 (en) * 2005-08-31 2011-11-16 日本碍子株式会社 Honeycomb catalyst body and method for manufacturing honeycomb catalyst body
WO2007026804A1 (en) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Honeycomb catalyst and process for production thereof
US7754160B2 (en) 2005-08-31 2010-07-13 Ngk Insulators Honeycomb catalytic body and process for manufacturing honeycomb catalytic body
JP2008006398A (en) * 2006-06-30 2008-01-17 Tokyo Yogyo Co Ltd Method for sealing honeycomb structure
WO2008044508A1 (en) * 2006-09-29 2008-04-17 Hitachi Metals, Ltd. Process for producing cordierite ceramic honeycomb filter
JP5338317B2 (en) * 2006-09-29 2013-11-13 日立金属株式会社 Cordierite ceramic honeycomb filter manufacturing method
US8398797B2 (en) 2006-09-29 2013-03-19 Hitachi Metals, Ltd. Production method of cordierite-based ceramic honeycomb filter
JP2008272737A (en) * 2007-03-30 2008-11-13 Ibiden Co Ltd Honeycomb filter
JP2008284542A (en) * 2007-04-20 2008-11-27 Ibiden Co Ltd Honeycomb filter
JP2008307456A (en) * 2007-06-13 2008-12-25 Tokyo Yogyo Co Ltd Honeycomb structure
JP2010115578A (en) * 2008-11-12 2010-05-27 Nissan Motor Co Ltd Compound oxide catalyst, diesel particulate filter using the same and method for manufacturing compound oxide catalyst
JP2010221162A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Method of producing device for cleaning exhaust, and device for cleaning exhaust

Similar Documents

Publication Publication Date Title
JP4275406B2 (en) Catalyst support filter
JP5726414B2 (en) Catalyst-carrying filter and exhaust gas purification system
EP1283067B1 (en) Honeycomb filter for purifying exhaust gas
US7517502B2 (en) Honeycomb structural body
CN100443710C (en) Diesel engine and a catalysed filter therefor.
JP5193437B2 (en) Exhaust gas purification catalyst
EP2106835A1 (en) Ceramic honeycomb filter and method for manufacturing the same
EP1437491A1 (en) Filter catalyst for purifying exhaust gases
EP1870573B1 (en) Diesel particulate filter having improved thermal durability
US7541006B2 (en) Honeycomb structured body
EP1820946A2 (en) Honeycomb filter
US20090247399A1 (en) Catalytic diesel particulate filter and manufacturing method thereof
JP2003154223A (en) Filter with catalyst, method for manufacturing the same and exhaust gas control system
JPWO2006025283A1 (en) Exhaust purification system
JP2007098274A (en) Porous honeycomb structure and apparatus for purifying exhaust gas using the same
JP2005002972A (en) Exhaust emission control device of internal-combustion engine
JP2009226375A (en) Catalyst carrying filter
JP5106716B2 (en) Exhaust gas purification material and exhaust gas purification device
JP3855267B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4006645B2 (en) Exhaust gas purification device
JP4715032B2 (en) Diesel exhaust gas purification filter
JP2004169636A (en) Diesel particulate filter and its manufacturing method
JP2008151100A (en) Exhaust emission control device
JP4239864B2 (en) Diesel exhaust gas purification device
JP2007117954A (en) Catalyst for cleaning exhaust gas from diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090129