JP2004169267A - Hyperbaric, high strength conjugate fiber and method for producing the same - Google Patents

Hyperbaric, high strength conjugate fiber and method for producing the same Download PDF

Info

Publication number
JP2004169267A
JP2004169267A JP2004071844A JP2004071844A JP2004169267A JP 2004169267 A JP2004169267 A JP 2004169267A JP 2004071844 A JP2004071844 A JP 2004071844A JP 2004071844 A JP2004071844 A JP 2004071844A JP 2004169267 A JP2004169267 A JP 2004169267A
Authority
JP
Japan
Prior art keywords
fiber
polymer component
specific gravity
core
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004071844A
Other languages
Japanese (ja)
Other versions
JP3752250B2 (en
Inventor
Shoichi Nishiyama
正一 西山
Kazuhiko Tanaka
和彦 田中
Eiji Akiba
英治 秋庭
Masao Kawamoto
正夫 河本
Eiichi Sasagawa
栄一 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2004071844A priority Critical patent/JP3752250B2/en
Publication of JP2004169267A publication Critical patent/JP2004169267A/en
Application granted granted Critical
Publication of JP3752250B2 publication Critical patent/JP3752250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber having both of high sinkable property and fiber strength sufficient to net making processing, excellent in light-resistance causing no strength deterioration after long term use as a fishing net and having color tone causing no sense of imcompatibility for fishes. <P>SOLUTION: The conjugate fiber has ≥1.5 fiber specific gravity and ≥3.5 g/dr strength and comprises a core component and a protective component, wherein the core component comprises polyamide containing 50-85 wt.% magnetite powder and titanium dioxide powder in total and the protective component comprises polyester containing a colorant and having ≥0.7 [η]. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、高比重と高強度を兼ね備えた産業資材用途に好適な複合繊維に関し、特に、海洋環境汚染の問題もなく、耐久性に優れた魚網用に好適な複合繊維に関する。   The present invention relates to a conjugate fiber having both high specific gravity and high strength and suitable for use in industrial materials, and particularly to a conjugate fiber suitable for fishnets having no problem of marine environmental pollution and excellent in durability.

従来より、魚網などに使用される水産資材用繊維は、海水中での魚網の高沈降速度および潮流に対する保形性に重点がおかれ、比重の大きい繊維を用いることにより沈降速度が速く、吹かれ補角が小さく保形性の良好な魚網が得られることが知られている。特に定置網においては、魚群に対する海中での魚網の形状が漁獲に大きく影響するため、繊維の比重が大きくかつ水切れ性が良く、耐摩耗性のよいものが必要とされてきた。しかも、繊維の色相としては、魚に対して警戒感を与えない違和感のない黒色系の色調が必要とされた。   Conventionally, fiber for fishery materials used in fish nets has been focused on high sedimentation speed of fish nets in seawater and shape retention against tidal currents. It is known that a fish net with a small supplement angle and good shape retention can be obtained. In particular, in the case of a fixed net, since the shape of the fish net in the sea relative to the school of fish greatly affects catching, a fiber having a large specific gravity, good drainage, and good wear resistance has been required. Moreover, as the color hue of the fiber, a black color tone that does not give a sense of caution to the fish and does not give a sense of incongruity is required.

このような観点から、従来は、比較的比重の大きい塩化ビニリデン系繊維が広く用いられていたが、製網技術の発達に伴って高速製網に安定して供し得るような高強度の繊維が要求されるようになり、塩化ビニリデン系繊維では強度不足という問題があった。しかも、繊維を着色するために顔料を添加すると、更に繊維の強度が低下してしまうという問題も存在していた。   From this viewpoint, in the past, vinylidene chloride-based fibers having a relatively large specific gravity have been widely used, but high-strength fibers that can be stably provided for high-speed net-making with the development of net-making technology. As a result, vinylidene chloride-based fibers have a problem of insufficient strength. In addition, there is a problem that when a pigment is added to color the fibers, the strength of the fibers is further reduced.

このような課題を解決するために、高比重・高強度を兼ね備えた水産資材用繊維の開発が行われ、種々のものが提案されている。その一つの手段として、延伸処理により高強度を発現する樹脂と高比重粉末との組合せによる繊維が考えられており、具体的には(1)樹脂中に高比重粉末を均一分散させてなる繊維(例えば、特公昭51−37378号公報、特開昭56−61936号公報、特開昭61−613号公報)、(2)低軟化点樹脂中に高比重粉末を混合分散し、この混合物を更に強度付与のための樹脂と混合してなる繊維(特公昭57−20407号公報)および(3)低軟化点樹脂と高比重粉末の混合物を芯層とし、強度付与の樹脂を鞘層とする有芯型繊維(特開昭58−4819号公報、特開昭62−15327号公報)等が提案されている。   In order to solve such problems, fibers for fishery materials having both high specific gravity and high strength have been developed, and various fibers have been proposed. As one of the means, a fiber obtained by combining a resin exhibiting high strength by drawing and a high specific gravity powder is considered. Specifically, (1) a fiber obtained by uniformly dispersing a high specific gravity powder in a resin (For example, JP-B-51-37378, JP-A-56-61936, JP-A-61-613), (2) A high specific gravity powder is mixed and dispersed in a resin having a low softening point, and this mixture is mixed. Further, a fiber obtained by mixing with a resin for imparting strength (Japanese Patent Publication No. 57-20407) and (3) a mixture of a resin having a low softening point and a powder having a high specific gravity are used as a core layer, and the resin for giving strength is used as a sheath layer. Cored fibers (JP-A-58-4819 and JP-A-62-15327) have been proposed.

しかしながら、上記のものでも未だ魚網用繊維に要求される高沈降速性および高速製網性が十分満足されていないのが現状である。しかも、使用する高比重粉末の種類によっては、耐候性が不十分で、長期間太陽光に照射されることにより繊維を構成する樹脂の劣化が進み、その結果強度の低下が著しくなり、魚網としての使用ができなくなってしまうという問題があった。また、高比重粉末として金属鉛やその化合物を用いた場合、鉛化合物等が、繊維製造工程や加工工程においてガイドとの摩擦で繊維から脱落したり、魚網として使用中に海水に溶出して鉛公害の問題が発生する可能性があった。さらに、使用済みの魚網を廃棄する場合においても、廃棄焼却後に鉛を含む有害成分が残るなど同様の公害問題が発生する可能性があり、安易には廃棄処分できないという問題があった。また、鉛を含んでいない塩化ビニリデン系繊維からなる漁網も焼却時には塩化水素ガスが発生するために焼却処理が困難であるという問題を抱えている。
特開昭58−4819号公報 特開昭62−15327号公報
However, at present, even with the above-mentioned materials, the high sedimentation speed and high-speed net-making properties required for fish netting fibers have not yet been sufficiently satisfied. Moreover, depending on the type of the high specific gravity powder used, the weather resistance is insufficient, and the resin constituting the fiber is deteriorated by being irradiated with sunlight for a long period of time, and as a result, the strength is significantly reduced, and as a fish net, There was a problem that it became impossible to use. Also, when metallic lead or its compound is used as the high specific gravity powder, the lead compound or the like may fall off from the fiber due to friction with the guide in the fiber manufacturing process or processing process, or may elute into seawater during use as a fish net and lead. Pollution problems could occur. Further, when the used fish net is discarded, there is a possibility that a similar pollution problem may occur such that harmful components including lead remain after incineration, and there is a problem that the fish net cannot be easily disposed of. In addition, fishing nets made of vinylidene chloride fiber containing no lead also have a problem in that incineration is difficult because hydrogen chloride gas is generated during incineration.
JP-A-58-4819 JP-A-62-15327

本発明の目的は、高沈降速性と製網加工上問題のない十分な繊維強度を兼ね備え、長期間魚網として使用しても強度低下を発生しない優れた耐候性を有する繊維を提供することである。更には、かかる特性を満足しつつ魚に対して違和感のない色調を有する繊維を提供することである。   An object of the present invention is to provide a fiber which has both high sedimentation speed and sufficient fiber strength with no problem in net processing, and has excellent weather resistance which does not cause a decrease in strength even when used as a fish net for a long time. is there. It is still another object of the present invention to provide a fiber which satisfies such characteristics and has a color tone which does not cause uncomfortable feeling to fish.

すなわち、本発明の第1発明は、非鉛系金属またはその化合物からなる比重3以上の微粒子を50〜85重量%含有する芯ポリマー成分と該芯ポリマー成分を覆う保護ポリマー成分とから構成され、繊維比重が1.5以上であり、かつ強度が3.5g/d以上である複合繊維であり、また、第2発明は、二酸化チタンと他の比重3以上の無機微粒子を合計で50〜85重量%含有する熱可塑性ポリマーを芯成分とし、該熱可塑性ポリマーよりも少なくとも20℃以上高い融点または軟化点を有する熱可塑性ポリマーを保護成分として複合紡糸し、加熱延伸した後に、芯成分の熱可塑性ポリマーの(融点または軟化点−80)℃以上、保護成分の熱可塑性ポリマーの(融点または軟化点−5)℃以下の温度で熱処理を施す複合繊維の製造方法である。   That is, the first invention of the present invention comprises a core polymer component containing 50 to 85% by weight of fine particles made of a lead-free metal or a compound thereof having a specific gravity of 3 or more, and a protective polymer component covering the core polymer component, The second invention is a conjugate fiber having a fiber specific gravity of 1.5 or more and a strength of 3.5 g / d or more, and a total of 50 to 85 in total of titanium dioxide and other inorganic fine particles having a specific gravity of 3 or more. % By weight of a thermoplastic polymer having a melting point or softening point higher than that of the thermoplastic polymer by at least 20 ° C. as a protective component. A method for producing a conjugate fiber in which a heat treatment is performed at a temperature of not less than (melting point or softening point -80) ° C of the polymer and not more than (melting point or softening point -5) ° C of the thermoplastic polymer as the protective component. That.

本発明の繊維は、比重1.5以上と強度3.5g/dを兼ね備えているものであり、比重が1.5未満の場合は、海水中での高沈降性と漁網の保形性を達成することが困難であり、強度が3.5g/d未満の場合は、高速製網時に繊維が損傷するので好ましくない。このような観点から、1.55以上の比重と4.0g/d以上の強度を有する繊維であることが望まれる。そして、本発明においては、繊維を高比重化するために比重3以上の上記微粒子を含有させることが必須であり、該微粒子の種類としては、非鉛系金属の微粒子またはその化合物の微粒子を使用しなければならない。本発明において「非鉛系金属」とは、鉛や錫など環境問題を極めて起こしやすい金属以外の金属を意味しており、具体的には、チタン、鉄、銅、亜鉛、銀、バリウム、ジルコニウム、マンガン、アンチモン、タングステンなどの金属やその酸化物などの化合物を挙げることができる。   The fiber of the present invention has a specific gravity of 1.5 or more and a strength of 3.5 g / d. When the specific gravity is less than 1.5, the fiber has high sedimentation in seawater and shape retention of a fishing net. It is difficult to achieve this, and if the strength is less than 3.5 g / d, the fibers are damaged during high-speed netting, which is not preferable. From such a viewpoint, a fiber having a specific gravity of 1.55 or more and a strength of 4.0 g / d or more is desired. In the present invention, in order to increase the specific gravity of the fiber, it is essential to contain the fine particles having a specific gravity of 3 or more. As the type of the fine particles, fine particles of a lead-free metal or fine particles of a compound thereof are used. Must. In the present invention, the “lead-free metal” means a metal other than a metal that is very likely to cause environmental problems such as lead and tin, and specifically, titanium, iron, copper, zinc, silver, barium, zirconium. , Manganese, antimony, tungsten, and other metals and compounds such as oxides thereof.

比重が3未満の微粒子を使用する場合は、目的の繊維比重を達成するために、繊維中の微粒子含有量を高め、しかも芯ポリマー成分の複合比率を大きくしなければならないので、たとえ目的とする繊維比重の繊維が得られたとしても、曳糸性、延伸性などの工程性が不良で、繊維強力も低いものしか得られないので漁網としての用途には不適となる。   In the case where fine particles having a specific gravity of less than 3 are used, the content of the fine particles in the fibers must be increased and the composite ratio of the core polymer component must be increased in order to achieve the target fiber specific gravity. Even if a fiber having a specific gravity of fiber is obtained, the processability such as spinnability and stretchability is poor, and only a fiber having a low fiber strength can be obtained, which is not suitable for use as a fishing net.

また、芯ポリマー成分中の微粒子の含有量は50〜85重量%でなければならない。50重量%未満の場合は目的とする繊維比重を得るためには、芯ポリマー成分(B)の複合比率を、大きくしなければならず、繊維強力も低いものしか得られならないため好ましくない。一方、85重量%を越える場合は、紡糸時のポリマー溶融流動性が悪くなり、糸切れが頻発してくるため好ましくない。   The content of the fine particles in the core polymer component must be 50 to 85% by weight. If the amount is less than 50% by weight, the composite ratio of the core polymer component (B) must be increased in order to obtain the desired fiber specific gravity, and only a fiber having a low fiber strength is obtained, which is not preferable. On the other hand, if it exceeds 85% by weight, the polymer melt fluidity at the time of spinning becomes poor and yarn breakage occurs frequently, which is not preferable.

次に粒子径は、1次粒子の平均粒子径が5μ以下であることが望ましい。5μ以上になると紡糸時、延伸時に断糸や毛羽が多発しやすいので好ましくない。また、1次粒子の平均粒子径が0.05μ以上であることが好ましい。粒子径があまり小さくなると、逆にポリマー中へ微粒子を添加させる時に、成型加工時の熱により熱凝集を発生して粗大粒子化したり、あるいは紡糸時に高添加のポリマーを溶融押出時に、ポリマー溶融ラインの配管中で微粒子の熱凝集が発生しやすくなり、ラインが詰まるというトラブルが多発するため好ましくない。   Next, it is desirable that the average particle diameter of the primary particles is 5 μm or less. If it is 5 μm or more, it is not preferable because thread breakage and fluff are likely to occur frequently during spinning and stretching. Further, it is preferable that the average particle diameter of the primary particles is 0.05 μ or more. If the particle size is too small, on the other hand, when adding the fine particles into the polymer, the heat generated during the molding process will cause thermal aggregation to form coarse particles. This is not preferable because the thermal aggregation of the fine particles is likely to occur in the pipe, and the trouble that the line is clogged frequently occurs.

使用する微粒子の種類については、所望に応じて上記した微粒子のなかから適宜選択することができるが、本発明においては、微粒子として酸化鉄や二酸化チタンを使用することに特に意味がある。   The type of fine particles to be used can be appropriately selected from the above fine particles as desired, but in the present invention, it is particularly significant to use iron oxide or titanium dioxide as the fine particles.

まず、酸化鉄を使用する場合について述べる。酸化鉄には、色調が黒色のマグネタイトすなわち磁鉄鉱(Fe34 )、茶色のγ形のヘマタイト、赤褐色のα形ヘマタイト等があるが、定置網等の漁網用繊維においては、色相を黒色系とすると魚に警戒感を与えないため、漁獲高に好結果を与えることができ、黒色を呈する磁鉄鉱を使用することが好ましい。この時、使用する微粒子全体の20重量%以上が磁鉄鉱であることが望ましい。磁鉄鉱を使用することにより、染色処理等を簡素化または省略し得るが、かかる場合においても保護ポリマー成分に原着ポリマーを使用することは何等差し支えない。 First, the case where iron oxide is used will be described. Iron oxide includes magnetite having a black color, that is, magnetite (Fe 3 O 4 ), brown γ-type hematite, reddish-brown α-type hematite, and the like. Then, since the fish does not give a sense of caution, it is possible to give a good result to the fish catch, and it is preferable to use magnetite which exhibits black color. At this time, it is desirable that 20% by weight or more of the whole fine particles used are magnetite. The use of magnetite can simplify or omit the dyeing treatment and the like, but even in such a case, the use of a soaked polymer as the protective polymer component does not pose any problem.

また磁鉄鉱の粒子形状としては、球状、八面体状、六面体状、多面体状等があり、いずれの形状でも使用できるが、球状の磁鉄鉱微粒子を用いると芯ポリマー成分中での分散性が最も良好となり好ましい。特に、この球状粒子の使用は、本発明のように微粒子をポリマー中へ数十%以上という高添加率で添加する場合に顕著な効果が認められ、かかる粒子を用いた場合、凝集による紡糸時のフィルター詰まりの発生も少なく、しかも紡糸時、延伸時の糸切れ発生も少ない。   In addition, as the particle shape of magnetite, there are spherical, octahedral, hexahedral, polyhedral, etc., and any shape can be used, but the use of spherical magnetite fine particles provides the best dispersibility in the core polymer component. preferable. In particular, the use of these spherical particles has a remarkable effect when fine particles are added to a polymer at a high addition rate of several tens of percent or more as in the present invention. Is less likely to cause filter clogging, and is less likely to break during spinning and stretching.

さらに、磁鉄鉱微粒子として、有機系または無機系化合物により表面コーティング処理を施した微粒子を使用すると耐熱性や微粒子分散性を更に向上させる事ができるので好ましい。就中、微粒子表面にシリカコーティングされた磁鉄鉱やフェライトコーティングされた磁鉄鉱を使用すると好ましい。   Furthermore, it is preferable to use, as the magnetite fine particles, fine particles subjected to a surface coating treatment with an organic or inorganic compound, since the heat resistance and the fine particle dispersibility can be further improved. It is particularly preferable to use magnetite coated with silica or ferrite coated on the surface of the fine particles.

芯ポリマー成分に配合する微粒子は、磁鉄鉱微粒子単独でもよいが、芯ポリマー成分中での磁鉄鉱微粒子の含有量が50重量%以上になると、粒子形状、粒子サイズの適切なものを用いても、前記したような溶融押出時のライン中での熱凝集によるコンタミの発生や、激しい場合には配管の詰まり等のトラブルが起こる場合があり、芯ポリマー成分中の微粒子の含有量を50重量%以上にするため、磁鉄鉱と他の微粒子とを併用する方が好ましい。   The fine particles to be added to the core polymer component may be magnetite fine particles alone. However, when the content of the magnetite fine particles in the core polymer component is 50% by weight or more, even if an appropriate particle shape and particle size are used, Contamination may occur due to thermal agglomeration in the line at the time of melt extrusion, and if severe, troubles such as clogging of pipes may occur. The content of fine particles in the core polymer component should be 50% by weight or more. Therefore, it is preferable to use magnetite in combination with other fine particles.

特に、細デニールの糸を製造する場合などでは、溶融ポリマーのライン中での滞留時間が長くなり、ライン詰まりのトラブル発生が顕著に起こる。磁鉄鉱と併用する他の微粒子は、比重が3以上で、かつ平均粒子径が5μ以下、しかも熱凝集性があまりなく、コスト的にも高価ではないものを選ぶ必要がある。例えば、好適な例として二酸化チタン、酸化亜鉛、硫酸バリウム、アルミナ、フェライト、リトポン、酸化銅、酸化マグネシウム等が上げられる。   In particular, in the case of producing fine denier yarn, the residence time of the molten polymer in the line is prolonged, and line clogging is significantly caused. Other fine particles used in combination with magnetite should have a specific gravity of 3 or more, an average particle diameter of 5 μm or less, have little heat cohesion, and be inexpensive. For example, preferable examples include titanium dioxide, zinc oxide, barium sulfate, alumina, ferrite, lithopone, copper oxide, and magnesium oxide.

鉛丹等の鉛系化合物や酸化スズ等のスズ系化合物など重金属系無機物は粒子の比重としては大きく好適であるが、毒性等の点で好ましくない。特に使用済になった場合漁網等の廃棄方法が難しく場合によっては、環境汚染などの二次公害が発生してくるため、好ましくない。また、タングステン系無機粒子、ビスマス系無機粒子は、高比重粒子であり、目標とする性能等を発現させるためには、好ましい無機粒子ではあるが、非常に高価であり漁網用途には使用することが難しい。   Heavy metal-based inorganic substances such as lead-based compounds such as lead tin and tin-based compounds such as tin oxide are large and suitable for the specific gravity of the particles, but are not preferable in terms of toxicity and the like. In particular, when used, it is difficult to dispose of fishing nets and the like, and in some cases, secondary pollution such as environmental pollution occurs, which is not preferable. In addition, tungsten-based inorganic particles and bismuth-based inorganic particles are high specific gravity particles, and are preferable inorganic particles in order to develop target performance and the like, but are very expensive and should be used for fishing net applications. Is difficult.

本発明において、磁鉄鉱微粒子と併用可能な無機粒子の中で最も好ましいのは二酸化チタンである。芯ポリマー成分に対する微粒子合計の含有量が50重量%〜85重量%の範囲で、磁鉄鉱との二酸化チタンの混合比率を任意に変更しても紡糸性、延伸性良好で大きなトラブルが発生せず、目的とする繊維を得ることができるが、好適な混合比率の例を挙げると、例えば、芯ポリマー成分中の合計の微粒子の含有量が70重量%の場合、磁鉄鉱を30重量%、二酸化チタンを40重量%にしたり、芯ポリマー成分中の合計の微粒子含有量が60重量%の場合、磁鉄鉱を30重量%、二酸化チタンを30重量%等の混率にするのが得られた繊維の色相上からも好ましい。磁鉄鉱と二酸化チタンの配合比率の好ましい範囲としては、磁鉄鉱/二酸化チタン=2/8〜7/3である。   In the present invention, titanium dioxide is most preferable among the inorganic particles that can be used in combination with the magnetite fine particles. Even if the mixing ratio of titanium dioxide with magnetite is arbitrarily changed within a range of 50% by weight to 85% by weight of the total fine particles with respect to the core polymer component, spinning properties and stretchability are good and no major trouble occurs. Although the desired fiber can be obtained, examples of suitable mixing ratios include, for example, when the total fine particle content in the core polymer component is 70% by weight, magnetite is 30% by weight, and titanium dioxide is When the content is 40% by weight or the total fine particle content in the core polymer component is 60% by weight, the mixing ratio of magnetite to 30% by weight and titanium dioxide to 30% by weight is obtained. Is also preferred. A preferred range of the mixing ratio of magnetite and titanium dioxide is magnetite / titanium dioxide = 2/8 to 7/3.

ポリマー中の微粒子の含有量が50重量%以上の高含有量でしかも、その中に磁鉄鉱を高添加する場合に、二酸化チタン粒子を混合添加することにより、溶融押出時のライン詰まり等のトラブルもなく、しかもポリマー中の分散性も良好で、工程中の糸切れも少なく、A格率が高い状態で目的とする繊維が得られることは、本発明者らが、種々検討した中で初めて見出されてたことである。   When the content of fine particles in the polymer is a high content of 50% by weight or more and magnetite is added at a high content, by mixing and adding titanium dioxide particles, troubles such as line clogging during melt extrusion can be prevented. The inventors of the present invention have seen for the first time that the present inventors have obtained a desired fiber in a state in which the desired fiber is obtained in a state in which there is no dispersibility in the polymer, the yarn breakage during the process is small, and the A rating is high. It was issued.

次ぎに、二酸化チタンを使用する場合について述べる。本発明は、優れた機械的物性と高比重を兼ね備えている網用繊維を提供すると同時に、種々の色相に対応できる漁網用繊維を提供することを目的としているが、芯ポリマー成分に磁鉄鉱のような着色粒子を高添加率で配合した場合、色相を自由に変更することができなくなるが、二酸化チタンは白色であり、このような白色系粒子を芯ポリマー成分に添加し、保護ポリマー成分には所望の色の顔料等を配合することで、芯成分の色に邪魔されることなく目的とする色を発現させることができるのである。   Next, the case where titanium dioxide is used will be described. An object of the present invention is to provide a netting fiber having both excellent mechanical properties and a high specific gravity, and at the same time, to provide a fishing net fiber capable of coping with various hues. When a high content of such colored particles is blended, the hue cannot be freely changed, but titanium dioxide is white, and such white particles are added to the core polymer component. By mixing a pigment of a desired color or the like, a desired color can be developed without being disturbed by the color of the core component.

二酸化チタンは、結晶形により、アナターゼ(Anatase)、ルチル(Rutile)及びブルカイト(Brookite)の3つの形態があり、一般に顔料として使用されているのは、アナターゼとルチルである。特に、化学繊維には、二酸化チタンの工程上の摩耗性に及ぼす硬度の関係と溶剤または分散媒に対する分散性の問題からアナターゼタイプが主として用いられるが、アナターゼタイプの比重が3.9であるのに対し、ルチルタイプは比重が4.2と大きいので、本発明の目的にはルチルタイプの二酸化チタンが好ましく使用される。   Titanium dioxide has three forms, anatase, rutile, and brookite, depending on the crystal form. Anatase and rutile are commonly used as pigments. In particular, the anatase type is mainly used for the chemical fiber due to the relationship between the hardness of the titanium dioxide in the process and the dispersibility in the solvent or the dispersion medium, and the specific gravity of the anatase type is 3.9. On the other hand, since the specific gravity of the rutile type is as large as 4.2, rutile type titanium dioxide is preferably used for the purpose of the present invention.

この場合、モース硬度がルチルタイプがアナターゼタイプより大きく、工程上の摩耗等のトラブルが発生する懸念があるが、本発明の複合繊維においては、微粒子を含有する芯ポリマー成分を保護ポリマー成分で実質的に覆っているので、紡糸時のノズル口金の摩耗や加工工程中のガイド類やローラー類の摩耗損傷等の問題もない。   In this case, the Mohs' hardness is higher in the rutile type than in the anatase type, and there is a concern that troubles such as abrasion in the process may occur. However, in the composite fiber of the present invention, the core polymer component containing fine particles is substantially a protective polymer component. Since it is covered in a specific manner, there is no problem such as abrasion of the nozzle base during spinning or abrasion damage of guides and rollers during the working process.

さらに、他の微粒子に比して二酸化チタンは、ポリマー中へ高添加し、ポリマーを溶融押し出しする際に、熱凝集が起こりにくく、溶融ポリマーライン中でのコンタミによる詰まりが発生しにくく、紡糸時のフィルター詰まりも少なく、かつ紡糸、延伸時の糸切れ発生も少ないことから、他の白色系微粒子を使用するよりも二酸化チタンを使用することが好ましい。   Furthermore, when compared with other fine particles, titanium dioxide is added to a polymer in a high amount, and when the polymer is melt-extruded, thermal aggregation is less likely to occur, and clogging due to contamination in a molten polymer line is less likely to occur. It is preferable to use titanium dioxide rather than using other white-based fine particles since the filter is less likely to be clogged and the occurrence of yarn breakage during spinning and drawing is small.

二酸化チタンは、単独で使用してもよいし、一部を比重が3以上で平均粒径が5μ以下の他の白色系微粒子に置き換えてもよい。ただし、上記したような熱凝集の問題があるので、二酸化チタンを少なくとも15重量%、特に好ましくは40重量%使用することが望まれる。他の白色系微粒子としては、例えば、酸化錫(スズ石)等に比して毒性の少ない酸化亜鉛、アルミナ、硫酸バリウム、リトポン、酸化マグネシウム等を使用することができる。   Titanium dioxide may be used alone, or part of it may be replaced with another white fine particle having a specific gravity of 3 or more and an average particle size of 5 μm or less. However, because of the problem of thermal aggregation as described above, it is desirable to use at least 15% by weight, particularly preferably 40% by weight, of titanium dioxide. As other white fine particles, for example, zinc oxide, alumina, barium sulfate, lithopone, magnesium oxide, and the like, which are less toxic than tin oxide (tinite), can be used.

次に微粒子を添加する芯ポリマー成分のベースポリマーであるが、保護ポリマー成分の紡糸温度において耐熱性を示す熱可塑性ポリマーが用いられ、例えば、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン11、ナイロン4、ナイロン46などのポリアミド類、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレートなどのポリエステル類、ポリエチレン、ポリプロピレンなどのポリオレフィン類、SBS(ポリスチレン−ポリブタジエン−ポリスチレンのブロック共重合体)の水素添加物、SIS(ポリスチレン−ポリイソプレン−ポリスチレンのブロック共重合体)の水素添加物、SI(ポリスチレン−ポリイソプレンのブロック共重合体)の水素添加物、ポリα−メチルスチレン−ポリイソプレン−ポリα−メチルスチレンのブロック共重合体の水素添加物などの芳香族ビニルブロックと共役ジエンブロックからなる共重合体等から適宜選択することができる。   Next, as the base polymer of the core polymer component to which fine particles are added, a thermoplastic polymer having heat resistance at the spinning temperature of the protective polymer component is used. For example, nylon 6, nylon 66, nylon 610, nylon 12, nylon 11 , Nylon 4, Nylon 46 and other polyamides, polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate and other polyesters, polyethylene, polypropylene and other polyolefins, SBS (polystyrene-polybutadiene-polystyrene block copolymer) hydrogen Additive, hydrogenated product of SIS (polystyrene-polyisoprene-polystyrene block copolymer), hydrogenated product of SI (polystyrene-polyisoprene block copolymer), poly α-methyl Styrene - polyisoprene - can be appropriately selected from poly α- methyl styrene block copolymer aromatic vinyl block and a conjugated diene block copolymers and hydrogenated products of such.

特に、本発明のように微粒子を高添加する場合には、微粒子とポリマーとのヌレ性およびポリマー中での粒子の分散性が良好で、紡糸性、延伸性が最も良好なベースポリマーを使用することが望ましく、かかる観点から、本発明においてはポリアミド類、特にナイロン6を主成分とするポリアミドを使用することが望ましい。   In particular, when fine particles are highly added as in the present invention, a base polymer having excellent wettability between the fine particles and the polymer and dispersibility of the particles in the polymer, and excellent spinnability and stretchability is used. From this viewpoint, it is desirable to use polyamides, particularly polyamides containing nylon 6 as a main component in the present invention.

また、好適な例として用いるナイロン6ベースポリマーの重合度は、数平均分子量で約22,000以下、更に好ましくは20,000以下6,000以上である。重合度が高すぎると微粒子を高添加した時の混練ポリマー作製時の溶融粘度が高くなりすぎ、トラブルが発生したり、分散不良を発生しやすい。また、実際に無機粒子を高添加したポリマーを溶融押出し、繊維化する際も、溶融粘度が高すぎると設備上のトラブルが多発しやすくなると同時に、断糸が多発してくるため好ましくない。一方、重合度が低すぎると溶融粘度が保護ポリマー成分に対して低くなり過ぎるため芯鞘断面の形成が困難となる。加えて、芯ポリマー成分にポリアミドを用いる場合は、無機微粒子を含む芯成分として水分を500ppm以下、好ましくは300ppm以下とする必要がある。ポリアミドの如き吸水性ポリマーに、多量に微粒子を含有せしめると、水分率が高い場合、溶融時に極端に流動性が低下し、工程調子を著しく害してしまうためである。一般に、微粒子を多く含有しないポリアミドが、500〜1000ppm程度で用いられるのに対し、多量に含有せしめた本発明においては特に配慮しなければならない点である。また、芯ポリマー成分としてのポリアミド類は、少量の第3成分を共重合していたり、また少量の添加剤、安定剤などを含んでいてもよい。   Further, the degree of polymerization of the nylon 6 base polymer used as a preferred example is about 22,000 or less in number average molecular weight, more preferably 20,000 or less and 6,000 or more. If the degree of polymerization is too high, the melt viscosity at the time of preparing the kneaded polymer when the fine particles are added at a high level becomes too high, which tends to cause troubles and poor dispersion. In addition, when melt-extruding and fibrillating a polymer to which inorganic particles are added in a high amount, if the melt viscosity is too high, troubles in equipment are liable to occur frequently and, at the same time, thread breakage frequently occurs, which is not preferable. On the other hand, if the degree of polymerization is too low, the melt viscosity becomes too low with respect to the protective polymer component, making it difficult to form a core-sheath cross section. In addition, when polyamide is used as the core polymer component, the core component containing inorganic fine particles must have a water content of 500 ppm or less, preferably 300 ppm or less. If a large amount of fine particles are contained in a water-absorbing polymer such as polyamide, when the moisture content is high, the fluidity is extremely lowered at the time of melting, which significantly impairs the process condition. Generally, polyamides not containing a large amount of fine particles are used at about 500 to 1000 ppm, whereas in the present invention containing a large amount, special consideration must be given. Further, the polyamide as the core polymer component may be copolymerized with a small amount of the third component, or may contain a small amount of additives, stabilizers and the like.

本発明の繊維の主な使用目的は漁網用途であるが、漁網は屋外で使用されるため、経時的な耐候性が重要であり、長期間使用している間に強力低下が発生し、実用上問題となるようなものは、使用することができない。上記のような微粒子を多量に添加されたポリアミドを用いた場合、漁網として長期間使用した時に繊維強度低下が起こってくる可能があるが、本発明においては、ベースポリマーであるポリアミドに対して、0.01重量%以上、特に0.1重量%以上2重量%以下のヨウ化銅などの銅塩を熱安定剤として添加することにより経時的な繊維強力低下は実用上問題とならないレベルまで改良される。さらに、微粒子として二酸化チタンを使用する場合、紫外線によるチタン原子の励起によりポリマーの劣化を促進しやすいので、酸化防止剤等を添加すると好ましい。   The main use of the fiber of the present invention is for fishing nets.However, since fishing nets are used outdoors, weather resistance over time is important. Those that are problematic cannot be used. In the case of using a polyamide to which a large amount of the fine particles as described above is added, a decrease in fiber strength may occur when used as a fishing net for a long time. By adding 0.01% by weight or more, particularly 0.1% by weight or more and 2% by weight or less of a copper salt such as copper iodide as a heat stabilizer, the decrease in fiber strength over time is improved to a level that does not cause a practical problem. Is done. Further, when titanium dioxide is used as the fine particles, it is preferable to add an antioxidant or the like, since excitation of titanium atoms by ultraviolet rays easily promotes deterioration of the polymer.

芯ポリマー成分であるベースポリマーへ微粒子を含有させる方法としては、種々の方法が可能であるが、例えば二軸押出機等が好適である。また該ベースポリマーと微粒子を混練する場合には、ステアリン酸金属塩、シラン系カップリング剤、チタン系カップリング剤等種々の分散剤を添加すると、分散性が良好となり好ましい。   Various methods can be used as a method for incorporating the fine particles into the base polymer as the core polymer component. For example, a twin-screw extruder or the like is preferable. When the base polymer and the fine particles are kneaded, it is preferable to add various dispersants such as a metal stearate, a silane-based coupling agent, and a titanium-based coupling agent since the dispersibility becomes good.

本発明の複合繊維は、上述したような微粒子を含有した芯ポリマー成分を一成分とし、繊維形成性熱可塑性ポリマーである保護ポリマー成分を他成分として複合紡糸することにより得られる。複合断面形状としては、繊維表面周長の60%以上、好ましくは80%以上、特に好ましくは100%を保護ポリマー成分が占めていることが望ましい。具体的な芯ポリマー成分と保護ポリマー成分との複合形態としては、種々のものが挙げられるが、代表的なものとしては図1(1)〜(8)のようなものが挙げられる。   The conjugate fiber of the present invention can be obtained by conjugate spinning using a core polymer component containing fine particles as described above as one component and a protective polymer component which is a fiber-forming thermoplastic polymer as another component. As the composite cross-sectional shape, it is desirable that the protective polymer component occupies 60% or more, preferably 80% or more, particularly preferably 100%, of the fiber surface circumference. Various examples of the composite form of the core polymer component and the protective polymer component include various ones, and typical ones as shown in FIGS. 1 (1) to (8).

図1中、(1)は一芯、(2)は三芯、(3)は四芯の芯鞘構造繊維、(4)は三層同心円、(5)および(6)は一部露出タイプの芯鞘構造、(7)および(8)は分割タイプの複合構造である。芯ポリマー成分と保護ポリマー成分の組み合わせによっては、(7)と(8)の構造は2成分間の界面で剥離が生じる場合があり、また、(5)と(6)の構造はガイドやローラー等が摩擦することを十分に解消することができない。ガイドやローラー等の摩擦および糸切れをより一層防ぎ、ポリマー間での剥離を防ぐことができる点より、(1)〜(4)のような芯ポリマーが保護ポリマーにより完全に覆われているような芯鞘構造が好ましい。これら図中、斜線部分が芯ポリマー成分であり、斜線のない部分が保護ポリマー成分である。   In FIG. 1, (1) is a single-core fiber, (2) is a three-core fiber, (3) is a four-core core-sheath structure fiber, (4) is a three-layer concentric circle, and (5) and (6) are partially exposed types. And (7) and (8) are split-type composite structures. Depending on the combination of the core polymer component and the protective polymer component, the structures of (7) and (8) may peel off at the interface between the two components, and the structures of (5) and (6) may be a guide or a roller. Friction cannot be sufficiently eliminated. From the point that friction and thread breakage of guides and rollers can be further prevented and separation between polymers can be prevented, the core polymer such as (1) to (4) is completely covered with the protective polymer. A core-sheath structure is preferred. In these figures, the hatched portion is the core polymer component, and the portion without the hatched portion is the protective polymer component.

保護ポリマー成分と芯ポリマー成分との複合重量比率は30:70〜80:20、より好ましくは50:50〜80:20である。保護ポリマー成分の比率が少なすぎると、繊維強度が低下してくるため好ましくない。また保護ポリマー成分の比率が多すぎると繊維比重を高くする効果が十分発揮できないため好ましくない。   The composite weight ratio of the protective polymer component and the core polymer component is 30:70 to 80:20, more preferably 50:50 to 80:20. If the ratio of the protective polymer component is too small, the fiber strength is undesirably reduced. On the other hand, if the ratio of the protective polymer component is too large, the effect of increasing the fiber specific gravity cannot be sufficiently exerted, which is not preferable.

本発明の保護ポリマー成分としては、繊維形成能を有する熱可塑性のポリマーであれば、ポリエステル、ポリアミド、ポリオレフィン等、特に限定されないが、繊維としての実用性能上、ポリエチレンテレフタレート、ポリブチレンテレフタレートを主成分とするポリエステル系ポリマーが好ましい。また、これらのポリマーに少量の第3成分を共重合したものも用いることができる。例えばポリエステルとして、テレフタル酸、イソフタル酸、ナフタリン−2,5−ジカルボン酸、α,β−(4−カルボキシフェノキシ)エタン、4,4′−ジカルボキシジフェニル、ビスフェノールAのアルキレンオキサイド付加物、アジピン酸、アゼライン酸、セバシン酸、トリメリット酸、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、ペンタエリスリトール、シクロヘキサン−1,4−ジメタノール、ポリエチレングリコール、ポリテトラメチレングリコール、5−スルホイソフタル酸のNa塩などの芳香族、脂肪族、脂環族のジカルボン酸、ジオール、ヒドロキシ安息香酸等のオキシカルボン酸などから合成される繊維形成性ポリエステル系ポリマーであり、構成単位の80モル%以上、特に90モル%以上がエチレンテレフタレート単位またブチレンテレフタレート単位であるポリエステル系ポリマーが好ましい。また、これらのポリマーは、蛍光増白剤、安定剤などの添加剤を含んでいても良い。   The protective polymer component of the present invention is not particularly limited as long as it is a thermoplastic polymer having a fiber-forming ability, such as polyester, polyamide, and polyolefin.In terms of practical performance as a fiber, polyethylene terephthalate and polybutylene terephthalate are the main components. Is preferred. Further, those obtained by copolymerizing a small amount of the third component with these polymers can also be used. For example, polyesters include terephthalic acid, isophthalic acid, naphthalene-2,5-dicarboxylic acid, α, β- (4-carboxyphenoxy) ethane, 4,4′-dicarboxydiphenyl, alkylene oxide adduct of bisphenol A, adipic acid , Azelaic acid, sebacic acid, trimellitic acid, ethylene glycol, propylene glycol, diethylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, pentaerythritol, cyclohexane-1,4-dimethanol, polyethylene Fiber-forming properties synthesized from aromatic, aliphatic, and alicyclic dicarboxylic acids such as glycol, polytetramethylene glycol, and sodium salts of 5-sulfoisophthalic acid, diols, and oxycarboxylic acids such as hydroxybenzoic acid The polyester polymer is preferably a polyester polymer in which 80 mol% or more, particularly 90 mol% or more of the constituent units are ethylene terephthalate units or butylene terephthalate units. Further, these polymers may contain additives such as a fluorescent whitening agent and a stabilizer.

特に、繊維全体の耐候性すなわち経時的な強力保持率を更に良好なレベルに維持するには、カーボンブラックを含有させても良い。保護ポリマー成分としてポリエステル系ポリマーを使用する場合の重要な用件は、ポリマーの極限粘度〔η〕が0.7以上のものを用いる必要がある。ここで極限粘度〔η〕は、フェノールとテトラクロルエタン50:50混合溶液を用い30℃の温度下で測定した値である。   In particular, carbon black may be contained in order to maintain the weather resistance of the entire fiber, that is, the strength retention over time at a better level. An important requirement when using a polyester-based polymer as the protective polymer component is to use a polymer having an intrinsic viscosity [η] of 0.7 or more. Here, the intrinsic viscosity [η] is a value measured at a temperature of 30 ° C. using a 50:50 mixed solution of phenol and tetrachloroethane.

通常の衣料用繊維においては、ポリエチレンテレフタレートの〔η〕は、0.60〜0.65くらいのものが用られるのに対し、本発明では目的とする繊維強度を発現させるために、通常の重合度より更に重合度の大きいポリエステルを用いたものである。〔η〕が0.7未満では、繊維比重1.5以上、繊維強度3.5g/dr以上を両立することは難しく、保護ポリマー成分と芯ポリマー成分の複合比率を変更し、保護ポリマー成分リッチにすれば繊維比重が目標とするレベルまで至ることができず、逆に芯ポリマー成分リッチにすれば繊維強度が目標とするレベルまで至らないという結果になった。すなわち、保護ポリマー成分であるポリエステルの〔η〕を0.7以上のものを用いることにより、初めて繊維強度と繊維比重の両方を満足するものが得られたわけである。   In ordinary clothing fibers, polyethylene terephthalate has a [η] of about 0.60 to 0.65, whereas the present invention employs ordinary polymerization to develop the desired fiber strength. A polyester having a higher degree of polymerization than that of the polyester is used. When [η] is less than 0.7, it is difficult to achieve both a fiber specific gravity of 1.5 or more and a fiber strength of 3.5 g / dr or more, and the composite ratio of the protective polymer component and the core polymer component is changed to increase the protective polymer component richness. In this case, the specific gravity of the fiber could not reach the target level, and when the core polymer component was rich, the fiber strength did not reach the target level. That is, by using a polyester having a protective polymer component having a [η] of 0.7 or more, a polyester satisfying both the fiber strength and the fiber specific gravity was obtained for the first time.

本発明における〔η〕は、紡糸後の繊維が形成されているポリエステル成分の〔η〕である。すなわち、紡糸時に熱分解または、加水分解等で重合度低下が生じる場合は、その分を見込んだやや高目の重合度のポリマーを用いて繊維化しなければならない事は言うまでもないことである。   [Η] in the present invention is [η] of the polyester component in which the fiber after spinning is formed. That is, when the degree of polymerization is reduced by thermal decomposition or hydrolysis during spinning, it is needless to say that the fiber must be formed using a polymer having a slightly higher degree of polymerization in consideration of the degree.

ところで、本発明においては、保護ポリマー成分に着色剤を添加して、前述したような漁網用途に適した色相にすることができ、該ポリマー成分の溶融紡糸温度に耐え得る耐熱性を有する有機顔料や無機顔料が適宜使用できる。具体的には、例えば、カーボンブラック、アントラキノン系褐色着色剤、アントラキノン系紫色着色剤、ベンゾキノン系赤色着色剤等、通常の原着用着色剤を使用することができ、これらの顔料を単独または2種以上用いて添加率0.1〜5重量%程度の範囲で保護ポリマー成分に配合すればよい。   By the way, in the present invention, a colorant is added to the protective polymer component to obtain a hue suitable for fishing net use as described above, and an organic pigment having heat resistance capable of withstanding the melt spinning temperature of the polymer component. And inorganic pigments can be used as appropriate. Specifically, for example, ordinary colorants for original wearing such as carbon black, anthraquinone-based brown colorant, anthraquinone-based purple colorant, and benzoquinone-based red colorant can be used. These pigments can be used alone or in combination of two or more. It is sufficient to mix the protective polymer component with the protective polymer component at an addition ratio of about 0.1 to 5% by weight.

着色剤の添加量が0.1重量%未満の場合、十分な「色合い」や「ツヤ」を呈する漁網用原着糸を得ることが難しく、また、5重量%を越えると強力の低下が大きくなるので好ましくない。   When the amount of the coloring agent is less than 0.1% by weight, it is difficult to obtain a netted yarn for fishing nets exhibiting a sufficient "color" or "gloss", and when it exceeds 5% by weight, the strength is greatly reduced. Is not preferred.

特に、現在必要とされる漁網用原着糸の色相の大部分が黒色であるが、このような場合、カーボンブラックを保護ポリマー成分に1〜3重量%添加することが好ましい。それは、カーボンブラックが紫外線を吸収しポリマーの劣化を防ぐ効果があり、繊維の耐光性、すなわち、経時的な強力低下を防止でき相乗的な効果を発現するからである。   In particular, most of the hue of the currently required netting yarn for fishing nets is black. In such a case, it is preferable to add 1 to 3% by weight of carbon black to the protective polymer component. This is because carbon black has an effect of absorbing ultraviolet rays to prevent deterioration of the polymer, and can prevent a decrease in the light resistance of the fiber, that is, the strength over time, and exhibit a synergistic effect.

本発明の複合繊維を得るための方法は、特に限定されるものではないが、保護ポリマー成分と芯ポリマー成分を別々の溶融系で加熱溶融しておき、それぞれ通常の押出紡糸装置により紡糸口金まで送り、紡糸口金直前で両成分を前述したような複合形状に合わせて合流させ、押し出して得られる糸条を巻き取り、さらに延伸、熱処理することにより得られる。また、紡糸口金から押出した後、巻き取ることなく直ちに延伸する方法や、紡糸口金から押し出した後、高速で巻き取り、そのまま製品とする方法も用いることができる。   The method for obtaining the conjugate fiber of the present invention is not particularly limited, but the protective polymer component and the core polymer component are heated and melted in separate melting systems, and each is heated to a spinneret by a normal extrusion spinning apparatus. Immediately before feeding and spinning, both components are combined according to the composite shape as described above, and the yarn obtained by extrusion is wound up, further stretched and heat-treated. In addition, a method of immediately stretching without being wound after being extruded from a spinneret, or a method of extruding from a spinneret, winding at a high speed, and directly forming a product can also be used.

具体的には、大略4000m/分以下の速度で引きとり、一旦これを巻取った後に延伸するいわゆるFOYやPOY延伸法、または巻きとることなく延伸するスピンドロー法、更には4000m/分以上の高速で引きとるDSY法あるいはDSY法においてノズルと引取ローラーの間にヒーターを設け、延伸しながら引きとる方法などが適用しうる。中でも好ましいのは、300〜4000m/分、更に好ましくは600〜2000m/分で引きとり、延伸し(FOYでもスピンドローでもよい)続いて熱処理する方法である。該速度が300m/分未満では、未延伸糸の配向度が低く所望の繊維強度を得るために延伸倍率を上げる必要が生じ、その結果、繊維中に多数のボイドが発生し、高比重化が十分に達成できない場合がある。一方4000m/分を越える、いわゆるDSYといわれる領域で引き取る場合は、延伸熱処理操作を実施しなくとも目標物性が得られることもあるが、先述600〜2000m/分で引きとり延伸熱処理する方法に比し強度が低下することは避けられない。   Specifically, it is drawn at a speed of about 4000 m / min or less, and is wound and then stretched once, so-called FOY or POY stretching method, or a spin draw method of stretching without winding, and further, at 4000 m / min or more. In the DSY method for drawing at a high speed, or a method in which a heater is provided between the nozzle and the take-up roller in the DSY method, drawing is performed while stretching is applied. Among them, a method of drawing at 300 to 4000 m / min, more preferably 600 to 2000 m / min, stretching (either FOY or spin draw), and subsequently performing a heat treatment are preferable. When the speed is less than 300 m / min, the degree of orientation of the undrawn yarn is low, and it is necessary to increase the drawing ratio in order to obtain a desired fiber strength. As a result, a large number of voids are generated in the fiber and the specific gravity is increased. In some cases, this cannot be achieved sufficiently. On the other hand, in the case of drawing in a so-called DSY area exceeding 4000 m / min, the target physical properties may be obtained without performing the stretching heat treatment operation. It is inevitable that the strength decreases.

延伸は、一段延伸でも二段延伸でもよい。また延伸倍率は、紡糸速度により様々に変化するので一義的に特定できないが、破断に至る倍率の75〜85%程度の倍率を採用することが好ましい。特に、本発明の繊維の製造において特徴的な点は、延伸後の熱処理である。すなわち、芯成分の熱可塑性ポリマーの(融点または軟化点−80)℃以上、保護成分の熱可塑性ポリマーの(融点または軟化点−5)℃以下の温度で熱処理を施すことであり、かかる熱処理温度としては、毛羽が発生しない範囲で高目に設定する方が繊維比重が高くかつタフネスの大きいものが得られる。これは、芯ポリマー成分の融点または軟化点に近いか、もしくはそれ以上の温度で加熱されることにより繊維が収縮しつつ延伸時に発生した繊維中の微粒子周辺でのポリマー中のボイドがある程度修復されるためと推定され、また処理温度を高めることにより繊維の機械的性質を発現させる保護成分の結晶化が促進されるためと推定される。かかる熱処理の温度が保護成分のポリマーの(融点または軟化点−5)℃を越えると断糸が多発し、芯成分のポリマーの(融点または軟化点−80)℃未満ではボイドを十分に修復することが困難である。好ましい熱処理温度の下限値は、芯成分の熱可塑性ポリマ−の(融点または軟化点−60)℃であり、上下値は保護成分の熱可塑性ポリマ−の(融点または軟化点−10)℃である。例えば、芯ポリマー成分がナイロン6、保護ポリマー成分がポリエステルであるときには、かかる加熱処理の温度を160℃以上255℃以下とすることが望ましい。   The stretching may be one-stage stretching or two-stage stretching. The stretching ratio varies depending on the spinning speed and cannot be uniquely specified. However, it is preferable to employ a ratio of approximately 75 to 85% of the ratio leading to breakage. In particular, a characteristic point in the production of the fiber of the present invention is a heat treatment after drawing. That is, heat treatment is performed at a temperature of not less than (melting point or softening point -80) ° C of the thermoplastic polymer of the core component and not more than (melting point or softening point of -5) ° C of the thermoplastic polymer of the protective component. The higher the fiber is, the higher the fiber specific gravity and the higher the toughness. This is because the fibers are shrunk by heating at a temperature close to or above the melting point or softening point of the core polymer component, and voids in the polymer around the fine particles in the fiber generated during drawing are repaired to some extent. It is presumed that the crystallization of the protective component for developing the mechanical properties of the fiber is promoted by increasing the processing temperature. If the temperature of the heat treatment exceeds the (melting point or softening point -5) C of the polymer of the protective component, the yarn breaks frequently, and if the temperature is less than the melting point or softening point of the polymer of the core component -80C, the voids are sufficiently repaired. It is difficult. The lower limit of the preferable heat treatment temperature is (melting point or softening point −60) ° C. of the core component thermoplastic polymer, and the upper and lower limits are (melting point or softening point −10) ° C. of the protective component thermoplastic polymer. . For example, when the core polymer component is nylon 6 and the protective polymer component is polyester, the temperature of the heat treatment is desirably 160 ° C. or more and 255 ° C. or less.

また、延伸を安定化させ、かつ、ボイドの発生を抑制するには、延伸時の加熱を熱ロ−ル等の接触加熱方式に加えてスチームジェットや空気加熱等の非接触加熱方式を併用することが好ましい。これは、芯ポリマー成分よりも十分に高い温度で芯ポリマーの流動性を高めた状態で延伸しようというものであり、例えば、芯ポリマー成分がナイロン6であるときには、350℃以上、好ましくは400℃以上、特に好ましくは430℃以上のスチームジェットを用いて加熱延伸することが好ましい。なお、かかるスチ−ムジェットの温度は、本発明における熱処理温度そのものを示すものではなく、本発明における熱処理温度とは接触加熱温度を意味するものである。これらの知見から、芯ポリマ−成分のベ−スポリマ−は、保護ポリマ−成分より20℃以上、好ましくは30℃以上低い融点または軟化点を有するものが好適である。このポリマ−は結晶性の繊維形成性ポリマ−が繊維化工程性の見地から好ましいが、本発明の目的のためには非晶性ポリマ−も使用できる。   Further, in order to stabilize the stretching and suppress the generation of voids, in addition to the contact heating method such as a heat roll, the non-contact heating method such as steam jet or air heating is used in addition to the heating during the stretching. Is preferred. This is intended to be stretched at a temperature sufficiently higher than the core polymer component while increasing the fluidity of the core polymer. For example, when the core polymer component is nylon 6, it is 350 ° C. or more, preferably 400 ° C. As described above, it is particularly preferable to perform heat stretching using a steam jet at 430 ° C. or higher. Note that the temperature of the steam jet does not indicate the heat treatment temperature in the present invention, but the heat treatment temperature in the present invention means a contact heating temperature. Based on these findings, it is preferable that the base polymer as the core polymer component has a melting point or softening point lower than that of the protective polymer component by 20 ° C. or more, preferably 30 ° C. or more. This polymer is preferably a crystalline fiber-forming polymer from the viewpoint of the fiberization process, but an amorphous polymer may be used for the purpose of the present invention.

また、本発明の複合繊維は、単独あるいは他の繊維と混用して広汎な用途に用いることができる。他の繊維と混用する場合には、混繊、合糸、合撚、交織、交編、その他あらゆる手段を用いることができ、さらに得られた布帛は必要に応じ、種々後加工処理を施して、各種の用途に供することができる。本発明の複合繊維の好適な用途としては、従来にない高比重、実用に耐えうる繊維強力を有するポリエステル系繊維である特徴を最大限に生かせる刺網類、曳網類、旋網類、建網類、敷網類等各種漁網用途に最適である。特に、サケ、ブリ、マグロ、アジ、サバ、イワシ、スズキ、イカ他の定置網用として最適である。   Further, the conjugate fiber of the present invention can be used for a wide variety of applications either alone or in combination with other fibers. When mixed with other fibers, mixed fibers, plying, ply twisting, weaving, knitting, and any other means can be used, and the obtained fabric is subjected to various post-processing if necessary. Can be used for various applications. Preferable applications of the conjugate fiber of the present invention include gill nets, trawl nets, trawl nets, and construction nets that make the most of the characteristics of a polyester fiber having an unprecedented high specific gravity and practically strong fiber strength. It is most suitable for various fishing net applications such as nets. Particularly, it is most suitable for fixed nets of salmon, yellowtail, tuna, horse mackerel, mackerel, sardine, sea bass, squid and others.

漁網用途以外として、土木工事等で使用されるシルトプロテクター用を始め、従来にない、高比重性能を保持したポリエステル繊維として各種産業資材用途への応用が可能である。また産業資材用途以外にも、カーテン、暗幕等非衣料分野への応用も好適である。   In addition to fishing net applications, it can be applied to various industrial material applications, such as polyester fibers with high specific gravity performance, such as those used for silt protectors used in civil engineering works. In addition to industrial materials, applications to non-clothing fields such as curtains and blackout curtains are also suitable.

本発明は、特定の無機粒子が高添加された芯ポリマー成分と保護ポリマー成分の2成分による複合繊維を得ることにより、従来にない高い繊維強力と高い比重性能を有し、しかも定置網用繊維として公害問題がなく、かつ好適な色相を有した複合繊維を提供することができる。   The present invention has an unprecedented high fiber strength and high specific gravity performance by obtaining a composite fiber comprising two components of a core polymer component and a protective polymer component to which specific inorganic particles are highly added, and as a fiber for fixed netting. A composite fiber having no pollution problem and having a suitable hue can be provided.

以下、実施例により本発明を詳細に説明するが、本発明は、これら実施例に何等限定されるものではない。なお、本発明における〔η〕、微粒子の平均粒径、繊維比重、強度、伸度、ナイロンの数平均分子量は以下の方法で求めることができる。
・ポリエステルの〔η〕:溶剤としてフェノールとテトラクロルエタン1:1の混合溶剤を用い、30℃の温度下で測定した。
・ナイロンの数平均分子量:ウォーターズ社製HLC−510によるGPCクロマトグラムにより測定した。
・微粒子の平均粒径:堀場製作所製の遠心式自動粒度分布測定装置CAPA−500により測定した。
・繊維比重:溶剤として四塩化炭素とノルマルヘキサンを用い、密度勾配を作成して、20℃下で測定した。
・繊維強度及び伸度:島津製作所社製 引張試験機(オートグラフIM−100)を用い、20℃、65RH%下で測定した。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. In the present invention, [η], the average particle diameter of the fine particles, the fiber specific gravity, the strength, the elongation, and the number average molecular weight of nylon can be determined by the following methods.
Polyester [η]: Measured at a temperature of 30 ° C. using a mixed solvent of phenol and tetrachloroethane 1: 1 as a solvent.
-Number average molecular weight of nylon: Measured by GPC chromatogram using HLC-510 manufactured by Waters.
Average particle diameter of fine particles: Measured by a centrifugal automatic particle size distribution analyzer, CAPA-500, manufactured by Horiba, Ltd.
Fiber specific gravity: A density gradient was created using carbon tetrachloride and normal hexane as a solvent, and measured at 20 ° C.
-Fiber strength and elongation: Measured at 20 ° C and 65 RH% using a tensile tester (Autograph IM-100) manufactured by Shimadzu Corporation.

実施例1
宇部興産(株)社製 数平均分子量11,000のナイロン6粉末(商品名P1011F)を芯ポリマー成分のベースポリマーとして使用し、かかるポリマー粉末に対して平均粒子径0.2μの球状の磁鉄鉱粉末(戸田工業(株)社製:表面フェライトコート品、比重5.0)を30重量%と平均粒子径0.35μの二酸化チタン(チタン工業(株)社製 比重4.2)40重量%とを混合し、かかる混合物を二軸混練機で溶融混練してストランド状に押出し、ストランドをカットしてペレット化し、90℃で真空乾燥して水分を180ppmとした。一方、保護ポリマー成分としては、二酸化チタンを0.08重量%含有する極限粘度〔η〕0.80のポリエチレンテレフタレートを常法により溶融重合し、ペレット化したものを使用した。
Example 1
Nylon 6 powder having a number average molecular weight of 11,000 (trade name: P1011F) manufactured by Ube Industries, Ltd. was used as a base polymer of a core polymer component, and spherical magnetite powder having an average particle diameter of 0.2 μm with respect to the polymer powder. 30% by weight (manufactured by Toda Kogyo Co., Ltd .: surface ferrite coated product, specific gravity 5.0) and 40% by weight of titanium dioxide (specific gravity 4.2, manufactured by Titanium Industry Co., Ltd.) having an average particle diameter of 0.35 μm. And the mixture was melt-kneaded with a twin-screw kneader and extruded into strands. The strands were cut into pellets, and dried at 90 ° C. under vacuum to a water content of 180 ppm. On the other hand, as the protective polymer component, polyethylene terephthalate containing 0.08% by weight of titanium dioxide and having an intrinsic viscosity [η] of 0.80 was melt-polymerized by a conventional method and pelletized.

得られた保護ポリマー成分と芯ポリマー成分を別々の押出機で溶融押し出しし、紡糸温度295℃で保護ポリマー成分が鞘となるようにノズル部で合流し、複合重量比(保護ポリマー成分):(芯ポリマー成分)=2:1とし、断面を図1(1)のような芯鞘形状にして、ノズル口径0.4mmφ、8ホールノズルで吐出させ、紡糸速度1000m/分で巻き取った。この時、繊維形成後の保護ポリマー成分を形成するポリエチレンテレフタレートは〔η〕0.75であった。   The obtained protective polymer component and core polymer component are melt-extruded by separate extruders, and are joined at a nozzle portion at a spinning temperature of 295 ° C. so that the protective polymer component becomes a sheath, and a composite weight ratio (protective polymer component): ( (Core polymer component) = 2: 1, the cross section was made into a core-sheath shape as shown in FIG. 1 (1), discharged by an 8-hole nozzle with a nozzle diameter of 0.4 mmφ, and wound at a spinning speed of 1000 m / min. At this time, the polyethylene terephthalate forming the protective polymer component after the fiber formation was [η] 0.75.

得られた紡糸原糸をホットローラー80℃、ホットプレート140℃で延伸倍率4.0倍で延伸し、つづいて3%オーバーフィードを入れながらホットローラー180℃で熱処理した後、75デニール8フィラメントのマルチフィラメントを捲き取った。このマルチフィラメント糸の断面形状を顕微鏡により観察したところ、芯鞘比率がいずれの繊維においてもまた長さ方向においてもほぼ一定であり、かつ芯成分が鞘成分により完全に覆われており、さらに極めて均質性に優れ、毛羽も無かった。また、紡糸工程、延伸工程におけるトラブルの発生も認められなかった。得られた繊維比重は1.58で、強度は4.5g/dr、伸度15%であった。   The obtained spun yarn is stretched at a draw ratio of 4.0 times on a hot roller at 80 ° C. and a hot plate at 140 ° C., and then heat-treated at 180 ° C. with a 3% overfeed. The multifilament was wound up. When the cross-sectional shape of this multifilament yarn was observed with a microscope, the core-sheath ratio was almost constant in any fiber and also in the length direction, and the core component was completely covered by the sheath component. Excellent homogeneity and no fluff. Further, no trouble was observed in the spinning step and the drawing step. The resulting fiber had a specific gravity of 1.58, a strength of 4.5 g / dr and an elongation of 15%.

得られた延伸糸を合糸して網を作成し、海中に投入試験した所、沈降性良好で、海中での網揺れも少なく、且つ耐久性に優れ、漁網としての好適な繊維であることが確認された。   A net was prepared by combining the obtained drawn yarns and subjected to a test in the sea. The sedimentation was good, the net shaking in the sea was small, the durability was excellent, and the fiber was suitable as a fishing net. Was confirmed.

延伸時の熱処理温度を変化させることにより得られた繊維の比重が異なることがわかった。上記で述べた同一条件で採取した紡糸条件を、以下の条件で延伸した結果、以下の物性を有する繊維が得られた。   It was found that the specific gravity of the obtained fiber was different by changing the heat treatment temperature during drawing. As a result of drawing under the following conditions from the spinning conditions collected under the same conditions as described above, fibers having the following physical properties were obtained.

延 伸 温 度 条 件 繊 維 物 性
HR1 HP HR2 p DT DE 毛羽
[1] 80℃ 140℃ 180℃ 1.58 4.5g/d 15 ○
[2] 〃 〃 160 1.53 4.3 13 ○
[3] 〃 〃 230 1.60 4.7 10 ×
注:HR1 =ホットローラー(第1ローラー),HP=ホットプレート,HR2 =ホットローラー(第2ローラー),p=比重,DT=強度,DE=伸度
Elongation temperature conditions Fiber properties
HR 1 HP HR 2 p DT DE Fluff [1] 80 ° C 140 ° C 180 ° C 1.58 4.5g / d 15 ○
[2] 〃 160 160 1.53 4.3 13 ○
[3] 〃 230 230 1.60 4.7 10 ×
Note: HR 1 = hot roller (first roller), HP = hot plate, HR 2 = hot roller (second roller), p = specific gravity, DT = strength, DE = elongation

収縮処理時の熱処理温度が高い方が繊維物性は良好な結果が得られることがわかった。しかしながら、熱処理温度が極端に高くなると延伸毛羽が多発してくるため好ましくない。   It was found that the higher the heat treatment temperature during the shrinkage treatment, the better the fiber properties were. However, an extremely high heat treatment temperature is not preferable because stretching fuzz occurs frequently.

また、磁鉄鉱微粒子を上記のものに替えて、表面コーティングされていない戸田工業(株)社製:比重5.0を用いて全く同様にして繊維化を行なった。その結果、繊維の比重が1.53と表面コート品使用の時よりも若干比重の低いものが得られた。   The fiberization was carried out in exactly the same manner as above except that the magnetite fine particles were replaced with those described above, and the specific gravity was 5.0, manufactured by Toda Kogyo KK without surface coating. As a result, the specific gravity of the fiber was 1.53, which was slightly lower than that of the surface-coated product.

実施例2
芯ポリマー成分中へヨウ化銅を0.2重量%添加したこと以外は実施例1と同様にして複合繊維を製造し、得られた繊維の強度保持性について調べた。評価手段として83℃下でカーボンフェード照射400時間照射後の強度保持率と、83℃下でキセノンウェザー照射400時間照射後の強度保持率について調べた。その結果、カーボンフェード400hr後、n=5の平均強度保持率は、約86%、キセノンウェザー400hr後、n=5の平均強度保持率は約84%であった。これに対して実施例1で得られた繊維は、カーボンフェード400hr後では強度保持率が約42%、キセノンウェザー400hr後では強度保持率が約36%であった。
Example 2
Except for adding 0.2% by weight of copper iodide to the core polymer component, a conjugate fiber was produced in the same manner as in Example 1, and the strength retention of the obtained fiber was examined. As evaluation means, the strength retention after irradiation with carbon fade at 400C for 83 hours at 83 ° C and the strength retention after irradiation for 400 hours with xenon weather at 83 ° C were examined. As a result, after 400 hours of carbon fade, the average strength retention at n = 5 was about 86%, and after 400 hours of xenon weather, the average strength retention at n = 5 was about 84%. On the other hand, the fiber obtained in Example 1 had a strength retention of about 42% after 400 hours of carbon fade, and a strength retention of about 36% after 400 hours of xenon weather.

実施例3〜8
実施例3は、芯ポリマー成分の微粒子を磁鉄鉱50重量%と二酸化チタン20重量%とし、実施例4は磁鉄鉱20重量%と二酸化チタン50重量%とで合計70重量%とし、実施例5は磁鉄鉱10重量%と二酸化チタン60重量%とで合計70重量%としたこと以外は、いずれも実施例2と同様にして複合繊維を得た。いずれも工程性のトラブルもなく、しかも良好な繊維物性を有する繊維が得られた。実施例4は、得られた繊維の色相が灰色を呈し黒色とやや異なるレベルであり、実施例5は、繊維の色相は白っぽい灰色であった。実施例6は、芯ポリマー成分中の微粒子含量を磁鉄鉱30重量%、二酸化チタン20重量%で合計50重量%とし、実施例7は、保護ポリマー成分の〔η〕を0.85とし、実施例8は、保護ポリマー成分と芯ポリマー成分の複合比率を1:1としたこと以外は、すべて実施例2と同様の方法で実施した。いずれも工程性良好で、高比重、高強度の繊維が得られた。これら実施例における保護ポリマー成分の〔η〕、芯ポリマー成分における微粒子の種類とその配合率、保護ポリマー成分と芯ポリマー成分の複合比及び繊維の断面形状について纏めたものを表1に、また、これら繊維の工程性および物性についての評価を表2に示す。
Examples 3 to 8
Example 3 is 50% by weight of magnetite and 20% by weight of titanium dioxide in the core polymer component, Example 4 is 70% by weight of 20% by weight of magnetite and 50% by weight of titanium dioxide, and Example 5 is magnetite. A composite fiber was obtained in the same manner as in Example 2 except that the total was 70% by weight of 10% by weight and 60% by weight of titanium dioxide. In each case, there was no trouble in processability, and fibers having good fiber properties were obtained. In Example 4, the hue of the obtained fiber was gray and slightly different from black, and in Example 5, the hue of the fiber was whitish gray. In Example 6, the content of the fine particles in the core polymer component was 30% by weight of magnetite and 20% by weight of titanium dioxide, so that the total was 50% by weight. In Example 7, the [η] of the protective polymer component was 0.85. 8 was carried out in the same manner as in Example 2 except that the composite ratio of the protective polymer component and the core polymer component was 1: 1. In each case, the processability was good, and fibers with high specific gravity and high strength were obtained. Table 1 summarizes the [η] of the protective polymer component in these examples, the type and blending ratio of the fine particles in the core polymer component, the composite ratio of the protective polymer component and the core polymer component, and the cross-sectional shape of the fiber. Table 2 shows the evaluation of the processability and physical properties of these fibers.

Figure 2004169267
Figure 2004169267

Figure 2004169267
Figure 2004169267

実施例9〜10
実施例9は二酸化チタンのかわりに、平均粒径1.0μの酸化亜鉛(比重5.5)を用い、実施例10は平均粒径2.0μのアルミナ(比重3.98)を用いたこと以外は、実施例2と同様の方法で複合繊維を得た。いずれも紡糸時にやや毛羽が発生したこと以外は工程性良好でしかも良好な繊維が得られた(表1、表2参照)。
Examples 9 to 10
Example 9 used zinc oxide (specific gravity 5.5) having an average particle size of 1.0 μ instead of titanium dioxide, and Example 10 used alumina (specific gravity 3.98) having an average particle size of 2.0 μ. Except for the above, a composite fiber was obtained in the same manner as in Example 2. In all cases, except that slight fluff was generated during spinning, good processability and good fibers were obtained (see Tables 1 and 2).

実施例11〜12
実施例11は断面形状を図1(2)、実施例12は断面形状を図1(3)とすること以外は、実施例2と同様の方法で複合紡糸した。いずれも工程性良好でしかも良好な繊維が得られた(表1、表2参照)。
Examples 11 to 12
In Example 11, composite spinning was performed in the same manner as in Example 2 except that the cross-sectional shape was changed to FIG. 1 (2), and in Example 12, the cross-sectional shape was changed to FIG. 1 (3). In each case, good processability and good fibers were obtained (see Tables 1 and 2).

実施例13
芯ポリマー成分のベースポリマーとして、ナイロン12(宇部興産(株)社製3014U)を用いたこと以外は、実施例3と同様の方法で複合繊維を製造したが、工程性良好で、良好な繊維が得られた(表1、表2参照)。
Example 13
Except that nylon 12 (3014U manufactured by Ube Industries, Ltd.) was used as the base polymer of the core polymer component, a conjugate fiber was produced in the same manner as in Example 3, but the processability was good and a good fiber was obtained. Was obtained (see Tables 1 and 2).

実施例14
芯ポリマー成分として、数平均分子量が22,000であるナイロン6(宇部興産(株)社製 商品名P1022)を用いて実施したこと以外は、実施例2と同様にして複合繊維を得た(表1、表2参照)。
Example 14
A composite fiber was obtained in the same manner as in Example 2, except that nylon 6 having a number average molecular weight of 22,000 (trade name: P1022 manufactured by Ube Industries, Ltd.) was used as the core polymer component. Tables 1 and 2).

比較例1
保護ポリマー成分として紡糸前の〔η〕が0.65であるポリエチレンテレフタレートチップを用い、紡糸後の〔η〕が0.60となるように紡糸したこと以外は、実施例2と同様の方法で複合繊維を得た。その結果、紡糸時および延伸時に毛羽がやや発生し、保護ポリマー成分の粘度が低いために繊維強度が2.5g/dと低く、実施例2より劣るものであった。
Comparative Example 1
A polyethylene terephthalate chip having [η] of 0.65 before spinning was used as a protective polymer component, and spinning was performed so that [η] after spinning became 0.60, in the same manner as in Example 2. A composite fiber was obtained. As a result, fluff was slightly generated during spinning and stretching, and the fiber strength was as low as 2.5 g / d due to the low viscosity of the protective polymer component, which was inferior to Example 2.

比較例2
微粒子として磁鉄鉱15重量%と二酸化チタン15重量%とで合計30重量%としたこと以外は実施例2と同様の方法で複合繊維を得た。工程性は良好で繊維化可能であったが、繊維比重が1.45であり、実施例2より劣るものであった。
Comparative Example 2
A composite fiber was obtained in the same manner as in Example 2, except that the total of 30% by weight was 15% by weight of magnetite and 15% by weight of titanium dioxide as fine particles. Although the processability was good and fiberization was possible, the fiber specific gravity was 1.45, which was inferior to Example 2.

比較例3〜4
比較例3は二酸化チタンのかわりに、平均粒径0.1μ、比重2.2の二酸化ケイ素粒子を用い、比較例4は平均粒径1.0μ、比重2.5のカオリン粒子を用いた以外は、実施例2と同様の方法で実施した。いずれも、毛羽が発生し、紡糸性、延伸性はあまり良くなかった。得られた繊維の比重も、実施例2よりも劣るレベルのものであった。
Comparative Examples 3 and 4
Comparative Example 3 used silicon dioxide particles having an average particle size of 0.1 μ and a specific gravity of 2.2 instead of titanium dioxide, and Comparative Example 4 used kaolin particles having an average particle size of 1.0 μ and a specific gravity of 2.5. Was carried out in the same manner as in Example 2. In each case, fluff was generated, and spinnability and stretchability were not so good. The specific gravity of the obtained fiber was also lower than that of Example 2.

比較例5〜6
実施例2と同一のポリマーを用い、比較例5は保護ポリマー成分:芯ポリマー成分の複合比率を85:15、比較例6は保護ポリマー成分:芯ポリマー成分の複合比率を15:85として実施例2と同様にして複合紡糸した。比較例5は良好に繊維化が可能であったが、繊維比重性能としては劣るレベルであった。比較例6は紡糸性、延伸性が不良で毛羽、断糸が多発し、性能評価できるような繊維が得られなかった。比較例1〜6における保護ポリマー成分の〔η〕、芯ポリマー成分における微粒子の種類とその配合率、保護ポリマー成分と芯ポリマー成分の複合比及び繊維の断面形状について纏めたものは表1に、また、これら繊維の工程性および物性についての評価は表2に示したとおりである。
Comparative Examples 5-6
Comparative Example 5 uses the same polymer as in Example 2, Comparative Example 5 has a composite ratio of the protective polymer component: the core polymer component of 85:15, and Comparative Example 6 has a composite ratio of the protective polymer component: the core polymer component of 15:85. Composite spinning was performed in the same manner as in No. 2. In Comparative Example 5, the fiberization was possible, but the fiber specific gravity performance was at a poor level. In Comparative Example 6, spinnability and stretchability were poor, and fluff and breakage occurred frequently, and a fiber whose performance could be evaluated was not obtained. Table 1 summarizes [η] of the protective polymer component in Comparative Examples 1 to 6, types of fine particles in the core polymer component and the compounding ratio thereof, the composite ratio of the protective polymer component and the core polymer component, and the cross-sectional shape of the fiber. The evaluation of the processability and physical properties of these fibers is as shown in Table 2.

実施例15
宇部興産(株)社製 数平均分子量11,000のナイロン6粉末(商品名P1011F)を芯ポリマー成分のベースポリマーとして使用し、かかるポリマー粉末に対して平均粒子径0.35μの二酸化チタン(チタン工業(株)社製 比重4.2)70重量%を混合し、かかる混合物を二軸混練機で溶融混練してストランド状に押出し、ストランドをカットしてペレット化し、100℃の窒素循環により水分率を460ppmとした。一方、保護ポリマー成分としては、1次平均粒子径0.03μのカーボンブラック(デグサ社製)を1.5重量%含有する極限粘度〔η〕0.80のポリエチレンテレフタレートを常法により溶融重合し、ペレット化したものを使用した。これら両ポリマーを用いて実施例2と同様にして複合繊維を得た。得られた複合繊維の保護ポリマー成分のポリエチレンテレフタレートの〔η〕は0.75であった。また、繊維比重は、1.57、強度は4.6g/dr、伸度は18%であり、魚網用途として優れた性能を有していた。
Example 15
A nylon 6 powder having a number average molecular weight of 11,000 (trade name: P1011F) manufactured by Ube Industries, Ltd. is used as a base polymer of a core polymer component, and titanium dioxide (titanium) having an average particle diameter of 0.35 μm is used for the polymer powder. 70% by weight, specific gravity 4.2) manufactured by Kogyo Co., Ltd. are mixed, the mixture is melt-kneaded with a twin-screw kneader, extruded into strands, and the strands are cut into pellets. The rate was 460 ppm. On the other hand, as a protective polymer component, polyethylene terephthalate having an intrinsic viscosity [η] of 0.80 containing 1.5% by weight of carbon black (manufactured by Degussa) having a primary average particle size of 0.03 μm is melt-polymerized by an ordinary method. And pelletized one. A composite fiber was obtained in the same manner as in Example 2 using both these polymers. [Η] of polyethylene terephthalate as a protective polymer component of the obtained conjugate fiber was 0.75. In addition, the fiber specific gravity was 1.57, the strength was 4.6 g / dr, and the elongation was 18%. The fiber had excellent performance for use in fishnets.

実施例16
二酸化チタンの含有量を55重量%とすること以外は、実施例15と同様にして複合繊維を得た。得られた繊維の比重は、1.53、強度は5.2g/dr、伸度は20%であり、紡糸性、延伸性ともに優れた繊維が得られた。
Example 16
A conjugate fiber was obtained in the same manner as in Example 15, except that the content of titanium dioxide was 55% by weight. The specific gravity of the obtained fiber was 1.53, the strength was 5.2 g / dr, and the elongation was 20%. A fiber excellent in both spinnability and stretchability was obtained.

実施例17
二酸化チタンを50重量%と平均粒径1.0μ、比重5.5の酸化亜鉛を20重量%の合計70重量%の微粒子を含有すること以外は、実施例15と同様にして複合繊維を得た。得られた繊維の比重は、1.58、強度は4.5g/dr、伸度は15%であり、紡糸時に若干の毛羽が発生したものの、延伸性に優れ、漁網用途として優れた性能を有した繊維が得られた。
Example 17
A composite fiber was obtained in the same manner as in Example 15, except that 50% by weight of titanium dioxide, an average particle size of 1.0 μm, and zinc oxide having a specific gravity of 5.5 and 20% by weight were contained in a total of 70% by weight. Was. The specific gravity of the obtained fiber was 1.58, the strength was 4.5 g / dr, and the elongation was 15%. Although some fluff occurred during spinning, it had excellent stretchability and excellent performance for fishing net use. The obtained fiber was obtained.

実施例18
二酸化チタンを50重量%と平均粒径2.0μ、比重3.9のアルミナを20重量%の合計70重量%の微粒子を含有すること以外は、実施例15と同様にして複合繊維を得た。得られた繊維の比重は、1.56、強度は4.5g/dr、伸度は15%であり、紡糸時に若干の毛羽が発生したものの、延伸性に優れ、漁網用途として優れた性能を有した繊維が得られた。
Example 18
A composite fiber was obtained in the same manner as in Example 15, except that 50% by weight of titanium dioxide, 2.0 μm in average particle diameter, and 20% by weight of alumina having a specific gravity of 3.9 were contained in a total of 70% by weight. . The specific gravity of the obtained fiber was 1.56, the strength was 4.5 g / dr, and the elongation was 15%. Although some fluff was generated during spinning, it had excellent stretchability and excellent performance for fishing net use. The obtained fiber was obtained.

実施例19
二酸化チタンを50重量%と平均粒径0.6μm、比重4.3の硫酸バリウムを20重量%の合計70重量%の微粒子を含有すること以外は、実施例15と同様にして複合繊維を得た。得られた繊維の比重は、1.57、強度は4.5g/dr、伸度は14%であり、紡糸時に若干の毛羽が発生したものの、延伸性に優れ、漁網用途として優れた性能を有した繊維が得られた。実施例15〜19における保護ポリマー成分の〔η〕、着色剤の含有量、芯ポリマー成分における微粒子の種類とその配合率、保護ポリマー成分と芯ポリマー成分の複合比および繊維の断面形状について纏めたものを表3に、また、これら繊維の工程性および物性についての評価を表4に示す。
Example 19
A composite fiber was obtained in the same manner as in Example 15 except that 50% by weight of titanium dioxide, an average particle diameter of 0.6 μm, and barium sulfate having a specific gravity of 4.3 were contained in a total of 70% by weight. Was. The specific gravity of the obtained fiber was 1.57, the strength was 4.5 g / dr, and the elongation was 14%. Although some fluff was generated during spinning, it had excellent stretchability and excellent performance for fishing net use. The obtained fiber was obtained. [Η] of the protective polymer component, the content of the colorant, the type and blending ratio of the fine particles in the core polymer component, the compounding ratio of the protective polymer component and the core polymer component, and the cross-sectional shape of the fibers in Examples 15 to 19 were summarized. The results are shown in Table 3, and the evaluations of processability and physical properties of these fibers are shown in Table 4.

Figure 2004169267
Figure 2004169267

Figure 2004169267
Figure 2004169267

実施例20
平均粒子径0.35μの二酸化チタン(ルチル型;チタン工業(株)社製 比重4.2)を60重量%含有する数平均分子量11,000のナイロン6(宇部興産社製)を芯ポリマー成分(水分率は100ppm)とし、二酸化チタンを0.08重量%含有する極限粘度が〔η〕0.95であるポリエチレンテレフタレートを保護ポリマー成分として、別々の押出機で溶融押し出しし、紡糸温度300℃で保護ポリマー成分が鞘となるようにノズル部で合流し、複合重量比(保護ポリマー成分):(芯ポリマー成分)=1:1とし、断面を図1(1)のような芯鞘形状にして、ノズル口径0.5mmφ、200ホールノズルで吐出させた。吐出糸条は、ノズル直下に設けた20cm長、380℃の加熱帯域を通過させた後、25℃、毎分7Nm3 の冷却風で冷却し、オイリングローラーで紡糸油剤を付与し、紡糸速度600m/分で引き取った。
Example 20
Nylon 6 (Ube Industries, Ltd.) having a number average molecular weight of 11,000 and containing 60% by weight of titanium dioxide (rutile type; specific gravity 4.2, manufactured by Titanium Industry Co., Ltd.) having an average particle diameter of 0.35 μm is a core polymer component. (Water content: 100 ppm), polyethylene terephthalate containing 0.08% by weight of titanium dioxide and having an intrinsic viscosity of [η] 0.95 as a protective polymer component was melt-extruded with a separate extruder, and a spinning temperature of 300 ° C. Then, the protective polymer component is joined at the nozzle portion so as to form a sheath, and the composite weight ratio (protective polymer component) :( core polymer component) = 1: 1, and the cross section is formed into a core-sheath shape as shown in FIG. Then, the liquid was ejected by a 200 hole nozzle having a nozzle diameter of 0.5 mmφ. The discharged yarn was passed through a heating zone of 20 cm length and 380 ° C. provided immediately below the nozzle, cooled at 25 ° C. with a cooling air flow of 7 Nm 3 per minute, applied a spinning oil agent with an oiling roller, and spun at a spinning speed of 600 m. / Min.

引き続き該糸条を一旦捲取ることなく、延伸、熱処理を以下の要領で実施し巻き取った。
延 伸:110℃の熱ロールで加熱後、400℃の加熱蒸気を噴射しつつ4.3倍に一段延伸。
熱処理:220℃の熱ロールと弛緩ロールとの間で3%の収縮処理。
その結果、工程安定性は良好で、1004デニール、強度4.0g/d、伸度18%、比重1.62の漁網用繊維として実用性の高い繊維が得られた。
Subsequently, without once winding the yarn, stretching and heat treatment were carried out in the following manner and wound.
Stretching: After heating with a hot roll at 110 ° C., stretched 4.3 times in one step while injecting heated steam at 400 ° C.
Heat treatment: 3% shrinkage treatment between a hot roll at 220 ° C. and a relax roll.
As a result, the process stability was good, and a highly practical fiber having 1004 denier, strength of 4.0 g / d, elongation of 18%, and specific gravity of 1.62 was obtained.

実施例21
平均粒子径0.35μの二酸化チタン(ルチル型;チタン工業(株)社製 比重4.2)25重量%と平均粒子径0.2μのα型ヘマタイト粉末(戸田工業社製、比重5.2)を50重量%含有する数平均分子量12,000のナイロン6を芯ポリマー成分(水分率200ppm)とし、カーボンブラック(デグサ社製)を1.0重量%含有する極限粘度が〔η〕1.0であるポリエチレンテレフタレートを保護ポリマー成分として、別々の押出機で溶融押し出しし、紡糸温度300℃で保護ポリマー成分が鞘となるようにノズル部で合流し、複合重量比(保護ポリマー成分):(芯ポリマー成分)=2:1とし、断面を図1(1)のような芯鞘形状にして、ノズル口径0.6mmφ、100ホールノズルで吐出させた。吐出糸条は、ノズル直下に設けた20cm長、380℃の加熱帯域を通過させた後、25℃、毎分7Nm3 の冷却風で冷却し、オイリングローラーで紡糸油剤を付与し、紡糸速度600m/分で引き取った。
Example 21
25% by weight of titanium dioxide (rutile type; specific gravity 4.2, manufactured by Titanium Industry Co., Ltd.) having an average particle size of 0.35 μm and α-type hematite powder having an average particle size of 0.2 μm (manufactured by Toda Kogyo Co., Ltd., specific gravity 5.2) ) Containing 50% by weight of nylon 6 having a number average molecular weight of 12,000 as a core polymer component (moisture content: 200 ppm), and containing 1.0% by weight of carbon black (manufactured by Degussa) and having an intrinsic viscosity of [η] 1. Polyethylene terephthalate, which is 0, is used as a protective polymer component, melt-extruded with a separate extruder, and joined at a nozzle at a spinning temperature of 300 ° C. so that the protective polymer component becomes a sheath, and a composite weight ratio (protective polymer component): ( (Core polymer component) = 2: 1, the cross-section was made into a core-sheath shape as shown in FIG. 1A, and the nozzle was discharged with a nozzle diameter of 0.6 mmφ and a 100-hole nozzle. The discharged yarn was passed through a heating zone of 20 cm length and 380 ° C. provided immediately below the nozzle, cooled at 25 ° C. with a cooling air flow of 7 Nm 3 per minute, applied a spinning oil agent with an oiling roller, and spun at a spinning speed of 600 m. / Min.

引き続き該糸条を一旦捲取ることなく、延伸、熱処理を以下の要領で実施し巻き取った。
延 伸:110℃の熱ロールで加熱後、450℃の加熱蒸気を噴射しつつ4.8倍に一段延伸。
熱処理:210℃の熱ロールと弛緩ロールとの間で4%の収縮処理。
その結果、工程安定性は良好で、1002デニール、強度5.5g/d、伸度19%、比重1.62の漁網用繊維として実用性の高い繊維が得られた。
Subsequently, without once winding the yarn, stretching and heat treatment were carried out in the following manner and wound.
Stretching: After heating with a hot roll at 110 ° C., stretch one step to 4.8 times while injecting heated steam at 450 ° C.
Heat treatment: 4% shrinkage treatment between 210 ° C. hot roll and relaxation roll.
As a result, the process stability was good, and a highly practical fiber having 1002 denier, strength of 5.5 g / d, elongation of 19%, and specific gravity of 1.62 was obtained.

比較例7
加熱蒸気の温度を300℃とすること以外は、実施例20と同様にして複合繊維を製造したが、その結果、強度3.3g/dr、伸度20%、比重1.54とわずかではあるが、繊維強度が本発明に達しない繊維が得られた。これは、延伸時に芯ポリマー成分の流動が不十分であることに起因するものと思われ、延伸時に断糸が多発した。
Comparative Example 7
Except for changing the temperature of the heated steam to 300 ° C., a conjugate fiber was produced in the same manner as in Example 20, but as a result, the strength was 3.3 g / dr, the elongation was 20%, and the specific gravity was a little 1.54. However, a fiber whose fiber strength did not reach the present invention was obtained. This is considered to be due to insufficient flow of the core polymer component at the time of drawing, and the yarn was frequently broken at the time of drawing.

実施例22〜23、比較例8
延伸後の熱処理温度を245℃(実施例22)、160℃(実施例23)、256℃(比較例8)とすること以外は実施例20と同様にして複合繊維を製造した。その結果、245℃の場合は、強度4.2g/dr、伸度21%、比重1.63と高強度、高比重の繊維が得られたが、熱処理時に若干の断糸が見られた。また、160℃の場合は、強度3.7g/dr、伸度15%、比重1.53であった。256℃では、繊維が一部融着し、断糸した。
Examples 22 to 23, Comparative Example 8
A conjugate fiber was manufactured in the same manner as in Example 20, except that the heat treatment temperature after drawing was 245 ° C (Example 22), 160 ° C (Example 23), and 256 ° C (Comparative Example 8). As a result, in the case of 245 ° C., a fiber having a strength of 4.2 g / dr, an elongation of 21%, a specific gravity of 1.63 and a high strength and a high specific gravity was obtained, but slight breakage was observed during the heat treatment. In the case of 160 ° C., the strength was 3.7 g / dr, the elongation was 15%, and the specific gravity was 1.53. At 256 ° C., the fibers were partially fused and broken.

比較例9
実施例1において、芯成分が水分率を650ppmとしたところノズル孔からビス落ちが生じ、全く紡糸不能であった。
Comparative Example 9
In Example 1, when the core component had a water content of 650 ppm, screws fell off from the nozzle holes and spinning was impossible at all.

図1(1)〜(8)は本発明の繊維断面における芯ポリマー成分と保護ポリマー成分との代表的な複合形態を示す模式図である。FIGS. 1 (1) to 1 (8) are schematic diagrams showing typical composite forms of a core polymer component and a protective polymer component in the fiber cross section of the present invention.

符号の説明Explanation of reference numerals

1:芯ポリマー成分
2:保護ポリマー成分

1: core polymer component 2: protective polymer component

Claims (9)

非鉛系金属またはその化合物からなる比重3以上の微粒子を50〜85重量%含有する芯ポリマー成分と、該芯ポリマー成分を覆い、かつ着色剤が添加されている保護ポリマー成分とから構成され、繊維比重が1.5以上であり、かつ強度が3.5g/d以上であることを特徴とする複合繊維。 A core polymer component containing 50 to 85% by weight of fine particles of a lead-free metal or a compound thereof having a specific gravity of 3 or more, and a protective polymer component covering the core polymer component and having a coloring agent added thereto, A conjugate fiber having a fiber specific gravity of 1.5 or more and a strength of 3.5 g / d or more. 微粒子が酸化鉄および二酸化チタンである請求項1記載の複合繊維。 The composite fiber according to claim 1, wherein the fine particles are iron oxide and titanium dioxide. 芯ポリマー成分が数平均分子量22,000以下のポリアミドであり、保護ポリマー成分が固有粘度0.7以上のポリエステルである請求項1又は2に記載の複合繊維。 The conjugate fiber according to claim 1, wherein the core polymer component is a polyamide having a number average molecular weight of 22,000 or less, and the protective polymer component is a polyester having an intrinsic viscosity of 0.7 or more. 芯ポリマー成分に0.01重量%以上のヨウ化銅が含まれている請求項1〜3のいずれかに記載の複合繊維。 The conjugate fiber according to any one of claims 1 to 3, wherein the core polymer component contains 0.01% by weight or more of copper iodide. 着色剤がカーボンブラックである請求項1記載の複合繊維。 The conjugate fiber according to claim 1, wherein the colorant is carbon black. 二酸化チタンと他の比重3以上の無機微粒子を合計で50〜85重量%含有する熱可塑性ポリマーを芯成分とし、該熱可塑性ポリマーよりも少なくとも20℃以上高い融点または軟化点を有し、かつ着色剤を含有する熱可塑性ポリマーを保護成分として複合紡糸し、加熱延伸した後に、芯成分の熱可塑性ポリマーの(融点または軟化点−80)℃以上、鞘成分の熱可塑性ポリマー成分の(融点または軟化点−5)℃以下の温度で熱処理を施すことにより、繊維比重が1.5以上であり、かつ強度が3.5g/d以上である複合繊維を製造する方法。 A thermoplastic polymer containing a total of 50 to 85% by weight of titanium dioxide and other inorganic fine particles having a specific gravity of 3 or more as a core component, having a melting point or softening point higher by at least 20 ° C. than the thermoplastic polymer, and coloring Composite spinning using a thermoplastic polymer containing an agent as a protective component, followed by heat drawing, and then at least (melting point or softening point -80) ° C of the thermoplastic polymer of the core component and (melting point or softening of the thermoplastic polymer component of the sheath component). Point -5) A method of producing a conjugate fiber having a fiber specific gravity of 1.5 or more and a strength of 3.5 g / d or more by performing a heat treatment at a temperature of not more than ℃. 芯ポリマー成分がポリアミドであり、かつ無機微粒子を含む芯成分の水分率が500ppm以下である請求項6に記載の複合繊維の製造方法。 The method for producing a conjugate fiber according to claim 6, wherein the core polymer component is polyamide, and the water content of the core component containing inorganic fine particles is 500 ppm or less. ポリアミドの数平均分子量が22,000以下である請求項7に記載の複合繊維の製造方法。 The method according to claim 7, wherein the polyamide has a number average molecular weight of 22,000 or less. 着色剤がカーボンブラックである請求項6に記載の複合繊維の製造方法。
The method according to claim 6, wherein the colorant is carbon black.
JP2004071844A 1994-08-31 2004-03-15 High specific gravity / high strength composite fiber Expired - Fee Related JP3752250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071844A JP3752250B2 (en) 1994-08-31 2004-03-15 High specific gravity / high strength composite fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20694894 1994-08-31
JP5567895 1995-03-15
JP2004071844A JP3752250B2 (en) 1994-08-31 2004-03-15 High specific gravity / high strength composite fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22341595A Division JP3574513B2 (en) 1994-08-31 1995-08-31 High specific gravity / high strength conjugate fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004169267A true JP2004169267A (en) 2004-06-17
JP3752250B2 JP3752250B2 (en) 2006-03-08

Family

ID=32718597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071844A Expired - Fee Related JP3752250B2 (en) 1994-08-31 2004-03-15 High specific gravity / high strength composite fiber

Country Status (1)

Country Link
JP (1) JP3752250B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104562274A (en) * 2014-06-30 2015-04-29 巢湖市翔宇渔具有限公司 Processing method of fishing net thread
CN104775176A (en) * 2015-03-20 2015-07-15 巢湖市瑞强渔具有限责任公司 High-performance fishing net line
CN109112661A (en) * 2018-07-03 2019-01-01 南通纺织丝绸产业技术研究院 The preparation method of spinning technique and titanium dioxide powder containing dioxide composite titanium valve

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584819A (en) * 1981-06-30 1983-01-12 松本 啓吾 Cored, high-density fiber and its production
JPS60139814A (en) * 1983-12-28 1985-07-24 Kureha Chem Ind Co Ltd Fiber having high specific gravity and strength
JPS6257918A (en) * 1985-09-04 1987-03-13 Kuraray Co Ltd High specific gravity yarn having rough surface
JPH03137225A (en) * 1989-10-19 1991-06-11 Kuraray Co Ltd Pigmented fiber with high strength and high modulus
JPH06128814A (en) * 1992-10-20 1994-05-10 San Line:Kk Polyester-based monofilament
JPH08144126A (en) * 1994-11-16 1996-06-04 Unitika Ltd Polyester fiber for fishery material and its production and fishnet
JPH08284023A (en) * 1995-04-05 1996-10-29 Unitika Ltd High-specific gravity fiber, its production and fishing net
JP3474318B2 (en) * 1995-06-09 2003-12-08 株式会社クラレ High specific gravity / high strength composite fiber
JP3574513B2 (en) * 1994-08-31 2004-10-06 株式会社クラレ High specific gravity / high strength conjugate fiber and method for producing the same
JP3712121B2 (en) * 2002-04-16 2005-11-02 株式会社クラレ Manufacturing method of composite fiber

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584819A (en) * 1981-06-30 1983-01-12 松本 啓吾 Cored, high-density fiber and its production
JPS60139814A (en) * 1983-12-28 1985-07-24 Kureha Chem Ind Co Ltd Fiber having high specific gravity and strength
JPS6257918A (en) * 1985-09-04 1987-03-13 Kuraray Co Ltd High specific gravity yarn having rough surface
JPH03137225A (en) * 1989-10-19 1991-06-11 Kuraray Co Ltd Pigmented fiber with high strength and high modulus
JPH06128814A (en) * 1992-10-20 1994-05-10 San Line:Kk Polyester-based monofilament
JP3574513B2 (en) * 1994-08-31 2004-10-06 株式会社クラレ High specific gravity / high strength conjugate fiber and method for producing the same
JPH08144126A (en) * 1994-11-16 1996-06-04 Unitika Ltd Polyester fiber for fishery material and its production and fishnet
JPH08284023A (en) * 1995-04-05 1996-10-29 Unitika Ltd High-specific gravity fiber, its production and fishing net
JP3474318B2 (en) * 1995-06-09 2003-12-08 株式会社クラレ High specific gravity / high strength composite fiber
JP3712121B2 (en) * 2002-04-16 2005-11-02 株式会社クラレ Manufacturing method of composite fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104562274A (en) * 2014-06-30 2015-04-29 巢湖市翔宇渔具有限公司 Processing method of fishing net thread
CN104775176A (en) * 2015-03-20 2015-07-15 巢湖市瑞强渔具有限责任公司 High-performance fishing net line
CN109112661A (en) * 2018-07-03 2019-01-01 南通纺织丝绸产业技术研究院 The preparation method of spinning technique and titanium dioxide powder containing dioxide composite titanium valve

Also Published As

Publication number Publication date
JP3752250B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
US4617235A (en) Antistatic synthetic fibers
JP6731760B2 (en) Core-sheath composite fiber
JP3335063B2 (en) High specific gravity / high strength composite fiber and method for producing the same
JP3574513B2 (en) High specific gravity / high strength conjugate fiber and method for producing the same
JP3752250B2 (en) High specific gravity / high strength composite fiber
JP3712121B2 (en) Manufacturing method of composite fiber
JP3686126B2 (en) Fishing net
JP3563160B2 (en) Longline
JP3537546B2 (en) Original high-density conjugate fiber and method for producing the same
JP3474318B2 (en) High specific gravity / high strength composite fiber
JPH06108309A (en) Conjugate magnetic fiber
JP2004003116A (en) Conjugated fiber of high specific gravity and high strength
JP3697882B2 (en) Composite fiber and method for producing the same
JP2004162205A (en) Sheath/core-type monofilament and fishnet using the same
JP3647493B2 (en) Fishing net
JPH08158161A (en) High specific gravity yarn
JP3210787B2 (en) Conductive mixed yarn
JP2002069742A (en) High-specific gravity yarn
JPS6215327A (en) High-specific gravity conjugate fiber
JPH10273828A (en) Abrasion resistant sheath core type high specific gravity conjugate fiber and fishing net composed of the same
JPH1060739A (en) Stationary net
JP2007056382A (en) Method for producing high specific gravity composite fiber
JPH10273827A (en) Abrasion resistant sheath core type high specific gravity composite fiber
JPH1143823A (en) Conjugate fiber and its production
JPH10325018A (en) Conjugate filament having high specific gravity and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees