JP2004169058A - Electroless gold plating liquid, and electroless gold plating method - Google Patents

Electroless gold plating liquid, and electroless gold plating method Download PDF

Info

Publication number
JP2004169058A
JP2004169058A JP2002332927A JP2002332927A JP2004169058A JP 2004169058 A JP2004169058 A JP 2004169058A JP 2002332927 A JP2002332927 A JP 2002332927A JP 2002332927 A JP2002332927 A JP 2002332927A JP 2004169058 A JP2004169058 A JP 2004169058A
Authority
JP
Japan
Prior art keywords
gold plating
plating solution
electroless gold
gold
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002332927A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
弘 山本
Akio Takahashi
昭男 高橋
Kanji Murakami
敢次 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002332927A priority Critical patent/JP2004169058A/en
Publication of JP2004169058A publication Critical patent/JP2004169058A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroless gold plating liquid which does not comprise cyanogen compounds and is neutral so as to satisfy pH of about 7, and with which a sufficient gold precipitation rate can be obtained even at a medium-low liquid temperature of 50 to 80°C and the appearance of a gold plating film is satisfactory, and which has particularly excellent liquid stability, and to provide an electroless gold plating method using the electroless gold plating liquid. <P>SOLUTION: The electroless gold plating liquid comprises a gold salt, a complexing agent, a reducing agent, a pH buffer, a phenyl based compound, a benzotriazole based compound, and a mercaptan based compound, and the content of the mercaptan based compound lies in the range of 1 to 50 ppm. In the electroless gold plating method, the electroless gold plating liquid is used. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は無電解金めっき液及び無電解金めっき方法に関する。
【0002】
【従来の技術】
プリント配線板の金めっき処理は、電解金めっき法と無電解金めっき法の2通りが行われているが、コスト・液安定性の面から電解めっき法が主流である。しかしながら、電解めっき法は、近年の高密度実装化の要求の中で、電源リードに対する設計上の制約、孤立パターンへのめっき処理等の問題点があるため、無電解金めっき法が見直されてきている。
【0003】
無電解金めっき法には、置換金めっき法と自己触媒型の無電解金めっき法の2通りがある。置換金めっき法は、置換金めっき液に卑金属導体を浸漬することにより、めっき液中の金が卑金属導体上に置換析出するものであるが、置換反応であるため金が卑金属導体全面に析出したところで反応が止まり、厚付金めっきは不可能である。これに対し、自己触媒型の無電解金めっき法は、還元反応により金が析出するため、無電解金めっき液の各成分を分析補充管理することにより、数μmの任意の厚さまで金めっきを施すことが可能である。
【0004】
自己触媒型の無電解金めっき液については、今まで多くの液組成が報告されている。(例えば、特許文献1参照)しかし、それらのほとんどにシアン化合物が含まれているため、毒性が強く、そのほとんどが、に記載されているように、pHが11以上の高アルカリ性液であるため、めっきレジストを溶解し、パターンめっき性が悪くなるという問題点があった。
【0005】
この問題点を解決した、つまり、シアン化合物を含まず、中性で比較的中低温で使用可能な無電解金めっき液としては、例えば、チオ硫酸金ナトリウムとチオ尿素を主成分とするめっき液(特許文献2参照)、塩化金酸塩とアスコルビン酸を主成分とするめっき液(特許文献3参照)、塩化金酸塩とチオ尿素およびフェニル化合物を主成分とするめっき液(特許文献4参照)、亜硫酸金化合物とアミンとヒドラジン化合物を主成分とするめっき液(特許文献5参照)などが挙げられる。しかし、これらのめっき液は、めっき液中に銅イオンが混入した場合、液が数日で分解してしまうという別の課題が発生し、銅配線のプリント配線板の金めっき処理では、長期連続使用が困難であった。
【0006】
この長期連続使用を可能とした、つまり、銅イオンによるめっき液の寿命低下を改善した無電解金めっき液としては、例えば、亜硫酸金化合物とアミンとヒドラジン化合物を主成分とし、ベンゾトリアゾール系化合物を含有しためっき液(特許文献6参照)が挙げられる。このめっき液によれば、ベンゾトリアゾール系化合物の金属隠蔽効果により、銅イオン混入時の抑制及び液安定性の向上が可能になったが、還元剤であるヒドラジン化合物自体の安定性が低いため、数十日の、より長期間に渡る連続使用には不十分であった。
【0007】
また、本発明者らによっても、金塩とチオ尿素およびフェニル化合物を主成分とする系でのベンゾトリアゾール系化合物の金属遮蔽効果を検討が進められた結果、特許文献7に開示した無電解金めっき液の液組成を見出すことができた。この自己触媒型の無電解金めっき液は、シアン化合物を含まず、中性で比較的中低温で使用でき、さらには銅イオン混入時の問題点についても改善され、数十日の長期間使用することも可能となった。
【0008】
【特許文献1】
特開昭57−169077号公報
【特許文献2】
特開昭62−86171号公報
【特許文献3】
特開平1−191782号公報
【特許文献4】
特開平3−104877号公報
【特許文献5】
特開平3−215677号公報
【特許文献6】
特開平4−314871号公報
【特許文献7】
特開平6−306623号公報
【0009】
【発明が解決しようとする課題】
特許文献7に開示された無電解金めっき液は、十分に量産使用できるが、実際に連続でプリント配線板に金めっき処理をすると、めっき槽の槽壁にも金が析出してしまうという問題があり、定期的なめっき液の槽空替えや槽に析出した金の剥離作業等を必要としていた。
【0010】
上記を鑑みて、本発明は、シアン化合物を含まず、pHが7前後の中性であり、液温が50〜80℃の中低温であっても十分な金析出速度が得られ、金めっき皮膜外観が良好であり、且つ、液安定性が特に優れた無電解金めっき液、および該無電解金めっき液を用いた無電解金めっき方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは種々検討を重ねた結果、金塩、錯化剤、還元剤、pH緩衝剤、フェニル系化合物、ベンゾトリアゾール系化合物およびメルカプタン系化合物を含み、メルカプタン系化合物の含有量が1〜50ppmの範囲である無電解金めっき液、およびこれを用いた無電解金めっき方法により、上記目的が達成可能であることを見出し、本発明を完成させた。
【0012】
以下、本発明を実施の形態により詳細に説明する。
【0013】
【発明の実施の形態】
本発明の無電解金めっき液は、必須成分として、金塩、錯化剤、還元剤、pH緩衝剤、フェニル系化合物、ベンゾトリアゾール系化合物およびメルカプタン系化合物を含む。
【0014】
本発明の無電解金めっき液の金塩としては、従来公知の金塩でよく、特に限定されないが、好ましくは塩化金酸塩、亜硫酸金塩、またはチオ硫酸金塩を使用する。これらの金塩は1種のみ用いてもよく、2種以上を組み合わせて用いてもよい。また、金塩の含有量は、金として1〜10g/Lの範囲であることが好ましく、2〜4g/Lの範囲であることがより好ましい。金の含有量が1g/L未満であると、金の析出反応が低下し、10g/Lを超えると、めっき液の安定性が低下すると共に、めっき液の持ち出しにより金消費量が多くなるため好ましくない。
【0015】
本発明の無電解めっき液の錯化剤としては、特に限定されないが、好ましくはチオ硫酸塩および亜硫酸塩を使用する。錯化剤を含有させることにより、金イオン(Au)が安定的に錯体化されて、金イオンの不均化反応(3Au⇒Au3++2Au)の発生を低下させ、めっき液が安定に保たれるという効果を奏する。錯化剤としてチオ硫酸塩および亜硫酸塩を用いた場合、その含有量は、合計で20〜100g/Lの範囲であることが好ましい。該錯化剤の含有量が20g/L未満である場合、金錯化力が低下し、安定性が低下する傾向があり、100g/Lを超えると、めっき液の安定性は向上するが、液中に再結晶が発生し、経済的に負担となる。
【0016】
本発明の無電解金めっき液の還元剤としては、めっき液に一般的に使用される還元剤でよく、特に限定されないが、好ましくは尿素系化合物を使用する。尿素系化合物としては、例えば、チオ尿素、メチルチオ尿素、ジメチルチオ尿素等が挙げられる。還元剤の含有量は、0.5〜3g/Lの範囲であることが好ましい。還元剤の含有量が0.5g/L未満である場合、金析出速度が著しく遅く、3g/Lを超えると、めっき液が不安定性になり、短い時間で液が分解する。
【0017】
本発明の無電解金めっき液のpH緩衝剤としては、特に限定されないが、好ましくはホウ酸塩を使用する。pH緩衝剤を含有させることにより、めっき液のpHを一定に保つことができ、また、析出速度を所望の値に調整することができる。pH緩衝剤の含有量は、10〜100g/Lの範囲であることが好ましい。pH緩衝剤の含有量が10g/L未満であると、pHの緩衝効果がなく、めっき液の状態が変化する場合があり、100g/Lを超えると、めっき液中で再結晶化が進行する傾向がある。
【0018】
本発明の無電解金めっき液においては、還元促進剤としてフェニル系化合物を使用する。還元促進剤は、還元剤との相互作用により、金析出速度を速くしたり、金に対する還元効率をあげる効果がある。フェニル系化合物としては、特に限定されないが、好ましくはヒドロキノン、メチルヒドロキノン、カテコール、ピロガロール、o−アミノフェノール、p−アミノフェノール、o−フェニレンジアミン、p−フェニレンジアミンからなる群から選択される1種又は2種以上を用いる。また、フェニル系化合物の含有量は、0.5〜5g/Lの範囲であることが好ましい。フェニル系化合物の含有量が0.5g/L未満であると、実用的な金析出速度を得ることが困難となる傾向があり、5g/Lを超えると、めっき液の安定性が低下する傾向がある。
【0019】
本発明の無電解金めっき液には、金属イオン隠蔽剤としてベンゾトリアゾール系化合物を使用する。めっき処理中、無電解金めっき液にめっき装置の錆や金属破片混入した場合や、銅、ニッケルなど下地金属がめっき液中に溶出した場合でも、めっき液の異常反応を抑制することが可能となる。ベンゾトリアゾール系化合物としては、特に限定されないが、好ましくは1,2,3−ベンゾトリアゾール、または5−メチル−1H−ベンゾトリアゾールを用いる。また、ベンゾトリアゾール系化合物の含有量は、0.5〜10g/Lの範囲であることが好ましく、コスト及び効果の観点から2〜5g/Lの範囲であることがより好ましい。ベンゾトリアゾール系化合物の含有量が0.5g/L未満であると、不純物金属の隠蔽効果が少なく、充分な液安定性を確保できない傾向がある。一方、10g/Lを超えると、めっき液中で再結晶化が生じる場合がある。
【0020】
本発明の無電解金めっき液には、液安定剤としてメルカプタン系化合物を使用する。メルカプタン系化合物の無電解金めっき液中での作用については不明であるが、金めっき処理時、めっき槽壁への金析出を抑制する効果がある。メルカプタン系化合物としては、特に限定されないが、好ましくは、1,1−ジメチルチタンチオール、1−メチル−オクタンチオール、ドデカンチオール、1,2−エタンジチオール、チオフェノール、o−チオクレゾール、p−チオクレゾール、o−ジメルカプトベンゼン、m−ジメルカプトベンゼン、p−ジメルカプトベンゼン、チオグリコール、チオジグリコール、チオグリコール酸、ジチオグリコール酸、チオリンゴ酸、メルカプトプロピオン酸、2−メルカプトベンゾオキサゾール、2−メルカプト−1−メチルイミダゾール、2−メルカプト−5−メチルベンゾイミダゾール、3−メルカプト−1,2−テトラゾールからなる群から選択される1種又は2種以上を用いる。また、メルカプタン系化合物の含有量は1〜50ppmの範囲とするが、1〜30ppmの範囲であることが好ましく、1〜10ppmの範囲であることがより好ましい。メルカプタン系化合物の含有量が1ppm未満では、めっき液の安定性向上に効果が少なく、濃度管理も困難になる。また、50ppmを超えると金析出速度が低下したり、めっき付き回り不良を生じたりして、金めっき皮膜外観が悪化する傾向がある。
【0021】
本発明の無電解金めっき液のpHとしては、5〜10の範囲であることが好ましく、還元剤の析出効率や金析出速度を向上させる観点から7〜8の範囲であることがより好ましい。めっき液のpHが5未満であると、錯化剤が亜硫酸塩やチオ硫酸塩である場合、これらが分解し、毒性の亜硫酸ガスが発生する恐れがある。pHが10を超える場合、めっき液の安定性が低下する傾向がある。
【0022】
次に、本発明の無電解金めっき方法について説明する。
【0023】
本発明の無電解金めっき方法は、上述した本発明の無電解金めっき液中に被めっき体を浸漬して、被めっき体表面に金皮膜を形成させることを特徴としている。
【0024】
無電解金めっき皮膜の形成は、めっき液の液温が50〜80℃の範囲で行うことが好ましく、60〜70℃の範囲で行うことがより好ましい。液温が50℃未満である場合は、金析出速度が低いため効率が悪く、80℃を超えると液安定性が低下する傾向がある。
【0025】
以下、本発明の好適な実施例について更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0026】
【実施例】
(被めっき材サンプルの作成)
被めっき材となる5cm×5cm×0.3mmの圧延銅板の表面の錆や有機物等を、酸性脱脂であるCLC−5000(日立化成工業(株)製、商品名)を用いて50℃、4分間処理することで除去し、湯洗(50℃、純水)を1分間実施して余分な界面活性剤を除去し、水洗処理を1分間行った後、過硫酸アンモニウム溶液(120g/L)に室温で2分間浸漬して表面の形状を均一化するソフトエッチング処理を実施し、水洗処理を1分間行った。さらに、硫酸(10%)に室温で1分間浸漬して表面の酸化膜の除去を行い、水洗処理を1分間行った後、置換パラジウム触媒液であるSA−100(日立化成工業(株)製、商品名)に室温で5分間浸漬し、水洗処理を1分間行うことで、被めっき材の表面処理を行った。次に、表面処理された被めっき材を無電解Ni−Pめっき液であるNIPS−100(日立化成工業(株)製、製品名)に85℃で、25分間浸漬して、その表面にニッケル−リンの合金めっき皮膜を5μm程度形成し、水洗処理を1分間行った後、置換金めっき液であるHGS−500(日立化成工業(株)製、製品名)に85℃で10分間浸漬して、0.05〜0.1μm程度の膜厚の金めっき膜を形成させて水洗処理を1分間行い、被めっき材サンプルとした。
【0027】
(無電解金めっき液安定性の評価方法)
無電解金めっき液安定性評価方法には、PP(ポリプロピレン製)樹脂製の1Lビーカーをめっき槽として使用した。また、槽内に付着している不純物を除去するために、実験前に槽内を王水(1:3=硝酸:塩酸、50%に純水で希釈)で6時間以上、常温で洗浄した後、水洗、純水洗を順次、充分行い、80℃で乾燥して実験に使用した。
【0028】
無電解金めっき液安定性は、次の3条件に分類して評価した。
【0029】
(1)上記めっき槽を使用し、各条件の無電解金めっき液を85℃の高温に加温して1時間放置した後、めっき槽壁への金析出面積の割合(槽内異常析出発生面積(%))を目視で観察し、液安定性を評価した。
【0030】
(2)各条件の無電解金めっき液が入ったそれぞれの上記めっき槽に上記で作成した被めっき材サンプルを浸漬させ、65℃、1時間、0.5dm/Lのめっき負荷条件でめっき処理し、その後、各条件のめっき液を85℃の高温に加温して1時間放置した後、めっき槽壁への金析出面積の割合(槽内異常析出発生面積(%))を目視で観察し、液安定性を評価した。
【0031】
(3)(2)で使用しためっき液を自然冷却し、室温で1日放置した後、めっき槽壁への金析出面積の割合(槽内異常析出発生面積(%))を目視で観察し、液安定性を評価した。
【0032】
なお、液安定性の評価基準は表1に示す通りである。
【0033】
【表1】

Figure 2004169058
【0034】
(皮膜外観、及びめっき付き回り不良評価方法)
上記(2)で無電解金めっきを施した被めっき材サンプルの無電解金めっき皮膜外観およびめっき付き回り不良を電解金めっき皮膜(0.5μm相当)に近い外観を標準として評価した。また、めっき付き回り性については、めっき端部を顕微鏡(20〜50倍相当)で目視観察して、変色、めっきむらの発生の有無を評価した。
【0035】
(無電解金めっき液の評価)
(実施例1〜4)
表2に示す組成になるように実施例1〜4の無電解金めっき液を作製し、上述した評価方法に基づいてその評価を行った。なお、実施例1〜4は、主成分濃度を一定にし、メルカプタン系化合物の種類を換えて評価した。メルカプタン系化合物としては、2−メルカプトベンゾオキサゾール、メルカプトプロピオン酸、2−メルカプト−1−メチルイミダゾール、3−メルカプト−1,2−テトラゾールをそれぞれ1ppm用いた。
【0036】
金析出速度、金めっき皮膜外観、めっき付き回り不良及び金めっき液の安定性について表2にまとめて示す。実施例1〜4とも約0.8μm/hrの実用的な金析出速度を示した。また、金めっき皮膜外観は、均一なレモンイエローで、めっき付き回り不良の発生もなく良好であった。更に、液安定性は、上記評価方法の(1)、(2)および(3)のいずれの場合においても槽内に異常析出の発生はなく良好であった。
【0037】
【表2】
Figure 2004169058
【0038】
(実施例5〜8)
表3に示す組成になるように実施例5〜8の無電解金めっき液を作製し、上述した評価方法に基づいて評価を行った。なお、実施例5〜8は、メルカプタン系化合物として2−メルカプトベンゾオキサゾールを用い、その濃度を、2、3、5、10ppmとなるようにし、メルカプタン系化合物以外の主成分濃度は一定とした。
【0039】
金析出速度、金めっき皮膜外観、めっき付き回り不良及び金めっき液安定性について表3にまとめて示す。2−メルカプトベンゾオキサゾールの濃度を実施例1の2〜10倍に増やしたことで、金析出速度が若干低下したが、金めっき皮膜外観は均一なレモンイエローで、めっき付き回り不良の発生もなく良好であった。更に、液安定性は、上記評価方法の(1)、(2)および(3)のいずれの場合においても槽内に異常析出の発生はなく良好であった。
【0040】
【表3】
Figure 2004169058
【0041】
(実施例9〜12)
表4に示す組成になるように実施例9〜12の無電解金めっき液を作製し、上述した評価方法に基づいて評価を行った。なお、実施例9〜12は、メルカプタン系化合物として2−メルカプト−1−メチルイミダゾールを用い、その濃度を、2、3、5、10ppmとなるようにし、メルカプタン系化合物以外の主成分濃度は一定とした。
【0042】
金析出速度、金めっき皮膜外観、めっき付き回り不良及び金めっき液安定性について表3にまとめて示す。2−メルカプト−1−メチルイミダゾールの濃度を実施例1の2〜10倍に増やしたことで、金析出速度が若干低下したが、金めっき皮膜外観は均一なレモンイエローで、めっき付き回り不良の発生もなく良好であった。更に、液安定性は、上記評価方法の(1)、(2)および(3)のいずれの場合においても槽内に異常析出の発生はなく良好であった。
【0043】
【表4】
Figure 2004169058
【0044】
(実施例13〜16)
表5に示す組成になるように実施例13〜16の無電解金めっき液を作製し、上述した評価方法に基づいて評価を行った。なお実施例13〜16は、メルカプタン系化合物として3−メルカプト−1,2−テトラゾールを用い、その濃度を、2、3、5、10ppmとなるようにし、メルカプタン系化合物以外の主成分濃度は一定とした。
【0045】
金析出速度、金めっき皮膜外観、めっき付き回り不良及び金めっき液安定性について表3にまとめて示す。3−メルカプト−1,2−テトラゾールの濃度を実施例1の2〜10倍に増やしたことで、金析出速度が若干低下したが、金めっき皮膜外観は均一なレモンイエローで、めっき付き回り不良の発生もなく良好であった。更に、液安定性は、上記評価方法の(1)、(2)および(3)のいずれの場合においても槽内に異常析出の発生はなく良好であった。
【0046】
【表5】
Figure 2004169058
【0047】
(比較例1および2)
表6に示す組成になるように比較例1および2の無電解金めっき液を作製し、上述した評価方法に基づいて評価を行った。比較例1および2では、メルカプタン系化合物として、2−メルカプトベンゾオキサゾールを用い、その含有量をそれぞれ0.1および100ppmとなるようにし、メルカプタン系化合物以外の主成分濃度は一定とした。
【0048】
金析出速度、金めっき皮膜外観、めっき付き回り不良及び金めっき液の安定性について表6にまとめて示す。比較例1では、液安定性向上の効果が無く、上記評価方法の(3)において、めっき槽壁の約50%に金が析出した。また、比較例2では、金めっき液の安定性は良好であったが、2−メルカプトベンゾオキサゾールの含有量が大きすぎたため、金析出速度が初期の50%以下に低下し、めっき皮膜外観も茶褐色に変色して、めっきムラも発生した。
【0049】
【表6】
Figure 2004169058
【0050】
(比較例3〜6)
表7に示す組成になるように比較例3〜6の無電解金めっき液を作製し、上述した評価方法に基づいて評価を行った。比較例3〜6では安定剤であるメルカプタン系化合物を添加せず、無電解金めっきを行った。
【0051】
金析出速度、金めっき皮膜外観、めっき付き回り不良及び金めっき液の安定性について表7にまとめて示す。比較例3では、金析出速度、金めっき皮膜外観、めっき付き回り不良に関しては良好な結果であったが、金めっき液の液安定性は悪く、上記評価方法の(3)において、めっき槽壁の約50%に金が析出した。
また、比較例4では、比較例3の金めっき液のpHを7.4から6.5に変更することにより金めっき液の液安定性が改善したものの、金析出速度が0.2μm/hrと著しく低下してしまった。さらに、比較例5および6では、還元剤のチオ尿素濃度と還元促進効果のあるフェニル系化合物のヒドロキノン濃度を下げてみたが、金析出速度の低下または金めっき液の液安定性低下のどちらかが起こり、管理できる範囲が見出せなかった。
【0052】
【表7】
Figure 2004169058
【0053】
以上の結果から、本発明の無電解金めっき液は、メルカプタン系化合物を1〜50ppm添加することによって、添加しない場合に比べて金めっき液の安定性を大幅に向上させることが可能であることがわかった。また、本発明の無電解金めっき液は、中低温(60〜70℃)においても実用的な金析出速度(約0.8μm/hr)でめっきを行うことが可能であった。更に、金めっき後の皮膜外観も均一なレモンイエローで、めっき付き回り不良も発生しなかった。このことから、本発明の無電解金めっき用めっき液は、良好な無電解金めっきを行うことが可能であり、適用できる材料や電子部品等の範囲を大幅に拡大することが可能になる。
【0054】
【発明の効果】
以上説明したように、本発明によれば、シアン化合物を含まず、pHが7前後の中性であり、液温が50〜80℃の中低温であっても十分な金析出速度が得られ、金めっき皮膜外観が良好であり、且つ、液安定性が特に優れた無電解金めっき液、および該無電解金めっき液を用いた無電解金めっき方法を提供することが可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electroless gold plating solution and an electroless gold plating method.
[0002]
[Prior art]
Gold plating of a printed wiring board is performed in two ways, namely, an electrolytic gold plating method and an electroless gold plating method. The electrolytic plating method is mainly used in view of cost and solution stability. However, the electroplating method has problems such as restrictions on the design of the power supply lead and plating treatment on an isolated pattern in the recent demand for high-density mounting, and therefore, the electroless gold plating method has been reviewed. ing.
[0003]
There are two types of electroless gold plating methods: displacement gold plating and autocatalytic electroless gold plating. In the displacement gold plating method, gold in the plating solution is substituted and deposited on the base metal conductor by immersing the base metal conductor in the substituted gold plating solution, but gold is deposited on the entire surface of the base metal conductor because of the substitution reaction. By the way, the reaction stops and thick gold plating is impossible. On the other hand, in the self-catalytic electroless gold plating method, gold is precipitated by a reduction reaction, and thus, by analyzing and supplementing each component of the electroless gold plating solution, gold plating can be performed to an arbitrary thickness of several μm. Can be applied.
[0004]
As for the autocatalytic electroless gold plating solution, many solution compositions have been reported so far. However, since most of them contain cyanide compounds, they are highly toxic, and most of them are highly alkaline liquids having a pH of 11 or more as described in (1). In addition, there is a problem that the plating resist is dissolved and the pattern plating property is deteriorated.
[0005]
Solving this problem, that is, as an electroless gold plating solution containing no cyanide and usable at a relatively neutral and relatively low temperature, for example, a plating solution mainly containing sodium gold thiosulfate and thiourea (See Patent Document 2), a plating solution containing chloroaurate and ascorbic acid as main components (see Patent Document 3), a plating solution containing chloroaurate, thiourea and phenyl compounds as main components (see Patent Document 4). ), A plating solution containing a gold sulfite compound, an amine and a hydrazine compound as main components (see Patent Document 5). However, these plating solutions have another problem that when copper ions are mixed into the plating solution, the solution is decomposed within a few days. It was difficult to use.
[0006]
This electroless gold plating solution that enables long-term continuous use, i.e., improved life of the plating solution due to copper ions, includes, for example, a gold sulfite compound, an amine and a hydrazine compound as main components, and a benzotriazole-based compound. Contained plating solution (see Patent Document 6). According to this plating solution, the metal concealing effect of the benzotriazole-based compound enabled suppression of mixing of copper ions and improvement of the solution stability, but the stability of the hydrazine compound itself as a reducing agent is low, It was insufficient for continuous use over a longer period of several tens of days.
[0007]
The present inventors have also studied the metal shielding effect of a benzotriazole-based compound in a system containing a gold salt, thiourea, and a phenyl compound as main components. As a result, the electroless gold disclosed in Patent Document 7 was disclosed. The composition of the plating solution could be found. This self-catalytic electroless gold plating solution contains no cyanide, is neutral, can be used at relatively medium and low temperatures, and has improved problems when copper ions are mixed. It became possible to do it.
[0008]
[Patent Document 1]
JP-A-57-169077 [Patent Document 2]
JP-A-62-86171 [Patent Document 3]
Japanese Patent Application Laid-Open No. 1-191982 [Patent Document 4]
JP-A-3-104877 [Patent Document 5]
JP-A-3-215677 [Patent Document 6]
Japanese Patent Application Laid-Open No. 4-314871 [Patent Document 7]
JP-A-6-306623
[Problems to be solved by the invention]
The electroless gold plating solution disclosed in Patent Literature 7 can be used in sufficient mass production. However, when gold plating is actually performed on a printed wiring board continuously, gold deposits on the tank wall of the plating tank. Therefore, periodic replacement of the plating solution tank, removal of gold deposited on the tank, and the like were required.
[0010]
In view of the above, the present invention does not include a cyanide, has a pH of about 7 and is neutral, and has a sufficient gold deposition rate even at a liquid temperature of 50 to 80 ° C. and a gold plating rate. An object of the present invention is to provide an electroless gold plating solution having a good film appearance and particularly excellent solution stability, and an electroless gold plating method using the electroless gold plating solution.
[0011]
[Means for Solving the Problems]
The present inventors have conducted various studies, and found that the content of the mercaptan-based compound is from 1 to including gold salt, complexing agent, reducing agent, pH buffer, phenyl-based compound, benzotriazole-based compound and mercaptan-based compound. The inventors have found that the above object can be achieved by an electroless gold plating solution having a concentration of 50 ppm and an electroless gold plating method using the same, and have completed the present invention.
[0012]
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The electroless gold plating solution of the present invention contains a gold salt, a complexing agent, a reducing agent, a pH buffer, a phenyl compound, a benzotriazole compound and a mercaptan compound as essential components.
[0014]
The gold salt of the electroless gold plating solution of the present invention may be a conventionally known gold salt, and is not particularly limited. Preferably, chloroaurate, gold sulfite, or gold thiosulfate is used. These gold salts may be used alone or in combination of two or more. Further, the content of the gold salt is preferably in the range of 1 to 10 g / L as gold, and more preferably in the range of 2 to 4 g / L. When the content of gold is less than 1 g / L, the precipitation reaction of gold decreases, and when it exceeds 10 g / L, the stability of the plating solution decreases, and the gold consumption increases due to the removal of the plating solution. Not preferred.
[0015]
The complexing agent for the electroless plating solution of the present invention is not particularly limited, but thiosulfates and sulfites are preferably used. By containing a complexing agent, gold ions (Au + ) are stably complexed, and the occurrence of the disproportionation reaction of gold ions (3Au + ⇒Au 3+ + 2Au + ) is reduced, and the plating solution is stabilized. This has the effect of being kept at When thiosulfate and sulfite are used as the complexing agent, the content thereof is preferably in the range of 20 to 100 g / L in total. When the content of the complexing agent is less than 20 g / L, the gold complexing power tends to decrease, and the stability tends to decrease. When the content exceeds 100 g / L, the stability of the plating solution improves. Recrystallization occurs in the liquid, which is economically burdensome.
[0016]
The reducing agent for the electroless gold plating solution of the present invention may be a reducing agent generally used in a plating solution, and is not particularly limited. Preferably, a urea-based compound is used. Examples of the urea-based compound include thiourea, methylthiourea, and dimethylthiourea. The content of the reducing agent is preferably in the range of 0.5 to 3 g / L. When the content of the reducing agent is less than 0.5 g / L, the gold deposition rate is extremely slow, and when it exceeds 3 g / L, the plating solution becomes unstable, and the solution is decomposed in a short time.
[0017]
The pH buffer of the electroless gold plating solution of the present invention is not particularly limited, but borate is preferably used. By including a pH buffer, the pH of the plating solution can be kept constant, and the deposition rate can be adjusted to a desired value. The content of the pH buffer is preferably in the range of 10 to 100 g / L. If the content of the pH buffer is less than 10 g / L, there is no pH buffering effect and the state of the plating solution may change. If the content exceeds 100 g / L, recrystallization proceeds in the plating solution. Tend.
[0018]
In the electroless gold plating solution of the present invention, a phenyl compound is used as a reduction accelerator. The reduction accelerator has the effect of increasing the gold deposition rate and increasing the reduction efficiency for gold by interaction with the reducing agent. The phenyl compound is not particularly limited, but is preferably one selected from the group consisting of hydroquinone, methylhydroquinone, catechol, pyrogallol, o-aminophenol, p-aminophenol, o-phenylenediamine, and p-phenylenediamine. Alternatively, two or more kinds are used. Further, the content of the phenyl compound is preferably in the range of 0.5 to 5 g / L. When the content of the phenyl compound is less than 0.5 g / L, it tends to be difficult to obtain a practical gold deposition rate, and when it exceeds 5 g / L, the stability of the plating solution tends to decrease. There is.
[0019]
In the electroless gold plating solution of the present invention, a benzotriazole-based compound is used as a metal ion concealing agent. During plating, it is possible to suppress abnormal reactions of the plating solution even when the rust of the plating equipment or metal fragments are mixed in the electroless gold plating solution or when the underlying metal such as copper or nickel is eluted in the plating solution. Become. The benzotriazole-based compound is not particularly limited, but preferably uses 1,2,3-benzotriazole or 5-methyl-1H-benzotriazole. Further, the content of the benzotriazole-based compound is preferably in the range of 0.5 to 10 g / L, and more preferably in the range of 2 to 5 g / L from the viewpoint of cost and effect. When the content of the benzotriazole-based compound is less than 0.5 g / L, the effect of hiding the impurity metal is small, and there is a tendency that sufficient liquid stability cannot be secured. On the other hand, if it exceeds 10 g / L, recrystallization may occur in the plating solution.
[0020]
In the electroless gold plating solution of the present invention, a mercaptan-based compound is used as a solution stabilizer. Although the action of the mercaptan-based compound in the electroless gold plating solution is unknown, it has an effect of suppressing gold deposition on the plating tank wall during gold plating. The mercaptan compound is not particularly limited, but is preferably 1,1-dimethyltitanium thiol, 1-methyl-octanethiol, dodecanethiol, 1,2-ethanedithiol, thiophenol, o-thiocresol, p-thiol. Cresol, o-dimercaptobenzene, m-dimercaptobenzene, p-dimercaptobenzene, thioglycol, thiodiglycol, thioglycolic acid, dithioglycolic acid, thiomalic acid, mercaptopropionic acid, 2-mercaptobenzoxazole, 2- One or more selected from the group consisting of mercapto-1-methylimidazole, 2-mercapto-5-methylbenzimidazole, and 3-mercapto-1,2-tetrazole are used. The content of the mercaptan-based compound is in the range of 1 to 50 ppm, preferably in the range of 1 to 30 ppm, and more preferably in the range of 1 to 10 ppm. When the content of the mercaptan compound is less than 1 ppm, the effect of improving the stability of the plating solution is small, and the concentration control becomes difficult. On the other hand, if it exceeds 50 ppm, the gold deposition rate tends to be low, and poor rotation with plating tends to occur, and the appearance of the gold plating film tends to deteriorate.
[0021]
The pH of the electroless gold plating solution of the present invention is preferably in the range of 5 to 10, and more preferably in the range of 7 to 8 from the viewpoint of improving the deposition efficiency of the reducing agent and the gold deposition rate. If the pH of the plating solution is less than 5, when the complexing agent is a sulfite or a thiosulfate, these may be decomposed and toxic sulfur dioxide gas may be generated. When the pH exceeds 10, the stability of the plating solution tends to decrease.
[0022]
Next, the electroless gold plating method of the present invention will be described.
[0023]
The electroless gold plating method of the present invention is characterized in that a body to be plated is immersed in the above-described electroless gold plating solution of the present invention to form a gold film on the surface of the body to be plated.
[0024]
The formation of the electroless gold plating film is preferably performed at a plating solution temperature of 50 to 80 ° C, more preferably at 60 to 70 ° C. When the liquid temperature is lower than 50 ° C., the efficiency of the gold deposition is low because the deposition rate is low.
[0025]
Hereinafter, preferred embodiments of the present invention will be described in more detail, but the present invention is not limited to these embodiments.
[0026]
【Example】
(Preparation of material sample to be plated)
Rust and organic substances on the surface of a 5 cm × 5 cm × 0.3 mm rolled copper plate as a material to be plated are removed at 50 ° C. using an acidic degreasing CLC-5000 (trade name, manufactured by Hitachi Chemical Co., Ltd.) at 4 ° C. For 1 minute, and then washed with hot water (50 ° C., pure water) for 1 minute to remove excess surfactant. After a water washing treatment for 1 minute, the solution was added to an ammonium persulfate solution (120 g / L). A soft etching treatment was carried out to make the surface shape uniform by immersion at room temperature for 2 minutes, and a water washing treatment was carried out for 1 minute. Furthermore, after immersing in sulfuric acid (10%) at room temperature for 1 minute to remove the oxide film on the surface and performing a water-washing treatment for 1 minute, SA-100, a substituted palladium catalyst solution (manufactured by Hitachi Chemical Co., Ltd.) (Trade name) at room temperature for 5 minutes, and a water washing treatment was performed for 1 minute to perform a surface treatment on the material to be plated. Next, the surface-treated material to be plated is immersed in NIPS-100 (product name, manufactured by Hitachi Chemical Co., Ltd.), which is an electroless Ni-P plating solution, at 85 ° C. for 25 minutes, and nickel is applied to the surface. After forming a phosphorous alloy plating film of about 5 μm and performing a water washing treatment for 1 minute, it is immersed in a replacement gold plating solution HGS-500 (product name, manufactured by Hitachi Chemical Co., Ltd.) at 85 ° C. for 10 minutes. Then, a gold plating film having a thickness of about 0.05 to 0.1 μm was formed, and a water washing treatment was performed for 1 minute to obtain a sample to be plated.
[0027]
(Evaluation method for stability of electroless gold plating solution)
In the method of evaluating the stability of the electroless gold plating solution, a 1 L beaker made of PP (made of polypropylene) resin was used as a plating tank. Before the experiment, the inside of the tank was washed with aqua regia (1: 3 = nitric acid: hydrochloric acid, diluted to 50% with pure water) for 6 hours or more at room temperature before the experiment to remove impurities adhering to the inside of the tank. Thereafter, washing with water and washing with pure water were sequentially and sufficiently performed, dried at 80 ° C., and used for the experiment.
[0028]
The stability of the electroless gold plating solution was evaluated under the following three conditions.
[0029]
(1) After using the above plating tank and heating the electroless gold plating solution under each condition to a high temperature of 85 ° C. and leaving it to stand for 1 hour, the ratio of the gold deposition area on the plating tank wall (abnormal deposition in the tank) Area (%)) was visually observed to evaluate the liquid stability.
[0030]
(2) The sample to be plated was immersed in each of the plating baths containing the electroless gold plating solution under each condition, and plated at 65 ° C. for 1 hour under a plating load condition of 0.5 dm 2 / L. After the treatment, the plating solution under each condition was heated to a high temperature of 85 ° C. and allowed to stand for 1 hour. Then, the ratio of the area of gold deposition on the plating tank wall (area where abnormal deposition occurred in the tank (%)) was visually observed. Observation was made to evaluate the liquid stability.
[0031]
(3) The plating solution used in (2) was naturally cooled, and allowed to stand at room temperature for one day. Then, the ratio of the gold deposition area on the plating tank wall (abnormal precipitation occurrence area (%) in the tank) was visually observed. And the liquid stability was evaluated.
[0032]
The evaluation criteria for liquid stability are as shown in Table 1.
[0033]
[Table 1]
Figure 2004169058
[0034]
(Evaluation method for film appearance and plating failure)
The appearance of the electroless gold plating film and the poor rotation with plating of the sample to be plated subjected to the electroless gold plating in the above (2) were evaluated with the appearance close to the electrolytic gold plating film (equivalent to 0.5 μm) as a standard. In addition, the plating edge was visually observed with a microscope (corresponding to a magnification of 20 to 50 times) to evaluate the occurrence of discoloration and uneven plating.
[0035]
(Evaluation of electroless gold plating solution)
(Examples 1 to 4)
The electroless gold plating solutions of Examples 1 to 4 were prepared to have the compositions shown in Table 2, and the evaluation was performed based on the above-described evaluation method. In addition, in Examples 1-4, the main component concentration was made constant and the type of the mercaptan-based compound was changed to evaluate. As mercaptan compounds, 1 ppm of 2-mercaptobenzoxazole, mercaptopropionic acid, 2-mercapto-1-methylimidazole, and 3-mercapto-1,2-tetrazole were used.
[0036]
Table 2 summarizes the gold deposition rate, gold plating film appearance, poor plating coverage, and stability of the gold plating solution. Examples 1 to 4 all showed a practical gold deposition rate of about 0.8 μm / hr. The appearance of the gold plating film was uniform lemon yellow, which was favorable without occurrence of plating failure. Furthermore, the liquid stability was good without any abnormal precipitation in the tank in any of the evaluation methods (1), (2) and (3).
[0037]
[Table 2]
Figure 2004169058
[0038]
(Examples 5 to 8)
The electroless gold plating solutions of Examples 5 to 8 were prepared so as to have the compositions shown in Table 3, and were evaluated based on the evaluation method described above. In Examples 5 to 8, 2-mercaptobenzoxazole was used as the mercaptan-based compound, the concentration was adjusted to 2, 3, 5, 10 ppm, and the concentration of the main components other than the mercaptan-based compound was kept constant.
[0039]
Table 3 summarizes the gold deposition rate, gold plating film appearance, poor plating adhesion, and gold plating solution stability. By increasing the concentration of 2-mercaptobenzoxazole to 2 to 10 times that of Example 1, the gold deposition rate was slightly reduced, but the appearance of the gold plating film was uniform lemon yellow, and there was no occurrence of poor rotation with plating. It was good. Furthermore, the liquid stability was good without any abnormal precipitation in the tank in any of the evaluation methods (1), (2) and (3).
[0040]
[Table 3]
Figure 2004169058
[0041]
(Examples 9 to 12)
The electroless gold plating solutions of Examples 9 to 12 were prepared so as to have the compositions shown in Table 4, and were evaluated based on the above-described evaluation methods. In Examples 9 to 12, 2-mercapto-1-methylimidazole was used as the mercaptan-based compound, and its concentration was adjusted to 2, 3, 5, 10 ppm, and the concentration of the main components other than the mercaptan-based compound was constant. And
[0042]
Table 3 summarizes the gold deposition rate, gold plating film appearance, poor plating adhesion, and gold plating solution stability. By increasing the concentration of 2-mercapto-1-methylimidazole to 2 to 10 times that of Example 1, the gold deposition rate was slightly reduced, but the appearance of the gold plating film was a uniform lemon yellow, and the rotation with plating was poor. It was good without occurrence. Furthermore, the liquid stability was good without any abnormal precipitation in the tank in any of the evaluation methods (1), (2) and (3).
[0043]
[Table 4]
Figure 2004169058
[0044]
(Examples 13 to 16)
The electroless gold plating solutions of Examples 13 to 16 were prepared so as to have the compositions shown in Table 5, and were evaluated based on the above-described evaluation methods. In Examples 13 to 16, 3-mercapto-1,2-tetrazole was used as the mercaptan-based compound, and the concentration was adjusted to 2, 3, 5, 10 ppm, and the concentration of the main components other than the mercaptan-based compound was constant. And
[0045]
Table 3 summarizes the gold deposition rate, gold plating film appearance, poor plating adhesion, and gold plating solution stability. The gold deposition rate was slightly reduced by increasing the concentration of 3-mercapto-1,2-tetrazole to 2 to 10 times that of Example 1, but the gold plating film appearance was uniform lemon yellow, and poor plating rotation. It was good without any occurrence of. Furthermore, the liquid stability was good without any abnormal precipitation in the tank in any of the evaluation methods (1), (2) and (3).
[0046]
[Table 5]
Figure 2004169058
[0047]
(Comparative Examples 1 and 2)
The electroless gold plating solutions of Comparative Examples 1 and 2 were prepared so as to have the compositions shown in Table 6, and were evaluated based on the above-described evaluation methods. In Comparative Examples 1 and 2, 2-mercaptobenzoxazole was used as the mercaptan-based compound, the content was set to 0.1 and 100 ppm, respectively, and the concentration of the main components other than the mercaptan-based compound was kept constant.
[0048]
Table 6 summarizes the gold deposition rate, the appearance of the gold plating film, poor rotation with plating, and the stability of the gold plating solution. In Comparative Example 1, there was no effect of improving the solution stability, and in (3) of the above evaluation method, gold was deposited on about 50% of the plating tank wall. In Comparative Example 2, the stability of the gold plating solution was good, but the content of 2-mercaptobenzoxazole was too large, so that the gold deposition rate was reduced to 50% or less of the initial value, and the plating film appearance was also reduced. The color changed to brown and uneven plating occurred.
[0049]
[Table 6]
Figure 2004169058
[0050]
(Comparative Examples 3 to 6)
The electroless gold plating solutions of Comparative Examples 3 to 6 were prepared so as to have the compositions shown in Table 7, and were evaluated based on the above-described evaluation methods. In Comparative Examples 3 to 6, electroless gold plating was performed without adding a mercaptan-based compound as a stabilizer.
[0051]
Table 7 summarizes the gold deposition rate, gold plating film appearance, plating failure, and stability of the gold plating solution. In Comparative Example 3, although the gold deposition rate, the appearance of the gold plating film, and the poor rotation with plating were good, the stability of the gold plating solution was poor, and the plating tank wall was evaluated in (3) of the above evaluation method. Gold was deposited on about 50% of the sample.
In Comparative Example 4, although the stability of the gold plating solution was improved by changing the pH of the gold plating solution of Comparative Example 3 from 7.4 to 6.5, the gold deposition rate was 0.2 μm / hr. It has dropped significantly. Furthermore, in Comparative Examples 5 and 6, the thiourea concentration of the reducing agent and the hydroquinone concentration of the phenyl compound having a reduction promoting effect were reduced. Occurred, and no controllable range was found.
[0052]
[Table 7]
Figure 2004169058
[0053]
From the above results, the electroless gold plating solution of the present invention can significantly improve the stability of the gold plating solution by adding a mercaptan-based compound in an amount of 1 to 50 ppm as compared with a case where no mercaptan compound is added. I understood. Further, the electroless gold plating solution of the present invention was able to perform plating at a practical gold deposition rate (about 0.8 μm / hr) even at a medium to low temperature (60 to 70 ° C.). Further, the appearance of the film after gold plating was uniform lemon yellow, and no poor rotation with plating occurred. From this, the plating solution for electroless gold plating of the present invention can perform good electroless gold plating, and can greatly expand the range of applicable materials and electronic components.
[0054]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a sufficient gold deposition rate even when the pH is around 7 and the solution temperature is 50 to 80 ° C. In addition, it is possible to provide an electroless gold plating solution having a good gold plating film appearance and particularly excellent solution stability, and an electroless gold plating method using the electroless gold plating solution.

Claims (10)

金塩、錯化剤、還元剤、pH緩衝剤、フェニル系化合物、ベンゾトリアゾール系化合物およびメルカプタン系化合物を含み、前記メルカプタン系化合物の含有量が1〜50ppmの範囲であることを特徴とする無電解金めっき液。A gold salt, a complexing agent, a reducing agent, a pH buffer, a phenyl compound, a benzotriazole compound, and a mercaptan compound, wherein the content of the mercaptan compound is in the range of 1 to 50 ppm. Electrolytic gold plating solution. 前記金塩が、亜硫酸金塩、塩化金酸塩、またはチオ硫酸金塩であることを特徴とする請求項1記載の無電解金めっき液。The electroless gold plating solution according to claim 1, wherein the gold salt is a gold sulfite, a chloroaurate, or a gold thiosulfate. 前記錯化剤が、チオ硫酸塩および亜硫酸塩であることを特徴とする請求項1または2記載の無電解金めっき液。The electroless gold plating solution according to claim 1 or 2, wherein the complexing agent is a thiosulfate and a sulfite. 前記還元剤が、尿素系化合物であることを特徴とする請求項1〜3のいずれか1項記載の無電解金めっき液。The electroless gold plating solution according to any one of claims 1 to 3, wherein the reducing agent is a urea-based compound. 前記pH緩衝剤が、ホウ酸塩であることを特徴とする請求項1〜4のいずれか1項記載の無電解金めっき液。The electroless gold plating solution according to any one of claims 1 to 4, wherein the pH buffer is a borate. 前記フェニル系化合物が、ヒドロキノン、メチルヒドロキノン、カテコール、ピロガロール、アミノフェノール、およびフェニレンジアミンからなる群から選択される1種又は2種以上であることを特徴とする請求項1〜5のいずれか1項記載の無電解金めっき液。6. The phenyl compound is one or more selected from the group consisting of hydroquinone, methylhydroquinone, catechol, pyrogallol, aminophenol, and phenylenediamine. Electroless gold plating solution according to the item. 前記ベンゾトリアゾール系化合物が、1,2,3−ベンゾトリアゾール、または5−メチル−1H−ベンゾトリアゾールであることを特徴とする請求項1〜6のいずれか1項記載の無電解金めっき液。The electroless gold plating solution according to any one of claims 1 to 6, wherein the benzotriazole-based compound is 1,2,3-benzotriazole or 5-methyl-1H-benzotriazole. 前記メルカプタン系化合物が、1,1−ジメチルチタンチオール、1−メチル−オクタンチオール、ドデカンチオール、1,2−エタンジチオール、チオフェノール、o−チオクレゾール、p−チオクレゾール、o−ジメルカプトベンゼン、m−ジメルカプトベンゼン、p−ジメルカプトベンゼン、チオグリコール、チオジグリコール、チオグリコール酸、ジチオグリコール酸、チオリンゴ酸、メルカプトプロピオン酸、2−メルカプトベンゾオキサゾール、2−メルカプト−1−メチルイミダゾール、2−メルカプト−5−メチルベンゾイミダゾール、3−メルカプト−1,2−テトラゾールからなる群から選択される1種又は2種以上であることを特徴とする請求項1〜7記載の無電解金めっき液。The mercaptan-based compound is 1,1-dimethyltitanium thiol, 1-methyl-octanethiol, dodecanethiol, 1,2-ethanedithiol, thiophenol, o-thiocresol, p-thiocresol, o-dimercaptobenzene, m-dimercaptobenzene, p-dimercaptobenzene, thioglycol, thiodiglycol, thioglycolic acid, dithioglycolic acid, thiomalic acid, mercaptopropionic acid, 2-mercaptobenzoxazole, 2-mercapto-1-methylimidazole, 2 The electroless gold plating solution according to any one of claims 1 to 7, wherein the electroless gold plating solution is at least one selected from the group consisting of -mercapto-5-methylbenzimidazole and 3-mercapto-1,2-tetrazole. . pH値が5〜10であることを特徴とする請求項1〜8のいずれか1項記載の無電解金めっき液。The electroless gold plating solution according to any one of claims 1 to 8, wherein the pH value is 5 to 10. 無電解金めっき液中に被めっき体を浸漬して該被めっき体表面に金皮膜を形成させる無電解金めっき方法において、前記無電解金めっき液が請求項1〜9のいずれか1項記載の前記無電解金めっき液であることを特徴とする無電解金めっき方法。10. An electroless gold plating method for immersing an object to be plated in an electroless gold plating solution to form a gold film on the surface of the object to be plated, wherein the electroless gold plating solution is any one of claims 1 to 9. An electroless gold plating method, wherein the electroless gold plating solution is used.
JP2002332927A 2002-11-15 2002-11-15 Electroless gold plating liquid, and electroless gold plating method Pending JP2004169058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002332927A JP2004169058A (en) 2002-11-15 2002-11-15 Electroless gold plating liquid, and electroless gold plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332927A JP2004169058A (en) 2002-11-15 2002-11-15 Electroless gold plating liquid, and electroless gold plating method

Publications (1)

Publication Number Publication Date
JP2004169058A true JP2004169058A (en) 2004-06-17

Family

ID=32697782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332927A Pending JP2004169058A (en) 2002-11-15 2002-11-15 Electroless gold plating liquid, and electroless gold plating method

Country Status (1)

Country Link
JP (1) JP2004169058A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032483A (en) * 2004-07-13 2006-02-02 Seiko Epson Corp Manufacturing method of wiring circuit board
JP2006077312A (en) * 2004-09-13 2006-03-23 Univ Nagoya Method for coating metal
JP2006249485A (en) * 2005-03-10 2006-09-21 Japan Pure Chemical Co Ltd Gold sulfite salt aqueous solution for gold plating
JP2010255010A (en) * 2009-04-21 2010-11-11 C Uyemura & Co Ltd Electroless gold plating bath
JP5916834B1 (en) * 2014-12-04 2016-05-11 小島化学薬品株式会社 New method for producing organic gold compound crystals

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032483A (en) * 2004-07-13 2006-02-02 Seiko Epson Corp Manufacturing method of wiring circuit board
JP2006077312A (en) * 2004-09-13 2006-03-23 Univ Nagoya Method for coating metal
JP4565181B2 (en) * 2004-09-13 2010-10-20 国立大学法人名古屋大学 Metal coating method
JP2006249485A (en) * 2005-03-10 2006-09-21 Japan Pure Chemical Co Ltd Gold sulfite salt aqueous solution for gold plating
JP2010255010A (en) * 2009-04-21 2010-11-11 C Uyemura & Co Ltd Electroless gold plating bath
JP5916834B1 (en) * 2014-12-04 2016-05-11 小島化学薬品株式会社 New method for producing organic gold compound crystals

Similar Documents

Publication Publication Date Title
US5910340A (en) Electroless nickel plating solution and method
JP2009235577A (en) Electroless gold plating liquid and method of electroless gold plating
TW200902758A (en) Electroless gold plating bath, electroless gold plating method and electronic parts
TW200902757A (en) Electroless gold plating bath, electroless gold plating method and electronic parts
Mishra et al. Surface modification with copper by electroless deposition technique: An overview
CN101899688A (en) Cyanide-free gold plating solution for plating gold
US8801844B2 (en) Autocatalytic plating bath composition for deposition of tin and tin alloys
TW200416299A (en) Electroless gold plating solution
US5364459A (en) Electroless plating solution
KR100933243B1 (en) Electroless Gold Plating Process and Gold Layer Forming Process
JPH0341549B2 (en)
JP2018523756A (en) Electroless silver plating bath and method of using the same
JP5526462B2 (en) Electroless gold plating solution and electroless gold plating method
JP3479639B2 (en) Electroless nickel plating solution
JP2004169058A (en) Electroless gold plating liquid, and electroless gold plating method
JPH0257153B2 (en)
JP3972158B2 (en) Electroless palladium plating solution
TW201114945A (en) Electroless gold plating bath
JPH0734254A (en) Electroless plating method to aluminum material
JPH03107493A (en) Pretreating solution for silver plating
KR20090069231A (en) Electroless gold plating bath for copper substrate and gold plating using the same
JP2006265648A (en) Electroless gold plating liquid repreparation method, electroless gold plating method and gold ion-containing liquid
JP3227505B2 (en) Substitution type electroless gold plating solution
JP2003268559A (en) Electroless gold plating solution and electroless gold plating method
JP3175562B2 (en) Electroless gold plating bath and electroless gold plating method