JP2004168682A - Herbicide containing benzoyl derivative as effective ingredient - Google Patents

Herbicide containing benzoyl derivative as effective ingredient Download PDF

Info

Publication number
JP2004168682A
JP2004168682A JP2002334006A JP2002334006A JP2004168682A JP 2004168682 A JP2004168682 A JP 2004168682A JP 2002334006 A JP2002334006 A JP 2002334006A JP 2002334006 A JP2002334006 A JP 2002334006A JP 2004168682 A JP2004168682 A JP 2004168682A
Authority
JP
Japan
Prior art keywords
group
mmol
added
compound
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002334006A
Other languages
Japanese (ja)
Inventor
Mineyuki Kubota
峰行 窪田
Yoriyuki Takashima
頼由 高嶋
Kazuyoshi Koike
和好 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2002334006A priority Critical patent/JP2004168682A/en
Publication of JP2004168682A publication Critical patent/JP2004168682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a benzoyl derivative which causes no phytotoxicity on a paddy-rice plant and removes a wide variety of weeds in a paddy field at a low drug concentration, and a herbicide comprising the same. <P>SOLUTION: The benzoyl derivative is represented by general formula (I), for example, compound (4-1). The herbicide contains as an effective ingredient the benzoyl derivative and/or a salt thereof. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は新規なベンゾイル誘導体、及び該新規ベンゾイル誘導体及び/又はその塩を有効成分とする除草剤に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
雑草防除作業の省力化や農園芸作物の生産性向上にとって、除草剤は極めて重要な薬剤であり、そのため長年にわたって除草剤の研究開発が積極的に行われ、現在多種多様な薬剤が実用化されている。しかし、今日においてもさらに卓越した除草特性を有する新規薬剤、特に栽培作物に薬害を及ぼすことがなく、対象雑草のみを選択的に、かつ低薬量で防除しうる薬剤の開発が望まれている。
【0003】
水田には水稲とともに、種々の雑草、例えばノビエなどの一年生イネ科雑草、タマガヤツリなどの一年生カヤツリグサ科雑草、コナギ、キカシグサなどの一年生広葉雑草、ウリカワ、ホタルイ、ミズガヤツリなどの多年生雑草が生育することが知られており、これらの雑草を、水稲に薬害を与えずに、しかも環境汚染の問題から少量の散布で効率よく除草することが、稲作にとって極めて重要である。特にノビエはイネ科雑草であるため、ノビエに対して高い除草活性を有する薬剤は水稲に薬害を与え易いことが知られており、ノビエに対して高い除草活性を示しかつ水稲に対しては安全な薬剤の開発が、特に重要な課題となっている。
【0004】
特定のベンゾイル誘導体が除草活性を有することは公知である(例えば、特許文献1および特許文献2参照)。しかしながら、これらの公報に記載のピラゾール誘導体は、水田雑草用除草剤としては活性が不十分であり、満足できるものではない。
【0005】
本発明は、上記事情に鑑みてなされたものであって、その目的とするところは、水稲に対する薬害がなく、広範な水田雑草を低薬量で防除できるベンゾイル誘導体およびそれを用いた除草剤を提供することにある。
【0006】
【特許文献1】
特開昭50−126830号
【特許文献2】
米国特許第4,230,481号
【0007】
【課題を解決するための手段】
本発明者らは上記目的を達成するために鋭意研究を重ねた結果、下記一般式(I)で示されるベンゾイル誘導体が、水稲に対する薬害がなく、広範な水田雑草を低薬量で防除できることを見い出し、本発明を完成した。
【0008】
【発明の実施の形態】
本発明のベンゾイル誘導体は一般式(I)で表される化合物である。
【0009】
【化6】

Figure 2004168682
【0010】
(式中、XはO、S(O)(lは0〜2の整数)、又はNR11(R11は水素又はC〜Cアルキル基)であり、YはS(O)(RはC〜Cアルキル基、nは0〜2の整数)又はR(RはC〜Cフルオロアルキル基)であり、Zは下記式:
【0011】
【化7】
Figure 2004168682
【0012】
(式中、R及びRは各々水素、C〜Cアルキル基、又はC〜Cシクロアルキル基であり、R〜Rは各々水素又はC〜Cアルキル基であり、pは0又は1であり、Qは水素、C〜Cアルキルスルホニル基、又は下記:
【0013】
【化8】
Figure 2004168682
【0014】
(R12、R13は各々水素又はC〜Cアルキル基)で表される置換基)で表される置換基である。
【0015】
また、一般式(I)中、Aは下記式に示す置換されていてもよいフェニル基、置換されていてもよい5員環複素環残基、又は置換されていてもよい6員環複素環残基を表す。
【0016】
【化9】
Figure 2004168682
【化10】
Figure 2004168682
【0017】
(式中、RはC〜Cアルキル基、ハロゲン、C〜Cアルコキシ基、C〜Cハロアルキル基、ヒドロキシ基、シアノ基、ニトロ基、又はC〜Cアルキルスルホニルオキシ基を示し、mは0〜5の整数を示すし、R10は水素又はC〜Cアルキル基を示す。)
【0018】
一般式(I)において、Zが5−ヒドロキシピラゾール誘導体残基である、すなわち一般式(Ia):
【0019】
【化11】
Figure 2004168682
【0020】
で表される化合物は、互変異性のため、下記に示す3種の構造をとり得るが、本発明は、これらすべての構造を含有するものである。
【0021】
【化12】
Figure 2004168682
【0022】
また、一般式(I)において、Zがシクロジケトン誘導体残基である、すなわち一般式(Ie):
【0023】
【化13】
Figure 2004168682
【0024】
で表される化合物は、互変異性のため、下記に示す4種の構造をとりうるが、本発明は、これらすべての構造を含有するものである。
【0025】
【化14】
Figure 2004168682
【0026】
また、酸性物質である本発明のベンゾイル誘導体は、塩基と処理することにより、容易に塩とすることができ、この塩も本発明に含有されるものである。ここで塩基としては公知のものであれば制限はないが、例えばアミン類やアニリン類等の有機塩基やナトリウム化合物やカリウム化合物等の無機塩基が挙げられる。アミン類としてはモノアルキルアミン、ジアルキルアミン、トリアルキルアミン等が挙げられる。アルキルアミン類中のアルキル基は通常C〜Cアルキル基である。アニリン類としてはアニリンやモノアルキルアニリン、ジアルキルアニリン等が挙げられる。アルキルアニリン類中のアルキル基は通常C〜Cアルキル基である。ナトリウム化合物としては水酸化ナトリウム、炭酸ナトリウム等であり、カリウム化合物としては水酸化カリウム、炭酸カリウム等である。
【0027】
本発明の除草剤は、式(I)で表されるベンゾイル誘導体および/またはその塩を有効成分として含有するものであって、これらの化合物を溶媒等の液状担体または鉱物質微粉等の固体担体と混合し、水和剤、乳剤、粉剤、粒剤等の形態に製剤化して使用することができる。製剤化に際して乳化性、分散性、展着性等を付与するためには界面活性剤を添加すればよい。
【0028】
本発明の除草剤を水和剤の形態で用いる場合、通常は本発明のベンゾイル誘導体および/またはその塩を10〜55重量%、固体担体40〜88重量%および界面活性剤2〜5重量%の割合で配合して組成物を調製し、これを用いればよい。また、乳剤の形態で用いる場合、通常は本発明のベンゾイル誘導体および/またはその塩を20〜50重量%、固体担体35〜75重量%および界面活性剤5〜15重量%の割合で配合して組成物を調製すればよい。一方、粉剤の形態で用いる場合、通常は本発明のベンゾイル誘導体および/またはその塩を1〜15重量%、固体担体80〜97重量%および界面活性剤2〜5重量%の割合で配合して組成物を調製すればよい。さらに、粒剤の形態で用いる場合、通常は本発明のベンゾイル誘導体および/またはその塩を1〜15重量%、固体担体80〜97重量%および界面活性剤2〜5重量%の割合で配合して組成物を調製すればよい。
【0029】
ここで固体担体としては鉱物質の微粉が用いられ、この鉱物質の微粉としては、例えばケイソウ土、消石灰等の酸化物、リン灰石等のリン酸塩、セッコウ等の硫酸塩、タルク、パイロフェライト、クレー、カオリン、ベントナイト、酸性白土、ホワイトカーボン、石英粉末、ケイ石粉等のケイ酸塩等が挙げられる。
【0030】
また溶剤としては有機溶媒が用いられ、具体的にはベンゼン、トルエン、キシレン等の芳香族炭化水素、o−クロロトルエン、トリクロロエタン、トリクロロエチレン等の塩素化炭化水素、シクロヘキサノール、アミルアルコール、エチレングリコール等のアルコール、イソホロン、シクロヘキサノン、シクロヘキセニルシクロヘキサノン等のケトン、ブチルセロソルブ、ジエチルエーテル、メチルエチルエーテル等のエーテル、酢酸イソプロピル、酢酸ベンジル、フタル酸メチル等のエステル、ジメチルホルムアミド等のアミドあるいはこれらの混合物を挙げることができる。
【0031】
さらに、界面活性剤としては、アニオン型(脂肪酸塩、アルキルスルフェート、アルキルベンゼンスルホン酸、ジアルキルスルホスクシネート、アルキルホスフェート、ナフタレンスルホン酸ホルマリン縮合物の塩、ポリオキシエチレンアルキルスルフェート)、ノニオン型(ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンアルキルアミン、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル)、カチオン型あるいは両性イオン型(アミノ酸、ベタイン等)のいずれも用いることができる。
【0032】
本発明の除草剤には、有効成分として前記一般式(I)で表されるベンゾイル誘導体および/またはその塩と共に、必要に応じ他の除草活性成分を含有させることができる。このような他の除草活性成分としては、従来公知の除草剤、例えばフェノキシ系、ジフェニルエーテル系、トリアジン系、尿素系、カーバメート系、チオールカーバメート系、酸アニリド系、ピラゾール系、リン酸系、スルホニルウレア系、オキサジアゾン系等を挙げることができ、これらの除草剤の中から適宜選択して用いることができる。さらに、本発明の除草剤は必要に応じて殺虫剤、殺菌剤、植物調節剤、肥料等と混用することができる。
【0033】
本発明の除草剤の施薬量は、製剤の形態、散布方法、雑草の種類と量、生育状況など様々な条件を考慮して決められる。通常、総有効成分量として0.001〜3.0kg/ha、好ましくは0.01〜0.3kg/haであり、当業者であれば、必要な除草効果を得るための有効量を容易に決めることができる。
【0034】
本発明のベンゾイル誘導体は水田用除草剤の活性成分として、土壌処理および茎葉処理のいずれの処理においても使用できる。水田雑草(Paddy weeds)としては、例えば、ヘラオモダカ(Alisma canaliculatum)、オモダカ(Sagittariatrifolia)、ウリカワ(Sagittaria pygmaea)等に代表されるオモダカ科(Alismataceae)雑草、タマガヤツリ(Cyperus difformis)、ミズガヤツリ(Cyperus serotinus)、ホタルイ(Scirpus juncoides)、クログワイ(Eleocharis kuroguwai)等に代表されるカヤツリグサ科(Cyperaceae)雑草、アゼナ(Lindenia pyxidaria)等に代表されるゴマノハグサ科(Scrothuslariaceae)雑草、コナギ(Monochoria Vaginalis)等に代表されるミズアオイ科(Potenderiaceae)雑草、ヒルムシロ(PoIgeton distinctus)等に代表されるヒルムシロ科(potamogetonaceae)雑草、キカシグサ(Rotala indica)等に代表されるミソハギ科(Lythraceae)雑草、タイヌビエ(Echinochloa crus−galli)等に代表されるイネ科(Gramineae)雑草等があげられる。
【0035】
本発明の式(I)で示されるベンゾイル誘導体は下記方法によって製造される。
【0036】
【化15】
Figure 2004168682
【0037】
なお上記反応式中、R〜R,X,Y,及びAは上記と同様であり、Halはハロゲン原子を表す。
【0038】
すなわち、一般式(III)で表わされる化合物を、ハロゲン化剤と反応させて、一般式(IV)で表される化合物を得、次いでこの化合物を一般式(Va)又は(Ve)に示す化合物と反応させて、一般式(VIa)又は(VIe)で表される化合物を得る。次いでこの化合物を転位反応させて、一般式(Ia)又は(Ie)で示されるベンゾイル誘導体を得ることを特徴とする。一般式(Id)で示されるベンゾイル誘導体は、一般式Q−Hal(VII)に示す化合物と反応させて、一般式(Ib)で示されるベンゾイル誘導体を得ることができる。また一般式(VIa)又は(VIe)で表される化合物を得る方法としては、一般式(III)で表される化合物をジシクロヘキシルカルボジイミド(以下、「DCC」という)などの脱水剤の存在下、一般式(Va)又は(Ve)に示す化合物と反応させることによっても得られる。
【0039】
以下、上記製造法を各工程毎に詳説する。
工程(a)は一般式(III)の化合物をハロゲン化剤(塩化チオニル、オキシ塩化リン等)と反応させて一般式(IV)の化合物を得る工程である。この工程(a)は、一般式(III)の化合物に対して等モル以上のハロゲン化剤を用いて行なうのが好ましい。この反応は不活性溶媒(塩化メチレン、クロロホルム、クロロベンゼン、ジクロロベンゼン等)で希釈して行なっても良く、無溶媒で行なっても良い。ハロゲン化剤である塩化チオニルを溶媒として過剰に用いても良い。反応温度は特に制限はないが、0℃〜溶媒の沸点までの温度が好ましく、60℃またはその近傍が特に好ましい。また、必要に応じて触媒としてDMF等を用いることも可能である。
【0040】
工程(b)は、工程(a)で得られた一般式(IV)の化合物を一般式(Va)又は(Ve)の化合物と反応させて一般式(VIa)又は(VIe)の化合物を得る工程である。工程(b)は、一般式(IV)の化合物と一般式(Va)又は(Ve)の化合物のモル比率を1:1〜1:3にして、反応に不活性な溶媒、例えばジオキサン、アセトニトリル、ベンゼン、トルエン、クロロホルム、塩化メチレン、1,2−ジクロロエタンなどの溶媒中で行なうのが好ましい。反応温度は0〜60℃が好ましいが、特に好ましくは0℃〜室温の範囲内である。
【0041】
また、化合物(III)と化合物(Va)又は(Ve)をDCCなどの脱水剤を用いることによっても化合物(VIa)又は(VIe)を得ることができる(工程(d))。この縮合反応の際に用いる反応溶媒は、反応に不活性な溶媒であれば特に制限はないが、好ましくはアセトニトリル、第3級アミルアルコールなどである。反応温度は、0℃〜溶媒の沸点までの範囲であれば特に制限はないが、通常は室温が好ましい。脱水剤としては、上述のDCCの他に1,1−カルボニルジイミダゾール(CDI)、1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド(EDC)を用いることもできる。脱水剤の添加量は、化合物に対して1.0〜3.0等量、好ましくは1.0〜1.5等量である。化合物(III):化合物(Va)又は(Ve)は、モル比率で1:1〜1:3の範囲であり、好ましくは1:1〜1:1.5である。化合物(III)と化合物(Va)又は(Ve)との縮合反応の反応時間は、1〜48時間の範囲であるが、通常は8時間程度で反応は完結する。
【0042】
工程(c)は、工程(b)又は工程(d)で得られた一般式(VIa)又は(VIe)の化合物を転位反応させて一般式(Ia)又は(Ie)のベンゾイル誘導体を得る工程である。この工程(c)においては、反応に不活性な溶媒、例えば塩化メチレン、1,2−ジクロロエタン、トルエン、アセトニトリル、N,N−ジメチルホルムアミド、酢酸エチルなどの溶媒中で行うのが好ましい。特に好ましくはアセトニトリルである。工程(c)においては、適当な塩基(炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ピリジン等)を一般式(VIa)又は(VIe)の化合物に対して1〜4倍等量、好ましくは1〜2倍等量使用して反応させる。その際、シアン化水素もしくはシアン化物陰イオンを反応系内に発生させることのできる化合物、いわゆる“シアン化物源”を触媒的に共存させることによって、反応は円滑に進行する。シアン化物源としては、例えばシアン化ナトリウム、シアン化カリウムの様な金属シアン化物、アセトンシアノヒドリン、メチルイソプロピルケトンシアノヒドリンの様な低級アルキル(C〜C)ケトンのシアノヒドリン化合物などが挙げられる。金属シアン化物を用いる場合には、反応中に、例えばクラウンエーテルの様な相間移動触媒を添加することにより、反応を円滑に進行させることができる。反応におけるシアン化物源の使用量は、一般式(VIa)又は(VIe)の化合物に対して0.01〜0.5モル等量、好ましくは0.05〜0.2モル等量である。反応温度は0〜80℃が好ましいが、特に好ましくは20〜40℃の範囲内である。
【0043】
工程(e)は、工程(a)〜(c)で得られた化合物(Ia)を塩基の存在下、Q−Hal(VII)(Qは先に定義したものを表し、Halはハロゲン原子を表す。)と不活性溶媒中で反応させて一般式(Ia)の−OHを−OQに置換したベンゾイル誘導体(Id)を製造する。本反応において、化合物(VII)はベンゾイル誘導体(Ia)に対して、一般に1〜3当量用いるのが好ましい。また、反応により副生するハロゲン化水素を捕捉するために、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ピリジン等の塩基を式(Ia)に対してモル比率で等量以上用いるのが好ましい。反応温度は、室温から用いる溶媒の沸点までの範囲とするのが好ましい。また反応に用いる溶媒としては、ベンゼン、トルエン等の芳香族炭化水素、ジエチルエーテル等のエーテル、メチルエチルケトン等のケトン、ジクロロメタン、クロロホルム、ジクロロエタン、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素、アセトニトリル等が挙げられる。またこれらの溶媒と水からなる2相系溶媒を用いることもでき、この場合、反応系内に例えばクラウンエーテル、塩化ベンジルトリエチルアンモニウム等の相間移動触媒を加えることにより好ましい結果が得られる。なお、工程(c)と工程(e)を逐次的にOne−potで行うことも可能である。
【0044】
反応終了後、常法に従い、分液を行い、目的物を水層からジクロロメタン等の有機溶媒で抽出し、有機層を脱水した後、溶媒を留去することにより目的のベンゾイル誘導体(Id)を単離することができる。
【0045】
【実施例】
本発明を、以下の実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0046】
製造実施例1
4−(4−メタンスルホニル−2−フェノキシベンゾイル)−1−エチル−5−ヒドロキシピラゾールの合成(化合物No.4−1)
(1)製造中間体4−メタンスルホニル−2−フェノキシ安息香酸エチルの合成(中間体No.1−1)
DMF10mlに4−メタンスルホニル−2−ニトロ安息香酸エチル2g(7.3mmol)、フェノール0.83g(1.2eq.,8.8mmol)、及び炭酸カリウム1.52g(1.5eq.,11mmol)を加え、85℃にて5時間加熱攪拌した。放冷後、水、酢酸エチルを加え、有機層を抽出した。有機層を2回水洗した後、飽和食塩水にて洗浄し、無水硫酸ナトリウムで乾燥した。エバポレーターで溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=2/1)にて精製し、目的化合物1.91gを白色固体として得た(収率82%)。
【0047】
(2)製造中間体4−メタンスルホニル−2−フェノキシ安息香酸の合成(中間体No.2−1)
上記方法により得られた安息香酸エチル誘導体1.9g(5.9mmol)にエタノール、水を加え、更に少量の塩化メチレンを加えて溶解した。これに水酸化カリウム0.4g(1.2eq.,7.1mmol)を室温で加え、1時間攪拌した。エバポレーターで大半の溶媒を留去した後、残査に水、塩化メチレンを加え、水層を分離した。水層を5%希塩酸にてpH=1に酸性化した後、酢酸エチルにて抽出した。有機層を2回水洗した後、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。エバポレーターで溶媒を留去することにより、目的化合物1.58gを白色固体として得た(収率91%)。
【0048】
(3)4−(4−メタンスルホニル−2−フェノキシベンゾイル)−5−n−プロパンスルホニルオキシ−1−エチルピラゾールの合成(化合物No.3−1)
上記方法により得られた安息香酸誘導体1.4g(4.8mmol)を1,2−ジクロロエタン15mlに分散し、DMFを数滴添加した。これに塩化チオニル0.86g(1.5eq.,7.2mmol)を加え、1時間加熱還流した。エバポレーターで溶媒を留去した後、残査をアセトニトリル15mlに溶解し、氷冷下で1−エチル−5−ヒドロキシピラゾール0.59g(1.1eq.,5.3mmol)、及びトリエチルアミン0.58g(1.2eq.,5.7mmol)を加えた。2時間室温で攪拌した後、更にトリエチルアミン0.58g(1.2eq.,5.7mmol)、及び触媒量のアセトンシアノヒドリンを加えた。室温にて一晩反応した後、エバポレーターにて溶媒を留去した。残査に水、塩化メチレンを加え、水層を分離した後、水層を5%希塩酸にてpH=1に酸性化し、酢酸エチルにて抽出した。有機層を2回水洗し、飽和食塩水にて洗浄後、無水硫酸ナトリウムで乾燥した。エバポレーターで溶媒を留去することにより、4−(4−メタンスルホニル−2−フェノキシベンゾイル)−1−エチル−5−ヒドロキシピラゾール(化合物No.4−1)の粗生成物1.7gを黄色固体として得た。
【0049】
得られた黄色固体1.7g(4.4mmol)に塩化メチレン、水を加えて溶解し、触媒量の塩化ベンジルトリエチルアンモニウム、及び炭酸カリウム0.62g(1.0eq.,4.4mmol)を加え攪拌した。これに室温でn−プロパンスルホニルクロリド0.88g(1.4eq.,6.2mmol)を加え、激しく攪拌した。3時間後攪拌を停止し、一晩放置した後、塩化メチレン層を分離した。有機層を無水硫酸ナトリウムで乾燥した後、エバポレーターで溶媒を留去した。残査をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=2/1)にて精製し、目的化合物0.95gを淡褐色樹脂状固体として得た(収率40%)。
【0050】
(4)4−(4−メタンスルホニル−2−フェノキシベンゾイル)−1−エチル−5−ヒドロキシピラゾールの合成(化合物No.4−1)
上記方法により得られたスルホン酸エステル誘導体0.5g(1.1mmol)にエタノール、水を加え、更に少量の塩化メチレンを加えて溶解した。これに水酸化カリウム0.07g(1.2eq.,1.2mmol)を室温で加え、1時間攪拌した。エバポレーターで大半の溶媒を留去した後、残査に水、塩化メチレンを加え、水層を分離した。水層を5%希塩酸にてpH=1に酸性化した後、酢酸エチルにて抽出した。有機層を2回水洗した後、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。エバポレーターで溶媒を留去することにより、目的化合物0.39gを白色固体として得た(収率99%)。
【0051】
製造実施例2
製造中間体4−メタンスルホニル−2−フェノキシ安息香酸エチルの合成(中間体No.1−1製造別法)
(1)製造中間体4−クロロ−2−フェノキシ安息香酸エチルの合成
文献公知の方法(例えばSynth.Commun.,25,7,pp.1077−1084(1995))に従って合成した4−クロロ−2−フェノキシ安息香酸3.75g(15mmol)を1,2−ジクロロエタン20mlに分散し、DMFを数滴添加した。これに塩化チオニル2.69g(1.5eq.,22.6mmol)を加え、1時間加熱還流した。エバポレーターで溶媒を留去した後、残査に塩化メチレン20mlを加えて溶解し、更にエタノール20mlを滴下した。5時間室温で攪拌した後、エバポレーターで溶媒を留去した。残査に水、酢酸エチルを加え、有機層を分離した後、有機層を5%炭酸カリウム水溶液、水で各々2回洗浄し、最後に飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を留去することにより、目的化合物3.94gを褐色オイルとして得た(収率94%)。
H−NMRデータ(CDCl,内部標準TMS)
1.23(3H,t), 4.27(2H,q), 6.75−8.20(8H,m)
【0052】
(2)製造中間体4−メチルチオ−2−フェノキシ安息香酸エチルの合成
4−クロロ−2−フェノキシ安息香酸エチル3.44g(12mmol)をDMF10mlに溶解し、これに70%水硫化ナトリウム1.73g(1.1eq.,13mmol)を加え、80℃で4時間加熱攪拌した。放冷後、氷浴にて更に冷却攪拌し、よう化メチル8.83g(5eq.,62mmol)を加えた。室温にて更に2時間攪拌後、攪拌を停止し一晩放置した。
一晩後、反応物に水、酢酸エチルを加え、有機層を分離した。有機層を2回水洗し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。エバポレーターで溶媒を留去することにより、目的化合物の粗生成物3.77gを褐色オイルとして得た。
H−NMRデータ(CDCl,内部標準TMS)
1.20(3H,t), 2.43(3H,s), 4.24(2H,q), 6.75−7.50(7H,m), 7.88(1H,d)
【0053】
(3)製造中間体4−メタンスルホニル−2−フェノキシ安息香酸エチルの合成(中間体No.1−1)
上記方法により得られた4−メチルチオ−2−フェノキシ安息香酸エチルの粗生成物3.77gを酢酸15mlに溶解し、30%過酸化水素水3.26g(2.2eq.,28.7mmol)を室温で加えた。70℃で8時間加熱攪拌後、放冷し、反応物に水、酢酸エチルを加え、有機層を分離した。有機層を3回水洗し、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を留去した。残査の褐色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=1/1)にて精製し、目的化合物1.98gをオレンジ色固体として得た(収率52%)。
H−NMRデータ(CDCl,内部標準TMS)
1.28(3H,t), 3.02(3H,s), 4.34(2H,q), 6.90−8.20(8H,m)
【0054】
製造実施例3
4−[4−メタンスルホニル−2−(3−メトキシフェノキシ)ベンゾイル]−1−エチル−5−ヒドロキシピラゾールの合成(化合物No.4−4)
(1)4−[4−メタンスルホニル−2−(3−メトキシフェノキシ)ベンゾイル]−5−n−プロパンスルホニルオキシ−1−エチルピラゾールの合成(化合物No.3−4)
製造実施例1に従って得られた安息香酸誘導体0.9g(2.8mmol)を1,2−ジクロロエタン10mlに分散し、DMFを数滴添加した。これに塩化チオニル0.50g(1.5eq.,4.2mmol)を加え、1時間加熱還流した。エバポレーターで溶媒を留去した後、残査をアセトニトリル10mlに溶解し、氷冷下で1−エチル−5−ヒドロキシピラゾール0.34g(1.1eq.,3.0mmol)、及びトリエチルアミン0.34g(1.2eq.,3.4mmol)を加えた。2時間室温で攪拌した後、更にトリエチルアミン0.34g(1.2eq.,3.4mmol)、及び触媒量のアセトンシアノヒドリンを加えた。室温にて一晩反応した後、更に1−プロパンスルホニルクロリド0.56g(1.4eq.,3.9mmol)を加え、1時間攪拌した。
エバポレーターで大半の溶媒を留去した後、残査に水、酢酸エチルを加え、有機層を分離した。有機層を2回水洗し、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を留去した。残査の褐色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/2)にて精製し、目的化合物0.57gをオレンジ色オイルとして得た(収率39%)。
【0055】
(2)4−[4−メタンスルホニル−2−(3−メトキシフェノキシ)ベンゾイル]−1−エチル−5−ヒドロキシピラゾールの合成(化合物No.4−4)
上記方法により得られたスルホン酸エステル誘導体0.45g(0.86mmol)を用い、製造実施例1(4)と同様の方法で目的化合物0.29gをオレンジ色オイルとして得た(収率83%)。
【0056】
製造実施例4
4−(2−アニリノ−4−メタンスルホニルベンゾイル)−5−n−プロパンスルホニルオキシ−1−エチルピラゾールの合成(化合物No.3−17)
(1)製造中間体2−クロロ−4−メタンスルホニル安息香酸エチルの合成
市販の2−クロロ−4−メタンスルホニル安息香酸5g(21mmol)を1,2−ジクロロエタン25mlに分散し、DMFを数滴添加した。これに塩化チオニル3.8g(1.5eq.,32mmol)を加え、1時間加熱還流した。エバポレーターで溶媒を留去した後、残査に塩化メチレン25mlを加えて溶解し、更にエタノール25mlを滴下した。5時間室温で攪拌した後、エバポレーターで溶媒を留去した。残査に水、酢酸エチルを加え、有機層を分離した後、有機層を5%炭酸カリウム水溶液、水で各々2回洗浄し、最後に飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を留去することにより、目的化合物5.6gを白色固体として得た(収率100%)。
H−NMRデータ(CDCl,内部標準TMS)
1.43(3H,t), 3.09(3H,s), 4.45(2H,q), 7.50−8.40(3H,m)
【0057】
(2)製造中間体2−アニリノ−4−メタンスルホニル安息香酸エチルの合成(中間体No.1−17)
2−クロロ−4−メタンスルホニル安息香酸エチル2g(7.6mmol)、トリス(ジベンジリデンアセトン)ジパラジウム0.16g(0.02eq.,0.17mmol)、2−(ジシクロヘキシルホスフィノ)ビフェニル0.16g(0.06eq.,0.46mmol)、及びリン酸三カリウム2.28g(1.4eq.,11mmol)を100ml三つ口フラスコに量りとり、アルゴンガスで置換した。引き続いて脱水した1,2−ジメトキシエタン8ml、及びアニリン0.84g(1.2eq.,9.0mmol)を加え、アルゴン雰囲気下、100℃で9時間加熱攪拌した。放冷後、反応溶液をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/2)にて精製し、目的化合物1.48gをかっ色オイルとして得た(収率61%)。
【0058】
(3)4−(2−アニリノ−4−メタンスルホニルベンゾイル)−5−n−プロパンスルホニルオキシ−1−エチルピラゾールの合成(化合物No.3−17)上記方法により得られた安息香酸エステル誘導体2gを用い、製造実施例1(2)及び(3)と同様の方法で目的化合物70mgを得た(全収率3%)。
【0059】
製造実施例5
4−(4−メタンスルホニル−2−フェニルチオベンゾイル)−1−エチル−5−ヒドロキシピラゾールの合成(化合物No.4−18)
(1)製造中間体4−メタンスルホニル−2−フェニルチオ安息香酸エチルの合成(中間体No.1−18)
2−クロロ−4−メタンスルホニル安息香酸エチル1.3g(4.9mmol)をDMF5mlに溶解し、これに炭酸カリウム1.37g(2.0eq.,9.9mmol)、及びチオフェノール0.6g(1.1eq.,5.4mmol)を加え、100℃で7時間加熱攪拌した。放冷後、水、酢酸エチルを加え、有機層を分離した。有機層を3回水洗し、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を留去した。残査にエタノールを加え、ろ過することにより、目的化合物0.98gを白色結晶として得た(収率59%)
【0060】
(2)製造中間体4−メタンスルホニル−2−フェニルチオ安息香酸の合成(中間体No.2−18)
上記方法により得られた安息香酸エチル誘導体1.26g(3.7mmol)にエタノール、水を加え、更に少量の塩化メチレンを加えて溶解した。これに水酸化リチウム1水和物0.19g(1.2eq.,4.5mmol)を室温で加え、3時間攪拌した。一晩放置し、エバポレーターで大半の溶媒を留去した後、残査に水、塩化メチレンを加え、水層を分離した。水層を5%希塩酸にてpH=1に酸性化した後、酢酸エチルにて抽出した。有機層を2回水洗した後、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。エバポレーターで溶媒を留去することにより、目的化合物1.12gを白色固体として得た(収率97%)。
【0061】
(3)4−(4−メタンスルホニル−2−フェニルチオベンゾイル)−1−エチル−5−n−プロパンスルホニルオキシピラゾールの合成(化合物No.3−18)
上記方法により得られた安息香酸誘導体0.7gを用い、製造実施例1(3)と同様の方法で目的化合物0.78gを得た(収率68%)。
【0062】
(4)4−(4−メタンスルホニル−2−フェニルチオベンゾイル)−1−エチル−5−ヒドロキシピラゾールの合成(化合物No.4−18)
上記方法により得られた4−(4−メタンスルホニル−2−フェニルチオベンゾイル)−1−エチル−5−n−プロパンスルホニルオキシピラゾール0.29g(0.57mmol)にエタノール、水を加え、更に少量の塩化メチレンを加えて溶解した。これに水酸化リチウム1水和物0.03g(1.2eq.,0.71mmol)を室温で加え、3時間攪拌した。一晩放置し、エバポレーターで大半の溶媒を留去した後、残査に水、塩化メチレンを加え、水層を分離した。水層を5%希塩酸にてpH=1に酸性化した後、酢酸エチルにて抽出した。有機層を2回水洗した後、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。エバポレーターで溶媒を留去することにより、目的化合物0.19gを白色固体として得た(収率86%)。
【0063】
製造実施例6
4−(4−メタンスルホニル−2−フェノキシベンゾイル)−5−プロパルギルオキシ−1−エチルピラゾールの合成(化合物No.11−1)
製造実施例1(3)で得られた4−(4−メタンスルホニル−2−フェノキシベンゾイル)−1−エチル−5−ヒドロキシピラゾールの粗生成物0.5g(1.3mmol)をDMF3mlに溶解し、触媒量のよう化テトラ−n−ブチルアンモニウム、炭酸カリウム0.36g(2.0eq.,2.6mmol)、及び臭化プロパルギル0.31g(2.0eq.,2.6mmol)を室温で加えた。室温で7時間激しく攪拌した後、水、酢酸エチルを加え、有機層を分離した。有機層を3回水洗し、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を留去した。残査をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=1/1)にて精製し、目的化合物0.21gを得た(収率39%)。
【0064】
製造実施例7
4−[2−(4−シアノフェノキシ)−4−メタンスルホニルベンゾイル]−1−エチル−5−ヒドロキシピラゾールの合成(化合物No.4−12)
(1)4−[2−(4−シアノフェノキシ)−4−メタンスルホニルベンゾイル]−5−n−プロパンスルホニルオキシ−1−エチルピラゾールの合成(化合物No.3−13)
製造実施例1(1)及び(2)に従って合成した2−(4−シアノフェノキシ)−4−メタンスルホニル安息香酸1.4g(4.4mmol)、1−エチル−5−ヒドロキシピラゾール0.59g(1.1eq.,5.3mmol)をt−アミルアルコール5mlに分散し、室温でジシクロヘキシルカルボジイミド1.09g(1.1eq.,5.3mmol)を加えた。室温で3時間超音波を照射した後、炭酸カリウム0.46g(0.75eq.,3.3mmol)を加え、70℃にて5時間加熱攪拌した。
エバポレーターで大半の溶媒を留去した後、残査に水、酢酸エチルを加え、水層を分離した(不溶物はろ別した)。水層を5%希塩酸にてpH=1に酸性化した後、酢酸エチルにて抽出した。有機層を2回水洗した後、飽和食塩水で洗浄し無水硫酸ナトリウムで乾燥した。エバポレーターで溶媒を留去することにより、4−[2−(4−シアノフェノキシ)−4−メタンスルホニルベンゾイル]−1−エチル−5−ヒドロキシピラゾールの粗生成物1.25gを褐色固体として得た。
得られた固体を用い、製造実施例1(3)と同様の方法でn−プロパンスルホニルクロリドを反応させることにより、目的化合物1.0gをオレンジ色樹脂状物として得た(収率44%)。
【0065】
(2)4−[2−(4−シアノフェノキシ)−4−メタンスルホニルベンゾイル]−1−エチル−5−ヒドロキシピラゾールの合成
上記方法により得られた4−[2−(4−シアノフェノキシ)−4−メタンスルホニルベンゾイル]−5−n−プロパンスルホニルオキシ−1−エチルピラゾール0.8g(1.5mmol)を用いて、製造実施例5(4)と同様の方法により加水分解することで、目的化合物0.4gをベージュ色固体として得た(収率63%)。
【0066】
製造実施例8
2−(4−メタンスルホニル−2−フェノキシベンゾイル)シクロヘキサン−1,3−ジオンの合成(化合物No.12−1)
製造実施例1(2)で得られた安息香酸誘導体0.85g(2.9mmol)を1,2−ジクロロエタン10mlに分散し、DMFを数滴添加した。これに塩化チオニル0.52g(1.5eq.,4.4mmol)を加え、1時間加熱還流した。エバポレーターで溶媒を留去した後、残査をアセトニトリル10mlに溶解し、氷冷下で1,3−シクロヘキサンジオン0.36g(1.1eq.,3.2mmol)、及びトリエチルアミン0.36g(1.2eq.,3.6mmol)を加えた。2時間室温で攪拌した後、更にトリエチルアミン0.36g(1.2eq.,3.6mmol)、及び触媒量のアセトンシアノヒドリンを加えた。室温にて一晩反応した後、エバポレーターにて溶媒を留去した。残査に水、塩化メチレンを加え、水層を分離した後、水層を5%希塩酸にてpH=1に酸性化し、酢酸エチルにて抽出した。有機層を2回水洗し、飽和食塩水にて洗浄後、無水硫酸ナトリウムで乾燥した。エバポレーターで溶媒を留去することにより、目的化合物1.08gをベージュ色固体として得た(収率96%)。
【0067】
製造実施例9
4−[2−(4−メトキシベンゼンスルフェニル)−4−メタンスルホニルベンゾイル]−5−n−プロパンスルホニルオキシ−1−エチル−ピラゾールの合成(化合物No.3−20)
(1)製造中間体 1−メチル−4−メタンスルフェニルベンゼン
4−トルエンチオール101.13g(814mmol)のアセトン240ml溶液に、炭酸カリウム144.4g(1047mmol)、沃化メチル137.1g(1.19eq.,966mmol)を加え、加熱還流下、8時間攪拌した。放冷後、不溶物を濾別し、アセトンを減圧下留去した。残渣をヘキサン300mlで抽出し、飽和炭酸水素ナトリウム、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を留去することにより、目的化合物122.84gの粗生成物を得た。
【0068】
(2)製造中間体1−メチル−4−メタンスルホニルベンゼンの合成
上記で得た粗製の1−メチル−4−メタンスルフェニルベンゼン122.84g(814mmol)に、酢酸100mlを加え、90℃に加熱した。次いで30%過酸化水素230.6g(2035mmol)を1時間かけて滴下し、さらに90℃〜100℃で4時間反応した。室温まで冷却し、析出晶を濾取、水洗した。濾液に酢酸エチル、亜硫酸水素ナトリウムを加え、有機層を分離した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を留去した。先の結晶と併せて119.8gを得た(チオールからの収率86.5%)。
【0069】
(3)製造中間体1−メチル−2−ブロモ−4−メタンスルホニルベンゼンの合成
上記で得た1−メチル−4−メタンスルホニルベンゼン94.1g(552.8mmol)に、鉄粉15.43g(276.4mmol)を加え、100℃に加熱攪拌した。次いで臭素31.2ml(608.1mmol)を1時間かけて徐々に滴下し、100℃で2.5時間反応させた。さらに臭素31.2ml(608.1mmol)を30分かけ滴下し、100℃で2時間反応させた。放冷後、酢酸エチル、水、亜硫酸水素ナトリウムを加え、不溶物をセライト濾過で取り除いた。濾液を酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、目的化合物137.5gを得た(収率99.8%)。
【0070】
(4)製造中間体2−ブロモ−4−メタンスルホニル安息香酸の合成
上記で得た1−メチル−2−ブロモ−4−メタンスルホニルベンゼン70.0g(281mmol)に水1400ml加え、95℃〜100℃に加熱し、過マンガン酸カリウム111.0g(702.5mmol)を30分かけ徐々に加え、1.5時間攪拌した。さらに、過マンガン酸カリウム45.5g(288.0mmol)を30分かけ徐々に加え、4時間攪拌した。反応混合物に酢酸エチルを加え、不溶物を濾別した。濾液の水層を分液し、濃塩酸を加え酸性化し、析出した結晶を濾取し、水洗し、目的化合物56.64gを白色固体として得た(収率72.2%)。
【0071】
(5)製造中間体2−ブロモ−4−メタンスルホニル安息香酸エチルの合成
2−ブロモ−4−メタンスルホニル安息香酸62.59g(224.2mmol)を1,2−ジクロロエタン250mlに分散し、DMF0.82g(11.2mmol)を加えた。これに塩化チオニル21.26ml(1.3eq.,291.5mmol)を加え、2時間加熱還流した。エバポレーターで溶媒を留去した後、エタノール200mlを加え、80℃で30分加熱攪拌した。溶媒を留去し、残渣を酢酸エチルで抽出し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を留去することにより、目的化合物68.9gを白色固体として得た(収率100%)。
【0072】
(6)製造中間体2−(4−メトキシベンゼンスルフェニル)−4−メタンスルホニル安息香酸エチルの合成(中間体No.1−20)
2−ブロモ−4−メタンスルホニル安息香酸エチル4.00g(13.0mmol)、4−メトキシチオフェノール2.19g(15.6mmol)のDMF溶液に、炭酸カリウム2.69g(19.5mmol)を加え、80℃にて4時間加熱攪拌した。放冷後、5%塩酸水溶液を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1)にて精製し、目的化合物3.29gを白色固体として得た(収率69.1%)。
【0073】
(7)製造中間体2−(4−メトキシベンゼンスルフェニル)−4−メタンスルホニル安息香酸の合成(中間体No.2−20)
上記方法により得られた安息香酸エチルエステル誘導体3.29g(8.98mmol)にエタノール20ml、水10mlを加えた。これに水酸化カリウム1.01g(2.0eq.,18.0mmol)を室温で加え、50℃にて5時間攪拌した。溶媒を留去した後、5%希塩酸を加え酸性化し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去することにより、目的化合物3.03gを白色固体として得た(収率100%)。
【0074】
(8)4−[2−(4−メトキシベンゼンスルフェニル)−4−メタンスルホニルベンゾイル]−1−エチル−5−ヒドロキシピラゾールの合成(化合物No.4−20)
上記方法により得られた安息香酸誘導体0.60g(1.77mmol)を1,2−ジクロロエタン10mlに分散し、DMF0.01gを添加した。これに塩化チオニル0.16ml(1.2eq.,2.13mmol)を加え、2時間加熱還流した。過剰の塩化チオニルおよび溶媒を留去した後、残渣に1,2−ジクロロエタン10mlを加え、室温にて、1−エチル−5−ヒドロキシピラゾール0.22g(1.1eq.,1.95mmol)、及びトリエチルアミン0.39g(2.2 eq.,3.9mmol)を加えた。2時間室温で攪拌した後、触媒量のアセトンシアノヒドリンを加えた。室温にて一晩反応した後、3%炭酸カリウム水溶液を加え、酢酸エチルで洗浄し、水層を5%塩酸水溶液にて酸性化し、酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去することにより、4−[2−(4−メトキシベンゼンスルフェニル)−4−メタンスルホニルベンゾイル)]−1−エチル−5−ヒドロキシピラゾールの粗生成物0.39g(収率51%)を黄色固体として得た。
【0075】
(9)4−[2−(4−メトキシベンゼンスルフェニル)−4−メタンスルホニルベンゾイル]−5−n−プロパンスルホニルオキシ−1−エチル−ピラゾールの合成(化合物No.3−20)
上記で得たピラゾール誘導体0.39g(0.9mmol)に塩化メチレン10ml、水5mlを加え、触媒量の塩化ベンジルトリエチルアンモニウム、及び炭酸カリウム0.15g(1.3eq.,1.11mmol)を加え攪拌した。これに室温でn−プロパンスルホニルクロリド0.15g(1.2eq.,1.02mmol)を加え、攪拌した。3時間後攪拌を停止し、一晩放置した後、塩化メチレン層を分離した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=2/1)にて精製し、目的化合物0.29gを淡褐色樹脂状固体として得た(収率60%)。
【0076】
製造実施例10
(1)製造中間体2−フルオロ−4−トリフルオロメチル安息香酸エチルの合成2−フルオロ−4−トリフルオロメチル安息香酸クロリド10.0g(44.1mmol)にエタノール50mlを加え、80℃にて2時間攪拌した。エタノールを留去後、飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、飽和飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を留去することにより、目的化合物9.83gを無色透明オイルとして得た(収率94.3%)。
【0077】
(2)製造中間体2−フェノキシ−4−トリフルオロメチル安息香酸エチルの合成(中間体No.1−35)
2−フルオロ−4−トリフルオロメチル安息香酸エチル5.83g(24.7mmol)をDMF25mlに溶解し、これに炭酸カリウム4.97g(1.5eq.,36.0mmol)、及びフェノール2.79g(1.2eq.,29.6mmol)を加え、80℃で6時間加熱攪拌した。放冷後、5%塩酸水溶液加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。シリカゲルカラムクラマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=30/1)にて精製し、目的化合物7.7gを白色固体として得た(収率100%)。
【0078】
(3)2−フェノキシ−4−トリフルオロメチル安息香酸の合成(中間体No.2−35)
上記方法により得られた安息香酸エチルエステル誘導体7.92g(24.7mmol)にエタノール30ml、水20mlを加えた。これに水酸化カリウム2.77g(2.0eq.,49.4mmol)を室温で加え、室温にて5時間攪拌し、一晩放置した。溶媒を留去した後、5%希塩酸を加え酸性化し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去することにより、目的化合物6.50gを白色固体として得た。(収率93.2%)
【0079】
製造実施例11
(1)製造中間体2−フェニルチオ−4−トリフルオロメチル安息香酸エチルの合成(中間体No.1−36)
2−ニトロ−4−トリフルオロメチル安息香酸エチル5.03g(19.1mmol)をDMF25mlに溶解し、これに炭酸カリウム3.75g(1.42eq.,27.2mmol)、及びチオフェノール2.39g(1.13eq.,21.7mmol)を加え、80℃で6時間加熱攪拌した。放冷後、5%塩酸水溶液加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。シリカゲルカラムクラマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=30/1)にて精製し、目的化合物4.65gを無色透明液体として得た(収率75%)。
【0080】
(2)2−フェニルチオ−4−トリフルオロメチル安息香酸の合成(中間体No.2−36)
上記方法により得られた安息香酸エチルエステル誘導体4.68g(14.3mmol)にエタノール30ml、水20mlを加えた。これに水酸化カリウム1.61g(2.0eq.,28.7mmol)を室温で加え、室温にて5時間攪拌し、一晩放置し,さらに50℃にて30分攪拌した。溶媒を留去した後、5%希塩酸を加え酸性化し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去することにより、目的化合物4.01gを白色固体として得た(収率93.6%)。
【0081】
製造実施例12
(1)4−[2−(2−ピリジルオキシ)−4−メタンスルホニルベンゾイル]−1−エチル−5−ヒドロキシ−ピラゾールの合成(化合物No.4−29)
2−(2−ピリジルオキシ)−4−メタンスルホニル安息香酸0.33g(1.13mmol)、1−エチル−5−ヒドロキシピラゾール0.14g(1.1eq.,1.14mmol)をクロロホルム10mlに分散し、室温でジシクロヘキシルカルボジイミド0.30g(1.3eq.,1.46mmol)を加え、室温で3時間攪拌した。反応後、不溶物を濾去し、溶媒を留去し、得られた残渣に、アセトニトリル10ml、トリエチルアミン0.25g(2.2eq.,2.48mmol)、アセトンシアノヒドリン0.01g加え、室温にて3時間攪拌し、一晩放置した。溶媒を留去した後、残渣に3%炭酸カリウム水溶液を加え、酢酸エチルで洗浄した。水層に5%塩酸水溶液を加え酸性化した後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去することにより、目的化合物0.17gを褐色固体として得た。
【0082】
(2)4−[2−(2−ピリジルオキシ)−4−メタンスルホニルベンゾイル]−5−n−プロパンスルホニルオキシ−1−エチルピラゾールの合成(化合物No.3−29)
4−[2−(2−ピリジルオキシ)−4−メタンスルホニルベンゾイル]−1−エチル−5−ヒドロキシ−ピラゾール0.17g(0.44mmol)に塩化メチレン、水を加え、触媒量の塩化ベンジルトリエチルアンモニウム、及び炭酸カリウム0.08g(1.3eq.,0.57mmol)を加え攪拌した。これに室温でn−プロパンスルホニルクロリド0.88g(1.4eq.,6.2mmol)を加え、攪拌した。3時間後攪拌を停止し、一晩放置した後、塩化メチレンで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、エバポレーターで溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=1/1)にて精製し、目的化合物0.04gを淡褐色樹脂状固体として得た(収率18%)。
【0083】
製造実施例13
化合物No.3−2、3−3、4−2、及び4−3の合成
製造実施例1において、それぞれ対応するフェノール誘導体を用いて合成を行った。中間体及び目的物のH−NMRデータを表3及び4に示した。
【0084】
製造実施例14
化合物No.3−5〜3−11、4−5〜4−11、3−13〜3−16、及び4−13〜4−16の合成
製造実施例3において、それぞれ対応するフェノール誘導体を用いて合成を行った。中間体及び目的物のH−NMRデータを表3及び4に示した。
【0085】
製造実施例15
化合物No.5−1、6−1、7−1、8−1、9−1、10−1、及び7−2の合成
製造実施例1において1−エチル−5−ヒドロキシピラゾールの代わりに対応する5−ヒドロキシピラゾール誘導体を用いて同様の方法により合成を行った。化合物No.7−2の合成では、フェノールの代わりにo−クロロフェノールを用いた。目的物のH−NMRデータを表5〜10に示した。
【0086】
製造実施例16
中間体No.1−19、29〜34の合成
製造実施例1(1)においてフェノールの代わりに対応するチオールまたは、ヒドロキシ化合物を用いて同様に合成を行った。目的物のH−NMRデータを表1に示した。
【0087】
製造実施例17
中間体No.1−21〜1−23、1−25〜1−28の合成
製造実施例9(6)において4−メトキシチオフェノールの代わりに対応するチオフェノールを用い同様に合成を行った。目的物のH−NMRデータを表1に示した。
【0088】
製造実施例18
中間体No.2−19、2−21〜2−34の合成
製造実施例9(7)と同様に合成を行った。目的物のH−NMRデータを表2に示した。
【0089】
製造実施例19
化合物No.3−19、3−21〜3−28、3−30〜3−36の合成
製造実施例9(9)において、4−[2−(4−メトキシベンゼンスルフェニル)−4−メタンスルホニルベンゾイル]−1−エチル−5−ヒドロキシピラゾールの代わりに、それぞれ対応するピラゾール誘導体を用い合成を行った。目的物のH−NMRデータを表3に示した。
【0090】
製造実施例20
化合物No.4−19、4−21、4−32、4−35、4−36の合成
製造実施例9(8)において、それぞれ対応する安息香酸誘導体を用い合成を行った。目的物のH−NMRデータを表4に示した。
【0091】
製造実施例21
化合物No.5−19〜5−22、5−25、5−27、5−28、5−31、〜5−33、5−35、5−36の合成
製造実施例9(9)において、それぞれ対応するピラゾール誘導体を用いて同様の方法により合成を行った。目的物のH−NMRデータを表5に示した。
【0092】
製造実施例22
化合物No.6−19、6−21、6−32、6−35、6−36の合成
製造実施例9(8)において、2−(4−メトキシベンゼンスルフェニル)−4−メタンスルホニル安息香酸の代わりにそれぞれ対応する安息香酸誘導体、1−エチル−5−ヒドロキシピラゾールの代わりに1−メチル−5−ヒドロキシピラゾール誘導体を用いて同様の方法により合成を行った。目的物のH−NMRデータを表6に示した。
【0093】
製造実施例23
化合物No.7−19〜7−28、7−33、7−34の合成
製造実施例9(9)において、4−[2−(4−メトキシベンゼンスルフェニル)−4−メタンスルホニルベンゾイル]−1−エチル−5−ヒドロキシピラゾールの代わりに、それぞれ対応するピラゾール誘導体を用いて同様の方法により合成を行った。目的物のH−NMRデータを表7に示した。
【0094】
製造実施例24
化合物No.8−19、8−21の合成
製造実施例9(8)において、2−(4−メトキシベンゼンスルフェニル)−4−メタンスルホニル安息香酸の代わりにそれぞれ対応する安息香酸誘導体、1−エチル−5−ヒドロキシピラゾールの代わりに1,3−ジメチル−5−ヒドロキシピラゾール誘導体を用いて同様の方法により合成を行った。目的物のH−NMRデータを表8に示した。
【0095】
製造実施例25
化合物No.9−19〜9−29、9−31〜9−33、9−35、9−36の合成
製造実施例9(9)において、4−[2−(4−メトキシベンゼンスルフェニル)−4−メタンスルホニルベンゾイル]−1−エチル−5−ヒドロキシピラゾールの代わりに、それぞれ対応するピラゾール誘導体を用いて同様の方法により合成を行った。目的物のH−NMRデータを表9に示した。
【0096】
製造実施例26
化合物No.10−19、10−21、10−32、10−35、10−36の合成
製造実施例9(8)において、2−(4−メトキシベンゼンスルフェニル)−4−メタンスルホニル安息香酸の代わりにそれぞれ対応する安息香酸誘導体、1−エチル−5−ヒドロキシピラゾールの代わりに1−イソプロピル−5−ヒドロキシピラゾール誘導体を用いて同様の方法により合成を行った。目的物のH−NMRデータを表10に示した。
【0097】
製造実施例27
化合物No.10−29、10−33の合成
製造実施例12(1)において、2−(2−ピリジルオキシ)−4−メタンスルホニル安息香酸の代わりにそれぞれ対応する安息香酸誘導体、1−エチル−5−ヒドロキシピラゾールの代わりに1−イソプロピル−5−ヒドロキシピラゾール誘導体を用いて同様の方法により合成を行った。目的物のH−NMRデータを表10に示した。
【0098】
製造実施例28
化合物No.12−2〜12−5の合成
製造実施例8において、4−メタンスルホニル−2−フェノキシ安息香酸の代わりにそれぞれ対応する安息香酸誘導体を用いて同様の方法により合成を行った。目的物のH−NMRデータを表12に示した。
【0099】
【表1】
Figure 2004168682
【0100】
【表2】
Figure 2004168682
【0101】
【表3】
Figure 2004168682
【0102】
【表4】
Figure 2004168682
【0103】
【表5】
Figure 2004168682
【0104】
【表6】
Figure 2004168682
【0105】
【表7】
Figure 2004168682
【0106】
【表8】
Figure 2004168682
【0107】
【表9】
Figure 2004168682
【0108】
【表10】
Figure 2004168682
【0109】
【表11】
Figure 2004168682
【0110】
【表12】
Figure 2004168682
【0111】
【表13】
Figure 2004168682
【0112】
【表14】
Figure 2004168682
【0113】
【表15】
Figure 2004168682
【0114】
【表16】
Figure 2004168682
【0115】
【表17】
Figure 2004168682
【0116】
【表18】
Figure 2004168682
【0117】
【表19】
Figure 2004168682
【0118】
【表20】
Figure 2004168682
【0119】
【表21】
Figure 2004168682
【0120】
【表22】
Figure 2004168682
【0121】
【表23】
Figure 2004168682
【0122】
【表24】
Figure 2004168682
【0123】
【表25】
Figure 2004168682
【0124】
【表26】
Figure 2004168682
【0125】
【表27】
Figure 2004168682
【0126】
【表28】
Figure 2004168682
【0127】
除草剤実施例
(1)除草剤の調製
担体としてタルク(商品名:ジークライト、ジークライト工業(株)社製) 97重量部、界面活性剤としてアルキルアリールスルホン酸塩(商品名:ネオペレックス、花王アトラス(株)社製)1.5重量部およびノニオン型とアニオン型の界面活性剤(ソルポール800A、東邦化学工業(株)社製)1.5重量部を均一に粉砕混合して水和剤用担体を得た。
この水和剤用担体90重量部と本発明化合物各10重量部を均一に粉砕混合してそれぞれ除草剤を得た。比較除草剤については下記化合物(A)及び(B)を同様の方法で調製した。
【0128】
比較化合物(A):特開50−126830記載の化合物(市販剤)
【化16】
Figure 2004168682
【0129】
比較化合物(B):US4,230,481記載の化合物
【化17】
Figure 2004168682
【0130】
(2)除草効果、作物薬害の判定基準
除草効果および作物薬害の基準は、
残草重無処理比=(処理区の残草重/無処理区の残草重)×100
で求め、以下の生物試験で適用した。
【0131】
Figure 2004168682
【0132】
Figure 2004168682
【0133】
(3)生物試験(湛水雑草発生前処理試験)
1/5000アールのワグネルポットに、水田土壌を充填してその表層にノビエ、イヌホタルイ、タマガヤツリの種子を播種し、さらにこの土壌に2.5葉期の稲苗を移植した。次に、このポット内の湛水深を3cmとして、ポットを20〜25℃に温度を調節した温室内に入れ、温室内で育成した。稲苗を移植後3日目に、上記(1)で調製した除草剤を所定量ポットに加えて処理した。そして、薬剤の処理後30日目に、除草効果および稲への薬害を(2)の基準に従い判定した。結果を表13〜16に示す。
表13〜16の結果から、本発明のベンゾイル誘導体は、稲に薬害を及ぼさず、且つ重要水田雑草を低薬量で選択的に防除できることが確認された。これに対して比較化合物(A)および(B)は、明らかに除草効果が劣ることがわかる。
【0134】
【表29】
Figure 2004168682
【0135】
【表30】
Figure 2004168682
【0136】
【表31】
Figure 2004168682
【0137】
【表32】
Figure 2004168682
【0138】
(4)生物試験(湛水雑草発生後処理試験)
1/5000アールのワグネルポットに、水田土壌を充填してその表層にノビエの種子を播種し、さらにこの土壌に2.5葉期の稲苗を移植した。次に、このポット内の湛水深を3cmとして、ポットを20〜25℃に温度を調節した温室内に入れ、温室内で育成した。稲苗を移植後10日目に、上記(1)で調製した除草剤を所定量ポットに加えて処理した。そして、薬剤の処理後30日目に、除草効果および稲への薬害を(2)の基準に従い判定した。結果を表17に示す。表17の結果から、本発明のベンゾイル誘導体は、稲に薬害を及ぼさず、水田における重要雑草であるノビエを低薬量で選択的に防除できることが確認された。これに対して比較化合物(A)および(B)は、明らかに除草効果が劣ることがわかる。
【0139】
【表33】
Figure 2004168682
【0140】
【発明の効果】
本発明のベンゾイル誘導体は、湛水雑草発生前のみならず湛水雑草発生後においても、各種の水田雑草に対し、極めて高い除草活性を示すと同時に、作物に対する安全性も極めて高く、優れた作物−雑草間選択性を有している。本発明によって、除草剤化合物として優れた特性を有する新規なベンゾイル誘導体およびそれを有効成分とする除草剤が提供される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel benzoyl derivative and a herbicide containing the novel benzoyl derivative and / or a salt thereof as an active ingredient.
[0002]
2. Description of the Related Art
Herbicides are extremely important for labor saving in weed control and for improving the productivity of agricultural and horticultural crops.Therefore, research and development of herbicides has been actively carried out for many years, and a wide variety of chemicals are currently in practical use. ing. However, even today, there is a demand for the development of a new drug having more excellent herbicidal properties, particularly a drug capable of selectively controlling only the target weed at a low dose without causing phytotoxicity to cultivated crops. .
[0003]
In the paddy field, together with paddy rice, various weeds, such as annual grasses such as nobies, annual cyperaceae weeds such as stag beetles, annual broadleaf weeds such as oaks and kikasugusa, and perennial weeds such as urikawa, firefly, and spruce beetle can grow. It is known that it is very important for rice cultivation to effectively remove these weeds without causing phytotoxicity to paddy rice and with a small amount of spraying due to the problem of environmental pollution. In particular, since nobies are grass weeds, it is known that drugs with high herbicidal activity against nobies are liable to cause harm to paddy rice, show high herbicidal activity against nobies and are safe against rice The development of new drugs has become a particularly important issue.
[0004]
It is known that certain benzoyl derivatives have herbicidal activity (see, for example, Patent Documents 1 and 2). However, the pyrazole derivatives described in these publications have insufficient activity as herbicides for paddy field weeds and are not satisfactory.
[0005]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a benzoyl derivative capable of controlling a wide range of paddy weeds at a low dose without causing phytotoxicity to paddy rice and a herbicide using the same. To provide.
[0006]
[Patent Document 1]
JP-A-50-126830
[Patent Document 2]
US Patent No. 4,230,481
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the benzoyl derivative represented by the following general formula (I) can control a wide range of paddy weeds at a low dose without causing harm to rice. We have found and completed the present invention.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The benzoyl derivative of the present invention is a compound represented by the general formula (I).
[0009]
Embedded image
Figure 2004168682
[0010]
(Where X is O, S (O) l (L is an integer of 0 to 2) or NR 11 (R 11 Is hydrogen or C 1 ~ C 4 Alkyl)) and Y is S (O) n R 7 (R 7 Is C 1 ~ C 4 An alkyl group, n is an integer of 0 to 2) or R 8 (R 8 Is C 1 ~ C 4 A fluoroalkyl group), and Z is the following formula:
[0011]
Embedded image
Figure 2004168682
[0012]
(Where R 1 And R 2 Is hydrogen, C 1 ~ C 4 Alkyl group or C 3 ~ C 6 A cycloalkyl group; 3 ~ R 6 Is hydrogen or C 1 ~ C 4 An alkyl group, p is 0 or 1, Q is hydrogen, C 1 ~ C 8 An alkylsulfonyl group, or:
[0013]
Embedded image
Figure 2004168682
[0014]
(R 12 , R Thirteen Is hydrogen or C 1 ~ C 4 A substituent represented by alkyl group).
[0015]
In the general formula (I), A represents an optionally substituted phenyl group, an optionally substituted 5-membered heterocyclic residue, or an optionally substituted 6-membered heterocyclic ring represented by the following formula: Represents a residue.
[0016]
Embedded image
Figure 2004168682
Embedded image
Figure 2004168682
[0017]
(Where R 9 Is C 1 ~ C 4 Alkyl group, halogen, C 1 ~ C 4 Alkoxy group, C 1 ~ C 4 Haloalkyl group, hydroxy group, cyano group, nitro group, or C 1 ~ C 4 An alkylsulfonyloxy group; m represents an integer of 0 to 5; 10 Is hydrogen or C 1 ~ C 4 Shows an alkyl group. )
[0018]
In the general formula (I), Z is a 5-hydroxypyrazole derivative residue, that is, the general formula (Ia):
[0019]
Embedded image
Figure 2004168682
[0020]
The compound represented by can have the following three types of structures due to tautomerism, but the present invention includes all of these structures.
[0021]
Embedded image
Figure 2004168682
[0022]
In the general formula (I), Z is a cyclodiketone derivative residue, that is, the general formula (Ie):
[0023]
Embedded image
Figure 2004168682
[0024]
The compound represented by can have the following four types of structures due to tautomerism, but the present invention includes all of these structures.
[0025]
Embedded image
Figure 2004168682
[0026]
Further, the benzoyl derivative of the present invention, which is an acidic substance, can be easily converted to a salt by treating with a base, and this salt is also included in the present invention. Here, the base is not particularly limited as long as it is known, and examples thereof include organic bases such as amines and anilines and inorganic bases such as sodium compounds and potassium compounds. Examples of the amines include monoalkylamine, dialkylamine, and trialkylamine. The alkyl group in the alkylamines is usually C 1 ~ C 4 It is an alkyl group. Examples of anilines include aniline, monoalkylaniline, dialkylaniline and the like. Alkyl groups in alkylanilines are usually C 1 ~ C 4 It is an alkyl group. Examples of the sodium compound include sodium hydroxide and sodium carbonate, and examples of the potassium compound include potassium hydroxide and potassium carbonate.
[0027]
The herbicide of the present invention contains a benzoyl derivative represented by the formula (I) and / or a salt thereof as an active ingredient, and contains these compounds in a liquid carrier such as a solvent or a solid carrier such as a mineral fine powder. , And can be formulated and used in the form of wettable powders, emulsions, powders, granules and the like. A surfactant may be added in order to impart emulsifiability, dispersibility, spreadability and the like during formulation.
[0028]
When the herbicide of the present invention is used in the form of a wettable powder, usually 10 to 55% by weight of the benzoyl derivative and / or its salt of the present invention, 40 to 88% by weight of a solid carrier and 2 to 5% by weight of a surfactant are used. To prepare a composition, which may be used. When used in the form of an emulsion, the benzoyl derivative of the present invention and / or a salt thereof is usually compounded in a proportion of 20 to 50% by weight, 35 to 75% by weight of a solid carrier and 5 to 15% by weight of a surfactant. The composition may be prepared. On the other hand, when used in the form of a powder, the benzoyl derivative of the present invention and / or a salt thereof is usually blended at a ratio of 1 to 15% by weight, a solid carrier of 80 to 97% by weight, and a surfactant of 2 to 5% by weight. The composition may be prepared. Further, when used in the form of granules, the benzoyl derivative of the present invention and / or a salt thereof is usually blended in a proportion of 1 to 15% by weight, a solid carrier of 80 to 97% by weight and a surfactant of 2 to 5% by weight. The composition may be prepared by heating.
[0029]
Here, fine powder of a mineral substance is used as the solid carrier. Examples of the fine powder of the mineral substance include oxides such as diatomaceous earth and slaked lime, phosphates such as apatite, sulfates such as gypsum, talc and pyrolite. Ferrite, clay, kaolin, bentonite, acid clay, white carbon, quartz powder, silicates such as silica stone powder, and the like.
[0030]
Organic solvents are used as the solvent, and specific examples thereof include aromatic hydrocarbons such as benzene, toluene, and xylene; chlorinated hydrocarbons such as o-chlorotoluene, trichloroethane, and trichloroethylene; cyclohexanol, amyl alcohol, and ethylene glycol. Alcohols, ketones such as isophorone, cyclohexanone, cyclohexenylcyclohexanone, ethers such as butyl cellosolve, diethyl ether and methyl ethyl ether, esters such as isopropyl acetate, benzyl acetate and methyl phthalate, amides such as dimethylformamide and mixtures thereof. be able to.
[0031]
Further, as the surfactant, anionic type (fatty acid salt, alkyl sulfate, alkylbenzenesulfonic acid, dialkylsulfosuccinate, alkylphosphate, salt of naphthalenesulfonic acid formalin condensate, polyoxyethylene alkyl sulfate), nonionic type (Polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene alkyl ester, polyoxyethylene alkylamine, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester), cationic type or zwitterionic type (amino acid, betaine, etc.) Either can be used.
[0032]
The herbicide of the present invention may contain other herbicidally active ingredients as needed, together with the benzoyl derivative represented by the general formula (I) and / or a salt thereof as an active ingredient. Examples of such other herbicidal active ingredients include conventionally known herbicides such as phenoxy, diphenyl ether, triazine, urea, carbamate, thiol carbamate, acid anilide, pyrazole, phosphate, and sulfonylurea. And oxadiazones, etc., which can be appropriately selected and used from these herbicides. Further, the herbicide of the present invention can be mixed with an insecticide, a bactericide, a plant regulator, a fertilizer, and the like, if necessary.
[0033]
The application amount of the herbicide of the present invention is determined in consideration of various conditions such as the form of the preparation, the method of spraying, the type and amount of the weed, and the growth status. Usually, the total amount of the active ingredient is 0.001 to 3.0 kg / ha, preferably 0.01 to 0.3 kg / ha, and those skilled in the art can easily determine the effective amount for obtaining the necessary herbicidal effect. You can decide.
[0034]
The benzoyl derivative of the present invention can be used as an active ingredient of a paddy herbicide in any of soil treatment and foliage treatment. As paddy weeds (Paddy weeds), for example, Amodaka (Alsima canaliculatum), Omodaka (Sagittaria trifolia), Urikawa (Sagittaria pygmaea), and Aisampiacea cermica (Aisampiacea) are exemplified by paddy weeds. , Fireflies (Sirpus juncoides), Kuroguwai (Eleocharis kuroguwai) and the like, Cyperaceae weeds, Azena (Lindenia pyxidaria) and Sesame scrophulariaceae (S. scrophulariaceae) such as Lindena pyxidaria, etc. Agarialis and the like, Potendeliaaceae weeds, PoIgeton distinctus, and the like, Potamogetonaceae weeds such as Welsh white (PoIgeton distinctus), weeds (Rotala ind. Gramineae weeds represented by Echinochloa crus-galli and the like.
[0035]
The benzoyl derivative represented by the formula (I) of the present invention is produced by the following method.
[0036]
Embedded image
Figure 2004168682
[0037]
In the above reaction formula, R 1 ~ R 6 , X, Y, and A are the same as described above, and Hal represents a halogen atom.
[0038]
That is, the compound represented by the general formula (III) is reacted with a halogenating agent to obtain a compound represented by the general formula (IV), and then the compound represented by the general formula (Va) or (Ve) To give a compound represented by the general formula (VIa) or (VIe). Subsequently, this compound is subjected to a rearrangement reaction to obtain a benzoyl derivative represented by the general formula (Ia) or (Ie). The benzoyl derivative represented by the general formula (Id) can be reacted with a compound represented by the general formula Q-Hal (VII) to obtain a benzoyl derivative represented by the general formula (Ib). In addition, as a method for obtaining a compound represented by the general formula (VIa) or (VIe), a compound represented by the general formula (III) is prepared by adding a compound represented by the general formula (III) in the presence of a dehydrating agent such as dicyclohexylcarbodiimide (hereinafter, referred to as “DCC”). It can also be obtained by reacting with a compound represented by the general formula (Va) or (Ve).
[0039]
Hereinafter, the above manufacturing method will be described in detail for each step.
Step (a) is a step of reacting a compound of the general formula (III) with a halogenating agent (thionyl chloride, phosphorus oxychloride, etc.) to obtain a compound of the general formula (IV). This step (a) is preferably carried out using a halogenating agent in an equimolar amount or more with respect to the compound of the general formula (III). This reaction may be carried out by diluting with an inert solvent (methylene chloride, chloroform, chlorobenzene, dichlorobenzene, etc.) or may be carried out without a solvent. Thionyl chloride as a halogenating agent may be used in excess as a solvent. The reaction temperature is not particularly limited, but is preferably a temperature from 0 ° C to the boiling point of the solvent, and particularly preferably 60 ° C or near. If necessary, DMF or the like can be used as a catalyst.
[0040]
Step (b) comprises reacting the compound of general formula (IV) obtained in step (a) with a compound of general formula (Va) or (Ve) to obtain a compound of general formula (VIa) or (VIe) It is a process. In the step (b), the molar ratio of the compound of the general formula (IV) to the compound of the general formula (Va) or (Ve) is set to 1: 1 to 1: 3, and a solvent inert to the reaction, for example, dioxane, acetonitrile It is preferably carried out in a solvent such as benzene, toluene, chloroform, methylene chloride, 1,2-dichloroethane and the like. The reaction temperature is preferably from 0 to 60C, particularly preferably from 0C to room temperature.
[0041]
Compound (VIa) or (VIe) can also be obtained by using compound (III) and compound (Va) or (Ve) with a dehydrating agent such as DCC (step (d)). The reaction solvent used in the condensation reaction is not particularly limited as long as it is a solvent inert to the reaction, but is preferably acetonitrile, tertiary amyl alcohol, or the like. The reaction temperature is not particularly limited as long as it is in the range of 0 ° C. to the boiling point of the solvent, but room temperature is usually preferred. As the dehydrating agent, 1,1-carbonyldiimidazole (CDI) and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide (EDC) can be used in addition to the above-described DCC. The amount of the dehydrating agent to be added is 1.0 to 3.0 equivalents, preferably 1.0 to 1.5 equivalents, relative to the compound. Compound (III): Compound (Va) or (Ve) is in a molar ratio of 1: 1 to 1: 3, preferably 1: 1 to 1: 1.5. The reaction time of the condensation reaction between compound (III) and compound (Va) or (Ve) is in the range of 1 to 48 hours, but the reaction is usually completed in about 8 hours.
[0042]
In the step (c), a compound of the general formula (VIa) or (VIe) obtained in the step (b) or the step (d) is subjected to a rearrangement reaction to obtain a benzoyl derivative of the general formula (Ia) or (Ie). It is. This step (c) is preferably performed in a solvent inert to the reaction, for example, a solvent such as methylene chloride, 1,2-dichloroethane, toluene, acetonitrile, N, N-dimethylformamide, and ethyl acetate. Particularly preferred is acetonitrile. In the step (c), a suitable base (sodium carbonate, potassium carbonate, triethylamine, pyridine and the like) is used in an amount of 1 to 4 times, preferably 1 to 2 times the compound of the general formula (VIa) or (VIe). The reaction is carried out using an equal amount. At that time, the reaction proceeds smoothly by causing a compound capable of generating hydrogen cyanide or a cyanide anion in the reaction system, that is, a so-called “cyanide source” to coexist. Examples of the cyanide source include metal cyanides such as sodium cyanide and potassium cyanide, and lower alkyl (C) such as acetone cyanohydrin and methyl isopropyl ketone cyanohydrin. 3 ~ C 5 ) Ketone cyanohydrin compounds. When a metal cyanide is used, the reaction can proceed smoothly by adding a phase transfer catalyst such as a crown ether during the reaction. The amount of the cyanide source used in the reaction is 0.01 to 0.5 molar equivalent, preferably 0.05 to 0.2 molar equivalent, based on the compound of the general formula (VIa) or (VIe). The reaction temperature is preferably from 0 to 80 ° C, particularly preferably from 20 to 40 ° C.
[0043]
In the step (e), the compound (Ia) obtained in the steps (a) to (c) is subjected to Q-Hal (VII) (Q represents a compound as defined above in the presence of a base, and Hal represents a halogen atom. In an inert solvent to produce a benzoyl derivative (Id) in which -OH of the formula (Ia) is substituted with -OQ. In this reaction, it is generally preferable to use 1 to 3 equivalents of compound (VII) based on benzoyl derivative (Ia). Further, in order to capture hydrogen halide by-produced by the reaction, it is preferable to use a base such as sodium carbonate, potassium carbonate, triethylamine, pyridine or the like in a molar ratio or more with respect to the formula (Ia). The reaction temperature is preferably in the range from room temperature to the boiling point of the solvent used. Examples of the solvent used in the reaction include aromatic hydrocarbons such as benzene and toluene, ethers such as diethyl ether, ketones such as methyl ethyl ketone, halogenated hydrocarbons such as dichloromethane, chloroform, dichloroethane, chlorobenzene and dichlorobenzene, and acetonitrile. Can be A two-phase solvent composed of these solvents and water can also be used. In this case, favorable results can be obtained by adding a phase transfer catalyst such as crown ether or benzyltriethylammonium chloride to the reaction system. Note that the step (c) and the step (e) can be sequentially performed in a one-pot manner.
[0044]
After the completion of the reaction, liquid separation is carried out according to a conventional method, the target substance is extracted from the aqueous layer with an organic solvent such as dichloromethane, the organic layer is dehydrated, and the solvent is distilled off to obtain the target benzoyl derivative (Id). Can be isolated.
[0045]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
[0046]
Manufacturing Example 1
Synthesis of 4- (4-methanesulfonyl-2-phenoxybenzoyl) -1-ethyl-5-hydroxypyrazole (Compound No. 4-1)
(1) Synthesis of production intermediate ethyl 4-methanesulfonyl-2-phenoxybenzoate (Intermediate No. 1-1)
In 10 ml of DMF, 2 g (7.3 mmol) of ethyl 4-methanesulfonyl-2-nitrobenzoate, 0.83 g (1.2 eq., 8.8 mmol) of phenol, and 1.52 g (1.5 eq., 11 mmol) of potassium carbonate were added. In addition, the mixture was heated and stirred at 85 ° C. for 5 hours. After cooling, water and ethyl acetate were added, and the organic layer was extracted. The organic layer was washed twice with water, washed with saturated saline, and dried over anhydrous sodium sulfate. After evaporating the solvent with an evaporator, the residue was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 2/1) to obtain 1.91 g of the desired compound as a white solid (yield: 82%).
[0047]
(2) Synthesis of Production Intermediate 4-Methanesulfonyl-2-phenoxybenzoic Acid (Intermediate No. 2-1)
Ethanol and water were added to 1.9 g (5.9 mmol) of the ethyl benzoate derivative obtained by the above method, and a small amount of methylene chloride was further added and dissolved. To this was added 0.4 g (1.2 eq., 7.1 mmol) of potassium hydroxide at room temperature, and the mixture was stirred for 1 hour. After most of the solvent was distilled off using an evaporator, water and methylene chloride were added to the residue, and the aqueous layer was separated. The aqueous layer was acidified to pH = 1 with 5% diluted hydrochloric acid, and then extracted with ethyl acetate. The organic layer was washed twice with water, washed with saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off using an evaporator to obtain 1.58 g of the target compound as a white solid (yield: 91%).
[0048]
(3) Synthesis of 4- (4-methanesulfonyl-2-phenoxybenzoyl) -5-n-propanesulfonyloxy-1-ethylpyrazole (Compound No. 3-1)
1.4 g (4.8 mmol) of the benzoic acid derivative obtained by the above method was dispersed in 15 ml of 1,2-dichloroethane, and several drops of DMF were added. 0.86 g (1.5 eq., 7.2 mmol) of thionyl chloride was added thereto, and the mixture was heated under reflux for 1 hour. After distilling off the solvent using an evaporator, the residue was dissolved in 15 ml of acetonitrile, and 0.59 g (1.1 eq., 5.3 mmol) of 1-ethyl-5-hydroxypyrazole and 0.58 g of triethylamine (0.58 g) were added under ice-cooling. 1.2 eq., 5.7 mmol). After stirring at room temperature for 2 hours, 0.58 g (1.2 eq., 5.7 mmol) of triethylamine and a catalytic amount of acetone cyanohydrin were further added. After reacting overnight at room temperature, the solvent was distilled off using an evaporator. After adding water and methylene chloride to the residue and separating the aqueous layer, the aqueous layer was acidified to pH = 1 with 5% dilute hydrochloric acid and extracted with ethyl acetate. The organic layer was washed twice with water, washed with saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off using an evaporator to obtain 1.7 g of a crude product of 4- (4-methanesulfonyl-2-phenoxybenzoyl) -1-ethyl-5-hydroxypyrazole (Compound No. 4-1) as a yellow solid. As obtained.
[0049]
To 1.7 g (4.4 mmol) of the obtained yellow solid are added and dissolved methylene chloride and water, and catalytic amounts of benzyltriethylammonium chloride and 0.62 g (1.0 eq., 4.4 mmol) of potassium carbonate are added. Stirred. 0.88 g (1.4 eq., 6.2 mmol) of n-propanesulfonyl chloride was added thereto at room temperature, and the mixture was vigorously stirred. After 3 hours, stirring was stopped and the mixture was allowed to stand overnight, after which the methylene chloride layer was separated. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off using an evaporator. The residue was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 2/1) to obtain 0.95 g of the target compound as a light brown resinous solid (40% yield).
[0050]
(4) Synthesis of 4- (4-methanesulfonyl-2-phenoxybenzoyl) -1-ethyl-5-hydroxypyrazole (Compound No. 4-1)
Ethanol and water were added to 0.5 g (1.1 mmol) of the sulfonic acid ester derivative obtained by the above method, and a small amount of methylene chloride was further added and dissolved. To this, 0.07 g (1.2 eq., 1.2 mmol) of potassium hydroxide was added at room temperature, and the mixture was stirred for 1 hour. After most of the solvent was distilled off using an evaporator, water and methylene chloride were added to the residue, and the aqueous layer was separated. The aqueous layer was acidified to pH = 1 with 5% diluted hydrochloric acid, and then extracted with ethyl acetate. The organic layer was washed twice with water, washed with saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off using an evaporator to obtain 0.39 g of the target compound as a white solid (yield: 99%).
[0051]
Production Example 2
Synthesis of production intermediate ethyl 4-methanesulfonyl-2-phenoxybenzoate (intermediate No. 1-1 production alternative method)
(1) Synthesis of production intermediate ethyl 4-chloro-2-phenoxybenzoate
3.75 g (15 mmol) of 4-chloro-2-phenoxybenzoic acid synthesized according to a method known in the literature (for example, Synth. Commun., 25, 7, pp. 1077-1084 (1995)) was added to 20 ml of 1,2-dichloroethane. Dispersed and a few drops of DMF were added. 2.69 g (1.5 eq., 22.6 mmol) of thionyl chloride was added thereto, and the mixture was heated under reflux for 1 hour. After distilling off the solvent with an evaporator, the residue was dissolved by adding 20 ml of methylene chloride, and 20 ml of ethanol was further added dropwise. After stirring at room temperature for 5 hours, the solvent was distilled off with an evaporator. Water and ethyl acetate were added to the residue, and the organic layer was separated. The organic layer was washed twice with a 5% aqueous potassium carbonate solution and water twice, and finally with a saturated saline solution. The organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off using an evaporator to obtain 3.94 g of the desired compound as a brown oil (yield 94%).
1 H-NMR data (CDCl 3 , Internal standard TMS)
1.23 (3H, t), 4.27 (2H, q), 6.75-8.20 (8H, m)
[0052]
(2) Synthesis of production intermediate ethyl 4-methylthio-2-phenoxybenzoate
3.44 g (12 mmol) of ethyl 4-chloro-2-phenoxybenzoate was dissolved in 10 ml of DMF, and 1.73 g (1.1 eq., 13 mmol) of 70% sodium hydrosulfide was added thereto, followed by heating and stirring at 80 ° C. for 4 hours. did. After cooling, the mixture was further cooled and stirred in an ice bath, and 8.83 g (5 eq., 62 mmol) of methyl iodide was added. After stirring at room temperature for another 2 hours, stirring was stopped and the mixture was left overnight.
After one night, water and ethyl acetate were added to the reaction product, and the organic layer was separated. The organic layer was washed twice with water, washed with saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off using an evaporator to obtain 3.77 g of a crude product of the target compound as a brown oil.
1 H-NMR data (CDCl 3 , Internal standard TMS)
1.20 (3H, t), 2.43 (3H, s), 4.24 (2H, q), 6.75-7.50 (7H, m), 7.88 (1H, d)
[0053]
(3) Synthesis of production intermediate ethyl 4-methanesulfonyl-2-phenoxybenzoate (Intermediate No. 1-1)
3.77 g of ethyl 4-methylthio-2-phenoxybenzoate obtained by the above method was dissolved in 15 ml of acetic acid, and 3.26 g (2.2 eq., 28.7 mmol) of 30% aqueous hydrogen peroxide was added. Added at room temperature. After heating and stirring at 70 ° C. for 8 hours, the mixture was allowed to cool, water and ethyl acetate were added to the reaction product, and the organic layer was separated. The organic layer was washed three times with water, washed with saturated saline, dried over anhydrous sodium sulfate, and the solvent was distilled off with an evaporator. The residual brown oil was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 1/1) to obtain 1.98 g of the desired compound as an orange solid (yield: 52%).
1 H-NMR data (CDCl 3 , Internal standard TMS)
1.28 (3H, t), 3.02 (3H, s), 4.34 (2H, q), 6.90-8.20 (8H, m)
[0054]
Manufacturing Example 3
Synthesis of 4- [4-methanesulfonyl-2- (3-methoxyphenoxy) benzoyl] -1-ethyl-5-hydroxypyrazole (Compound No. 4-4)
(1) Synthesis of 4- [4-methanesulfonyl-2- (3-methoxyphenoxy) benzoyl] -5-n-propanesulfonyloxy-1-ethylpyrazole (Compound No. 3-4)
0.9 g (2.8 mmol) of the benzoic acid derivative obtained according to Production Example 1 was dispersed in 10 ml of 1,2-dichloroethane, and several drops of DMF were added. 0.50 g (1.5 eq., 4.2 mmol) of thionyl chloride was added thereto, and the mixture was heated under reflux for 1 hour. After distilling off the solvent with an evaporator, the residue was dissolved in 10 ml of acetonitrile, and 0.34 g of 1-ethyl-5-hydroxypyrazole (1.1 eq., 3.0 mmol) and 0.34 g of triethylamine were added under ice-cooling. 1.2 eq., 3.4 mmol). After stirring at room temperature for 2 hours, 0.34 g (1.2 eq., 3.4 mmol) of triethylamine and a catalytic amount of acetone cyanohydrin were further added. After reacting at room temperature overnight, 0.56 g (1.4 eq., 3.9 mmol) of 1-propanesulfonyl chloride was further added, and the mixture was stirred for 1 hour.
After most of the solvent was distilled off by an evaporator, water and ethyl acetate were added to the residue, and the organic layer was separated. The organic layer was washed twice with water, washed with saturated saline, dried over anhydrous sodium sulfate, and the solvent was distilled off with an evaporator. The residual brown oil was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 3/2) to obtain 0.57 g of the desired compound as an orange oil (yield 39%).
[0055]
(2) Synthesis of 4- [4-methanesulfonyl-2- (3-methoxyphenoxy) benzoyl] -1-ethyl-5-hydroxypyrazole (Compound No. 4-4)
Using 0.45 g (0.86 mmol) of the sulfonic acid ester derivative obtained by the above method, 0.29 g of the target compound was obtained as an orange oil in the same manner as in Production Example 1 (4) (83% yield). ).
[0056]
Production Example 4
Synthesis of 4- (2-anilino-4-methanesulfonylbenzoyl) -5-n-propanesulfonyloxy-1-ethylpyrazole (Compound No. 3-17)
(1) Synthesis of production intermediate ethyl 2-chloro-4-methanesulfonylbenzoate
5 g (21 mmol) of commercially available 2-chloro-4-methanesulfonylbenzoic acid was dispersed in 25 ml of 1,2-dichloroethane, and several drops of DMF were added. To this was added 3.8 g (1.5 eq., 32 mmol) of thionyl chloride, and the mixture was heated under reflux for 1 hour. After the solvent was distilled off using an evaporator, 25 ml of methylene chloride was added to the residue to dissolve it, and 25 ml of ethanol was further added dropwise. After stirring at room temperature for 5 hours, the solvent was distilled off with an evaporator. Water and ethyl acetate were added to the residue, and the organic layer was separated. The organic layer was washed twice with a 5% aqueous potassium carbonate solution and water twice, and finally with a saturated saline solution. The organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off using an evaporator to obtain 5.6 g of the desired compound as a white solid (yield 100%).
1 H-NMR data (CDCl 3 , Internal standard TMS)
1.43 (3H, t), 3.09 (3H, s), 4.45 (2H, q), 7.50-8.40 (3H, m)
[0057]
(2) Synthesis of production intermediate ethyl 2-anilino-4-methanesulfonylbenzoate (Intermediate No. 1-17)
Ethyl 2-chloro-4-methanesulfonylbenzoate 2 g (7.6 mmol), tris (dibenzylideneacetone) dipalladium 0.16 g (0.02 eq., 0.17 mmol), 2- (dicyclohexylphosphino) biphenyl 0.1 g. 16 g (0.06 eq., 0.46 mmol) and 2.28 g (1.4 eq., 11 mmol) of tripotassium phosphate were weighed into a 100 ml three-necked flask, and were replaced with argon gas. Subsequently, 8 ml of dehydrated 1,2-dimethoxyethane and 0.84 g (1.2 eq., 9.0 mmol) of aniline were added, and the mixture was heated and stirred at 100 ° C. for 9 hours under an argon atmosphere. After cooling, the reaction solution was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 3/2) to obtain 1.48 g of the target compound as a brown oil (yield: 61%).
[0058]
(3) Synthesis of 4- (2-anilino-4-methanesulfonylbenzoyl) -5-n-propanesulfonyloxy-1-ethylpyrazole (Compound No. 3-17) 2 g of benzoate derivative obtained by the above method Was used and 70 mg of the target compound was obtained in the same manner as in Production Examples 1 (2) and (3) (total yield: 3%).
[0059]
Production Example 5
Synthesis of 4- (4-methanesulfonyl-2-phenylthiobenzoyl) -1-ethyl-5-hydroxypyrazole (Compound No. 4-18)
(1) Synthesis of production intermediate ethyl 4-methanesulfonyl-2-phenylthiobenzoate (Intermediate No. 1-18)
1.3 g (4.9 mmol) of ethyl 2-chloro-4-methanesulfonylbenzoate was dissolved in 5 ml of DMF, and 1.37 g (2.0 eq., 9.9 mmol) of potassium carbonate and 0.6 g of thiophenol ( 1.1 eq., 5.4 mmol), and the mixture was heated and stirred at 100 ° C. for 7 hours. After cooling, water and ethyl acetate were added, and the organic layer was separated. The organic layer was washed three times with water, washed with saturated saline, dried over anhydrous sodium sulfate, and the solvent was distilled off with an evaporator. Ethanol was added to the residue, and the mixture was filtered to obtain 0.98 g of the desired compound as white crystals (yield 59%).
[0060]
(2) Synthesis of Production Intermediate 4-Methanesulfonyl-2-phenylthiobenzoic Acid (Intermediate No. 2-18)
Ethanol and water were added to 1.26 g (3.7 mmol) of the ethyl benzoate derivative obtained by the above method, and a small amount of methylene chloride was further added and dissolved. To this, 0.19 g (1.2 eq., 4.5 mmol) of lithium hydroxide monohydrate was added at room temperature, and the mixture was stirred for 3 hours. After leaving overnight, most of the solvent was distilled off using an evaporator, water and methylene chloride were added to the residue, and the aqueous layer was separated. The aqueous layer was acidified to pH = 1 with 5% diluted hydrochloric acid, and then extracted with ethyl acetate. The organic layer was washed twice with water, washed with saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off using an evaporator to obtain 1.12 g of the target compound as a white solid (yield 97%).
[0061]
(3) Synthesis of 4- (4-methanesulfonyl-2-phenylthiobenzoyl) -1-ethyl-5-n-propanesulfonyloxypyrazole (Compound No. 3-18)
Using 0.7 g of the benzoic acid derivative obtained by the above method, 0.78 g of the target compound was obtained in the same manner as in Production Example 1 (3) (yield: 68%).
[0062]
(4) Synthesis of 4- (4-methanesulfonyl-2-phenylthiobenzoyl) -1-ethyl-5-hydroxypyrazole (Compound No. 4-18)
Ethanol and water are added to 0.29 g (0.57 mmol) of 4- (4-methanesulfonyl-2-phenylthiobenzoyl) -1-ethyl-5-n-propanesulfonyloxypyrazole obtained by the above method, and a small amount is further added. Was added and dissolved. To this, 0.03 g (1.2 eq., 0.71 mmol) of lithium hydroxide monohydrate was added at room temperature, and the mixture was stirred for 3 hours. After leaving overnight, most of the solvent was distilled off using an evaporator, water and methylene chloride were added to the residue, and the aqueous layer was separated. The aqueous layer was acidified to pH = 1 with 5% diluted hydrochloric acid, and then extracted with ethyl acetate. The organic layer was washed twice with water, washed with saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off using an evaporator to obtain 0.19 g of the target compound as a white solid (yield: 86%).
[0063]
Manufacturing Example 6
Synthesis of 4- (4-methanesulfonyl-2-phenoxybenzoyl) -5-propargyloxy-1-ethylpyrazole (Compound No. 11-1)
0.5 g (1.3 mmol) of a crude product of 4- (4-methanesulfonyl-2-phenoxybenzoyl) -1-ethyl-5-hydroxypyrazole obtained in Production Example 1 (3) was dissolved in 3 ml of DMF. , A catalytic amount of tetra-n-butylammonium iodide, potassium carbonate 0.36 g (2.0 eq., 2.6 mmol) and propargyl bromide 0.31 g (2.0 eq., 2.6 mmol) were added at room temperature. Was. After vigorous stirring at room temperature for 7 hours, water and ethyl acetate were added, and the organic layer was separated. The organic layer was washed three times with water, washed with saturated saline, dried over anhydrous sodium sulfate, and the solvent was distilled off with an evaporator. The residue was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 1/1) to obtain 0.21 g of the target compound (yield 39%).
[0064]
Manufacturing Example 7
Synthesis of 4- [2- (4-cyanophenoxy) -4-methanesulfonylbenzoyl] -1-ethyl-5-hydroxypyrazole (Compound No. 4-12)
(1) Synthesis of 4- [2- (4-cyanophenoxy) -4-methanesulfonylbenzoyl] -5-n-propanesulfonyloxy-1-ethylpyrazole (Compound No. 3-13)
1.4 g (4.4 mmol) of 2- (4-cyanophenoxy) -4-methanesulfonylbenzoic acid synthesized according to Production Example 1 (1) and (2), 0.59 g of 1-ethyl-5-hydroxypyrazole ( 1.1 eq., 5.3 mmol) was dispersed in 5 ml of t-amyl alcohol, and 1.09 g (1.1 eq., 5.3 mmol) of dicyclohexylcarbodiimide was added at room temperature. After irradiation with ultrasonic waves at room temperature for 3 hours, 0.46 g (0.75 eq., 3.3 mmol) of potassium carbonate was added, and the mixture was heated and stirred at 70 ° C. for 5 hours.
After most of the solvent was distilled off using an evaporator, water and ethyl acetate were added to the residue, and the aqueous layer was separated (insoluble matter was removed by filtration). The aqueous layer was acidified to pH = 1 with 5% diluted hydrochloric acid, and then extracted with ethyl acetate. The organic layer was washed twice with water, washed with saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off using an evaporator to obtain 1.25 g of a crude product of 4- [2- (4-cyanophenoxy) -4-methanesulfonylbenzoyl] -1-ethyl-5-hydroxypyrazole as a brown solid. .
The obtained solid was reacted with n-propanesulfonyl chloride in the same manner as in Production Example 1 (3) to obtain 1.0 g of the desired compound as an orange resinous material (44% yield). .
[0065]
(2) Synthesis of 4- [2- (4-cyanophenoxy) -4-methanesulfonylbenzoyl] -1-ethyl-5-hydroxypyrazole
Production using 0.8 g (1.5 mmol) of 4- [2- (4-cyanophenoxy) -4-methanesulfonylbenzoyl] -5-n-propanesulfonyloxy-1-ethylpyrazole obtained by the above method. Hydrolysis was carried out in the same manner as in Example 5 (4) to obtain 0.4 g of the desired compound as a beige solid (63% yield).
[0066]
Production Example 8
Synthesis of 2- (4-methanesulfonyl-2-phenoxybenzoyl) cyclohexane-1,3-dione (Compound No. 12-1)
0.85 g (2.9 mmol) of the benzoic acid derivative obtained in Production Example 1 (2) was dispersed in 10 ml of 1,2-dichloroethane, and several drops of DMF were added. 0.52 g (1.5 eq., 4.4 mmol) of thionyl chloride was added thereto, and the mixture was heated under reflux for 1 hour. After distilling off the solvent with an evaporator, the residue was dissolved in 10 ml of acetonitrile, and 0.36 g (1.1 eq., 3.2 mmol) of 1,3-cyclohexanedione and 0.36 g (1. 2 eq., 3.6 mmol). After stirring at room temperature for 2 hours, 0.36 g (1.2 eq., 3.6 mmol) of triethylamine and a catalytic amount of acetone cyanohydrin were further added. After reacting overnight at room temperature, the solvent was distilled off using an evaporator. After adding water and methylene chloride to the residue and separating the aqueous layer, the aqueous layer was acidified to pH = 1 with 5% dilute hydrochloric acid and extracted with ethyl acetate. The organic layer was washed twice with water, washed with saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off using an evaporator to obtain 1.08 g of the desired compound as a beige solid (96% yield).
[0067]
Production Example 9
Synthesis of 4- [2- (4-methoxybenzenesulfenyl) -4-methanesulfonylbenzoyl] -5-n-propanesulfonyloxy-1-ethyl-pyrazole (Compound No. 3-20)
(1) Production intermediate 1-methyl-4-methanesulfenylbenzene
To a solution of 101.13 g (814 mmol) of 4-toluenethiol in 240 ml of acetone, 144.4 g (1047 mmol) of potassium carbonate and 137.1 g (1.19 eq., 966 mmol) of methyl iodide were added, and the mixture was stirred with heating under reflux for 8 hours. . After cooling, insolubles were filtered off, and acetone was distilled off under reduced pressure. The residue was extracted with 300 ml of hexane, washed with saturated sodium hydrogen carbonate and saturated saline, dried over anhydrous sodium sulfate, and the solvent was distilled off to obtain a crude product of 122.84 g of the desired compound.
[0068]
(2) Synthesis of production intermediate 1-methyl-4-methanesulfonylbenzene
100 ml of acetic acid was added to 122.84 g (814 mmol) of the crude 1-methyl-4-methanesulfenylbenzene obtained above, and the mixture was heated to 90 ° C. Next, 230.6 g (2035 mmol) of 30% hydrogen peroxide was added dropwise over 1 hour, and the mixture was further reacted at 90 ° C to 100 ° C for 4 hours. After cooling to room temperature, the precipitated crystals were collected by filtration and washed with water. Ethyl acetate and sodium bisulfite were added to the filtrate, and the organic layer was separated. The organic layer was washed with brine, dried over anhydrous sodium sulfate, and the solvent was distilled off. 119.8 g were obtained together with the above crystals (86.5% yield from thiol).
[0069]
(3) Synthesis of production intermediate 1-methyl-2-bromo-4-methanesulfonylbenzene
15.43 g (276.4 mmol) of iron powder was added to 94.1 g (552.8 mmol) of 1-methyl-4-methanesulfonylbenzene obtained above, and the mixture was heated and stirred at 100 ° C. Then, 31.2 ml (608.1 mmol) of bromine was gradually added dropwise over 1 hour, and reacted at 100 ° C. for 2.5 hours. Further, 31.2 ml (608.1 mmol) of bromine was added dropwise over 30 minutes and reacted at 100 ° C. for 2 hours. After cooling, ethyl acetate, water and sodium bisulfite were added, and the insolubles were removed by celite filtration. The filtrate was extracted with ethyl acetate, washed with saturated saline, and dried over anhydrous sodium sulfate to obtain 137.5 g of the target compound (yield 99.8%).
[0070]
(4) Synthesis of production intermediate 2-bromo-4-methanesulfonylbenzoic acid
1400 ml of water was added to 70.0 g (281 mmol) of 1-methyl-2-bromo-4-methanesulfonylbenzene obtained above, and the mixture was heated to 95 to 100 ° C., and 111.0 g (702.5 mmol) of potassium permanganate was added. The mixture was gradually added over 30 minutes and stirred for 1.5 hours. Further, 45.5 g (288.0 mmol) of potassium permanganate was gradually added over 30 minutes, followed by stirring for 4 hours. Ethyl acetate was added to the reaction mixture, and insolubles were removed by filtration. The aqueous layer of the filtrate was separated, acidified by adding concentrated hydrochloric acid, and the precipitated crystals were collected by filtration and washed with water to obtain 56.64 g of the desired compound as a white solid (yield: 72.2%).
[0071]
(5) Synthesis of production intermediate ethyl 2-bromo-4-methanesulfonylbenzoate
62.59 g (224.2 mmol) of 2-bromo-4-methanesulfonylbenzoic acid was dispersed in 250 ml of 1,2-dichloroethane, and 0.82 g (11.2 mmol) of DMF was added. 21.26 ml (1.3 eq., 291.5 mmol) of thionyl chloride was added thereto, and the mixture was heated under reflux for 2 hours. After evaporating the solvent with an evaporator, 200 ml of ethanol was added, and the mixture was heated and stirred at 80 ° C. for 30 minutes. The solvent was distilled off, the residue was extracted with ethyl acetate, and washed with a saturated aqueous solution of sodium bicarbonate and a saturated saline solution. The organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off, thereby obtaining 68.9 g of the target compound as a white solid (yield: 100%).
[0072]
(6) Synthesis of production intermediate ethyl 2- (4-methoxybenzenesulfenyl) -4-methanesulfonylbenzoate (Intermediate No. 1-20)
2.69 g (19.5 mmol) of potassium carbonate was added to a DMF solution of 4.00 g (13.0 mmol) of ethyl 2-bromo-4-methanesulfonylbenzoate and 2.19 g (15.6 mmol) of 4-methoxythiophenol. At 80 ° C. for 4 hours. After cooling, a 5% aqueous hydrochloric acid solution was added, and the mixture was extracted with ethyl acetate, washed with saturated saline, and dried over anhydrous sodium sulfate. After evaporating the solvent, the residue was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 3/1) to obtain 3.29 g of the desired compound as a white solid (yield 69.1%).
[0073]
(7) Synthesis of Production Intermediate 2- (4-methoxybenzenesulfenyl) -4-methanesulfonylbenzoic acid (Intermediate No. 2-20)
To 3.29 g (8.98 mmol) of the benzoic acid ethyl ester derivative obtained by the above method, 20 ml of ethanol and 10 ml of water were added. 1.01 g (2.0 eq., 18.0 mmol) of potassium hydroxide was added thereto at room temperature, and the mixture was stirred at 50 ° C. for 5 hours. After evaporating the solvent, the mixture was acidified by adding 5% diluted hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain 3.03 g of the target compound as a white solid (yield 100%).
[0074]
(8) Synthesis of 4- [2- (4-methoxybenzenesulfenyl) -4-methanesulfonylbenzoyl] -1-ethyl-5-hydroxypyrazole (Compound No. 4-20)
0.60 g (1.77 mmol) of the benzoic acid derivative obtained by the above method was dispersed in 10 ml of 1,2-dichloroethane, and 0.01 g of DMF was added. To this, 0.16 ml (1.2 eq., 2.13 mmol) of thionyl chloride was added, and the mixture was heated under reflux for 2 hours. After the excess thionyl chloride and the solvent were distilled off, 10 ml of 1,2-dichloroethane was added to the residue, and at room temperature, 0.22 g (1.1 eq., 1.95 mmol) of 1-ethyl-5-hydroxypyrazole, and 0.39 g (2.2 eq., 3.9 mmol) of triethylamine was added. After stirring for 2 hours at room temperature, a catalytic amount of acetone cyanohydrin was added. After reacting overnight at room temperature, a 3% aqueous potassium carbonate solution was added, and the mixture was washed with ethyl acetate. The aqueous layer was acidified with a 5% aqueous hydrochloric acid solution and extracted with ethyl acetate. The organic layer was washed with saturated saline and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain 0.39 g of a crude product of 4- [2- (4-methoxybenzenesulfenyl) -4-methanesulfonylbenzoyl)]-1-ethyl-5-hydroxypyrazole (yield 51%). ) Was obtained as a yellow solid.
[0075]
(9) Synthesis of 4- [2- (4-methoxybenzenesulfenyl) -4-methanesulfonylbenzoyl] -5-n-propanesulfonyloxy-1-ethyl-pyrazole (Compound No. 3-20)
To 0.39 g (0.9 mmol) of the pyrazole derivative obtained above, 10 ml of methylene chloride and 5 ml of water were added, and catalytic amounts of benzyltriethylammonium chloride and 0.15 g of potassium carbonate (1.3 eq., 1.11 mmol) were added. Stirred. To this was added 0.15 g (1.2 eq., 1.02 mmol) of n-propanesulfonyl chloride at room temperature, followed by stirring. After 3 hours, stirring was stopped and the mixture was allowed to stand overnight, after which the methylene chloride layer was separated. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off. The residue was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 2/1) to obtain 0.29 g of the desired compound as a light brown resinous solid (yield: 60%).
[0076]
Production Example 10
(1) Synthesis of production intermediate ethyl 2-fluoro-4-trifluoromethylbenzoate To 10.0 g (44.1 mmol) of 2-fluoro-4-trifluoromethylbenzoic acid chloride was added 50 ml of ethanol, and the mixture was heated at 80 ° C. Stir for 2 hours. After the ethanol was distilled off, a saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with ethyl acetate and washed with saturated brine. The organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off, thereby obtaining 9.83 g of the target compound as a colorless transparent oil (yield 94.3%).
[0077]
(2) Synthesis of production intermediate ethyl 2-phenoxy-4-trifluoromethylbenzoate (Intermediate No. 1-35)
5.83 g (24.7 mmol) of ethyl 2-fluoro-4-trifluoromethylbenzoate is dissolved in 25 ml of DMF, and 4.97 g (1.5 eq., 36.0 mmol) of potassium carbonate and 2.79 g of phenol ( 1.2 eq., 29.6 mmol), and the mixture was heated and stirred at 80 ° C. for 6 hours. After cooling, a 5% aqueous hydrochloric acid solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated saline, dried over anhydrous sodium sulfate, and the solvent was distilled off. Purification by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 30/1) gave 7.7 g of the target compound as a white solid (yield 100%).
[0078]
(3) Synthesis of 2-phenoxy-4-trifluoromethylbenzoic acid (Intermediate No. 2-35)
To 7.92 g (24.7 mmol) of the benzoic acid ethyl ester derivative obtained by the above method, 30 ml of ethanol and 20 ml of water were added. To this, 2.77 g (2.0 eq., 49.4 mmol) of potassium hydroxide was added at room temperature, and the mixture was stirred at room temperature for 5 hours and left overnight. After evaporating the solvent, the mixture was acidified by adding 5% diluted hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain 6.50 g of the target compound as a white solid. (Yield 93.2%)
[0079]
Manufacturing Example 11
(1) Synthesis of production intermediate ethyl 2-phenylthio-4-trifluoromethylbenzoate (Intermediate No. 1-36)
5.03 g (19.1 mmol) of ethyl 2-nitro-4-trifluoromethylbenzoate was dissolved in 25 ml of DMF, and 3.75 g (1.42 eq., 27.2 mmol) of potassium carbonate and 2.39 g of thiophenol were added thereto. (1.13 eq., 21.7 mmol), and the mixture was heated and stirred at 80 ° C. for 6 hours. After cooling, a 5% aqueous hydrochloric acid solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated saline, dried over anhydrous sodium sulfate, and the solvent was distilled off. Purification was performed by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 30/1) to obtain 4.65 g of the target compound as a colorless transparent liquid (yield: 75%).
[0080]
(2) Synthesis of 2-phenylthio-4-trifluoromethylbenzoic acid (Intermediate No. 2-36)
To 4.68 g (14.3 mmol) of the benzoic acid ethyl ester derivative obtained by the above method, 30 ml of ethanol and 20 ml of water were added. 1.61 g (2.0 eq., 28.7 mmol) of potassium hydroxide was added thereto at room temperature, and the mixture was stirred at room temperature for 5 hours, left overnight, and further stirred at 50 ° C. for 30 minutes. After evaporating the solvent, the mixture was acidified by adding 5% diluted hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain 4.01 g of the target compound as a white solid (yield 93.6%).
[0081]
Production Example 12
(1) Synthesis of 4- [2- (2-pyridyloxy) -4-methanesulfonylbenzoyl] -1-ethyl-5-hydroxy-pyrazole (Compound No. 4-29)
0.33 g (1.13 mmol) of 2- (2-pyridyloxy) -4-methanesulfonylbenzoic acid and 0.14 g (1.1 eq., 1.14 mmol) of 1-ethyl-5-hydroxypyrazole are dispersed in 10 ml of chloroform. Then, 0.30 g (1.3 eq., 1.46 mmol) of dicyclohexylcarbodiimide was added at room temperature, and the mixture was stirred at room temperature for 3 hours. After the reaction, insoluble materials were removed by filtration, and the solvent was distilled off. To the obtained residue, 10 ml of acetonitrile, 0.25 g (2.2 eq., 2.48 mmol) of triethylamine and 0.01 g of acetone cyanohydrin were added, and the mixture was added at room temperature. Stir for 3 hours and leave overnight. After evaporating the solvent, a 3% aqueous potassium carbonate solution was added to the residue, and the mixture was washed with ethyl acetate. The aqueous layer was acidified by adding a 5% aqueous hydrochloric acid solution, and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain 0.17 g of the target compound as a brown solid.
[0082]
(2) Synthesis of 4- [2- (2-pyridyloxy) -4-methanesulfonylbenzoyl] -5-n-propanesulfonyloxy-1-ethylpyrazole (Compound No. 3-29)
Methylene chloride and water were added to 0.17 g (0.44 mmol) of 4- [2- (2-pyridyloxy) -4-methanesulfonylbenzoyl] -1-ethyl-5-hydroxy-pyrazole, and a catalytic amount of benzyltriethyl chloride was added. Ammonium and 0.08 g (1.3 eq., 0.57 mmol) of potassium carbonate were added and stirred. 0.88 g (1.4 eq., 6.2 mmol) of n-propanesulfonyl chloride was added thereto at room temperature, and the mixture was stirred. After 3 hours, the stirring was stopped, and the mixture was left overnight, followed by extraction with methylene chloride. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off using an evaporator. The residue was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 1/1) to obtain 0.04 g of the desired compound as a light brown resinous solid (18% yield).
[0083]
Production Example 13
Compound No. Synthesis of 3-2, 3-3, 4-2, and 4-3
In Production Example 1, synthesis was performed using the corresponding phenol derivatives. Intermediate and target 1 1 H-NMR data are shown in Tables 3 and 4.
[0084]
Production Example 14
Compound No. Synthesis of 3-5-3-11, 4-5-4-11, 3-13-3-16, and 4-13-4-16
In Production Example 3, synthesis was performed using the corresponding phenol derivatives. Intermediate and target 1 1 H-NMR data are shown in Tables 3 and 4.
[0085]
Production Example 15
Compound No. Synthesis of 5-1, 6-1, 7-1, 8-1, 9-1, 10-1, and 7-2
Synthesis was carried out in the same manner as in Production Example 1 except that the corresponding 5-hydroxypyrazole derivative was used instead of 1-ethyl-5-hydroxypyrazole. Compound No. In the synthesis of 7-2, o-chlorophenol was used instead of phenol. Object 1 H-NMR data are shown in Tables 5 to 10.
[0086]
Production Example 16
Intermediate No. Synthesis of 1-19, 29-34
Synthesis was carried out in the same manner as in Production Example 1 (1) except that the corresponding thiol or hydroxy compound was used instead of phenol. Object 1 The H-NMR data is shown in Table 1.
[0087]
Production Example 17
Intermediate No. Synthesis of 1-2-1 to 1-23, 1-25 to 1-28
Synthesis was carried out in the same manner as in Production Example 9 (6), except that the corresponding thiophenol was used instead of 4-methoxythiophenol. Object 1 The H-NMR data is shown in Table 1.
[0088]
Production Example 18
Intermediate No. Synthesis of 2-19, 2-21 to 2-34
Synthesis was carried out in the same manner as in Production Example 9 (7). Object 1 The H-NMR data is shown in Table 2.
[0089]
Production Example 19
Compound No. Synthesis of 3-19, 3-21 to 3-28, 3-30 to 3-36
In Production Example 9 (9), the corresponding pyrazole derivatives were used instead of 4- [2- (4-methoxybenzenesulfenyl) -4-methanesulfonylbenzoyl] -1-ethyl-5-hydroxypyrazole, respectively. Was done. Object 1 The H-NMR data is shown in Table 3.
[0090]
Production Example 20
Compound No. Synthesis of 4-19, 4-21, 4-32, 4-35, 4-36
In Production Example 9 (8), synthesis was performed using the corresponding benzoic acid derivatives. Object 1 The H-NMR data is shown in Table 4.
[0091]
Production Example 21
Compound No. Synthesis of 5-19 to 5-22, 5-25, 5-27, 5-28, 5-31, to 5-33, 5-35, 5-36
In Production Example 9 (9), synthesis was performed in the same manner using the corresponding pyrazole derivatives. Object 1 The H-NMR data is shown in Table 5.
[0092]
Production Example 22
Compound No. Synthesis of 6-19, 6-21, 6-32, 6-35, 6-36
In Preparation Example 9 (8), the corresponding benzoic acid derivative was used instead of 2- (4-methoxybenzenesulfenyl) -4-methanesulfonylbenzoic acid, and 1-methyl was used instead of 1-ethyl-5-hydroxypyrazole. Synthesis was performed in the same manner using a -5-hydroxypyrazole derivative. Object 1 The H-NMR data is shown in Table 6.
[0093]
Production Example 23
Compound No. Synthesis of 7-19 to 7-28, 7-33, 7-34
In Production Example 9 (9), the corresponding pyrazole derivatives were used instead of 4- [2- (4-methoxybenzenesulfenyl) -4-methanesulfonylbenzoyl] -1-ethyl-5-hydroxypyrazole. Synthesis was performed in the same manner. Object 1 The H-NMR data is shown in Table 7.
[0094]
Production Example 24
Compound No. Synthesis of 8-19, 8-21
In Preparation Example 9 (8), the corresponding benzoic acid derivative was used instead of 2- (4-methoxybenzenesulfenyl) -4-methanesulfonylbenzoic acid, and 1,3 was used instead of 1-ethyl-5-hydroxypyrazole. Synthesis was performed in the same manner using a -dimethyl-5-hydroxypyrazole derivative. Object 1 The H-NMR data is shown in Table 8.
[0095]
Production Example 25
Compound No. Synthesis of 9-19 to 9-29, 9-31 to 9-33, 9-35, 9-36
In Production Example 9 (9), the corresponding pyrazole derivatives were used instead of 4- [2- (4-methoxybenzenesulfenyl) -4-methanesulfonylbenzoyl] -1-ethyl-5-hydroxypyrazole. Synthesis was performed in the same manner. Object 1 The H-NMR data is shown in Table 9.
[0096]
Production Example 26
Compound No. Synthesis of 10-19, 10-21, 10-32, 10-35, 10-36
In Preparation Example 9 (8), the corresponding benzoic acid derivative was used instead of 2- (4-methoxybenzenesulfenyl) -4-methanesulfonylbenzoic acid, and 1-isopropyl was used instead of 1-ethyl-5-hydroxypyrazole. Synthesis was performed in the same manner using a -5-hydroxypyrazole derivative. Object 1 The H-NMR data is shown in Table 10.
[0097]
Production Example 27
Compound No. Synthesis of 10-29, 10-33
In Production Example 12 (1), the corresponding benzoic acid derivative was used instead of 2- (2-pyridyloxy) -4-methanesulfonylbenzoic acid, and 1-isopropyl-5 was used instead of 1-ethyl-5-hydroxypyrazole. Synthesis was performed in the same manner using a hydroxypyrazole derivative. Object 1 The H-NMR data is shown in Table 10.
[0098]
Production Example 28
Compound No. Synthesis of 12-2 to 12-5
Synthesis was carried out in the same manner as in Production Example 8 except that the corresponding benzoic acid derivatives were used instead of 4-methanesulfonyl-2-phenoxybenzoic acid. Object 1 The H-NMR data is shown in Table 12.
[0099]
[Table 1]
Figure 2004168682
[0100]
[Table 2]
Figure 2004168682
[0101]
[Table 3]
Figure 2004168682
[0102]
[Table 4]
Figure 2004168682
[0103]
[Table 5]
Figure 2004168682
[0104]
[Table 6]
Figure 2004168682
[0105]
[Table 7]
Figure 2004168682
[0106]
[Table 8]
Figure 2004168682
[0107]
[Table 9]
Figure 2004168682
[0108]
[Table 10]
Figure 2004168682
[0109]
[Table 11]
Figure 2004168682
[0110]
[Table 12]
Figure 2004168682
[0111]
[Table 13]
Figure 2004168682
[0112]
[Table 14]
Figure 2004168682
[0113]
[Table 15]
Figure 2004168682
[0114]
[Table 16]
Figure 2004168682
[0115]
[Table 17]
Figure 2004168682
[0116]
[Table 18]
Figure 2004168682
[0117]
[Table 19]
Figure 2004168682
[0118]
[Table 20]
Figure 2004168682
[0119]
[Table 21]
Figure 2004168682
[0120]
[Table 22]
Figure 2004168682
[0121]
[Table 23]
Figure 2004168682
[0122]
[Table 24]
Figure 2004168682
[0123]
[Table 25]
Figure 2004168682
[0124]
[Table 26]
Figure 2004168682
[0125]
[Table 27]
Figure 2004168682
[0126]
[Table 28]
Figure 2004168682
[0127]
Examples of herbicides
(1) Preparation of herbicide
97 parts by weight of talc (trade name: Sigleite, manufactured by Sigleite Industry Co., Ltd.) as a carrier and 1.5 alkylaryl sulfonate (trade name: Neoperex, manufactured by Kao Atlas Co., Ltd.) as a surfactant 1.5 Parts by weight and 1.5 parts by weight of nonionic and anionic surfactants (Solpol 800A, manufactured by Toho Chemical Industry Co., Ltd.) were uniformly pulverized and mixed to obtain a carrier for a wettable powder.
90 parts by weight of this carrier for wettable powders and 10 parts by weight of the compound of the present invention were uniformly pulverized and mixed to obtain herbicides. As comparative herbicides, the following compounds (A) and (B) were prepared in the same manner.
[0128]
Comparative compound (A): Compound described in JP-A-50-126830 (commercially available agent)
Embedded image
Figure 2004168682
[0129]
Comparative compound (B): compound described in US Pat. No. 4,230,481
Embedded image
Figure 2004168682
[0130]
(2) Criteria for herbicidal effect and crop damage
The criteria for herbicidal efficacy and crop injury are:
Residue weight no treatment ratio = (Residue weight of treated area / residual weight of untreated area) x 100
And applied in the following biological tests.
[0131]
Figure 2004168682
[0132]
Figure 2004168682
[0133]
(3) Biological test (pretreatment test for flooded weeds)
Paddy field soil was filled in a 1/5000 arel Wagner pot, and seeds of nobie, dogfly, and sedge were planted on the surface of the paddy field, and a 2.5-leaf rice plant was transplanted to the soil. Next, the pot was placed in a greenhouse whose temperature was adjusted to 20 to 25 ° C., with the water depth in the pot being 3 cm, and the pot was grown in the greenhouse. On the third day after transplanting the rice seedlings, a predetermined amount of the herbicide prepared in the above (1) was added to a pot and treated. On the 30th day after the treatment, the herbicidal effect and the phytotoxicity on the rice were determined according to the criteria of (2). The results are shown in Tables 13 to 16.
From the results of Tables 13 to 16, it was confirmed that the benzoyl derivative of the present invention does not cause harm to rice and can selectively control important paddy weeds at a low dose. In contrast, it can be seen that the comparative compounds (A) and (B) are clearly inferior in herbicidal effect.
[0134]
[Table 29]
Figure 2004168682
[0135]
[Table 30]
Figure 2004168682
[0136]
[Table 31]
Figure 2004168682
[0137]
[Table 32]
Figure 2004168682
[0138]
(4) Biological test (treatment test after occurrence of flooded weeds)
Paddy field soil was filled in a 1/5000 arel Wagner pot, and seedlings of Nobie were sown on the surface of the paddy field. A 2.5-leaf rice plant was transplanted to the soil. Next, the pot was placed in a greenhouse whose temperature was adjusted to 20 to 25 ° C., with the water depth in the pot being 3 cm, and the pot was grown in the greenhouse. Ten days after transplanting the rice seedlings, a predetermined amount of the herbicide prepared in the above (1) was added to a pot and treated. On the 30th day after the treatment, the herbicidal effect and the phytotoxicity on the rice were determined according to the criteria of (2). Table 17 shows the results. From the results in Table 17, it was confirmed that the benzoyl derivative of the present invention did not cause harm to rice and could selectively control Nobies, an important weed in paddy fields, at a low dose. In contrast, it can be seen that the comparative compounds (A) and (B) are clearly inferior in herbicidal effect.
[0139]
[Table 33]
Figure 2004168682
[0140]
【The invention's effect】
The benzoyl derivative of the present invention has an extremely high herbicidal activity against various paddy weeds, not only before the occurrence of flooded weeds but also after the occurrence of flooded weeds, and at the same time, has extremely high crop safety, and is an excellent crop. -Has interweed selectivity. According to the present invention, a novel benzoyl derivative having excellent properties as a herbicide compound and a herbicide containing the same as an active ingredient are provided.

Claims (8)

一般式(I):
Figure 2004168682
(式中、XはO,S(O)(lは0〜2の整数)、又はNR11(R11は水素又はC〜Cアルキル基)であり;
YはS(O)(RはC〜Cアルキル基,nは0〜2の整数)又はR(RはC〜Cフルオロアルキル基)であり;
Zは下記式:
Figure 2004168682
(式中、R及びRは各々水素、C〜Cアルキル基、又はC〜Cシクロアルキル基であり、R〜Rは各々水素又はC〜Cアルキル基であり、pは0又は1であり、Qは水素、C〜Cアルキルスルホニル基、又は下記式:
Figure 2004168682
(R12、R13は各々水素又はC〜Cアルキル基)で表される置換基である)で表される置換基であり;
Aは下記式:
Figure 2004168682
Figure 2004168682
(式中、RはC〜Cアルキル基、ハロゲン、C〜Cアルコキシ基、C〜Cハロアルキル基、ヒドロキシ基、シアノ基、ニトロ基、又はC〜Cアルキルスルホニルオキシ基を示し、mは0〜5の整数を示し、R10は水素又はC〜Cアルキル基を示す)で表される置換されていてもよいフェニル基、5員環複素環基、又は6員環複素環基である)
で表されるベンゾイル誘導体。
General formula (I):
Figure 2004168682
(Wherein, X is O, S (O) l (l is an integer of 0 to 2), or NR 11 (R 11 is hydrogen or a C 1 -C 4 alkyl group);
Y is S (O) n R 7 (R 7 is a C 1 -C 4 alkyl group, n is an integer of 0 to 2) or R 8 (R 8 is a C 1 -C 4 fluoroalkyl group);
Z is the following formula:
Figure 2004168682
(Wherein, R 1 and R 2 are each hydrogen, a C 1 -C 4 alkyl group, or a C 3 -C 6 cycloalkyl group, and R 3 -R 6 are each a hydrogen or a C 1 -C 4 alkyl group. And p is 0 or 1, and Q is hydrogen, a C 1 -C 8 alkylsulfonyl group, or the following formula:
Figure 2004168682
(R 12 and R 13 are each a substituent represented by hydrogen or a C 1 -C 4 alkyl group).
A is the following formula:
Figure 2004168682
Figure 2004168682
(Wherein R 9 is a C 1 -C 4 alkyl group, a halogen, a C 1 -C 4 alkoxy group, a C 1 -C 4 haloalkyl group, a hydroxy group, a cyano group, a nitro group, or a C 1 -C 4 alkylsulfonyl) Represents an oxy group, m represents an integer of 0 to 5, R 10 represents hydrogen or a C 1 -C 4 alkyl group), and may be a substituted phenyl group, a 5-membered heterocyclic group, Or a 6-membered heterocyclic group)
A benzoyl derivative represented by
Zがピラゾール誘導体残基またはシクロジケトン誘導体残基である請求項1に記載のベンゾイル誘導体。The benzoyl derivative according to claim 1, wherein Z is a pyrazole derivative residue or a cyclodiketone derivative residue. XがOである請求項1または2に記載のベンゾイル誘導体。3. The benzoyl derivative according to claim 1, wherein X is O. XがS(O)(lは0〜2の整数)である請求項1または2に記載のベンゾイル誘導体。The benzoyl derivative according to claim 1 or 2, wherein X is S (O) l (l is an integer of 0 to 2). XがNR11(R11は水素又はC〜Cアルキル基)である請求項1または2に記載のベンゾイル誘導体。3. The benzoyl derivative according to claim 1, wherein X is NR 11 (R 11 is hydrogen or a C 1 -C 4 alkyl group). YがC〜Cアルキルスルホニル基またはC〜Cフルオロアルキル基である請求項1〜5のいずれかに記載のベンゾイル誘導体。Benzoyl derivative according to any one of claims 1 to 5 Y is C 1 -C 4 alkylsulfonyl group, or a C 1 -C 4 fluoroalkyl group. Aが置換されていてもよいフェニル基、置換されていてもよい5員環複素環基、置換されていてもよい6員環複素環基、置換されていてもよいチオフェン誘導体残基、置換されていてもよいピラゾール誘導体残基、置換されていてもよいチアジアゾール誘導体残基、および置換されていてもよいピリジン誘導体残基からなる群より選ばれた置換基である請求項1〜6のいずれかに記載のベンゾイル誘導体。A is an optionally substituted phenyl group, an optionally substituted 5-membered heterocyclic group, an optionally substituted 6-membered heterocyclic group, an optionally substituted thiophene derivative residue, 7. A substituent selected from the group consisting of an optionally substituted pyrazole derivative residue, an optionally substituted thiadiazole derivative residue, and an optionally substituted pyridine derivative residue. The benzoyl derivative according to the above. 請求項1〜7のいずれかに記載のベンゾイル誘導体及び/又はその塩を有効成分として含有する除草剤。A herbicide comprising the benzoyl derivative according to any one of claims 1 to 7 and / or a salt thereof as an active ingredient.
JP2002334006A 2002-11-18 2002-11-18 Herbicide containing benzoyl derivative as effective ingredient Pending JP2004168682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334006A JP2004168682A (en) 2002-11-18 2002-11-18 Herbicide containing benzoyl derivative as effective ingredient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334006A JP2004168682A (en) 2002-11-18 2002-11-18 Herbicide containing benzoyl derivative as effective ingredient

Publications (1)

Publication Number Publication Date
JP2004168682A true JP2004168682A (en) 2004-06-17

Family

ID=32698561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334006A Pending JP2004168682A (en) 2002-11-18 2002-11-18 Herbicide containing benzoyl derivative as effective ingredient

Country Status (1)

Country Link
JP (1) JP2004168682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110804020A (en) * 2019-11-22 2020-02-18 江苏大学 Triketone compound containing pyrimidine structure, synthesis method thereof and application thereof in pesticides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110804020A (en) * 2019-11-22 2020-02-18 江苏大学 Triketone compound containing pyrimidine structure, synthesis method thereof and application thereof in pesticides

Similar Documents

Publication Publication Date Title
US4594099A (en) N-substituted-Δ1 -tetrahydrophthalimide derivatives
JP3478830B2 (en) Pyrazole derivatives
JPH06199795A (en) Pyridyloxy-acrylic ester
JPH04128275A (en) N-benzylamides and insecticidal miticide containing the compound as active component
EP0609459A1 (en) Triazole derivative, process for producing the same, pest control agent, and pest control method
JP2905982B2 (en) Heterocycle-containing phenylpyrazole derivatives or salts thereof, process for producing the same, and herbicides
US5424277A (en) Benzene derivatives substituted with heterocyclic ring, and herbicides containing same as active ingredients
PT89845B (en) PROCESS FOR THE PREPARATION OF PESTICIDE COMPOSITION CONTAINING SUBSTITUTED ACRYLATES AND INTERMEDIATE PRODUCTS
JP2690816B2 (en) Quinolinyl oxadiazole herbicide
KR19980703363A (en) Pyrazole derivative
JP2004168682A (en) Herbicide containing benzoyl derivative as effective ingredient
JPH05320088A (en) Indan-1, 3-dione derivative and herbicide comprising the same as active ingredient
US6316390B1 (en) Triketone derivatives
JP2650823B2 (en) N-aryloxyacyl-N-phenyltetrahydrophthalamic acid derivative, process for producing the same, and herbicide containing the same as active ingredient
JP2000178268A (en) Triketone derivative and herbicide
JPS59116255A (en) Selective herbicide
EP1188376A1 (en) Triketone derivatives and herbicides for lowland fields
JP3752854B2 (en) N-benzyl carbamate compound, its production method and agricultural and horticultural fungicide
JP3086893B2 (en) Carbamate amide derivative and herbicide containing the same as active ingredient
JPH0395170A (en) New diphenyl ether derivative and herbicide containing the same as active ingredient
EP0073409A1 (en) N-substituted-tetrahydroisophthalimide derivatives
JP2000178272A (en) Benzylpiperidine compound, its production and inseticide for agriculture and horticulture
JP2916678B2 (en) Hydrazone compound and insecticide containing the compound as an active ingredient
JP2001288183A (en) Benzoyl derivative having condensed ring and herbicide composition using the same
JP2001158787A (en) Isoxazoline derivative, herbicide and its use